
Decision Diagrams for Sequencing and Scheduling

Willem-Jan van Hoeve

Tepper School of Business
Carnegie Mellon University

www.andrew.cmu.edu/user/vanhoeve/mdd/

Plan
What can MDDs do for Combinatorial Optimization?
• Compact representation of all solutions to a problem
• Limit on size gives approximation
• Control strength of approximation by size limit

MDDs for Discrete Optimization
• 9:00am-10:30am tutorial (John Hooker)
• MDD as discrete relaxation for lower and upper bound
• Exact branch-and-bound search scheme (on MDD states)

MDDs for Sequencing and Scheduling
• MDD-based constraint propagation
• Constraint-based scheduling with MDDs
• State-dependent costs

2

Decision Diagrams

• Binary Decision Diagrams were introduced to compactly
represent Boolean functions [Lee, 1959], [Akers, 1978], [Bryant, 1986]

• BDD: merge isomorphic subtrees of a given binary decision tree
• MDDs are multi-valued decision diagrams (i.e., for arbitrary

finite-domain variables)

3

f(x1, x2, x3) = -x1 * -x2 * -x3 + x1 * x1 * x2 + x2 * x3

: 0
: 1

)()()(),,(3221321321 xxxxxxxxxxf ∧∨∧∨¬∧¬∧¬=

Brief background

• Original application areas: circuit design, verification
• Usually reduced ordered BDDs/MDDs are applied

– fixed variable ordering
– minimal exact representation

• Application to discrete optimization (exponential-size)
– cut generation [Becker et al., 2005]

– 0/1 vertex and facet enumeration [Behle & Eisenbrand, 2007]

– post-optimality analysis [Hadzic & Hooker, 2006, 2007]

– set bounds propagation [Hawkins, Lagoon, Stuckey, 2005]

• Scalable variant (polynomial-size)
– relaxed MDDs

[Andersen, Hadzic, Hooker & Tiedemann, CP 2007]
4

Exact MDDs for discrete optimization

5
l lllll l l l ll00l 0 0 l ll0ll l 0 l 0000l 0 0

(1) x1 + x2 + x3 ≥ 1
(2) x1 + x4 + x5 ≥ 1
(3) x2 + x4 ≥ 1

r

x1

x2

x3

x4

x5

: 0
: 1

Exact MDDs for discrete optimization

6
l lllll l l l ll00l 0 0 l ll0ll l 0 l 0000l 0

(1) x1 + x2 + x3 ≥ 1
(2) x1 + x4 + x5 ≥ 1
(3) x2 + x4 ≥ 1

r

x1

x2

x3

x4

x5

: 0
: 1

Exact MDDs for discrete optimization

7
l lllll l l l lll l llll l l l

(1) x1 + x2 + x3 ≥ 1
(2) x1 + x4 + x5 ≥ 1
(3) x2 + x4 ≥ 1

r

x1

x2

x3

x4

x5

: 0
: 1

Exact MDDs for discrete optimization

8
l lllll l l l lll l llll l

(1) x1 + x2 + x3 ≥ 1
(2) x1 + x4 + x5 ≥ 1
(3) x2 + x4 ≥ 1

r

x1

x2

x3

x4

x5

: 0
: 1

Exact MDDs for discrete optimization

9

(1) x1 + x2 + x3 ≥ 1
(2) x1 + x4 + x5 ≥ 1
(3) x2 + x4 ≥ 1

r

1

Each path corresponds
to a solution

(1,0,1,1,0)t

x1

x2

x3

x4

x5

: 0
: 1 root

terminal

Limited-size MDDs

• Exact MDDs can be of exponential size in general
• We can limit the size of the MDD and still have a

meaningful representation:
– First proposed by Andersen et al. [2007] for improved

constraint propagation:
Limit the width of the MDD (the maximum number of nodes
on any layer)

10

MDDs for Constraint Programming

11

12

Motivation

Constraint Programming applies
• systematic search and
• inference techniques
to solve combinatorial problems

Inference mainly takes place through:
• Filtering provably inconsistent values from variable domains
• Propagating the updated domains to other constraints

x1 > x2

x1 + x2 = x3

alldifferent(x1,x2,x3 ,x4)

x1 ∈ {1,2}, x2 ∈ {0,1,2,3}, x3 ∈ {2,3}, x4 ∈ {0,1}

domain propagation
can be weak, however…

Illustrative example

13

alldifferent(x1,x2,x3,x4) (1)
x1 + x2 + x3 ≥ 9 (2)
xi ∈ {1,2,3,4}

List of all solutions to alldifferent:
x1 x2 x3 x4

1 2 3 4
1 2 4 3
1 3 2 4

…
4 3 2 1

(1) and (2) both
domain consistent
(no propagation)

projection: D(xi) = {1,2,3,4}

Suppose we could
evaluate (2) on this list

Illustrative example

14

alldifferent(x1,x2,x3,x4) (1)
x1 + x2 + x3 ≥ 9 (2)
xi ∈ {1,2,3,4}

List of all solutions to alldifferent:
x1 x2 x3 x4

projection: D(x4) = {1}

Suppose we could
evaluate (2) on this list

2 3 4 1
2 4 3 1
3 2 4 1

…
4 3 2 1







 D(x1) = D(x2) = D(x3) = {2,3,4}

Illustrative example (cont’d)

15

alldifferent(x1,x2,x3,x4) (1)
x1 + x2 + x3 ≥ 9 (2)
xi ∈ {1,2,3,4}

List of all solutions: use MDDs
2 3 4

3
2

4
4

2 3

4 3 2

1

x1

x2

x3

x4

x1 x2 x3 x4

2 3 4 1
2 4 3 1
3 2 4 1

…
4 3 2 1

16

Motivation for MDD propagation

• Conventional domain propagation projects all structural
relationships among variables onto the domains

• Potential solution space implicitly defined by Cartesian
product of variable domains (very coarse relaxation)

We can communicate more information between
constraint using MDDs [Andersen et al. 2007]

• Explicit representation of more refined potential
solution space

• Limited width defines relaxed MDD
• Strength is controlled by the imposed width

17

MDD-based Constraint Programming

• Maintain limited-width MDD
– Serves as relaxation
– Typically start with width 1 (initial variable domains)
– Dynamically adjust MDD, based on constraints

• Constraint Propagation
– Edge filtering: Remove provably inconsistent edges (those

that do not participate in any solution)
– Node refinement: Split nodes to separate edge information

• Search
– As in classical CP, but may now be guided by MDD

Specific MDD propagation algorithms

• Linear equalities and inequalities [Hadzic et al., 2008]
[Hoda et al., 2010]

• Alldifferent constraints [Andersen et al., 2007]

• Element constraints [Hoda et al., 2010]

• Among constraints [Hoda et al., 2010]

• Disjunctive scheduling constraints [Hoda et al., 2010]
[Cire & v.H., 2011, 2013]

• Sequence constraints (combination of Amongs)
[Bergman et al., 2014]

• Generic re-application of existing domain filtering
algorithm for any constraint type [Hoda et al., 2010]

18

19

Example: Among Constraints

 Given a set of variables X, and a set of values S, a
lower bound l and upper bound u,

Among(X, S, l, u) := l ≤ ∑x∈X (x ∈ S) ≤ u

“among the variables in X, at least l and at most u
take a value from the set S”

 Applications in, e.g., nurse scheduling
─ must work between 1 and 2 night shifts each 10 days

20

width 1 vs 16

Propagating Among Constraints

backtracks

width 1 vs 16

time (s)

(Systems of overlapping Among constraints)

Example: Sequence Constraints

Employee must work at most 7 days every 9 consecutive days

21

sun mon tue wed thu fri sat sun mon tue wed thu

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

0 ≤ x1+x2+ ... +x9 ≤ 70 ≤ x2+x3+ ... +x10 ≤ 70 ≤ x3+x4+ ... +x11 ≤ 70 ≤ x4+x5+ ... +x12 ≤ 7

=: Sequence([x1,x2,...,x12], q=9, S={1}, l=0, u=7)

Sequence(X, q, S, l, u) := ∧ l ≤ ∑x∈X’ (x ∈ S) ≤ u
|X’|=q

Among(X, S, l, u)

Performance Comparison for Sequence

22

Sequence vs. Among

23

A large MDD by
itself may not be
sufficient!

Coming up

• MDDs can handle objective functions as well
• Important for many CP problems

– e.g., disjunctive scheduling
– minimize makespan, weighted completion times,

etc.

• We will develop an MDD approach to
disjunctive scheduling
– combines MDD propagation and optimization

reasoning

24

Handling objective functions

25

(1) x1 + x2 + x3 ≥ 1
(2) x1 + x4 + x5 ≥ 1
(3) x2 + x4 ≥ 1

r

x1

x2

x3

x4

x5

1
(0,0,1,1,0)t

Suppose we have an
objective:

min 4x1+3x2+x3+2x4+5x5

: 0
: 1

4

3 3

1 1 1 1

2 2 2

5 5

shortest path
computation

MDDs for Disjunctive Scheduling

26

• Cire and v.H. Multivalued Decision Diagrams for Sequencing
Problems. Operations Research 61(6): 1411-1428, 2013.

Disjunctive Scheduling

27

Disjunctive Scheduling in CP

• Sequencing and scheduling of activities on a resource

• Activities
– Processing time: pi

– Release time: ri

– Deadline: di

– Start time variable: si

• Resource
– Nonpreemptive
– Process one activity at a time

Activity 1

Activity 2

Activity 3

0 1 2 3 4

28

Extensions

• Precedence relations between activities

• Sequence-dependent setup times

• Various objective functions
– Makespan
– Sum of setup times
– (Weighted) sum of completion times
– (Weighted) tardiness
– number of late jobs
– …

29

Inference

• Inference for disjunctive scheduling
– Precedence relations
– Time intervals in which an activity can be processed

• Sophisticated techniques include:
– Edge-Finding
– Not-first / not-last rules

• Examples: 1 ≪ 3
s3 ≥ 3

30

Activity 1

Activity 2

Activity 3

0 1 2 3 4

Assessment of CP Scheduling

• Disjunctive scheduling may be viewed as the ‘killer
application’ for CP
– Natural modeling (activities and resources)
– Allows many side constraints (precedence relations, time

windows, setup times, etc.)
– Among state of the art while being generic methodology

• However, CP has some problems when
– objective is not minimize makespan (but instead, e.g.,

weighted sum of lateness)
– setup times are present
– …

• What can MDDs bring here?
31

optimization

MDDs for Disjunctive Scheduling

Three main considerations:

• Representation
– How to represent solutions of disjunctive

scheduling in an MDD?

• Construction
– How to construct this relaxed MDD?

• Inference techniques
– What can we infer using the relaxed MDD?

32

MDD Representation

• Natural representation as ‘permutation MDD’

• Every solution can be written as a
permutation π

π1, π2 , π3, …, πn : activity sequencing in the resource

• Schedule is implied by a sequence, e.g.:

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜋𝜋𝑖𝑖 ≥ 𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝜋𝜋𝑖𝑖−1 + 𝑝𝑝𝜋𝜋𝑖𝑖−1 𝑖𝑖 = 2, … ,𝑛𝑛

33

34

MDD Representation

π1

π2

π3

{2}

{1}

{3}

{3} {2}

Act ri pi di

1 0 2 3

2 4 2 9

3 3 3 8

Path {1} – {3} – {2} :

0 ≤ start1 ≤ 1

6 ≤ start2 ≤ 7

3 ≤ start3 ≤ 5

Exact MDD Compilation

Theorem: Constructing the exact MDD for a Disjunctive
Instance is an NP-Hard problem

 TSP defined on a complete graph
 Given a fixed parameter k, we must satisfy

𝑖𝑖 ≪ 𝑗𝑗 if 𝑗𝑗 − 𝑖𝑖 ≥ 𝑘𝑘 for cities i, j

Theorem: The exact MDD for the TSP above has O(n2k) nodes

• We work with MDD relaxations instead
• Bounded size in specific cases, e.g. (Balas [99]):

MDD-based propagation

Propagation: remove infeasible arcs from the MDD

We can utilize several structures/constraints:
• Alldifferent for the permutation structure
• Earliest start time and latest end time
• Precedence relations

For a given constraint type we maintain specific
‘state information’ at each node in the MDD

– both top-down and bottom-up

36

Propagation (cont’d)

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}
{1}

{2}

{1,2,3,4,5}

• State information at
each node i
– labels on all paths: Ai

– labels on some paths: Si

– earliest starting time: Ei

– latest completion time: Li

• Top down example for
arc (u,v)

π1

π2

π3

π4

…

37

Alldifferent Propagation

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}
{1}

{2}

{1,2,4,5}

 All-paths state: Au

 Labels belonging to all paths
from node r to node u

 Au = {3}
 Thus eliminate {3} from (u,v)

{1,2,3,4,5}

π1

π2

π3

π4

…

38[Andersen et al., 2007]

Alldifferent Propagation

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}
{1}

{2}

{4,5}

 Some-paths state: Su

 Labels belonging to some
path from node r to node u

 Su = {1,2,3}
 Identification of Hall sets
 Thus eliminate {1,2,3} from

(u,v) {1,2,4,5}

π1

π2

π3

π4

…

39

Propagate Earliest Completion Time

π1

π2

π3

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}
{1}

{2}

{4,5} π4

 Earliest Completion Time: Eu

 Minimum completion time
of all paths from root to
node u

 Similarly: Latest Completion
Time

…

40

Propagate Earliest Completion Time

π1

π2

π3

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}
{1}

{2}

{4,5} π4 Eu = 7

 Eliminate 4 from (u,v)

{5}

…

41

0

2

4

7

Act ri di pi

1 0 4 2
2 3 7 3
3 1 8 3
4 5 6 1
5 2 10 3

Act ri di pi

1 0 4 2
2 3 7 3
3 1 8 3
4 5 6 1
5 2 10 3

{5}

Propagate Precedence Relations

π1

π2

π3

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}
{1}

{2}

π4

…

42

 Arc with label j infeasible if
𝑖𝑖 ≪ 𝑗𝑗 and i not on some path from r

 Suppose 4 ≪ 5
 Su = {1,2,3}
 Since 4 not in Su, eliminate 5

from (u,v)

 Similarly: Bottom-up for 𝑗𝑗 ≪ 𝑖𝑖

More MDD Inference

Theorem: Given the exact MDD M, we can deduce all implied
activity precedences in polynomial time in the size of M

r

u

t

i

j

 For a node u,
 𝐴𝐴𝑢𝑢↓ : values in all paths from root to u
 𝐴𝐴𝑢𝑢↑ : values in all paths from node u to terminal

 Precedence relation 𝑖𝑖 ≪ 𝑗𝑗 holds if and only if
for all nodes u in M

 Same technique applies to relaxed MDD

43

• Build a digraph 𝐺𝐺=(V, E) where V is the set of activities
• For each node u in M

– if 𝑗𝑗 ∈ 𝐴𝐴𝑢𝑢↓ and 𝑖𝑖 ∈ 𝐴𝐴𝑢𝑢↑ add edge (i,j) to E
– represents that 𝑖𝑖 ≪ 𝑗𝑗 cannot hold

• Take complement graph 𝐺𝐺
– complement edge exists iff 𝑖𝑖 ≪ 𝑗𝑗 holds

Extracting precedence relations

44

r

t

3

1 2

2 1 4

14

(𝐴𝐴𝑢𝑢↓ ,𝐴𝐴𝑢𝑢↑)(Ø, 1234)

(3, 124)

(23, 14)(13, 24)

(234, 1)(123, 4)

(1234, Ø)

1 2

34

𝐺𝐺

1 2

34

𝐺𝐺

3 ≪ 1
3 ≪ 2
3 ≪ 4
2 ≪ 4

• Build a digraph 𝐺𝐺=(V, E) where V is the set of activities
• For each node u in M

– if 𝑗𝑗 ∈ 𝐴𝐴𝑢𝑢↓ and 𝑖𝑖 ∈ 𝐴𝐴𝑢𝑢↑ add edge (i,j) to E
– represents that 𝑖𝑖 ≪ 𝑗𝑗 cannot hold

• Take complement graph 𝐺𝐺
– complement edge exists iff 𝑖𝑖 ≪ 𝑗𝑗 holds

• Time complexity: O(|M|n2)

Extracting precedence relations

45

• Same technique applies to relaxed MDD
– add an edge if 𝑗𝑗 ∈ 𝑆𝑆𝑢𝑢↓ and 𝑖𝑖 ∈ 𝑆𝑆𝑢𝑢↑

– complement graph represents subset of precedence
relations

Comparison to other methods

• Existing CP inference methods may not dominate the
MDD propagation, even for small widths

46

Act ri di pi

1 0 25 11
2 1 27 10
3 14 35 5

• Edge finding and not-first/not-last deduce that
1 ≪ 3 and 2 ≪ 3, but no changes in time bounds

• MDD finds the same precedences, and deduces that
s3 ≥ 10 + 11 = 21

[Vilim, 2004]

Communicate Precedence Relations

1. Provide precedence relations from MDD to CP
– update start/end time variables
– other inference techniques may utilize them
– (some of the precedence relations found by the MDD

may not be detected by existing CP methods)

2. Filter the MDD using precedence relations from
other (CP) techniques

47

Top-down MDD compilation

48

π1

π2

π3

{1,2,3}

{1,2,3}

{1,2,3}

precedence: 3 << 1

{3}{2}

{1,2,3} {1,2,3}

{1,2,3}

{3}{2}

{3} {1}

{1,2,3}{1,2,3}

{2}

(exact MDD)

• To refine the MDD, we generally want to identify equivalence
classes among nodes in a layer
– NP-hard, but can be based on state information in practice, e.g., EST,

LCT, alldifferent constraint (Ai and Si states), …

Computational Evaluation

• MDD propagation implemented in IBM ILOG CPLEX
CP Optimizer 12.4 (CPO)
– State-of-the-art constraint based scheduling solver
– Uses a portfolio of inference techniques and LP relaxation

• Three different variants
– CPO (only use CPO propagation)
– MDD (only use MDD propagation)
– CPO+MDD (use both)

49

Problem classes

• Disjunctive instances with
– sequence-dependent setup times
– release dates and deadlines
– precedence relations

• Objectives
– minimize makespan
– minimize sum of setup times
– minimize total tardiness

• Benchmarks
– Random instances with varying setup times
– TSP-TW instances (Dumas, Ascheuer, Gendreau)
– Sequential Ordering Problem

50

Importance of setup times

Random instances
- 15 jobs
- lex search
- MDD width 16
- min makespan

51
Importance of setup times

(increasing average length of setup times)

CP
O

 B
ac

kt
ra

ck
s /

 M
DD

 B
ac

kt
ra

ck
s

TSP with Time Windows

52

Dumas/Ascheuer
instances
- 20-60 jobs
- lex search
- MDD width: 16

Pu
re

 M
DD

 ti
m

e
(s

)

CPO time (s)

Minimize Total Tardiness

• Consider activity i with due date δi
– Completion time of i: ci = si + pi

– Tardiness of i: max{0, ci – δi }

• Objective: minimize total (weighted) tardiness

• 120 test instances
– 15 activities per instance
– varying ri, pi, and δi, and tardiness weights
– no side constraints, setup times (measure only impact of

objective)
– lexicographic search, time limit of 1,800s

53

Total Tardiness Results

54

total tardiness total weighted tardiness

CPO

MDD-16
MDD-32

MDD-64
MDD-128

CPO
MDD-16

MDD-32
MDD-64

MDD-128

Sequential Ordering Problem (TSPLIB)

55* solved for the first time

*
*

*

Extension: Lagrangian bounds

• Observation: MDD bounds can be very loose

56

π1

π2

π3

{2}

{1}

{3}

{3}{2}

Main cause: repetition of activities

Proposed remedy:
• add Lagrangian relaxation
• penalize repeated activities

• Shortest path with updated weights

Example: Relaxed Decision Diagram

57

2

4

r = 2

r = 1

r = 1

Arc Tasks Release Date

3

r

t

First task

Second task

Third task

5

4 4

3

3

4

4

2

2
2

Shortest Path: Lower Bound

58

2

4

r = 2

r = 1

r = 1

Arc Tasks Release Date

3

r

t

First task

Second task

Third task

5

4 4

23

3

4

4

2

2

• Shortest path
• Length: Lower bound on the

optimal solution value

Shortest Path: Lower Bound

59

2

4

r = 2

r = 1

r = 1

Arc Tasks Release Date

3

r

t

3 2 2

First task

Second task

Third task

5

4 4

23

3

4

4

2

81

Completion Time: 8

2

Issues

60

r

t

First task

Second task

Third task

5

4 4

23

3

4

4

2

2

• Solutions of a relaxed DD may
violate several constraints of the
problem

• Violation: “All tasks performed
once”

for all tasks i

min z = shortest path

s.t. ∑e|v(e)=i xe = 1, for all tasks i

(+other problem constraints)

min z = shortest path + ∑i λi (1 - ∑e|v(e)=i xe)

s.t. (other problem constraints)

Remedy: Lagrangian Relaxation

61

Lagrangian multipliers λi

This is done by
updating shortest
path weights!

[Bergman et al., 2015]

• We penalize infeasible solutions in a relaxed DD:
Any separable constraint of the form

f1(x1) + f2(x2) + … + fn(xn) ≤ c

that must be satisfied by solutions of an MDD can
be dualized

• We need only to focus on the shortest path solution
– Identify a violated constraint and penalize
– Systematic way directly adapted from LP
– Shortest paths are very fast to compute

General Approach

62

Improving Relaxed Decision Diagram

63

2

4

r = 2

r = 1

r = 1

Arc Tasks Release Date

3

r

t

First task

Second task

Third task

5

4 4

23

3

4

4

2

2

Improving Relaxed Decision Diagram

64

r

t

First task

Second task

Third task

5

4 4

23

3

4

4

2

2

2

4

r = 2

r = 1

r = 1

Arc Tasks Release Date

3

3 2 2

Completion Time: 8

Penalization:
• If a task is repeated, increase its arc weight
• If a task is unused, decrease its arc weight

Improving Relaxed Decision Diagram

65

2

4

r = 2

r = 1

r = 1

Arc Tasks Release Date

3

r

t

First task

Second task

Third task

5

4 4

23

3

4

4

2

2

3 2 2

Completion Time: 8

Penalization:
• If a task is repeated, increase its arc weight
• If a task is unused, decrease its arc weight

Improving Relaxed Decision Diagram

66

4

5

3
3

3

3

3

2

4

r = 2

r = 1

r = 1

Arc Tasks Release Date

3

r

t

First task

Third task

4

3

3

Second task

3 2 2

Completion Time: 8

Penalization:
• If a task is repeated, increase its arc weight
• If a task is unused, decrease its arc weight

Improving Relaxed Decision Diagram

67

4

5

3
3

3

3

3

2

4

r = 2

r = 1

r = 1

Arc Tasks Release Date

3

• New shortest path: 10
• Guaranteed to be a valid

lower bound for any penalties

r

t

First task

Third task

4

3

3

Second task

Cost-Based Filtering

68

r

t

5

4 4

23

3

4

4

2

2

• If minimum solution value through
an arc exceeds max(D(z)) then
arc can be deleted

• Suppose a solution of value 10 is
known

• MDD filtering extends to
Lagrangian weights: More filtering
possible

Impact on TSP with Time Windows

69

(Constraints, 2015)TSPTW instances

State-Dependent Costs

70

• Kinable, Cire and v.H. Hybrid Optimization for Time-Dependent
Sequencing. Under Review.

Context and Motivation

• Time-dependent sequencing
– machine scheduling, routing

• Challenging problem
– best results so far use dedicated methods
– not easy to extend with side constraints

• Utilize constraint programming framework?
– strengthened constraint propagation with MDDs
– improved bounds via additive bounding with LP
– evaluate on TD-TSP and TD-SOP

71

Time-Dependent Sequencing

• Activities
– processing time pi

– released date ri

– deadline di

• Resource
– non-preemptive
– process one activity at a time
– sequence-dependent setup times

72

Activity 1

Activity 2

Activity 3

0 1 2 3 74 5 6

: also depend on position!
𝛿𝛿𝑖𝑖,𝑗𝑗𝑡𝑡 = setup time between i and j if i is at position t

Constraint Programming Model

• Variables πi : label of ith activity in the sequence
Li : position of activity i in the sequence

73

• Weak model: objective and AllDiff are decoupled

MDD-based propagation

Update MDD propagation algorithms:

• Alldifferent for the permutation structure
– unchanged

• Precedence relations
– unchanged

• Earliest start time and latest end time
– adapt rule: 𝛿𝛿𝑖𝑖,𝑗𝑗 becomes 𝛿𝛿𝑖𝑖,𝑗𝑗𝑡𝑡

• Objective
– minimize sum of setup times

74

Updated CP Model

75

Stronger model: objective handled within MDD
constraint

Additive Bounding

76

(Fischetti & Toth, 1989)

Add LP reduced costs to MDD relaxation
• Continuous LP relaxation ‘discretized’ through MDD
• Stronger bounds
• Improved cost-based filtering

MIP and LP relaxation

• Time-space network model (Picard & Queyranne, 1978)

• Variables

• Constraints: flow conservation; perform each activity
• Valid inequalities: subtour and 4-cycle elimination

77

if i is performed at t and followed by j
otherwise

Embedding reduced costs in MDD

• State information at each node i
– shortest path from root to i with

respect to
– root node initialized with LP objective

value

• Since MDD is relaxation, shortest
path is valid bound
– filter edges that do not participate in

improving shortest path

78

{3}{2}

{3} {1}

{2}{1}

{2}

0 0

4
2 0

0 3

• MDD maintains both the original objective and
this new ‘additive bound’ constraint

Experiments

• Time-dependent TSP and SOP benchmarks
– 38 instances from TSPLIB (14-107 jobs)

– 𝛿𝛿𝑖𝑖,𝑗𝑗𝑡𝑡 = (n─t)*𝛿𝛿𝑖𝑖,𝑗𝑗 [Abeledo et al. 2013]

• Time limit: 30 minutes
• MDD added to IBM ILOG CP Optimizer 12.4

– maximum width 1024

• MIP model (IBM ILOG CPLEX 12.4)
– state-space integer program
– subtour and 4-cycle elimination constraints
– LP relaxation takes several hours for ≥90 vertices

79

Results on Time-dependent TSP

80

0

5

10

15

20

0 450 900 1350 1800/≤ 0 ≤ 25 ≤ 50 ≤ 75 ≤ 100

In
st

an
ce

s(
#)

MIP

MDD (W ≤ 1024)

MDD (W ≤ 1024) + AB

25

30

time(s) optimality gap(%)

Note: Dedicated branch, price and cut algorithm (Abeledo et al., 2013)
solves more TD-TSP instances optimally

Results on Time-dependent SOP

81

#Solved
MIP 6/30

Pure CP 5/30
CP + MDD + Additive Bounding 10/30

On average, additive MDD+LP bound improves
- LP root node bound by 51.41%
- MDD root node bound by 9.54%

Conclusion

• MDD propagation natural generalization of domain
propagation
– Strength of MDD relaxation can be controlled by the width
– Huge reduction in solution time is possible

• For sequencing/disjunctive scheduling problems
– MDD can handle all side constraints and objectives from

existing CP scheduling systems
– Polynomial cases (e.g., Balas variant)
– MDD propagation algorithms (alldifferent, time windows, …)
– Extraction of precedence constraints from MDD
– Can be enriched with math programming relaxations
– Great addition to constraint-based systems

82

	Decision Diagrams for Sequencing and Scheduling
	Plan
	Decision Diagrams
	Brief background
	Exact MDDs for discrete optimization
	Exact MDDs for discrete optimization
	Exact MDDs for discrete optimization
	Exact MDDs for discrete optimization
	Exact MDDs for discrete optimization
	Limited-size MDDs
	Slide Number 11
	Motivation
	Illustrative example
	Illustrative example
	Illustrative example (cont’d)
	Motivation for MDD propagation
	MDD-based Constraint Programming
	Specific MDD propagation algorithms
	Example: Among Constraints
	Slide Number 20
	Example: Sequence Constraints
	Performance Comparison for Sequence
	Sequence vs. Among
	Coming up
	Handling objective functions
	Slide Number 26
	Disjunctive Scheduling
	Disjunctive Scheduling in CP
	Extensions
	Inference
	Assessment of CP Scheduling
	MDDs for Disjunctive Scheduling
	MDD Representation
	MDD Representation
	Exact MDD Compilation
	MDD-based propagation
	Propagation (cont’d)
	Alldifferent Propagation
	Alldifferent Propagation
	Propagate Earliest Completion Time
	Propagate Earliest Completion Time
	Propagate Precedence Relations
	More MDD Inference
	Extracting precedence relations
	Extracting precedence relations
	Comparison to other methods
	Communicate Precedence Relations
	Top-down MDD compilation
	Computational Evaluation
	Problem classes
	Importance of setup times
	TSP with Time Windows
	Minimize Total Tardiness
	Total Tardiness Results
	Sequential Ordering Problem (TSPLIB)
	Extension: Lagrangian bounds
	Example: Relaxed Decision Diagram
	Shortest Path: Lower Bound
	Shortest Path: Lower Bound
	Issues
	Remedy: Lagrangian Relaxation
	General Approach
	Improving Relaxed Decision Diagram
	Improving Relaxed Decision Diagram
	Improving Relaxed Decision Diagram
	Improving Relaxed Decision Diagram
	Improving Relaxed Decision Diagram
	Cost-Based Filtering
	Impact on TSP with Time Windows
	Slide Number 70
	Context and Motivation
	Time-Dependent Sequencing
	Constraint Programming Model
	MDD-based propagation
	Updated CP Model
	Additive Bounding
	MIP and LP relaxation
	Embedding reduced costs in MDD
	Experiments
	Results on Time-dependent TSP
	Results on Time-dependent SOP
	Conclusion

