Planning Competition for Logistics Robots In Simulation

Scenario and Challenges

Tim Niemueller

Knowledge-based Systems Group, RWTH Aachen University

Erez Karpas Technion – Israel Institute of Technology

Tiago Vaquero and Eric Timmons Massachusetts Institute of Technology

The tutorial has received generous support from FESTO

- 14:00–14:30 General Introduction and Competition Description
 14:30–15:00 Planning and Executive Challenges
 15:00–15:30 Hands-on Part I: Overview and bootup
 - Coffee Break and Demo
- 16:00–17:00 Hands-on Part II: Exploring the Simulation17:00–17:30 Discussion and Feedback

Robotics Perspective

- Focus on plan generation
- Robotics not as testbed
- Execution gets less attention

- Focus often on various topics
- Integration for evaluation
- Planning labor-intensive

Planning Perspective

- Focus on plan generation
- Robotics not as testbed
- Execution gets less attention

Robotics Perspective

- Focus often on various topics
- Integration for evaluation
- Planning labor-intensive

Goals

- 1. Foster closer cooperation among communities
- 2. Develop grounded expertise with robotic scenarios, platforms, decision architectures, system integration and evaluation

RoboCup Logistics League 2015

RoboCup Logistics League 2015

Game Basics

- Task: In-factory production logistics
- Goal: variant production
- Two teams playing on common field
- Each team has 3 robots
- Multi-robot coordination task

Two Game Phases

- Exploration: detect and report machines
- Production: produce and deliver by using processing stations spread across field

RoboCup Logistics League 2015

- Team colors: cyan and magenta
- Exclusive machines spread across field
- Mirrored at middle axis

RoboCup Logistics League – Machines

Common

- Based on Festo MPS
- Marker to identify machine
- Signal light to indicate state
- Each team has exclusive set
- Similar handling for all types

Machine Types (per team)

- 1× Base Station (BS): retrieve bases
- 2× Ring Station (RS): mount colored rings
- $2 \times$ Cap Station (CS): buffer/mount caps
- 1× Delivery Station (DS): final delivery

RCLL Robot Platform (Team Carologistics)

Semi-autonomous Referee Box

Attention Message	Hachines Hachines
Robot 2 R-2/Nagnum at 172.26.124.22 lost	C-BS BS Z9 RE I
RefBox Log	C-DS IDSI Z4 DID
ded: 0)	C-RS1 RS Z17 RE 2
21:50:11.463 C: Machine C-RS1 finished processing, moving t	C-RS2 RSI Z8 I ID
o output	C-CS1 CS1723 PR BC
21:50:11.463 C: Simulated output at C-RS1	C-CS21CS1_76 BB
21:50:11 463 C: Machine C-RS1 MPS state DELIVERED (bases ad	N-RS IBSI721 TD
ded: 0)	N-DS IDSIZ16 TD
21:50:11 464 C: Machine C-BS1 finished processing ready at	N-RS1IRSI 75 TD
output	N-RS2 IRS 720 PB 1
21-50-11 622 C+ Client 23947429 (++ffff+127 0 0 1) disconn	N-CS1ICSIZ11 TD
ected	N-CS2ICSI718 PR RC
21:50:28 183 C: Machine M.CS1 recovered	Robots
21:50:28 183 C: Nachine M-CS1 switching to TDLE state	1 B-1 (Carologistics)
21:51:46.036 C: Client 23947430 connected from .:ffff:127.0	172 26 108 81 ACT
0.1.58034	2 R-2 (Carologistics)
21:51:46 069 C: Received state AVATLARIE for machine C-CS2	172 26 108 82 ACT
21:51:46 069 C: Nachine C.CS2 MPS state AVATIABLE (bases ad	3 R-3 (Carologistics)
ded: A)	172 26 108 83 ACT
21:51:46 070 C: Machine C.CS2 broken: Input to C.CS2 while	1 P-1 (Magnum)
not prepared TDLE	172 26 124 11 ACT
21:51:46 070 A: Input to C-CS2 while not prepared IDLE	2 P=2 (Hagpum)
21,51,46,226 C; Client 22947420 (ffff, 127, 0, 0, 1) discorp.	172 26 124 22 ACT
acted	2 P-2 (Magnum)
ected	172 26 124 38 ACT
Orders	172.20.124.35 ACT
	State: RUNNTNG
2 0/0/2 00:40-11:26 D2 4 0/0/1 00:40 05:07 D2	Phases PRODUCTION
5 1/0/1 06:44.09:26 D2 6 0/0/1 10:02-12:00 D2	Time: 10:42 100
7 0/0/1 11:21-12:47 D2	Pointe: 22 / 47
1.0/0/1	Cyan: Carologistics
Harenta - Haronim	
Peffor A 9 A	nagenca. nagridili
F2 STATE F3 PHASE F4 TEAM F9 ROBOT F12 DELIVER	SPC STOP

Tasks

- Determines randomized orders and machine failures
- Posts orders dynamically
- Scoring and evaluation
- Instructs MPS stations

Planning and Benchmarking

- Accountable environment agency
- Same controller in simulation
- Records extensive data
- Limited uncertainty
- ⇒ Repeatable benchmarks

Logs game information and all communication

Exploration (4 min)

- Machines show light code specific for machine type
- Robot must recognize and announced this type

Production (15 min)

- Orders are posted dynamically, e.g.
 "Deliver 1x P[red base, yellow and green ring, gray cap] in time window [123, 206] to gate 3"
- Robots must complete production chain leading to products
- Coordination is required for effective resource usage
- Machines may fail, other robots on the field

Exploration (4 min)

Machines show light code specific for machine type

Robot must recognize and announced this type

Production (15 min)

- Orders are posted dynamically, e.g.
 "Deliver 1x P[red base, yellow and green ring, gray cap] in time window [123, 206] to gate 3"
- Robots must complete production chain leading to products
- Coordination is required for effective resource usage
- Machines may fail, other robots on the field

RoboCup Logistics League - Production

Product Composition

- Products of four complexities (number of rings)
- Base (3 colors) + 0–3 rings (4 colors) + cap (2 colors)
- Order of ring colors is important
- Some ring colors require additional material
- Actual product variants randomized by referee box
- Orders have lead time of a few minutes

Order Elements (posted dynamically by refbox)

- Product to deliver (and number thereof)
- Time window in which to deliver

RoboCup Logistics League – Production Example

C₀ Production

Retrieve base with cap from shelf at CS

RoboCup Logistics League – Production Example

- Retrieve base with cap from shelf at CS
- Prepare CS to retrieve cap
- Feed base into CS

- Retrieve base with cap from shelf at CS
- Prepare CS to retrieve cap
- Feed base into CS
- Discard cap-less base

- Retrieve base with cap from shelf at CS
- Prepare CS to retrieve cap
- Feed base into CS
- Discard cap-less base
- Prepare BS to provide black base
- Retrieve base from BS

- Retrieve base with cap from shelf at CS
- Prepare CS to retrieve cap
- Feed base into CS
- Discard cap-less base
- Prepare BS to provide black base
- Retrieve base from BS
- Prepare CS to mount cap
- Feed black base to CS

- Retrieve base with cap from shelf at CS
- Prepare CS to retrieve cap
- Feed base into CS
- Discard cap-less base
- Prepare BS to provide black base
- Retrieve base from BS
- Prepare CS to mount cap
- Feed black base to CS
- Retrieve black base with cap from CS

- Retrieve base with cap from shelf at CS
- Prepare CS to retrieve cap
- Feed base into CS
- Discard cap-less base
- Prepare BS to provide black base
- Retrieve base from BS
- Prepare CS to mount cap
- Feed black base to CS
- Retrieve black base with cap from CS
- Prepare DS for slide specified in order
- Deliver to DS

- Retrieve base with cap from shelf at CS
- Prepare CS to retrieve cap
- Feed base into CS
- Discard cap-less base
- Prepare BS to provide black base
- Retrieve base from BS
- Prepare CS to mount cap
- Feed black base to CS
- Retrieve black base with cap from CS
- Prepare DS for slide specified in order
- Deliver to DS

Already simple product has several fragile points and cooperation potential.

Scoring (excerpt)

Sub-task	Description	Points
Additional base	Feed an additional base into an RS	+2
Finish CC ₀ step	Finish the work order for a color requi-	+5
Fisish 00 stor		
Finish CC ₁ step	ring one additional base	
Finish CC ₂ step	Finish the work order for a color requi-	+20
	Mount the last ring of a Count dust	
Finish C ₁ pre-cap	Mount the last ring of a C_1 product	+10
Finish <i>C</i> 2 pre-cap	Mount the last ring of a C ₂ product	
Finish C3 pre-cap	Mount the last ring of a C_3 product	+80
Mount cap	Mount the cap on a product	+10
Delivery	Deliver one of the final product vari-	+20
	ants to the designated loading zone	
	at the time specified in the order	

RoboCup Logistics League (RCLL)

- In-factory manufacturing logistics in Smart Factory
- Maintain and optimize material flow in production
- Competition under the RoboCup umbrella

RCLL as a Planning Competition and Benchmark

- Cooperative and competitive aspects, partially observable, non-deterministic, dynamic
- Typical: local, distributed, incremental strategy
- Desired: planning for global optimization
- Challenges: coordination, execution, robustness

RoboCup Logistics League (RCLL)

- In-factory manufacturing logistics in Smart Factory
- Maintain and optimize material flow in production
- Competition under the RoboCup umbrella

RCLL as a Planning Competition and Benchmark

- Cooperative and competitive aspects, partially observable, non-deterministic, dynamic
- Typical: local, distributed, incremental strategy
- Desired: planning for global optimization
- Challenges: coordination, execution, robustness

Medium complex benchmark domain focusing on efficient *planning/scheduling* and **execution integration**

CLIPS-based Incremental Task-Level Reasoning

- Only commit to single step at a time
- Strategic behavior with coarse tasks
- Reason about current knowledge
- CLIPS rule-based system
- Efficient reasoning with many updates
- Distributed, local-scope, incremental


```
(defrule s1-t23-s0
  (state IDLE) (holding S1)
  (machine (mtype ?mt&M2\_3) (name ?n)
                           (loaded-with $?1w&:(contains$ S0 ?lw)) )
 =>
  (assert (task-candidate goto ?n))
)
```

RoboCup Logistics League – Simulation

- Readily integrated 3D simulation with environment agency
- Based on software stack by RoboCup Team Carologistics

Simulation Architecture

Visualization

Fawkes Robot Software Framework

- Functional software components
- Lua-based Behavior Engine for skill execution
- Path planning and locomotion

ROS

- Full integration with simulation
- Encapsulates communication with referee box
- Visulization tool

Planning System Architecture

Tracks are determined by what can be replaced or extended.

Track 1: Planner and Execution

Domain model, task planner, execution monitoring, state estimator

Track 2: Behaviors and Motion Planning

Skills/behaviors, execution engine, motion planner (local/global)

Track 3: Free style

Any component but the simulation (parts) and its interface.

Challenge

Integrated planning and execution in a medium complex simulated robotics industry-inspired scenario

Tracks

Accommodate diversity by creating several tracks that have their specific extension points (discussion)

Timeline

2015: Presentation of RoboCup Logistics League scenario 2016: Tutorial, discussion of scenario and tracks 2017: Competition at ICAPS 2017

Planning Challenges Erez Karpas

Planning

Planning and Execution

Planning and Execution with Plant

- Finding sequence of actions for each order easy
- Assigning robots to orders/subtasks
- Large number of objects
 - Our domain formulation keeps track of each workpiece by its identity
 - Including workpieces that are symmetric

- Orders arrive on the fly
 - Replanning
 - Anticipating orders
- Competition
 - What is the objective?

Actions can:

- fail (in predicatable and unpredictable ways)
- take too long (or too little)
- Adjust plan based on opponent/ranking?

Running the Simulation

Starting the Simulation

- 1. Boot from USB stick
- 2. Login: robosim/simcomp2017
- 3. Get laptop on wifi (e.g., eduroam)
- 4. Run Terminal
- 5. Update and rebuild simstick

```
# simstick-update
```

simstick-rebuild

6. Start Simulation

```
# cd robotics/fawkes-robotino/bin
```

./gazsim.bash -x start -r -n 1 -t -a

7. In Gazebo, hit F11 twice to get to window mode

Running the Game

Attention Message	Machines-
Robot 2 R-2/Magnum at 172.26.124.22 lost	C-BS BS Z9 RE I
RefBox Log	C-DS DS Z4 ID
ded: 0)	C-RS1 RS Z17 RE 2 KE
21:50:11.463 C: Machine C-RS1 finished processing, moving t	C-RS2 RS Z8 ID
o output	C-CS1 CS Z23 PR RC
21:50:11.463 C: Simulated output at C-RS1	C-CS2 CS Z6 BR
21:50:11.463 C: Machine C-RS1 MPS state DELIVERED (bases ad	M-BS BS Z21 ID
ded: 0)	M-DS DS Z16 ID
21:50:11.464 C: Machine C-RS1 finished processing, ready at	M-RS1 RS Z5 ID
output	M-RS2 RS Z20 PR 1
21:50:11.622 C: Client 23947429 (::ffff:127.0.0.1) disconn	M-CS1 CS Z11 ID
ected	M-CS2 CS Z18 PR RC
21:50:28.183 C: Machine M-CS1 recovered	Robots
21:50:28.183 C: Machine M-CS1 switching to IDLE state	1 R-1 (Carologistics)
21:51:46.036 C: Client 23947430 connected from ::ffff:127.0	172.26.108.81 ACT
.0.1:58034	2 R-2 (Carologistics)
21:51:46.069 C: Received state AVAILABLE for machine C-CS2	172.26.108.82 ACT
21:51:46.069 C: Machine C-CS2 MPS state AVAILABLE (bases ad	3 R-3 (Carologistics)
ded: 0)	172.26.108.83 ACT
21:51:46.070 C: Machine C-CS2 broken: Input to C-CS2 while	1 R-1 (Magnum)
not prepared IDLE	172.26.124.11 ACT
21:51:46.070 A: Input to C-CS2 while not prepared IDLE	2 R-2 (Magnum)
21:51:46.236 C: Client 23947430 (::ffff:127.0.0.1) disconn	172.26.124.22 ACT
ected	3 R-3 (Magnum)
	172.26.124.33 ACT
Orders	Game
1.1/1/1 01:50-03:37 D2 2.0 /0/1 03:25-04:53 D3	State: RUNNING
3.0/0/2 09:40-11:26 D2 4.0/1 02:40-05:07 D3	Phase: PRODUCTION
5.1/0/1 06:44-09:26 D3 6.0/0/1 10:02-12:00 D3	Time: 10:42.199
7.0/0/1 11:31-12:47 D2	Points: 83 / 42
	Cyan: Carologistics
	Magenta: Magnum
L RefBox 0.9.0	
F2 STATE F3 PHASE F4 TEAM F9 ROBOT F12 DELIVER	SPC STOP

Explore ROS Integration

Start Simulation with ROS Integration

Note: no -a flag!

Explore Topics

rostopic list

- Per robot namespace, /robot1 etc.
- /robotN/rcll: communication with referee box
- /robotN/rcll_sim: simulation integration
- /robot1/skiller: skill execution action

Run Skill via ROS Action

rosrun actionlib axclient.py \
 /robot1/skiller fawkes_msgs/ExecSkillAction

Send the following goal:

skillstring: 'ppgoto{place="C-CS1-I"}'
(requires to be in the production phase in refbox)