

Decision Diagrams for Sequencing and Scheduling

Willem-Jan van Hoeve

Tepper School of Business Carnegie Mellon University www.andrew.cmu.edu/user/vanhoeve/mdd/

Plan

What can MDDs do for Combinatorial Optimization?

- *Compact representation* of all solutions to a problem
- Limit on size gives *approximation*
- Control strength of approximation by size limit

MDDs for Discrete Optimization

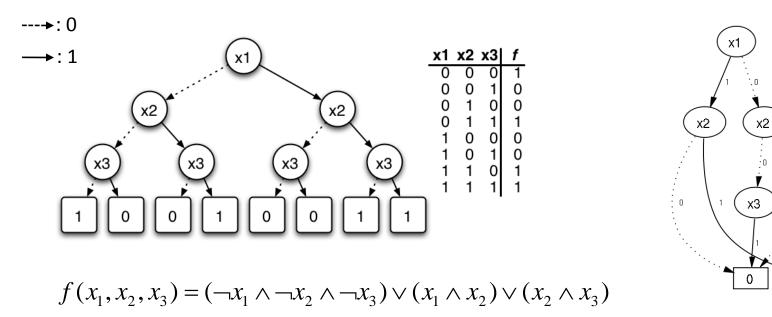
- 9:00am-10:30am tutorial (John Hooker)
- MDD as discrete relaxation for lower and upper bound
- Exact branch-and-bound search scheme (on MDD states)

MDDs for Sequencing and Scheduling

- MDD-based constraint propagation
- Constraint-based scheduling with MDDs
- State-dependent costs

Decision Diagrams

хЗ

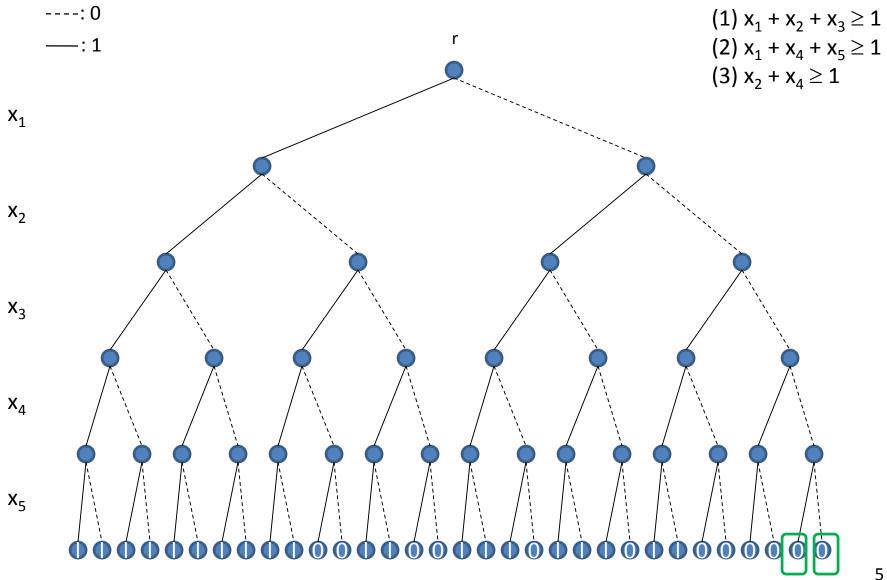


- Binary Decision Diagrams were introduced to compactly represent Boolean functions [Lee, 1959], [Akers, 1978], [Bryant, 1986]
- BDD: merge isomorphic subtrees of a given binary decision tree
- MDDs are multi-valued decision diagrams (i.e., for arbitrary finite-domain variables)

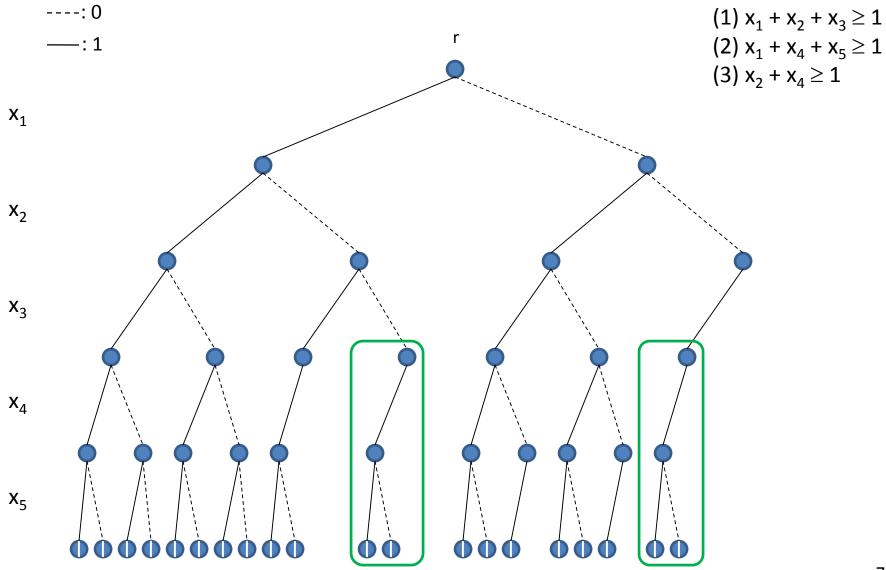
Brief background

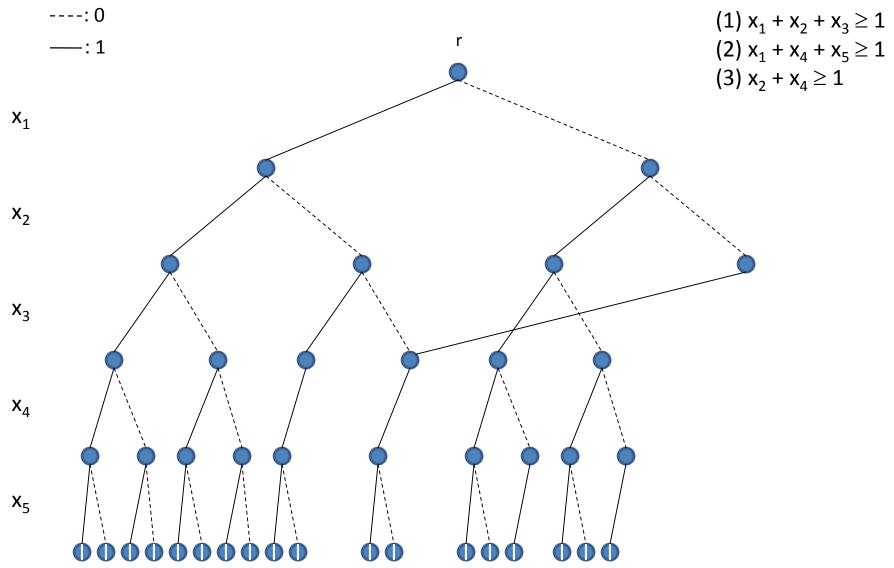
- Original application areas: circuit design, verification
- Usually reduced ordered BDDs/MDDs are applied
 - fixed variable ordering
 - minimal exact representation
- Application to discrete optimization (exponential-size)
 - cut generation [Becker et al., 2005]
 - 0/1 vertex and facet enumeration [Behle & Eisenbrand, 2007]
 - post-optimality analysis [Hadzic & Hooker, 2006, 2007]
 - set bounds propagation [Hawkins, Lagoon, Stuckey, 2005]
- Scalable variant (polynomial-size)
 - relaxed MDDs

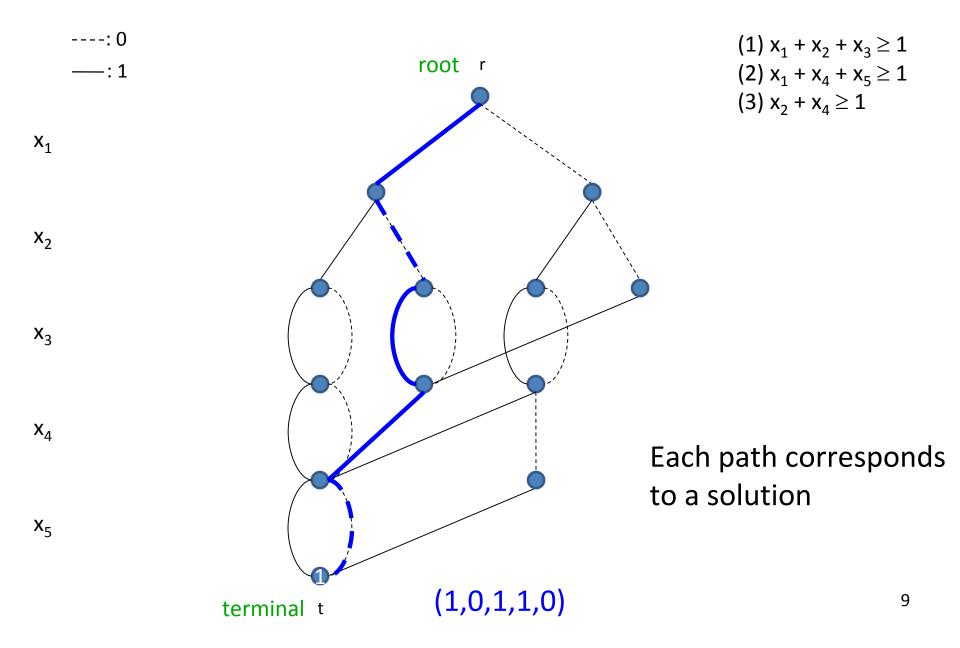
[Andersen, Hadzic, Hooker & Tiedemann, CP 2007]











- Exact MDDs can be of exponential size in general
- We can limit the size of the MDD and still have a meaningful representation:
 - First proposed by Andersen et al. [2007] for improved constraint propagation:
 - Limit the *width* of the MDD (the maximum number of nodes on any layer)

MDDs for Constraint Programming

Motivation

Constraint Programming applies

- systematic search and
- inference techniques

to solve combinatorial problems

Inference mainly takes place through:

- Filtering provably inconsistent values from variable domains
- Propagating the updated domains to other constraints

$$x_1 > x_2$$

 $x_1 + x_2 = x_3$
alldifferent(x_1, x_2, x_3, x_4)

domain propagation can be weak, however...

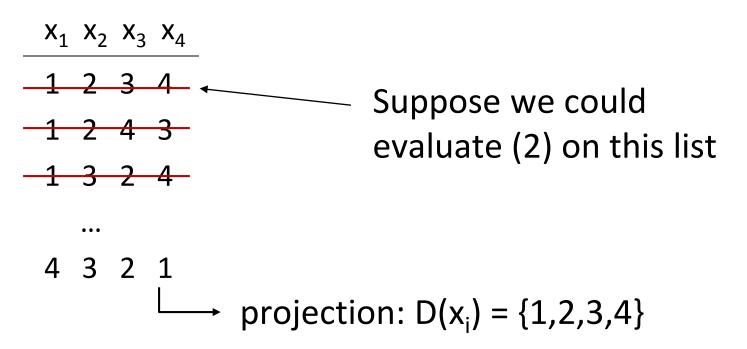
$$x_1 \in \{1,2\}, x_2 \in \{0,1,2,3\}, x_3 \in \{2,3\}, x_4 \in \{0,1\}$$

Illustrative example

alldifferent(
$$x_1, x_2, x_3, x_4$$
) (1)
 $x_1 + x_2 + x_3 \ge 9$ (2)
 $x_i \in \{1, 2, 3, 4\}$

(1) and (2) bothdomain consistent(no propagation)

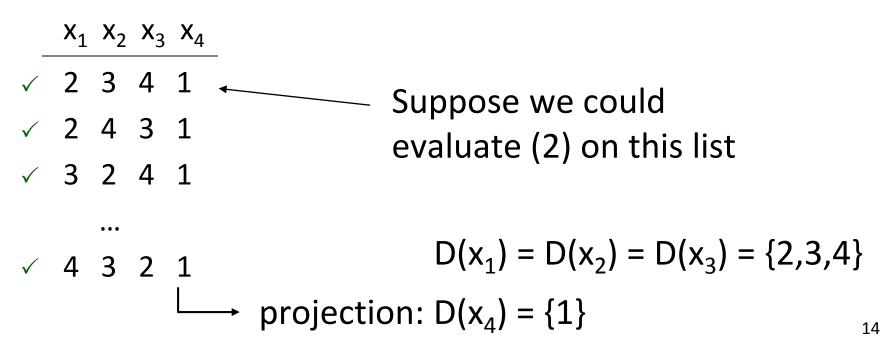
List of all solutions to *alldifferent*:



Illustrative example

alldifferent(
$$x_1, x_2, x_3, x_4$$
) (1)
 $x_1 + x_2 + x_3 \ge 9$ (2)
 $x_i \in \{1, 2, 3, 4\}$

List of all solutions to *alldifferent*:

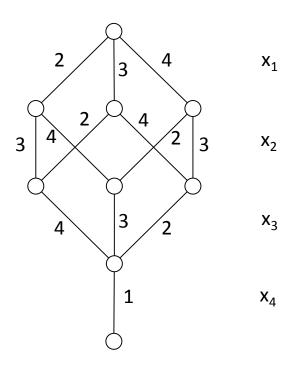


Illustrative example (cont'd)

alldifferent(
$$x_1, x_2, x_3, x_4$$
) (1)
 $x_1 + x_2 + x_3 \ge 9$ (2)
 $x_i \in \{1, 2, 3, 4\}$

List of all solutions: use MDDs

X_1	x ₂	X ₃	x ₄
2	3	4	1
2	4	3	1
3	2	4	1
	•••		
4	3	2	1



Motivation for MDD propagation

- Conventional domain propagation projects all structural relationships among variables onto the domains
- Potential solution space implicitly defined by Cartesian product of variable domains (very coarse relaxation)
- We can communicate more information between constraint using MDDs [Andersen et al. 2007]
- Explicit representation of more refined potential solution space
- Limited width defines *relaxed* MDD
- Strength is controlled by the imposed width

MDD-based Constraint Programming

- Maintain limited-width MDD
 - Serves as relaxation
 - Typically start with width 1 (initial variable domains)
 - Dynamically adjust MDD, based on constraints
- Constraint Propagation
 - Edge filtering: Remove provably inconsistent edges (those that do not participate in any solution)
 - Node refinement: Split nodes to separate edge information
- Search
 - As in classical CP, but may now be guided by MDD

Specific MDD propagation algorithms

• Linear equalities and inequalities

• Alldifferent constraints

Element constraints

• Among constraints

- [Hadzic et al., 2008] [Hoda et al., 2010]
- [Andersen et al., 2007]

[Hoda et al., 2010]

[Hoda et al., 2010]

- Disjunctive scheduling constraints [Hoda et al., 2010] [Cire & v.H., 2011, 2013]
- Sequence constraints (combination of Amongs) [Bergman et al., 2014]
- Generic re-application of existing domain filtering algorithm for any constraint type [Hoda et al., 2010]

Example: Among Constraints

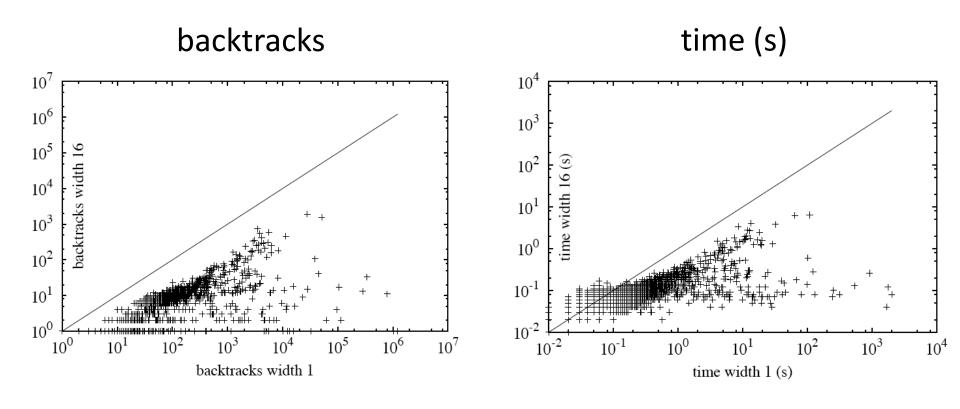
 Given a set of variables X, and a set of values S, a lower bound l and upper bound u,

Among(X, S, l, u) := $l \leq \sum_{x \in X} (x \in S) \leq u$

"among the variables in X, at least l and at most u take a value from the set S"

- Applications in, e.g., nurse scheduling
 - must work between 1 and 2 night shifts each 10 days

Propagating Among Constraints

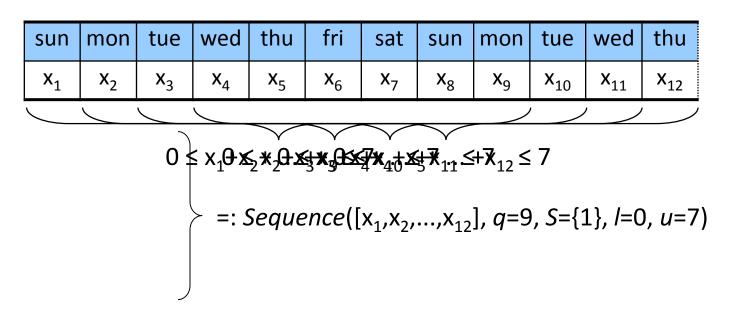


width 1 vs 16

width 1 vs 16

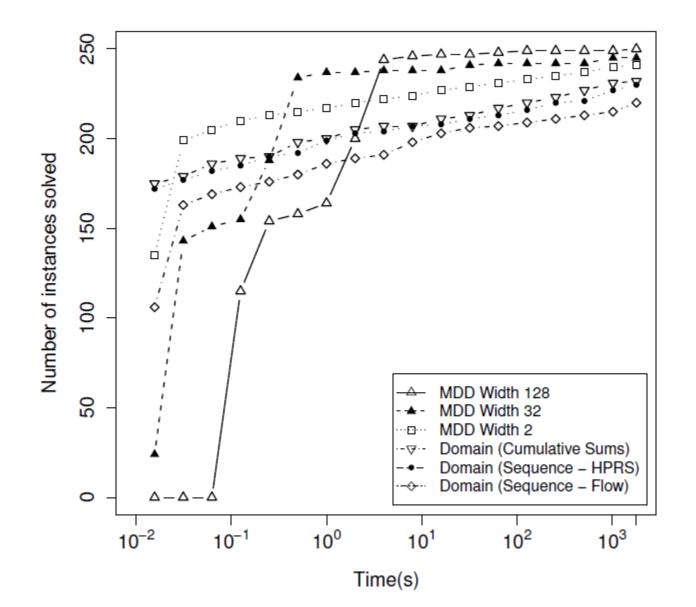
(Systems of overlapping Among constraints)

Employee must work at most 7 days every 9 consecutive days

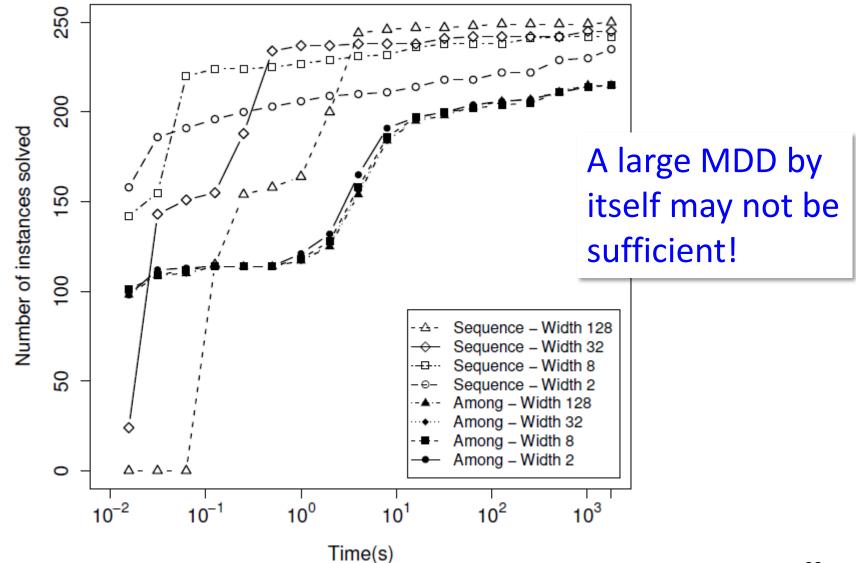


Sequence(X, q, S, l, u) :=
$$\bigwedge_{|X'|=q} l \leq \sum_{x \in X'} (x \in S) \leq u$$
$$\downarrow$$
$$Among(X, S, l, u)$$

Performance Comparison for Sequence

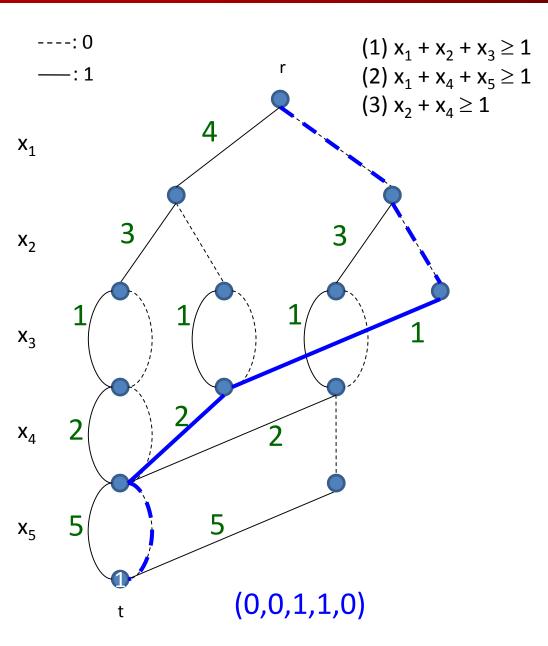


Sequence vs. Among



- MDDs can handle objective functions as well
- Important for many CP problems
 - e.g., disjunctive scheduling
 - minimize makespan, weighted completion times, etc.
- We will develop an MDD approach to disjunctive scheduling
 - combines MDD propagation and optimization reasoning

Handling objective functions



Suppose we have an objective:

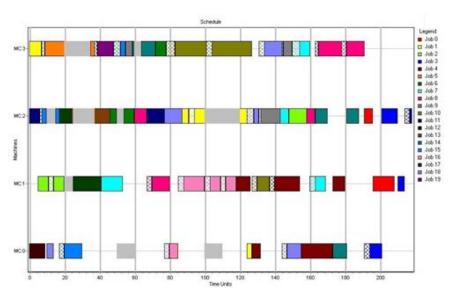
min $4x_1 + 3x_2 + x_3 + 2x_4 + 5x_5$

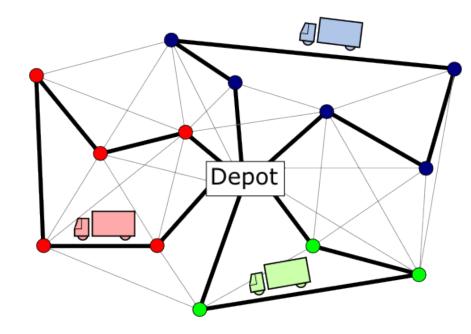
shortest path computation

MDDs for Disjunctive Scheduling

• Cire and v.H. Multivalued Decision Diagrams for Sequencing Problems. *Operations Research* 61(6): 1411-1428, 2013.

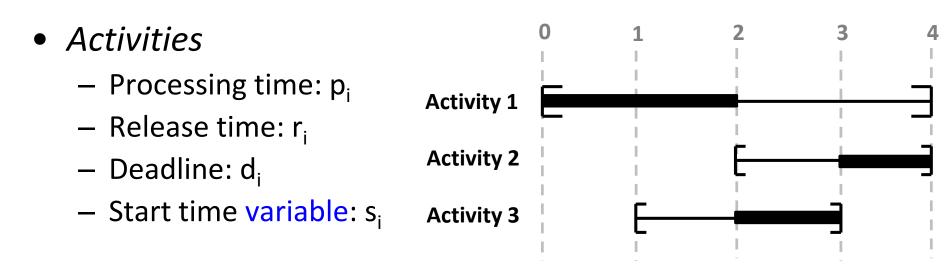
Disjunctive Scheduling





Disjunctive Scheduling in CP

- Carnegie Mellon DECOPER
- Sequencing and scheduling of activities on a resource



- Resource
 - Nonpreemptive
 - Process one activity at a time

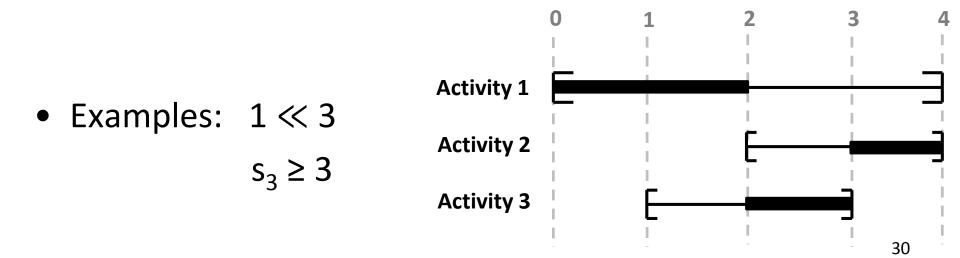
Extensions

- Precedence relations between activities
- Sequence-dependent setup times
- Various objective functions
 - Makespan
 - Sum of setup times
 - (Weighted) sum of completion times
 - (Weighted) tardiness
 - number of late jobs

- ...

Inference

- Inference for disjunctive scheduling
 - Precedence relations
 - Time intervals in which an activity can be processed
- Sophisticated techniques include:
 - Edge-Finding
 - Not-first / not-last rules



Assessment of CP Scheduling

- Disjunctive scheduling may be viewed as the 'killer application' for CP
 - Natural modeling (activities and resources)
 - Allows many side constraints (precedence relations, time windows, setup times, etc.)
 - Among state of the art while being generic methodology
- However, CP has some problems when
 - objective is not minimize makespan (but instead, e.g., weighted sum of lateness)
 - setup times are present
 optimization
- What can MDDs bring here?

MDDs for Disjunctive Scheduling

Three main considerations:

- Representation
 - How to represent solutions of disjunctive scheduling in an MDD?
- Construction
 - How to construct this relaxed MDD?
- Inference techniques
 - What can we infer using the relaxed MDD?

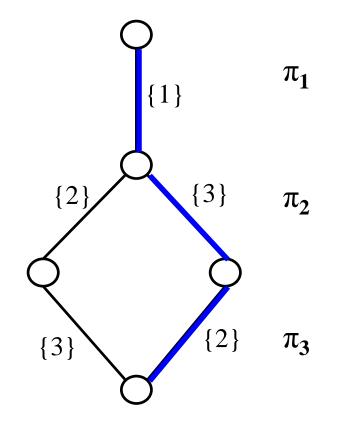
- Natural representation as 'permutation MDD'
- Every solution can be written as a permutation *π*

 $\pi_1, \pi_2, \pi_3, ..., \pi_n$: activity sequencing in the resource

• Schedule is *implied* by a sequence, e.g.:

 $start_{\pi_{i}} \ge start_{\pi_{i-1}} + p_{\pi_{i-1}} \quad i = 2, ..., n$

MDD Representation



Act	r _i	p _i	d _i
1	0	2	3
2	4	2	9
3	3	3	8

- Path $\{1\} \{3\} \{2\}$:
 - $0 \leq \text{start}_1 \leq 1$
 - $6 \leq \text{start}_2 \leq 7$
 - $3 \leq \text{start}_3 \leq 5$

Theorem: *Constructing the exact MDD for a Disjunctive Instance is an NP-Hard problem*

- We work with MDD relaxations instead
- Bounded size in specific cases, e.g. (Balas [99]):
- TSP defined on a complete graph
- Given a fixed parameter **k**, we must satisfy

$$i \ll j$$
 if $j - i \ge k$ for cities i, j

Theorem: *The exact MDD for the TSP above has O(n2^k) nodes*

Propagation: remove infeasible arcs from the MDD

We can utilize several structures/constraints:

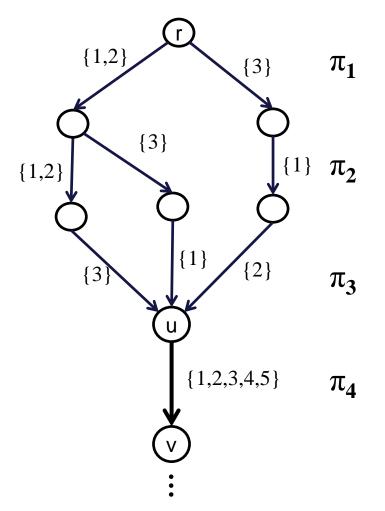
- *Alldifferent* for the permutation structure
- Earliest start time and latest end time
- Precedence relations

For a given constraint type we maintain specific 'state information' at each node in the MDD

both top-down and bottom-up

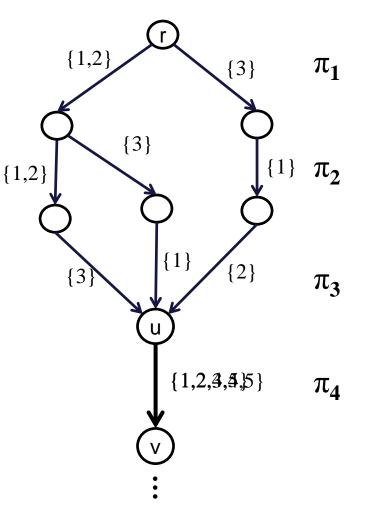
Propagation (cont'd)

- State information at each node *i*
 - labels on *all* paths: A_i
 - labels on *some* paths: S_i
 - earliest starting time: E_i
 - latest completion time: L_i
- Top down example for arc (u,v)



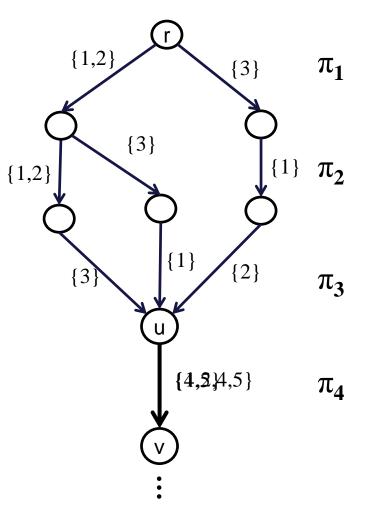
Alldifferent Propagation

- All-paths state: A_u
 - Labels belonging to all paths from node r to node u
 - ► A_u = {3}
 - Thus eliminate {3} from (u,v)



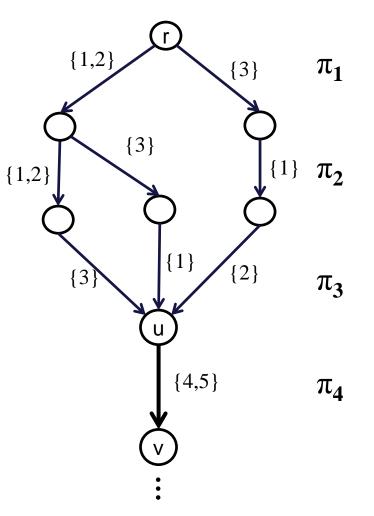
Alldifferent Propagation

- Some-paths state: S_u
 - Labels belonging to some path from node r to node u
 - ► S_u = {1,2,3}
 - Identification of Hall sets
 - Thus eliminate {1,2,3} from (u,v)



Propagate Earliest Completion Time

- Earliest Completion Time: E_u
 - Minimum completion time of all paths from root to node u
- Similarly: Latest Completion Time

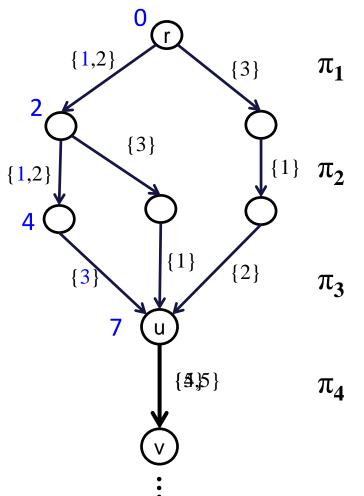


Propagate Earliest Completion Time

Act	r _i	d _i	p _i
1	0	4	2
2	3	7	3
3	1	8	3
4	5	6	1
5	2	10	3

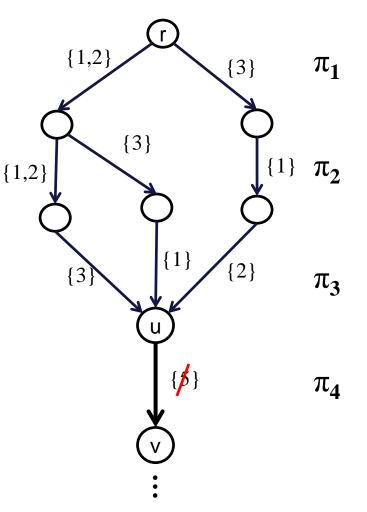
► E_u = 7

Eliminate 4 from (u,v)



Propagate Precedence Relations

- Arc with label *j* infeasible if
 i ≪ *j* and *i* not on some path from r
- Suppose $4 \ll 5$
 - ► S_u = {1,2,3}
 - Since 4 not in S_u, eliminate 5 from (u,v)
- Similarly: Bottom-up for $j \ll i$

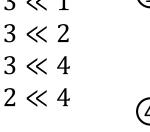


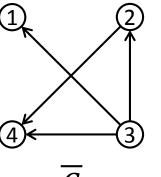
Theorem: Given the exact MDD M, we can deduce all implied activity precedences in polynomial time in the size of M

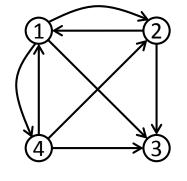
- For a node *u*,
 - A_u^{\downarrow} : values in all paths from root to *u*
 - A_u^{\uparrow} : values in all paths from node *u* to terminal
- Precedence relation $i \ll j$ holds if and only if $(j \notin A_u^{\downarrow})$ or $(i \notin A_u^{\uparrow})$ for all nodes u in M
- Same technique applies to relaxed MDD

Extracting precedence relations

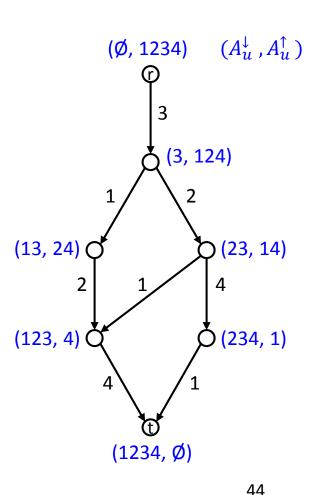
- Build a digraph G = (V, E) where V is the set of activities
- For each node u in M
 - if $j \in A_{u}^{\downarrow}$ and $i \in A_{u}^{\uparrow}$ add edge (i,j) to E
 - represents that $i \ll j$ cannot hold
- Take complement graph G - complement edge exists iff $i \ll j$ holds







G

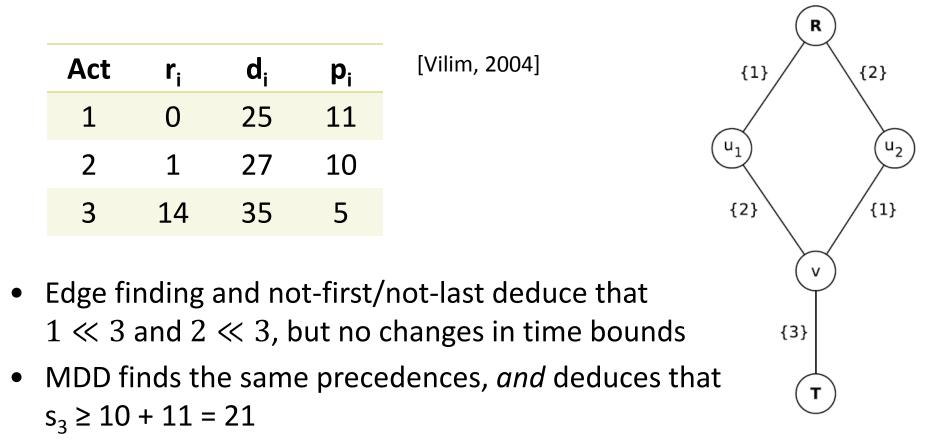


Extracting precedence relations

- Build a digraph G = (V, E) where V is the set of activities
- For each node u in M
 - if *j* ∈ A_u^{\downarrow} and *i* ∈ A_u^{\uparrow} add edge (*i*,*j*) to E
 - represents that $i \ll j$ cannot hold
- Take complement graph \overline{G} – complement edge exists iff $i \ll j$ holds
- Time complexity: $O(|M|n^2)$
- Same technique applies to *relaxed* MDD
 - add an edge if $j \in S_u^{\downarrow}$ and $i \in S_u^{\uparrow}$
 - complement graph represents subset of precedence relations

Comparison to other methods

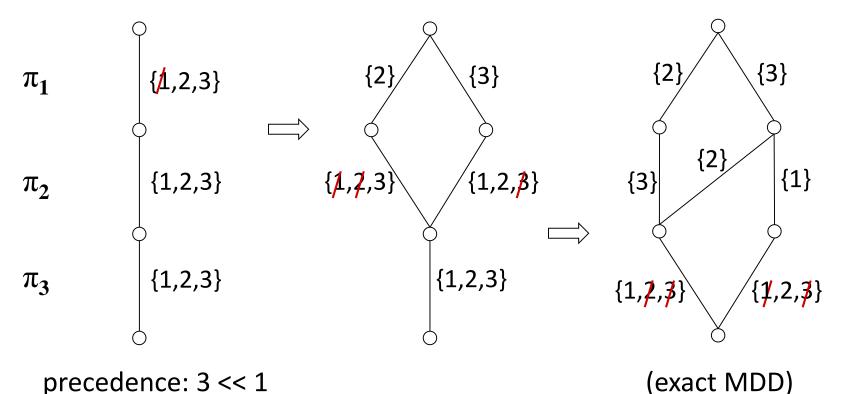
• Existing CP inference methods may not dominate the MDD propagation, even for small widths



- 1. Provide precedence relations from MDD to CP
 - update start/end time variables
 - other inference techniques may utilize them
 - (some of the precedence relations found by the MDD may not be detected by existing CP methods)

2. Filter the MDD using precedence relations from other (CP) techniques

Top-down MDD compilation



- To refine the MDD, we generally want to identify equivalence classes among nodes in a layer
 - NP-hard, but can be based on state information in practice, e.g., EST,
 LCT, alldifferent constraint (A_i and S_i states), ...

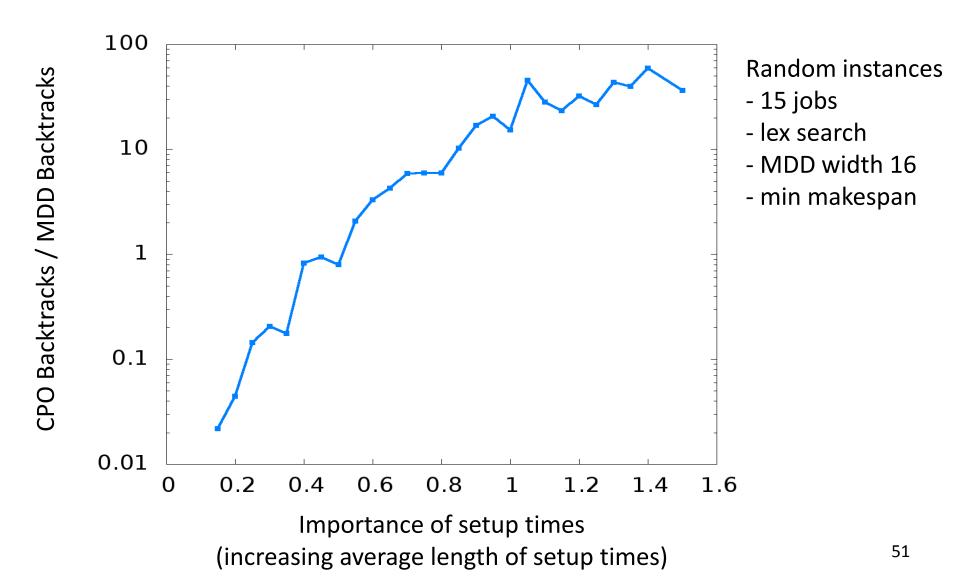
Computational Evaluation

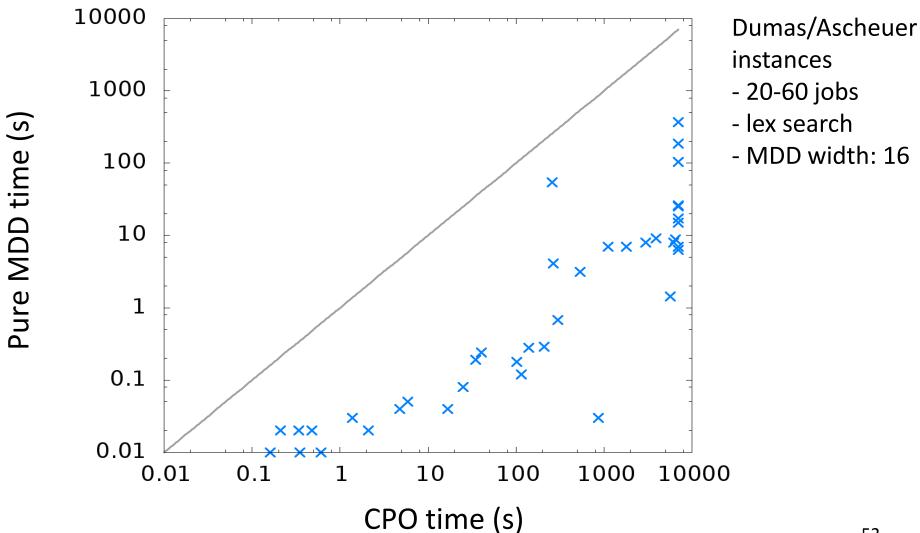
- MDD propagation implemented in IBM ILOG CPLEX CP Optimizer 12.4 (CPO)
 - State-of-the-art constraint based scheduling solver
 - Uses a portfolio of inference techniques and LP relaxation
- Three different variants
 - CPO (only use CPO propagation)
 - MDD (only use MDD propagation)
 - CPO+MDD (use both)

Problem classes

- Disjunctive instances with
 - sequence-dependent setup times
 - release dates and deadlines
 - precedence relations
- Objectives
 - minimize makespan
 - minimize sum of setup times
 - minimize total tardiness
- Benchmarks
 - Random instances with varying setup times
 - TSP-TW instances (Dumas, Ascheuer, Gendreau)
 - Sequential Ordering Problem

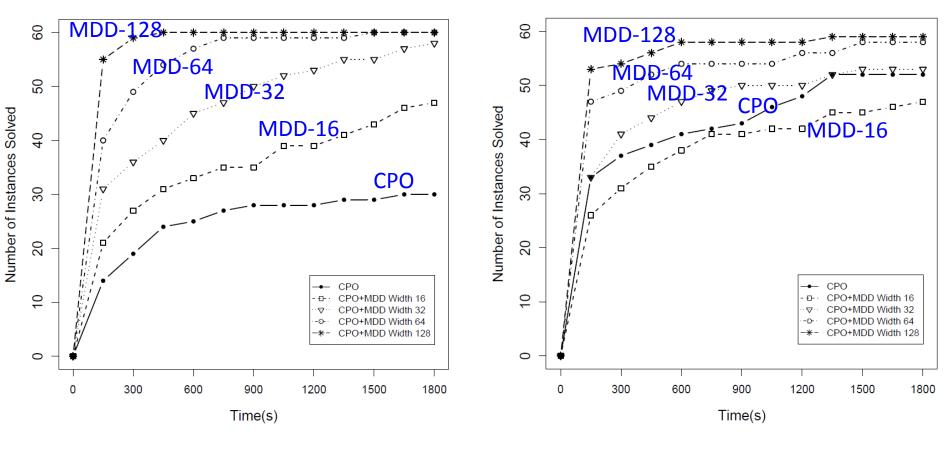
Importance of setup times





- Consider activity i with due date δ_i
 - Completion time of i: $c_i = s_i + p_i$
 - Tardiness of i: max{0, $c_i \delta_i$ }
- Objective: minimize total (weighted) tardiness
- 120 test instances
 - 15 activities per instance
 - varying r_i , p_i , and δ_i , and tardiness weights
 - no side constraints, setup times (measure only impact of objective)
 - lexicographic search, time limit of 1,800s

Total Tardiness Results



total tardiness

total weighted tardiness

Sequential Ordering Problem (TSPLIB)

			(CPO		CPO+MDD, width 2048	
instance	vertices	bounds	best	time (s)	best	time (s)	
br17.10	17	55	55	0.01	55	4.98	
br17.12	17	55	55	0.01	55	4.56	
$\mathrm{ESC07}$	7	2125	2125	0.01	2125	0.07	
$\mathrm{ESC25}$	25	1681	1681	TL	1681	48.42	
p43.1	43	28140	28205	TL	28140	287.57	
p43.2	43	[28175, 28480]	28545	TL	28480	$\boldsymbol{279.18}^{\boldsymbol{*}}$	
p43.3	43	[28366, 28835]	28930	TL	28835	177.29*	
p43.4	43	83005	83615	TL	83005	88.45	
ry48p.1	48	[15220, 15805]	18209	TL	16561	TL	
ry48p.2	48	[15524, 16666]	18649	TL	17680	TL	
ry48p.3	48	[18156, 19894]	23268	TL	22311	TL	
ry48p.4	48	[29967, 31446]	34502	TL	31446	$96.91^{ \mathbf{\ast}}$	
ft 53.1	53	[7438, 7531]	9716	TL	9216	TL	
${ m ft}53.2$	53	[7630, 8026]	11669	TL	11484	TL	
ft 53.3	53	[9473, 10262]	12343	TL	11937	TL	
ft 53.4	53	14425	16018	TL	14425	120.79	

* solved for the first time

Extension: Lagrangian bounds

- SCHOOL OF BUSINESS
- Observation: MDD bounds can be very loose

 π_1 {1} π_2 {3} {2} π_3 {3} {2} $\sum_{i=1}^{n} \left(\pi_i = j \right) = 1 \quad \forall j$

Main cause: repetition of activities

Proposed remedy:

=

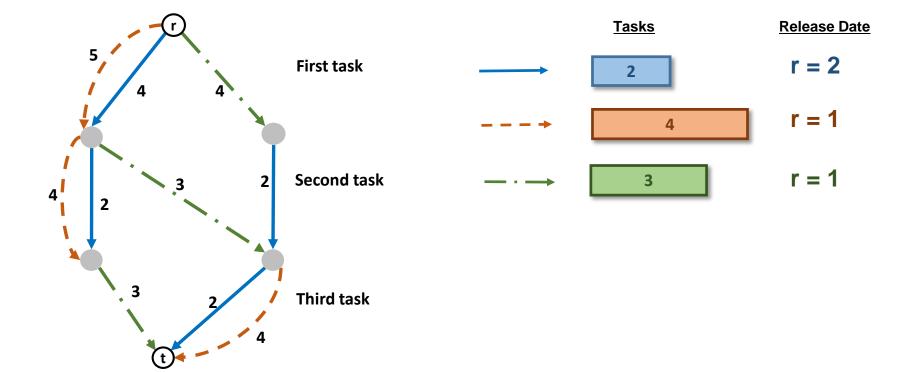
- add Lagrangian relaxation
- penalize repeated activities

$$\min z + \sum_{j=1}^{n} \lambda_j \left(\sum_{i=1}^{n} (\pi_i = j) - 1 \right)$$

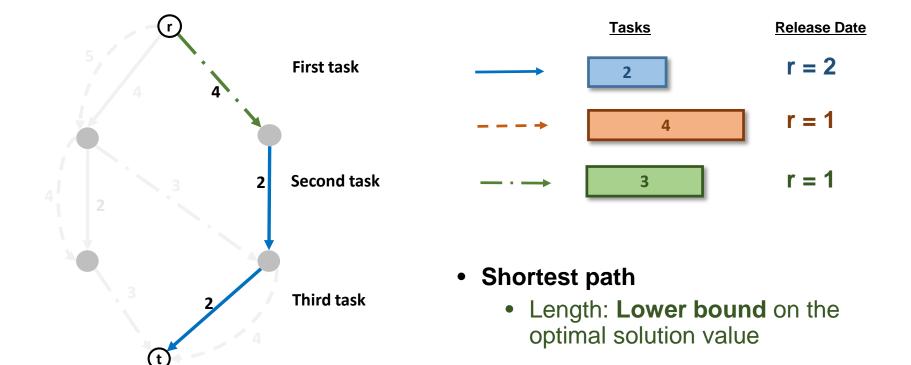
$$= z + \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_j (\pi_i = j) - \sum_{j=1}^{n} \lambda_j$$

• Shortest path with updated weights

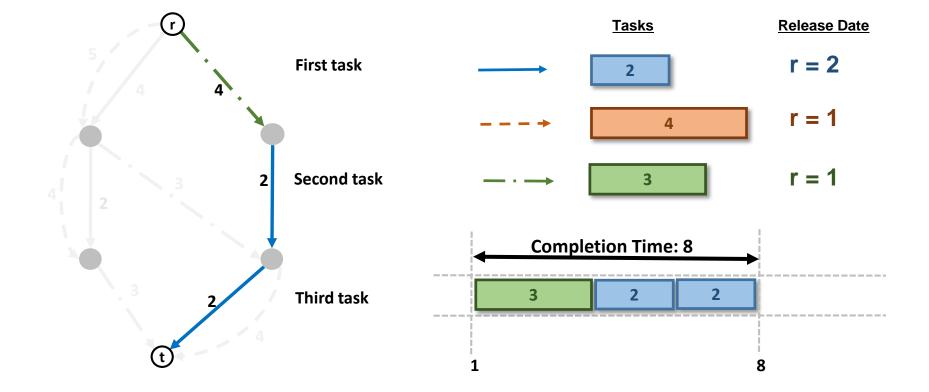
Example: Relaxed Decision Diagram

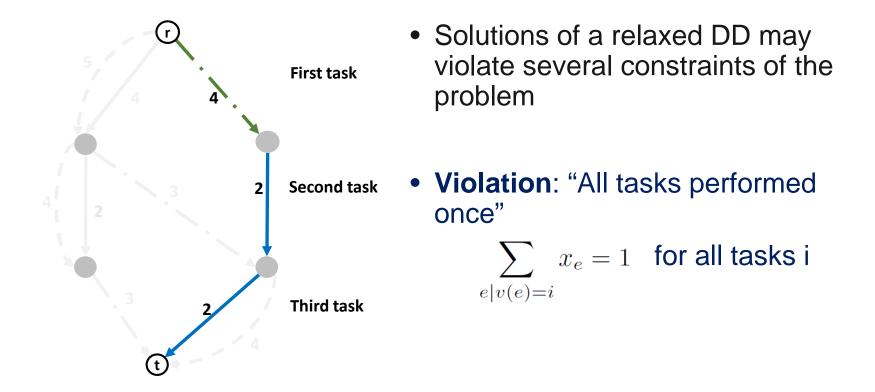


Shortest Path: Lower Bound



Shortest Path: Lower Bound





min z = shortest path

[Bergman et al., 2015]

s.t. $\sum_{e|v(e)=i} x_e = 1$, for all tasks i \longrightarrow Lagrangian multipliers λ_i (+other problem constraints)

min
$$z = shortest path + \sum_i \lambda_i (1 - \sum_{e | v(e)=i} x_e)$$

s.t. (other problem constraints)

This is done by updating shortest path weights!

• We penalize infeasible solutions in a relaxed DD:

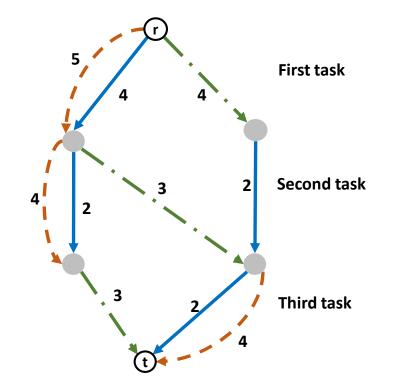
Any separable constraint of the form

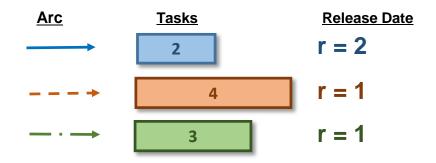
 $f_1(x_1) + f_2(x_2) + ... + f_n(x_n) \le c$

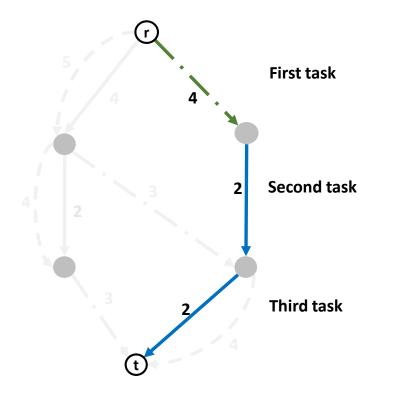
that **must** be satisfied by solutions of an MDD can be dualized

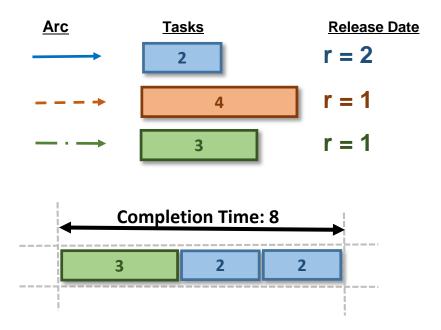
- We need only to focus on the **shortest path solution**
 - Identify a violated constraint and penalize
 - Systematic way directly adapted from LP
 - Shortest paths are very fast to compute

Improving Relaxed Decision Diagram



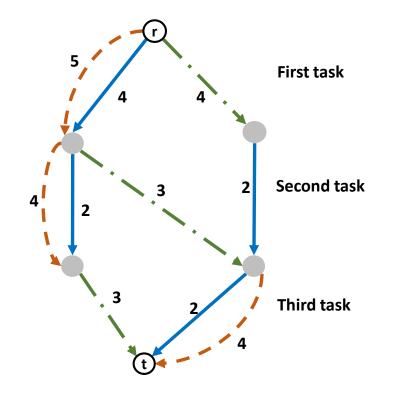


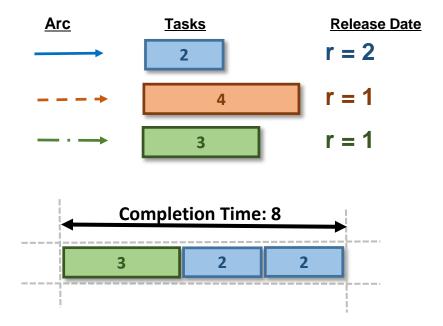




Penalization:

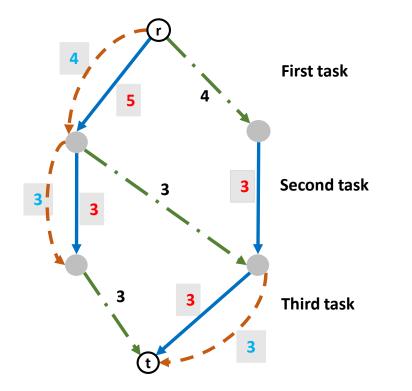
- If a task is repeated, increase its arc weight
- If a task is unused, decrease its arc weight

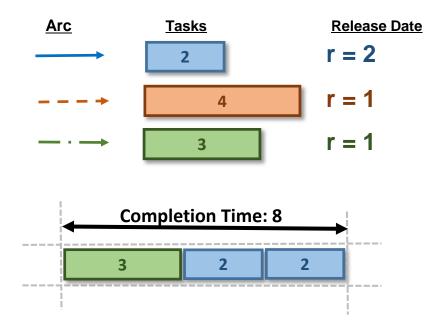




Penalization:

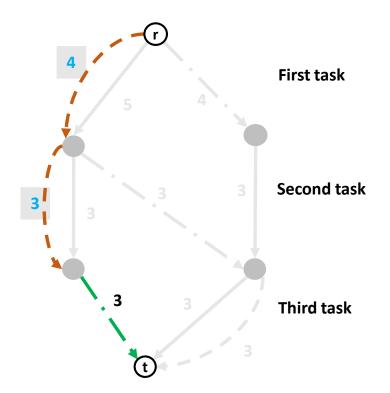
- If a task is repeated, increase its arc weight
- If a task is unused, decrease its arc weight

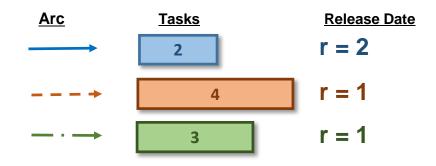




Penalization:

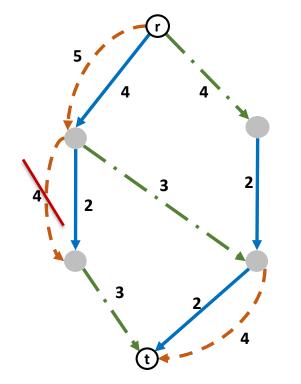
- If a task is repeated, increase its arc weight
- If a task is unused, decrease its arc weight





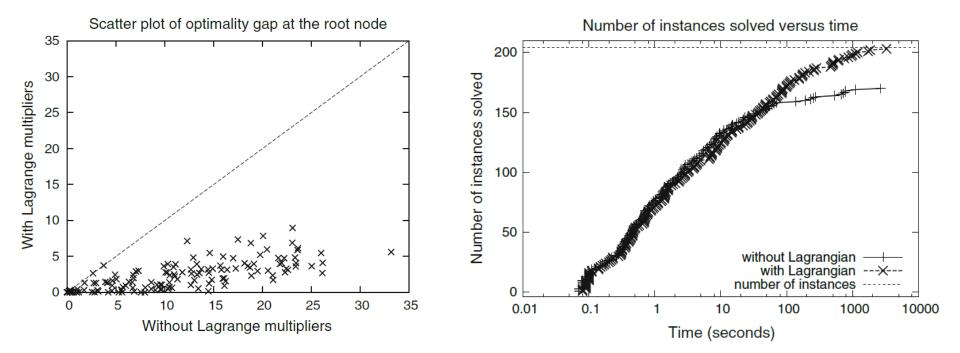
- New shortest path: 10
 - Guaranteed to be a valid lower bound for any penalties

Cost-Based Filtering



- If minimum solution value through an arc exceeds max(D(z)) then arc can be deleted
- Suppose a solution of value 10 is known
- MDD filtering extends to Lagrangian weights: More filtering possible

Impact on TSP with Time Windows



TSPTW instances

(Constraints, 2015)

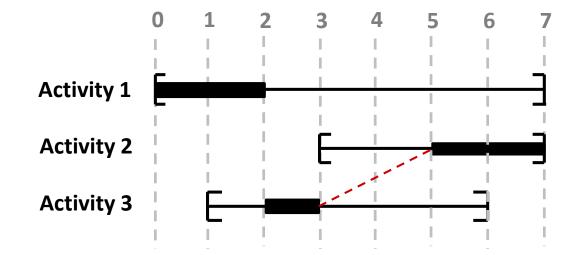
State-Dependent Costs

• Kinable, Cire and v.H. Hybrid Optimization for Time-Dependent Sequencing. *Under Review*.

- Time-dependent sequencing – machine scheduling, routing
- Challenging problem
 - best results so far use dedicated methods
 - not easy to extend with side constraints
- Utilize constraint programming framework?
 - strengthened constraint propagation with MDDs
 - improved bounds via additive bounding with LP
 - evaluate on TD-TSP and TD-SOP

Time-Dependent Sequencing

- Activities
 - processing time p_i
 - released date r_i
 - deadline d_i



• Resource

- non-preemptive
- process one activity at a time
- sequence-dependent setup times: also depend on position!

 $\delta_{i,j}^t$ = setup time between i and j if i is at position t

Constraint Programming Model

- Variables π_i : label of ith activity in the sequence
 - L_i : position of activity i in the sequence

$$\min \sum_{i=0}^{n} \delta_{\pi_{i},\pi_{i+1}}^{i}$$
s.t.
$$AllDiff(\pi_{1},\ldots,\pi_{n})$$

$$L_{\pi_{i}} = i \qquad \forall i = 1,\ldots,n$$

$$L_{i} < L_{j} \qquad \forall (i \ll j) \in P$$

$$L_{i} \in \{1,\ldots,n\} \qquad \forall i = 1,\ldots,n$$

$$\pi_{i} \in \{1,\ldots,n\} \qquad \forall i = 1,\ldots,n$$

• Weak model: objective and AllDiff are decoupled

Update MDD propagation algorithms:

- *Alldifferent* for the permutation structure
 - unchanged
- Precedence relations
 - unchanged
- Earliest start time and latest end time
 - adapt rule: $\delta_{i,j}$ becomes $\delta_{i,j}^t$
- Objective
 - minimize sum of setup times

Updated CP Model

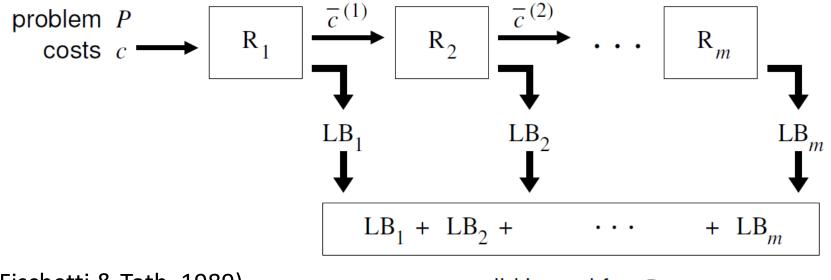
 $\min z$

s.t. AllDiff (π_1, \ldots, π_n)

 $\begin{aligned} \text{MDDconstr}(\pi_1, \dots, \pi_n, W, z, \delta^t, P) \\ L_{\pi_i} &= i & \forall i = 1, \dots, n \\ L_i &< L_j & \forall (i \ll j) \in P \\ L_i &\in \{1, \dots, n\} & \forall i = 1, \dots, n \\ \pi_i &\in \{1, \dots, n\} & \forall i = 1, \dots, n \\ z &\in \{0, \dots, \infty\} \end{aligned}$

Stronger model: objective handled within MDD constraint

Additive Bounding



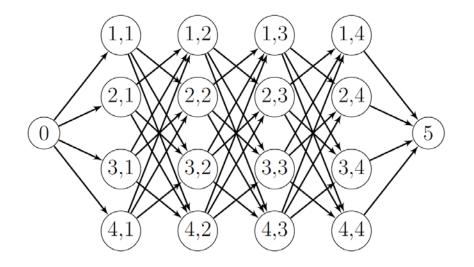
(Fischetti & Toth, 1989)

valid bound for P

Add LP reduced costs to MDD relaxation

- Continuous LP relaxation 'discretized' through MDD
- Stronger bounds
- Improved cost-based filtering

MIP and LP relaxation



- Time-space network model (Picard & Queyranne, 1978)
- Variables

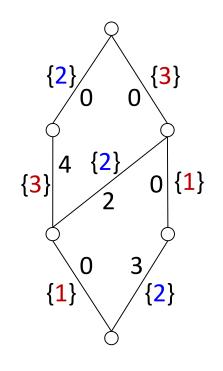
 $x_{i,j}^t = \begin{cases} 1 & \text{if i is performed at t and followed by j} \\ 0 & \text{otherwise} \end{cases}$

- Constraints: flow conservation; perform each activity
- Valid inequalities: subtour and 4-cycle elimination

78

Embedding reduced costs in MDD

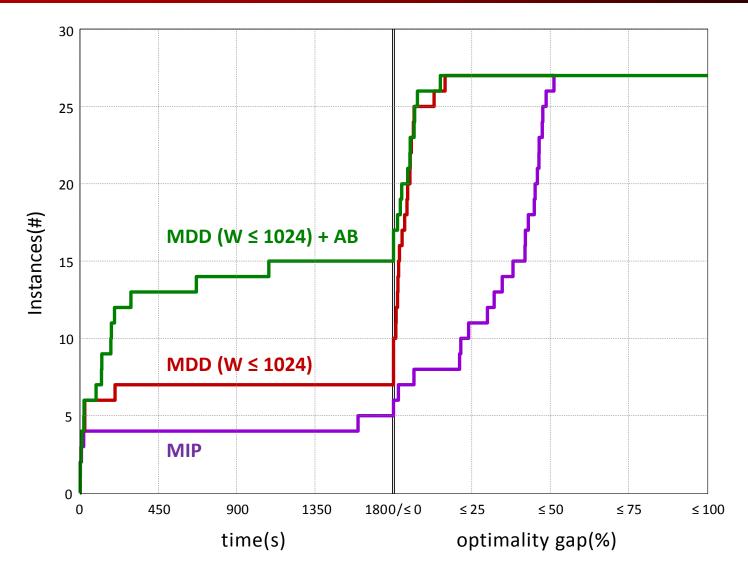
- State information at each node *i*
 - shortest path from root to *i* with respect to $\overline{c}_{i,j}^t$
 - root node initialized with LP objective value
- Since MDD is relaxation, shortest path is valid bound
 - filter edges that do not participate in improving shortest path
- MDD maintains both the original objective and this new 'additive bound' constraint



Experiments

- Time-dependent TSP and SOP benchmarks
 - 38 instances from TSPLIB (14-107 jobs)
 - $\delta_{i,j}^{t} = (n-t)^* \delta_{i,j} \qquad [Abeledo et al. 2013]$
- Time limit: 30 minutes
- MDD added to IBM ILOG CP Optimizer 12.4
 - maximum width 1024
- MIP model (IBM ILOG CPLEX 12.4)
 - state-space integer program
 - subtour and 4-cycle elimination constraints
 - − LP relaxation takes several hours for \geq 90 vertices

Results on Time-dependent TSP



Note: Dedicated branch, price and cut algorithm (Abeledo et al., 2013) solves more TD-TSP instances optimally

Results on Time-dependent SOP

#Solved MIP 6/30

Pure CP 5/30 CP + MDD + Additive Bounding 10/30

On average, additive MDD+LP bound improves

- LP root node bound by 51.41%
- MDD root node bound by 9.54%

Conclusion

- MDD propagation natural generalization of domain propagation
 - Strength of MDD relaxation can be controlled by the width
 - Huge reduction in solution time is possible
- For sequencing/disjunctive scheduling problems
 - MDD can handle all side constraints and objectives from existing CP scheduling systems
 - Polynomial cases (e.g., Balas variant)
 - MDD propagation algorithms (all different, time windows, ...)
 - Extraction of precedence constraints from MDD
 - Can be enriched with math programming relaxations
 - Great addition to constraint-based systems