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Plan
What can MDDs do for Combinatorial Optimization?
• Compact representation of all solutions to a problem
• Limit on size gives approximation
• Control strength of approximation by size limit

MDDs for Discrete Optimization
• 9:00am-10:30am tutorial (John Hooker)
• MDD as discrete relaxation for lower and upper bound
• Exact branch-and-bound search scheme (on MDD states)

MDDs for Sequencing and Scheduling
• MDD-based constraint propagation
• Constraint-based scheduling with MDDs
• State-dependent costs
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Decision Diagrams

• Binary Decision Diagrams were introduced to compactly 
represent Boolean functions [Lee, 1959], [Akers, 1978], [Bryant, 1986]

• BDD: merge isomorphic subtrees of a given binary decision tree
• MDDs are multi-valued decision diagrams (i.e., for arbitrary 

finite-domain variables)
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f(x1, x2, x3) = -x1 * -x2 * -x3 + x1 * x1 * x2 + x2 * x3
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Brief background

• Original application areas: circuit design, verification
• Usually reduced ordered BDDs/MDDs are applied

– fixed variable ordering
– minimal exact representation

• Application to discrete optimization (exponential-size)
– cut generation [Becker et al., 2005]

– 0/1 vertex and facet enumeration [Behle & Eisenbrand, 2007]

– post-optimality analysis [Hadzic & Hooker, 2006, 2007]

– set bounds propagation [Hawkins, Lagoon, Stuckey, 2005]

• Scalable variant (polynomial-size)
– relaxed MDDs 

[Andersen, Hadzic, Hooker & Tiedemann, CP 2007]
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Exact MDDs for discrete optimization
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Exact MDDs for discrete optimization
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Exact MDDs for discrete optimization
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Exact MDDs for discrete optimization
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Exact MDDs for discrete optimization
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(1) x1 + x2 + x3 ≥ 1
(2) x1 + x4 + x5 ≥ 1
(3) x2 + x4 ≥ 1

r 

1

Each path corresponds 
to a solution

(1,0,1,1,0)t 
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x4
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: 0
: 1 root

terminal



Limited-size MDDs

• Exact MDDs can be of exponential size in general
• We can limit the size of the MDD and still have a 

meaningful representation:
– First proposed by Andersen et al. [2007] for improved 

constraint propagation:
Limit the width of the MDD (the maximum number of nodes 
on any layer)
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MDDs for Constraint Programming
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Motivation

Constraint Programming applies 
• systematic search and 
• inference techniques 
to solve combinatorial problems

Inference mainly takes place through:
• Filtering provably inconsistent values from variable domains
• Propagating the updated domains to other constraints

x1 > x2

x1 + x2 = x3

alldifferent(x1,x2,x3 ,x4)

x1 ∈ {1,2}, x2 ∈ {0,1,2,3}, x3 ∈ {2,3}, x4 ∈ {0,1}

domain propagation
can be weak, however…



Illustrative example
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alldifferent(x1,x2,x3,x4) (1)
x1 + x2 + x3 ≥ 9 (2)
xi ∈ {1,2,3,4}

List of all solutions to alldifferent:
x1 x2 x3 x4

1   2   3   4 
1   2   4   3
1   3   2   4

…
4   3   2   1

(1) and (2) both 
domain consistent 
(no propagation)

projection: D(xi) = {1,2,3,4}

Suppose we could 
evaluate (2) on this list



Illustrative example
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alldifferent(x1,x2,x3,x4) (1)
x1 + x2 + x3 ≥ 9 (2)
xi ∈ {1,2,3,4}

List of all solutions to alldifferent:
x1 x2 x3 x4

projection: D(x4) = {1}

Suppose we could 
evaluate (2) on this list

2   3 4   1 
2 4 3 1
3 2   4 1

…
4   3   2   1







 D(x1) = D(x2) = D(x3) = {2,3,4}



Illustrative example (cont’d)

15

alldifferent(x1,x2,x3,x4) (1)
x1 + x2 + x3 ≥ 9 (2)
xi ∈ {1,2,3,4}

List of all solutions: use MDDs
2 3 4

3
2

4
4

2 3

4 3 2

1

x1

x2

x3

x4

x1 x2 x3 x4

2   3 4   1 
2 4 3 1
3 2   4 1

…
4   3   2   1
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Motivation for MDD propagation

• Conventional domain propagation projects all structural 
relationships among variables onto the domains

• Potential solution space implicitly defined by Cartesian 
product of variable domains (very coarse relaxation)

We can communicate more information between 
constraint using MDDs [Andersen et al. 2007]

• Explicit representation of more refined potential 
solution space

• Limited width defines relaxed MDD
• Strength is controlled by the imposed width



17

MDD-based Constraint Programming

• Maintain limited-width MDD
– Serves as relaxation
– Typically start with width 1 (initial variable domains)
– Dynamically adjust MDD, based on constraints

• Constraint Propagation
– Edge filtering: Remove provably inconsistent edges (those 

that do not participate in any solution)
– Node refinement: Split nodes to separate edge information

• Search
– As in classical CP, but may now be guided by MDD



Specific MDD propagation algorithms

• Linear equalities and inequalities [Hadzic et al., 2008] 
[Hoda et al., 2010]

• Alldifferent constraints [Andersen et al., 2007]

• Element constraints [Hoda et al., 2010]

• Among constraints [Hoda et al., 2010]

• Disjunctive scheduling constraints [Hoda et al., 2010]
[Cire & v.H., 2011, 2013]

• Sequence constraints (combination of Amongs)
[Bergman et al., 2014]

• Generic re-application of existing domain filtering 
algorithm for any constraint type [Hoda et al., 2010]

18



19

Example: Among Constraints

 Given a set of variables X, and a set of values S, a 
lower bound l and upper bound u,

Among(X, S, l, u) :=   l ≤ ∑x∈X ( x ∈ S ) ≤ u

“among the variables in X, at least l and at most u  
take a value from the set S”

 Applications in, e.g., nurse scheduling
─ must work between 1 and 2 night shifts each 10 days
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width 1 vs 16

Propagating Among Constraints

backtracks

width 1 vs 16

time (s)

(Systems of overlapping Among constraints)



Example: Sequence Constraints

Employee must work at most 7 days every 9 consecutive days
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sun mon tue wed thu fri sat sun mon tue wed thu

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

0 ≤ x1+x2+ ... +x9 ≤ 70 ≤ x2+x3+ ... +x10 ≤ 70 ≤ x3+x4+ ... +x11 ≤ 70 ≤ x4+x5+ ... +x12 ≤ 7

=: Sequence([x1,x2,...,x12], q=9, S={1}, l=0, u=7)

Sequence(X, q, S, l, u) :=        ∧ l ≤ ∑x∈X’ ( x ∈ S ) ≤ u
|X’|=q

Among(X, S, l, u) 



Performance Comparison for Sequence
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Sequence vs. Among
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A large MDD by 
itself may not be
sufficient!



Coming up

• MDDs can handle objective functions as well
• Important for many CP problems

– e.g., disjunctive scheduling
– minimize makespan, weighted completion times, 

etc.

• We will develop an MDD approach to 
disjunctive scheduling
– combines MDD propagation and optimization 

reasoning

24



Handling objective functions
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(1) x1 + x2 + x3 ≥ 1
(2) x1 + x4 + x5 ≥ 1
(3) x2 + x4 ≥ 1

r 

x1

x2

x3

x4

x5

1
(0,0,1,1,0)t 

Suppose we have an 
objective:

min 4x1+3x2+x3+2x4+5x5

: 0
: 1

4

3 3

1 1 1 1

2 2 2

5 5

shortest path 
computation



MDDs for Disjunctive Scheduling
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• Cire and v.H. Multivalued Decision Diagrams for Sequencing 
Problems. Operations Research 61(6): 1411-1428, 2013. 



Disjunctive Scheduling

27



Disjunctive Scheduling in CP

• Sequencing and scheduling of activities on a resource

• Activities
– Processing time: pi

– Release time: ri

– Deadline: di

– Start time variable: si

• Resource
– Nonpreemptive
– Process one activity at a time

Activity 1

Activity 2

Activity 3

0 1 2 3 4

28



Extensions

• Precedence relations between activities

• Sequence-dependent setup times

• Various objective functions
– Makespan
– Sum of setup times
– (Weighted) sum of completion times
– (Weighted) tardiness
– number of late jobs
– …

29



Inference

• Inference for disjunctive scheduling
– Precedence relations
– Time intervals in which an activity can be processed

• Sophisticated techniques include:
– Edge-Finding
– Not-first / not-last rules

• Examples:   1 ≪ 3
s3 ≥ 3

30

Activity 1

Activity 2

Activity 3

0 1 2 3 4



Assessment of CP Scheduling

• Disjunctive scheduling may be viewed as the ‘killer 
application’ for CP
– Natural modeling (activities and resources)
– Allows many side constraints (precedence relations, time 

windows, setup times, etc.)
– Among state of the art while being generic methodology

• However, CP has some problems when
– objective is not minimize makespan (but instead, e.g., 

weighted sum of lateness)
– setup times are present
– … 

• What can MDDs bring here?
31

optimization



MDDs for Disjunctive Scheduling

Three main considerations:

• Representation
– How to represent solutions of disjunctive 

scheduling in an MDD?

• Construction
– How to construct  this relaxed MDD?

• Inference techniques
– What can we infer using the relaxed MDD?

32



MDD Representation

• Natural representation as ‘permutation MDD’

• Every solution can be written as a 
permutation π

π1, π2 , π3, …, πn :  activity sequencing in the resource

• Schedule is implied by a sequence, e.g.:

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜋𝜋𝑖𝑖 ≥ 𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝜋𝜋𝑖𝑖−1 + 𝑝𝑝𝜋𝜋𝑖𝑖−1 𝑖𝑖 = 2, … ,𝑛𝑛
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MDD Representation

π1

π2

π3

{2}

{1}

{3}

{3} {2}

Act ri pi di

1 0 2 3

2 4 2 9

3 3 3 8

Path {1} – {3} – {2} : 

0 ≤ start1  ≤ 1

6 ≤ start2  ≤ 7

3 ≤ start3  ≤ 5



Exact MDD Compilation

Theorem: Constructing the exact MDD for a Disjunctive 
Instance is an NP-Hard problem

 TSP defined on a complete graph
 Given a fixed parameter k, we must satisfy

𝑖𝑖 ≪ 𝑗𝑗 if   𝑗𝑗 − 𝑖𝑖 ≥ 𝑘𝑘 for cities i, j 

Theorem:  The exact MDD for the TSP above has O(n2k) nodes

• We work with MDD relaxations instead
• Bounded size in specific cases, e.g. (Balas [99]):



MDD-based propagation

Propagation: remove infeasible arcs from the MDD

We can utilize several structures/constraints:
• Alldifferent for the permutation structure
• Earliest start time and latest end time
• Precedence relations

For a given constraint type we maintain specific 
‘state information’ at each node in the MDD

– both top-down and bottom-up
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Propagation (cont’d)

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}
{1}

{2}

{1,2,3,4,5}

• State information at 
each node i
– labels on all paths: Ai

– labels on some paths: Si

– earliest starting time: Ei

– latest completion time: Li

• Top down example for 
arc (u,v)

π1

π2

π3

π4

…

37



Alldifferent Propagation

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}
{1}

{2}

{1,2,4,5}

 All-paths state:  Au

 Labels belonging to all paths 
from node r to node u

 Au = {3}
 Thus eliminate {3} from (u,v)

{1,2,3,4,5}

π1

π2

π3

π4

…

38[Andersen et al., 2007]



Alldifferent Propagation

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}
{1}

{2}

{4,5}

 Some-paths state:  Su

 Labels belonging to some
path from node r to node u

 Su = {1,2,3}
 Identification of Hall sets
 Thus eliminate {1,2,3} from 

(u,v) {1,2,4,5}

π1

π2

π3

π4

…

39



Propagate Earliest Completion Time

π1

π2

π3

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}
{1}

{2}

{4,5} π4

 Earliest Completion Time:  Eu

 Minimum completion time 
of all paths from root to 
node u

 Similarly: Latest Completion 
Time

…

40



Propagate Earliest Completion Time

π1

π2

π3

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}
{1}

{2}

{4,5} π4 Eu = 7

 Eliminate 4 from (u,v)

{5}

…
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0

2

4

7

Act ri di pi

1 0 4 2
2 3 7 3
3 1 8 3
4 5 6 1
5 2 10 3

Act ri di pi

1 0 4 2
2 3 7 3
3 1 8 3
4 5 6 1
5 2 10 3



{5}

Propagate Precedence Relations

π1

π2

π3

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}
{1}

{2}

π4

…

42

 Arc with label j infeasible if
𝑖𝑖 ≪ 𝑗𝑗 and i not on some path from r

 Suppose 4 ≪ 5
 Su = {1,2,3}
 Since 4 not in Su, eliminate 5 

from (u,v)

 Similarly: Bottom-up for 𝑗𝑗 ≪ 𝑖𝑖



More MDD Inference

Theorem: Given the exact MDD M,  we can deduce all implied 
activity precedences in polynomial time in the size of M

r

u

t

i

j

 For a node u,
 𝐴𝐴𝑢𝑢↓ : values in all paths from root to u
 𝐴𝐴𝑢𝑢↑ : values in all paths from node u to terminal

 Precedence relation 𝑖𝑖 ≪ 𝑗𝑗 holds if and only if
for all nodes u in M

 Same technique applies to relaxed MDD

43



• Build a digraph 𝐺𝐺=(V, E) where V is the set of activities
• For each node u in M

– if 𝑗𝑗 ∈ 𝐴𝐴𝑢𝑢↓ and 𝑖𝑖 ∈ 𝐴𝐴𝑢𝑢↑ add edge (i,j) to E
– represents that 𝑖𝑖 ≪ 𝑗𝑗 cannot hold

• Take complement graph 𝐺𝐺
– complement edge exists iff 𝑖𝑖 ≪ 𝑗𝑗 holds

Extracting precedence relations

44

r

t

3

1 2

2 1 4

14

(𝐴𝐴𝑢𝑢↓ ,𝐴𝐴𝑢𝑢↑ )(Ø, 1234)

(3, 124)

(23, 14)(13, 24)

(234, 1)(123, 4)

(1234, Ø)

1 2

34

𝐺𝐺

1 2

34

𝐺𝐺

3 ≪ 1
3 ≪ 2
3 ≪ 4
2 ≪ 4



• Build a digraph 𝐺𝐺=(V, E) where V is the set of activities
• For each node u in M

– if 𝑗𝑗 ∈ 𝐴𝐴𝑢𝑢↓ and 𝑖𝑖 ∈ 𝐴𝐴𝑢𝑢↑ add edge (i,j) to E
– represents that 𝑖𝑖 ≪ 𝑗𝑗 cannot hold

• Take complement graph 𝐺𝐺
– complement edge exists iff 𝑖𝑖 ≪ 𝑗𝑗 holds

• Time complexity: O(|M|n2)

Extracting precedence relations

45

• Same technique applies to relaxed MDD
– add an edge if 𝑗𝑗 ∈ 𝑆𝑆𝑢𝑢↓ and 𝑖𝑖 ∈ 𝑆𝑆𝑢𝑢↑

– complement graph represents subset of precedence 
relations



Comparison to other methods

• Existing CP inference methods may not dominate the 
MDD propagation, even for small widths

46

Act ri di pi

1 0 25 11
2 1 27 10
3 14 35 5

• Edge finding and not-first/not-last deduce that      
1 ≪ 3 and 2 ≪ 3, but no changes in time bounds

• MDD finds the same precedences, and deduces that 
s3 ≥ 10 + 11 = 21 

[Vilim, 2004]



Communicate Precedence Relations

1. Provide precedence relations from MDD to CP
– update start/end time variables
– other inference techniques may utilize them
– (some of the precedence relations found by the MDD 

may not be detected by existing CP methods)

2. Filter the MDD using precedence relations from 
other (CP) techniques

47



Top-down MDD compilation

48

π1

π2

π3

{1,2,3}

{1,2,3}

{1,2,3}

precedence: 3 << 1

{3}{2}

{1,2,3} {1,2,3}

{1,2,3}

{3}{2}

{3} {1}

{1,2,3}{1,2,3}

{2}

(exact MDD)

• To refine the MDD, we generally want to identify equivalence 
classes among nodes in a layer
– NP-hard, but can be based on state information in practice, e.g., EST, 

LCT, alldifferent constraint (Ai and Si states), …



Computational Evaluation

• MDD propagation implemented in IBM ILOG CPLEX 
CP Optimizer 12.4 (CPO)
– State-of-the-art constraint based scheduling solver
– Uses a portfolio of inference techniques and LP relaxation

• Three different variants
– CPO (only use CPO propagation)
– MDD (only use MDD propagation)
– CPO+MDD (use  both)

49



Problem classes

• Disjunctive instances with 
– sequence-dependent setup times
– release dates and deadlines
– precedence relations

• Objectives
– minimize makespan
– minimize sum of setup times
– minimize total tardiness

• Benchmarks
– Random instances with varying setup times
– TSP-TW instances (Dumas, Ascheuer, Gendreau)
– Sequential Ordering Problem

50



Importance of setup times

Random instances
- 15 jobs
- lex search
- MDD width 16
- min makespan

51
Importance of setup times

(increasing average length of setup times)

CP
O

 B
ac

kt
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s /

 M
DD
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ck
s



TSP with Time Windows
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Dumas/Ascheuer
instances
- 20-60 jobs
- lex search
- MDD width: 16

Pu
re

 M
DD

 ti
m

e 
(s

)

CPO time (s)



Minimize Total Tardiness

• Consider activity i with due date δi
– Completion time of i: ci = si + pi

– Tardiness of i: max{0, ci – δi }

• Objective: minimize total (weighted) tardiness

• 120 test instances
– 15 activities per instance
– varying ri, pi, and δi, and tardiness weights
– no side constraints, setup times (measure only impact of 

objective)
– lexicographic search, time limit of 1,800s

53



Total Tardiness Results
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total tardiness total weighted tardiness

CPO

MDD-16
MDD-32

MDD-64
MDD-128

CPO
MDD-16

MDD-32
MDD-64

MDD-128



Sequential Ordering Problem (TSPLIB)

55* solved for the first time

*
*

*



Extension: Lagrangian bounds

• Observation: MDD bounds can be very loose

56

π1

π2

π3

{2}

{1}

{3}

{3}{2}

Main cause: repetition of activities

Proposed remedy:
• add Lagrangian relaxation
• penalize repeated activities

• Shortest path with updated weights



Example: Relaxed Decision Diagram
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2

4

r = 2

r = 1

r = 1

Arc Tasks Release Date

3

r

t

First task

Second task

Third task

5

4 4

3

3

4

4

2

2
2



Shortest Path: Lower Bound
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2

4

r = 2

r = 1

r = 1

Arc Tasks Release Date

3

r

t

First task

Second task

Third task

5

4 4

23

3

4

4

2

2

• Shortest path
• Length: Lower bound on the 

optimal solution value



Shortest Path: Lower Bound
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2

4

r = 2

r = 1

r = 1

Arc Tasks Release Date

3

r

t

3 2 2

First task

Second task

Third task

5

4 4

23

3

4

4

2

81

Completion Time: 8

2



Issues
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r

t

First task

Second task

Third task

5

4 4

23

3

4

4

2

2

• Solutions of a relaxed DD may 
violate several constraints of the 
problem

• Violation: “All tasks performed 
once”

for all tasks i



min z = shortest path

s.t. ∑e|v(e)=i xe = 1,  for all tasks i

(+other problem constraints)

min z = shortest path + ∑i λi (1 - ∑e|v(e)=i xe )

s.t. (other problem constraints)

Remedy: Lagrangian Relaxation

61

Lagrangian multipliers λi

This is done by 
updating shortest 
path weights!

[Bergman et al., 2015]



• We penalize infeasible solutions in a relaxed DD:
Any separable constraint of the form

f1(x1) + f2(x2) + … + fn(xn) ≤ c

that must be satisfied by solutions of an MDD can 
be dualized

• We need only to focus on the shortest path solution
– Identify a violated constraint and penalize
– Systematic way directly adapted from LP
– Shortest paths are very fast to compute

General Approach

62



Improving Relaxed Decision Diagram
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2

4

r = 2

r = 1

r = 1

Arc Tasks Release Date

3

r

t

First task

Second task

Third task

5

4 4

23

3

4

4

2

2



Improving Relaxed Decision Diagram

64

r

t

First task

Second task

Third task

5

4 4

23

3

4

4

2

2

2

4

r = 2

r = 1

r = 1

Arc Tasks Release Date

3

3 2 2

Completion Time: 8

Penalization:
• If a task is repeated, increase its arc weight
• If a task is unused, decrease its arc weight



Improving Relaxed Decision Diagram
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2

4

r = 2

r = 1

r = 1

Arc Tasks Release Date

3

r

t

First task

Second task

Third task

5

4 4

23

3

4

4

2

2

3 2 2

Completion Time: 8

Penalization:
• If a task is repeated, increase its arc weight
• If a task is unused, decrease its arc weight



Improving Relaxed Decision Diagram
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4

5

3
3

3

3

3

2

4

r = 2

r = 1

r = 1

Arc Tasks Release Date

3

r

t

First task

Third task

4

3

3

Second task

3 2 2

Completion Time: 8

Penalization:
• If a task is repeated, increase its arc weight
• If a task is unused, decrease its arc weight



Improving Relaxed Decision Diagram
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4

5

3
3

3

3

3

2

4

r = 2

r = 1

r = 1

Arc Tasks Release Date

3

• New shortest path: 10
• Guaranteed to be a valid 

lower bound for any penalties

r

t

First task

Third task

4

3

3

Second task



Cost-Based Filtering
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r

t

5

4 4

23

3

4

4

2

2

• If minimum solution value through 
an arc exceeds max(D(z)) then 
arc can be deleted

• Suppose a solution of value 10 is 
known

• MDD filtering extends to 
Lagrangian weights: More filtering 
possible



Impact on TSP with Time Windows
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(Constraints, 2015)TSPTW instances



State-Dependent Costs

70

• Kinable, Cire and v.H. Hybrid Optimization for Time-Dependent 
Sequencing. Under Review. 



Context and Motivation

• Time-dependent sequencing
– machine scheduling, routing

• Challenging problem
– best results so far use dedicated methods
– not easy to extend with side constraints

• Utilize constraint programming framework?
– strengthened constraint propagation with MDDs
– improved bounds via additive bounding with LP
– evaluate on TD-TSP and TD-SOP
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Time-Dependent Sequencing

• Activities
– processing time pi

– released date ri

– deadline di

• Resource
– non-preemptive
– process one activity at a time
– sequence-dependent setup times
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Activity 1

Activity 2

Activity 3

0 1 2 3 74 5 6

: also depend on position!
𝛿𝛿𝑖𝑖,𝑗𝑗𝑡𝑡 = setup time between i and j if i is at position t



Constraint Programming Model

• Variables πi :  label of ith activity in the sequence
Li :  position of activity i in the sequence
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• Weak model: objective and AllDiff are decoupled



MDD-based propagation

Update MDD propagation algorithms:

• Alldifferent for the permutation structure
– unchanged

• Precedence relations 
– unchanged

• Earliest start time and latest end time
– adapt rule: 𝛿𝛿𝑖𝑖,𝑗𝑗 becomes 𝛿𝛿𝑖𝑖,𝑗𝑗𝑡𝑡

• Objective
– minimize sum of setup times
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Updated CP Model
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Stronger model: objective handled within MDD 
constraint



Additive Bounding

76

(Fischetti & Toth, 1989)

Add LP reduced costs to MDD relaxation
• Continuous LP relaxation ‘discretized’ through MDD
• Stronger bounds
• Improved cost-based filtering



MIP and LP relaxation

• Time-space network model      (Picard & Queyranne, 1978)

• Variables

• Constraints: flow conservation; perform each activity
• Valid inequalities: subtour and 4-cycle elimination
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if i is performed at t and followed by j
otherwise



Embedding reduced costs in MDD

• State information at each node i
– shortest path from root to i with 

respect to 
– root node initialized with LP objective 

value

• Since MDD is relaxation, shortest 
path is valid bound
– filter edges that do not participate in 

improving shortest path
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• MDD maintains both the original objective and 
this new ‘additive bound’ constraint



Experiments

• Time-dependent TSP and SOP benchmarks
– 38 instances from TSPLIB (14-107 jobs)

– 𝛿𝛿𝑖𝑖,𝑗𝑗𝑡𝑡 = (n─t)*𝛿𝛿𝑖𝑖,𝑗𝑗 [Abeledo et al. 2013]

• Time limit: 30 minutes
• MDD added to IBM ILOG CP Optimizer 12.4

– maximum width 1024

• MIP model (IBM ILOG CPLEX 12.4)
– state-space integer program
– subtour and 4-cycle elimination constraints
– LP relaxation takes several hours for ≥90 vertices
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Results on Time-dependent TSP

80

0

5

10

15

20

0 450 900 1350 1800/≤ 0 ≤ 25 ≤ 50 ≤ 75 ≤ 100

In
st

an
ce

s(
#)

MIP

MDD (W ≤ 1024)

MDD (W ≤ 1024) + AB

25

30

time(s) optimality gap(%)

Note: Dedicated branch, price and cut algorithm (Abeledo et al., 2013) 
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Results on Time-dependent SOP
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#Solved
MIP 6/30

Pure CP 5/30
CP + MDD + Additive Bounding 10/30

On average, additive MDD+LP bound improves 
- LP root node bound by 51.41%
- MDD root node bound by 9.54%



Conclusion

• MDD propagation natural generalization of domain 
propagation
– Strength of MDD relaxation can be controlled by the width
– Huge reduction in solution time is possible

• For sequencing/disjunctive scheduling problems
– MDD can handle all side constraints and objectives from 

existing CP scheduling systems
– Polynomial cases (e.g., Balas variant)
– MDD propagation algorithms (alldifferent, time windows, …)
– Extraction of precedence constraints from MDD
– Can be enriched with math programming relaxations
– Great addition to constraint-based systems
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