Decision Diagrams for Discrete Optimization

John Hooker Carnegie Mellon University

> ICAPS Tutorial London, June 2016

Companion Tutorial:

Decision Diagrams for Sequencing and Scheduling

Willem-Jan van Hoeve Carnegie Mellon University

Immediately follows this tutorial

• Used in **computer science** and **AI** for decades

- Logic circuit design
- Product configuration
- A new perspective on optimization
 - Constraint programming
 - Discrete optimization

- Relevance to **planning and scheduling**:
 - Naturally suited to **dynamic programming** formulations.
 - State-dependent actions and costs.
 - New method for defeating curse of dimensionality.
 - Branch-and-bound solution.

- DDs have been used in **planning literature**...
 - To encode (or approximate) state-dependent cost or cost-to-go.
 - See yesterday's tutorial "Planning with State-Dependent Action Costs"
 - By Robert Mattmüller and Florian Geißer.
- This tutorial presents DDs as a **general optimization method**.

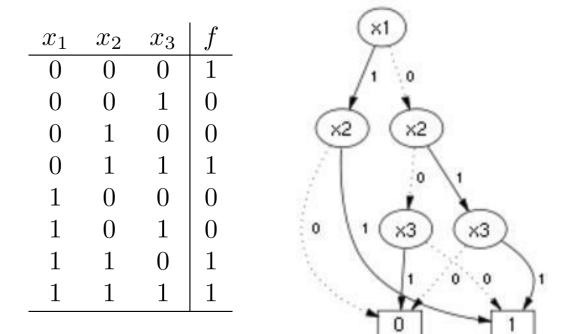
- General advantages:
 - No need for **inequality** formulations.
 - No need for **linear** or **convex** relaxations.
 - New approach to solving dynamic programming models.
 - Very effective **parallel** computation.
 - Ideal for **postoptimality** anaylsis
- Disadvantage:
 - Developed only for discrete, deterministic optimization.
 - ...so far.

Outline

- Decision diagram basics
- Optimization with **exact** decision diagrams
- A general-purpose solver that scales up
 - Relaxed decision diagrams
 - **Restricted** decision diagrams
 - Dynamic programming model
 - A new branching algorithm
 - Computational performance
- Modeling the objective function
 - Inventory management example
- Nonserial decision diagrams
- References

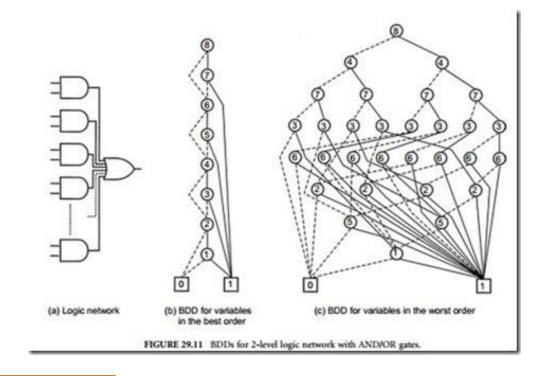
Decision Diagram Basics

Binary decision diagrams encode Boolean functions



Decision Diagram Basics

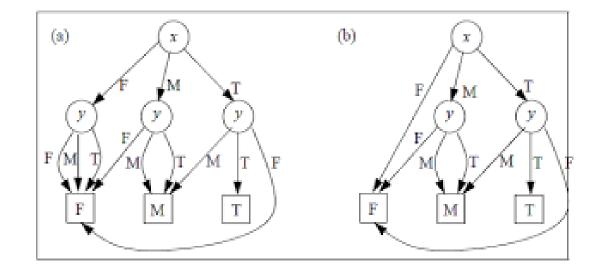
- Binary decision diagrams encode Boolean functions
 - Historically used for circuit design & verification



Bryant (1986), etc.

Decision Diagram Basics

- Binary decision diagrams encode Boolean functions
 - Historically used for circuit design & verification
 - Easily generalized to multivalued decision diagrams

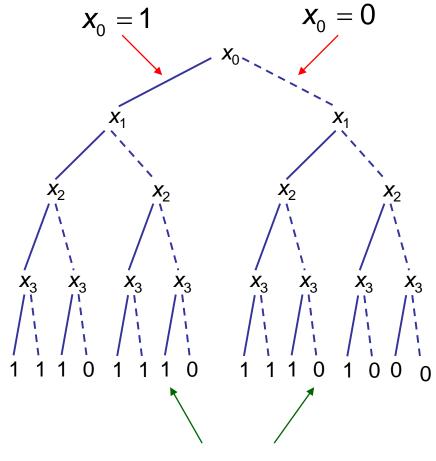


Reduced Decision Diagrams

- There is a **unique reduced** DD representing any given Boolean function.
 - Once the variable ordering is specified.

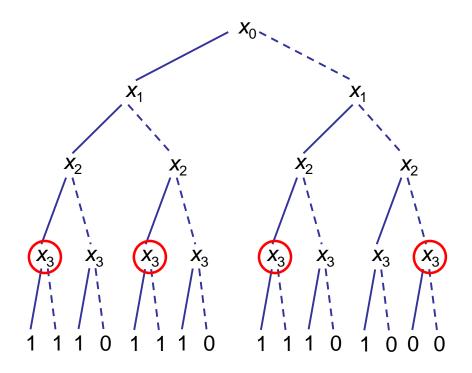
Bryant (1986)

- The reduced DD can be viewed as a branching tree with **redundancy** removed.
 - Superimpose isomorphic subtrees.
 - Remove redundant nodes.



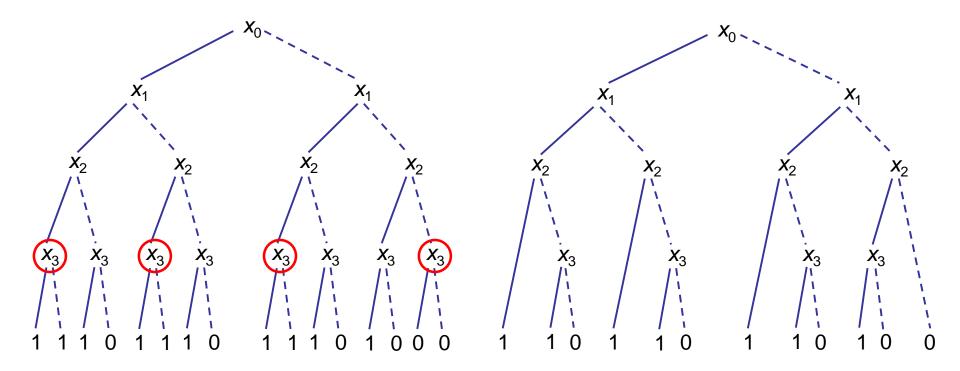
Branching tree for 0-1 inequality $2x_0 + 3x_1 + 5x_2 + 5x_3 \ge 7$

1 indicates feasible solution, 0 infeasible

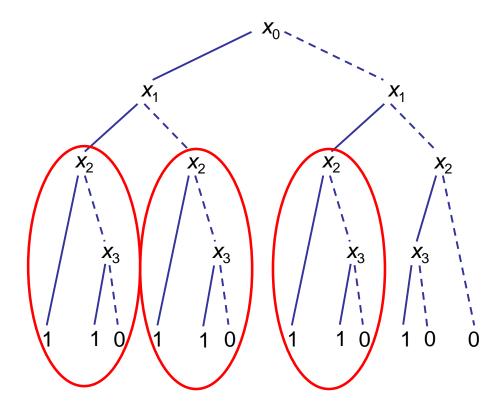


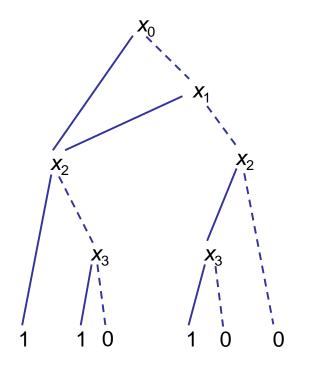
Branching tree for 0-1 inequality $2x_0 + 3x_1 + 5x_2 + 5x_3 \ge 7$

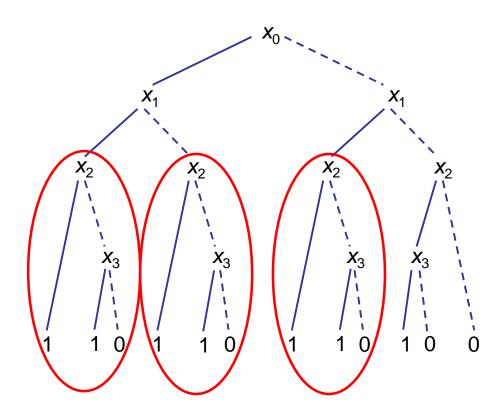
Remove redundant nodes...

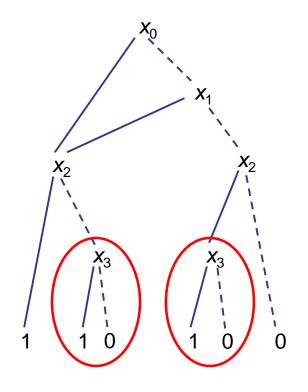


Superimpose identical subtrees...

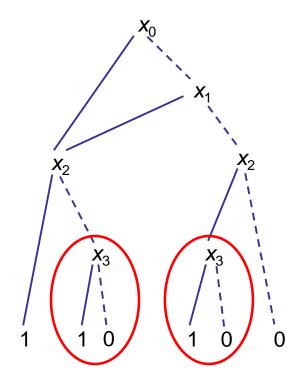


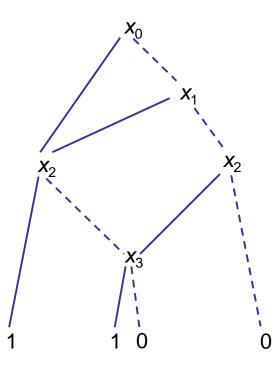




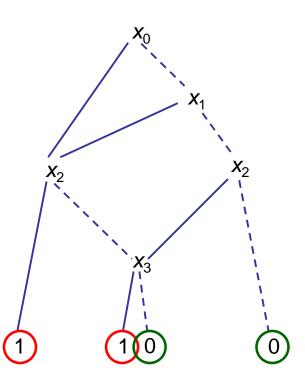


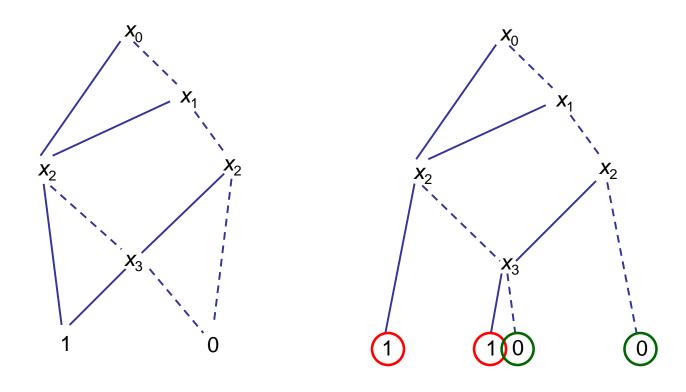
Superimpose identical subtrees...

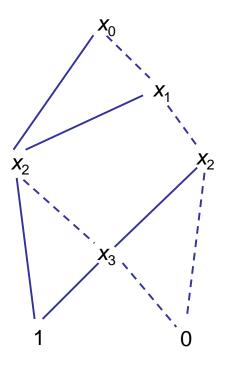


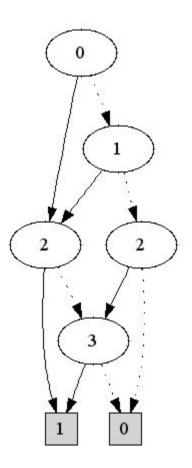


Superimpose identical leaf nodes...









as generated by software

Reduced Decision Diagrams

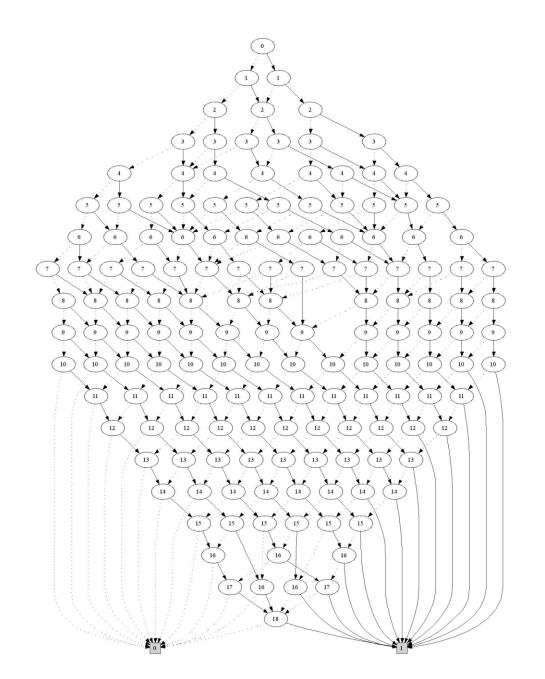
• Reduced DD for a knapsack constraint can be surprisingly small...

The 0-1 inequality

 $300x_{0} + 300x_{1} + 285x_{2} + 285x_{3} + 265x_{4} + 265x_{5} + 230x_{6} + 230x_{7} + 190x_{8} + 200x_{9} + 400x_{10} + 200x_{11} + 400x_{12} + 200x_{13} + 400x_{14} + 200x_{15} + 400x_{16} + 200x_{17} + 400x_{18} \le 2700$

has 117,520 maximal feasible solutions (or minimal covers)

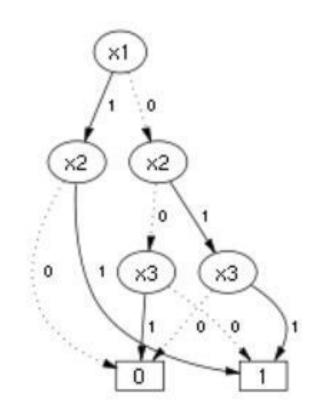
But its reduced BDD has only 152 nodes...



Optimization with Exact Decision Diagrams

- Decision diagrams can represent feasible set
 - Remove paths to 0.
 - Paths to 1 are feasible solutions.
 - Associate costs with arcs.
 - Find longest/shortest path

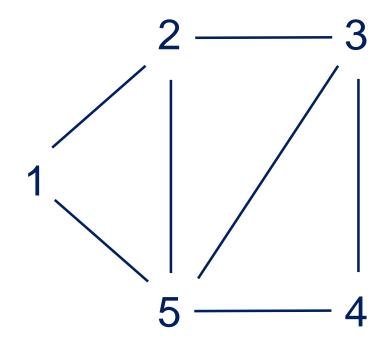
Hadžić and JH (2006, 2007)

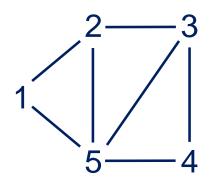


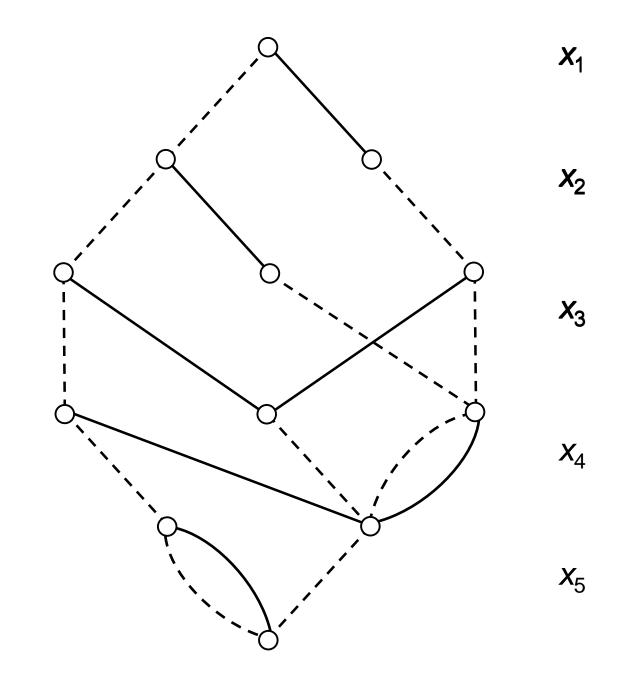
Stable Set Problem

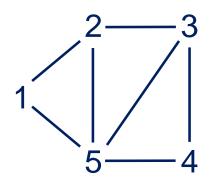
Let each vertex have weight w_i

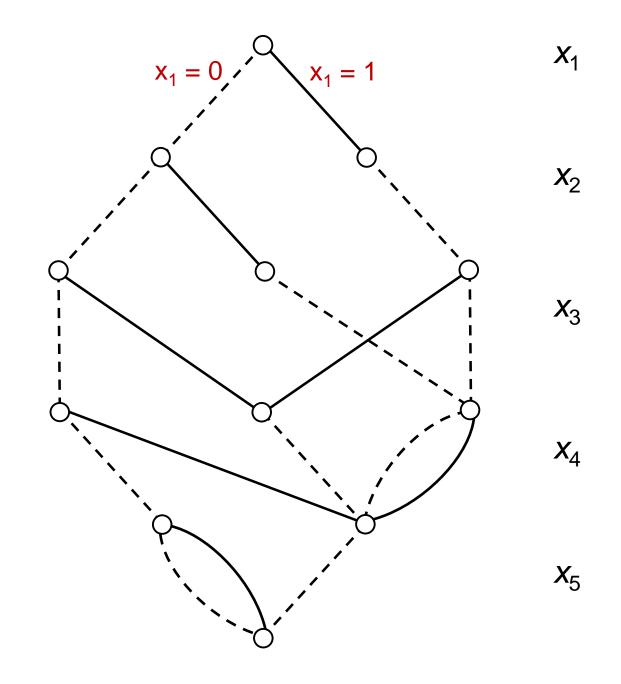
Select nonadjacent vertices to maximize $\sum_i w_i x_i$

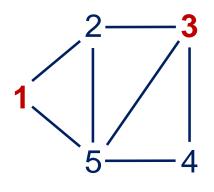




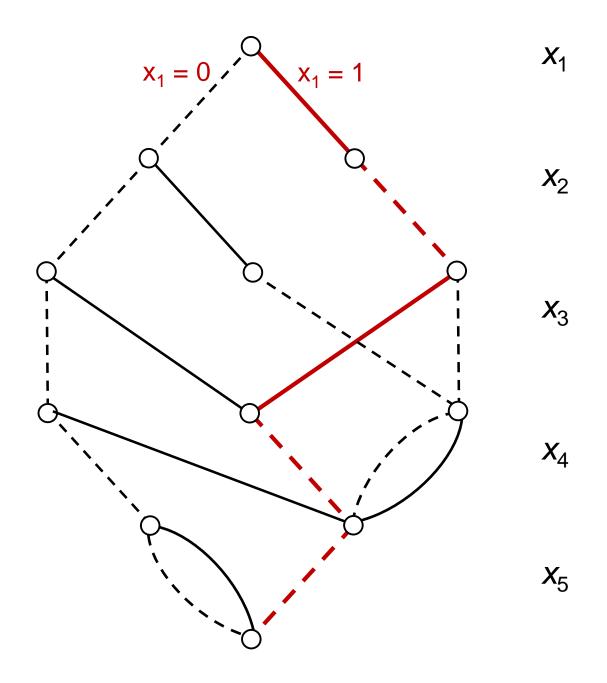


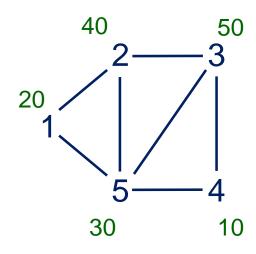




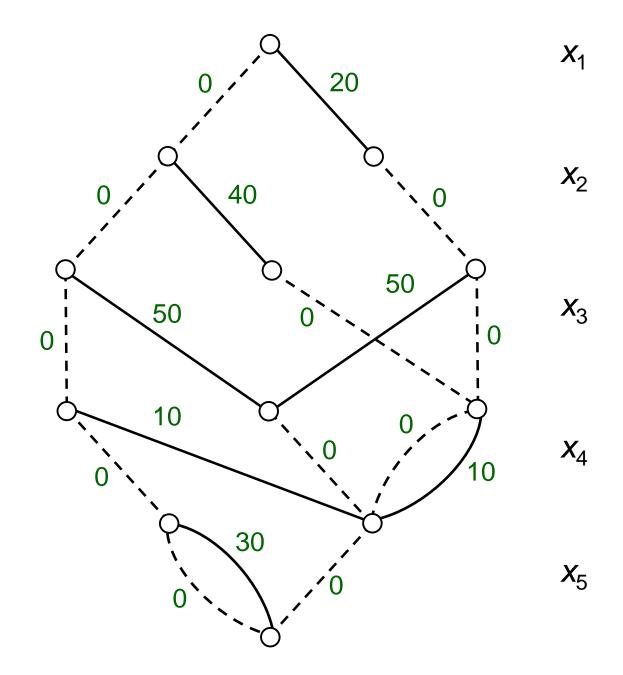


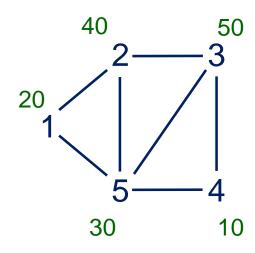
Paths from top to bottom correspond to the 9 feasible solutions





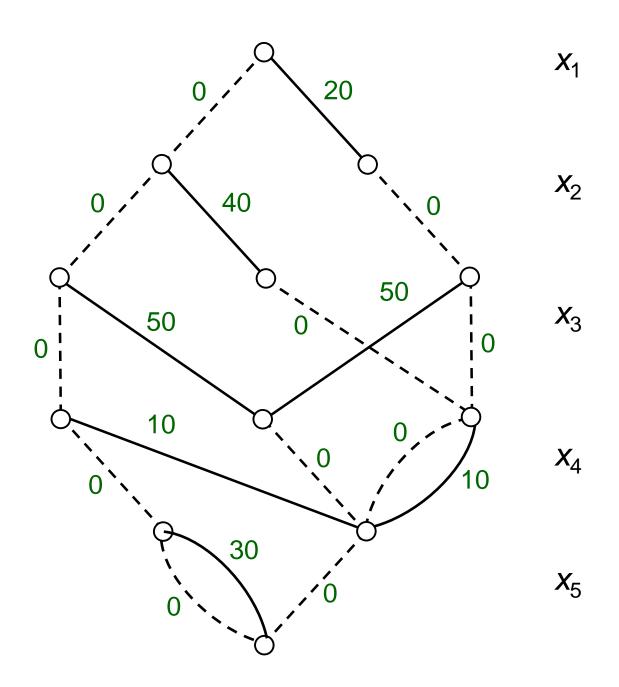
For objective function, associate weights with arcs

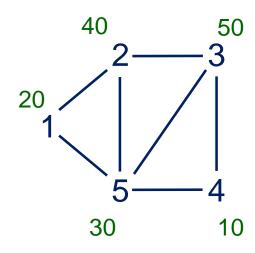




For objective function, associate weights with arcs

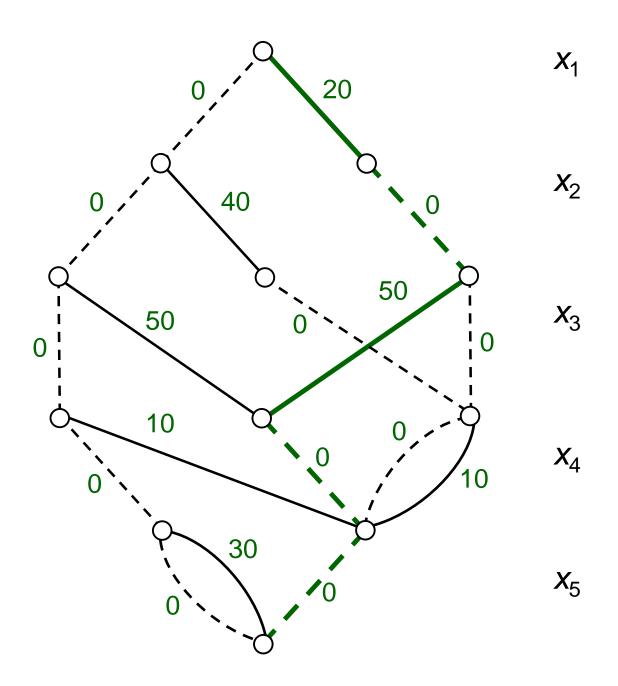
Optimal solution is **longest path**





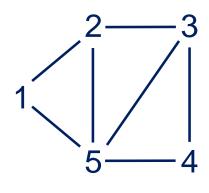
For objective function, associate weights with arcs

Optimal solution is **longest path**

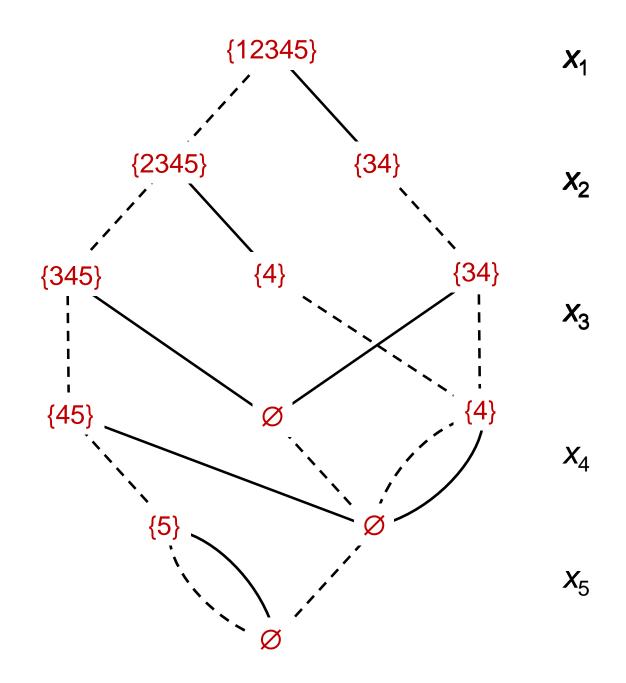


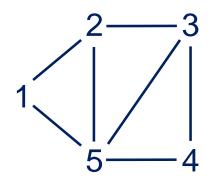
Exact DD Compilation

- Build an exact DD by associating a **state** with each node.
 - Merge nodes with **identical states**.



To build DD, associate **state** with each node

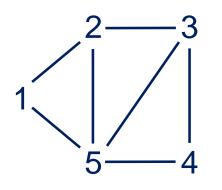


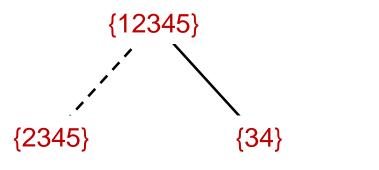


To build DD, associate **state** with each node

X₂

*X*₅





To build DD, associate **state** with each node

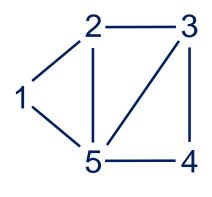
X5

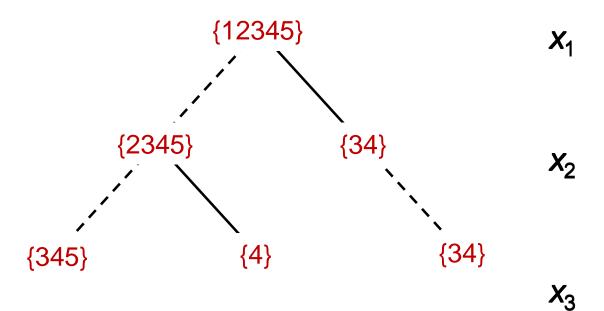
*X*₄

X₁

X₂

*X*₃



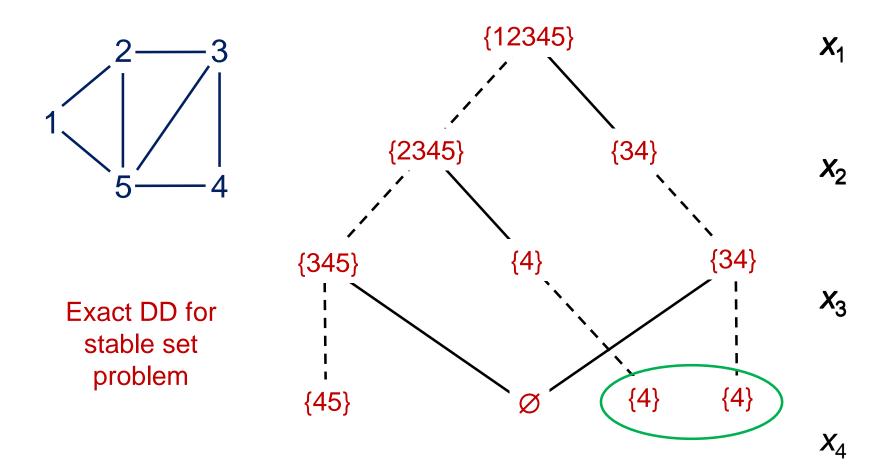


*X*₄

*X*₅

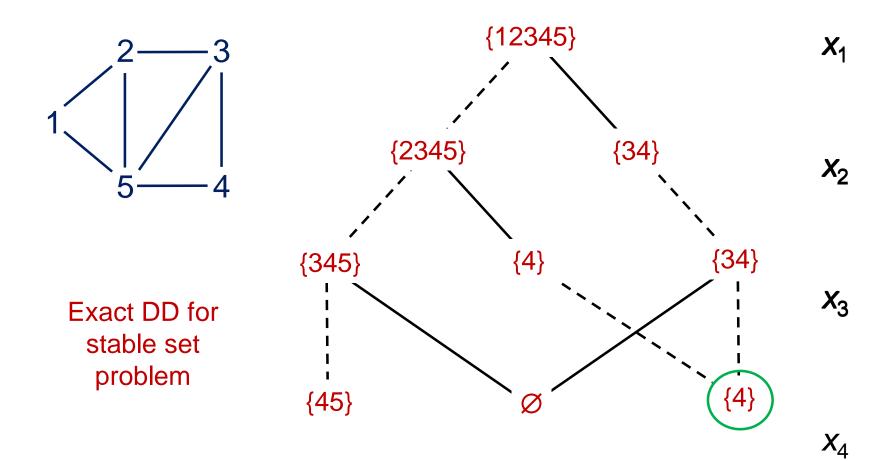
Exact DD for stable set problem

To build DD, associate **state** with each node



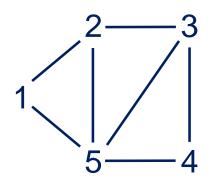
Merge nodes that correspond to the same state

X₅



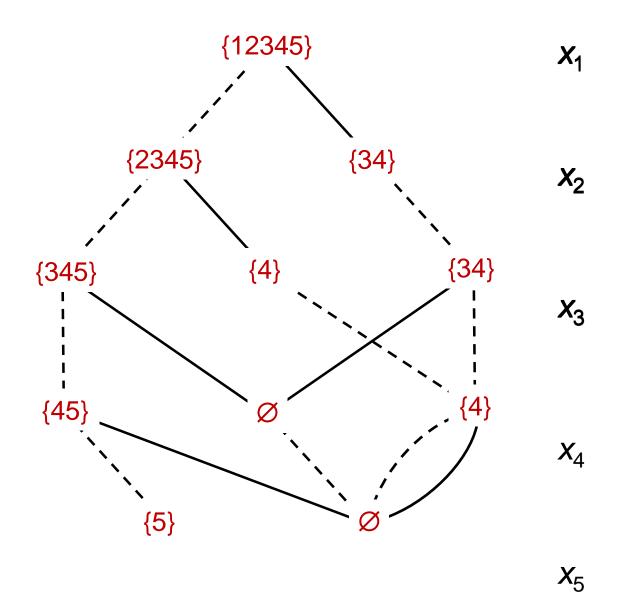
Merge nodes that correspond to the same state

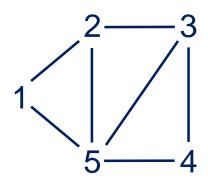
X₅



Exact DD for stable set problem

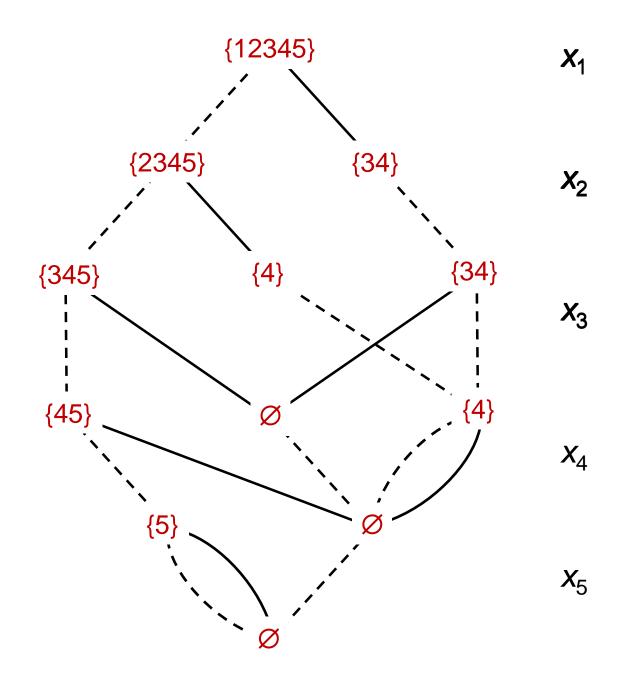
To build DD, associate **state** with each node





Exact DD for stable set problem

Resulting DD is not necessarily reduced (it is in this case).

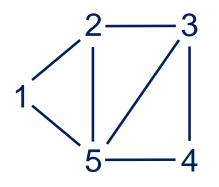


A General-Purpose Solver

- The decision diagram tends to grow exponentially.
- To build a practical solver:
 - Use limited-width relaxed decision diagrams to bound the objective value.
 - Use limited-width **restricted** decision diagrams for primal heuristic
 - Use a recursive dynamic programming model.
 - Use novel branching scheme within relaxed decision diagrams.

- A relaxed DD represents a superset of feasible set.
 - Shortest (longest) path length is a **bound** on optimal value.
 - Size of DD is controlled.
 - Analogous to LP relaxation in IP, but **discrete**.
 - Does not require linearity, convexity, or inequality constraints.

Andersen, Hadžić, JH, Tiedemann (2007)

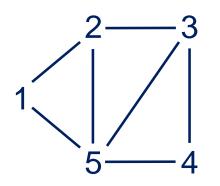


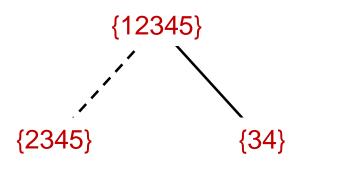
X₂

X3

To build **relaxed** DD, merge some additional nodes as we go along

*X*₄





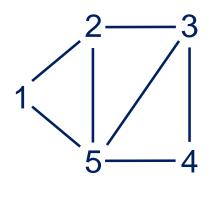
X5

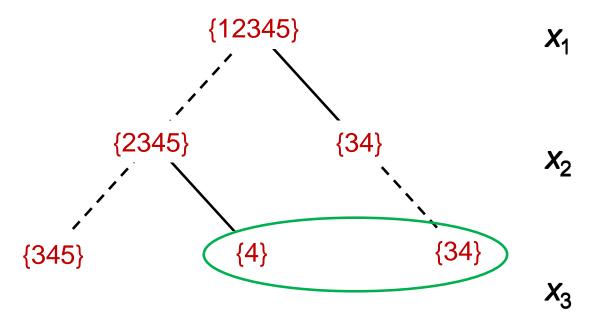
*X*₄

*X*₁

X₂

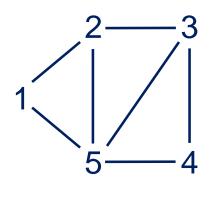
X3

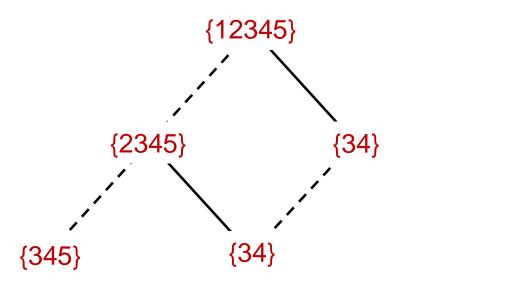




Take the **union** of merged states X_5

*X*₄





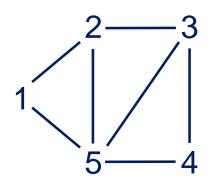
Take the **union** of merged states. **X**5

*X*₄

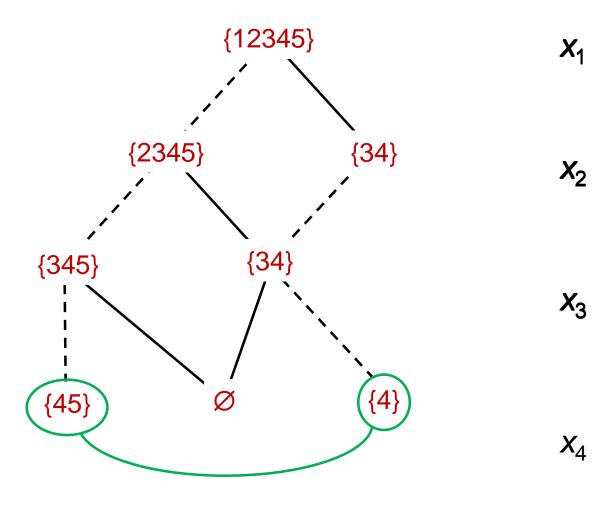
*X*₁

X₂

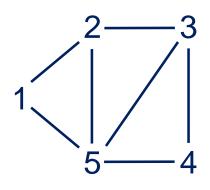
X₃



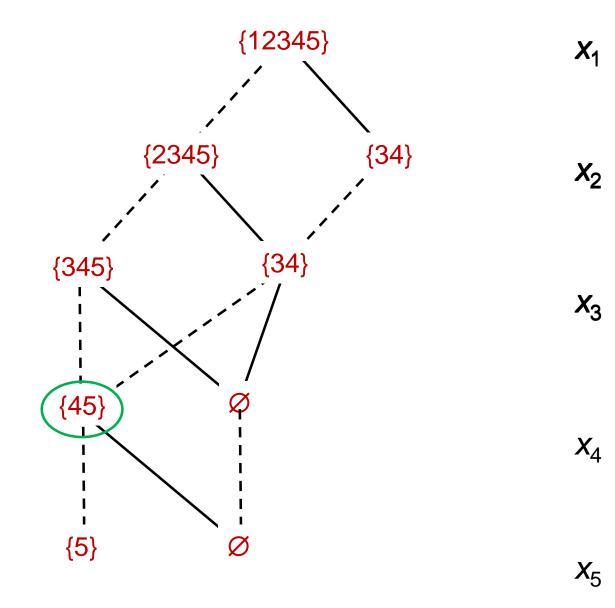
Take the **union** of merged states.

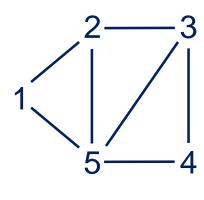


*X*₅



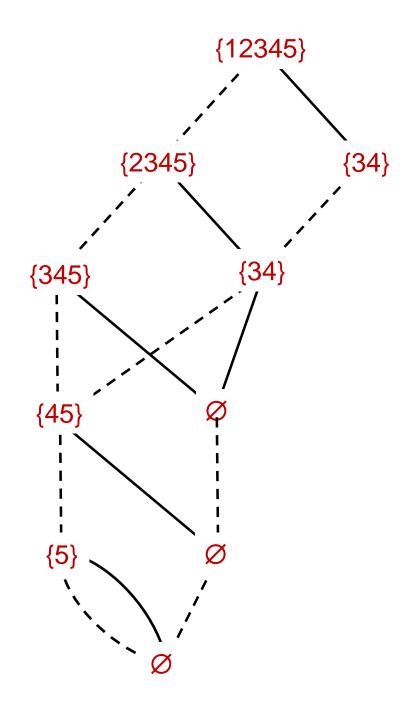
Take the **union** of merged states.





Width = 2

Represents 11 solutions, including 9 feasible solutions



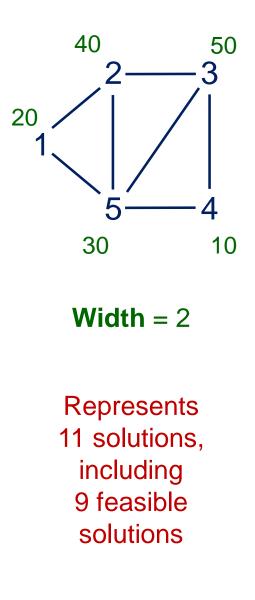
*X*₁

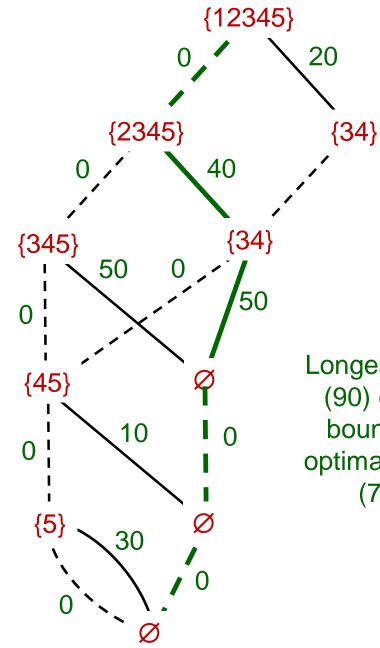
X₂

X₃

*X*₄

*X*₅





Longest path (90) gives bound on optimal value (70)

*X*₄

*X*₅

X₃

X₁

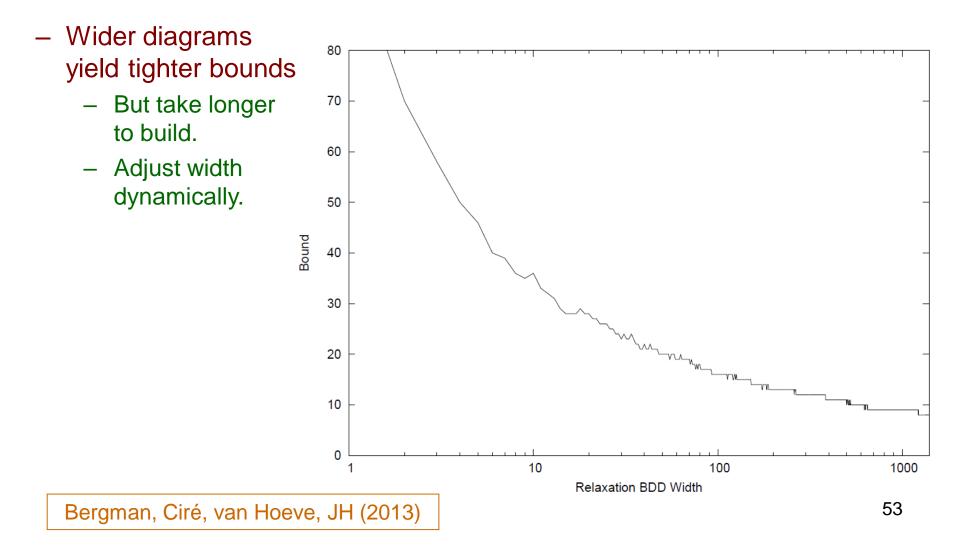
X₂

- Alternate relaxation method: node refinement.
 - Start with DD of width 1 representing Cartesian product of variable domains.
 - Split nodes so as to remove some infeasible paths.
 - Will be illustrated in **next tutorial**.

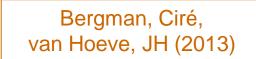
Andersen, Hadžić, JH, Tiedemann (2007)

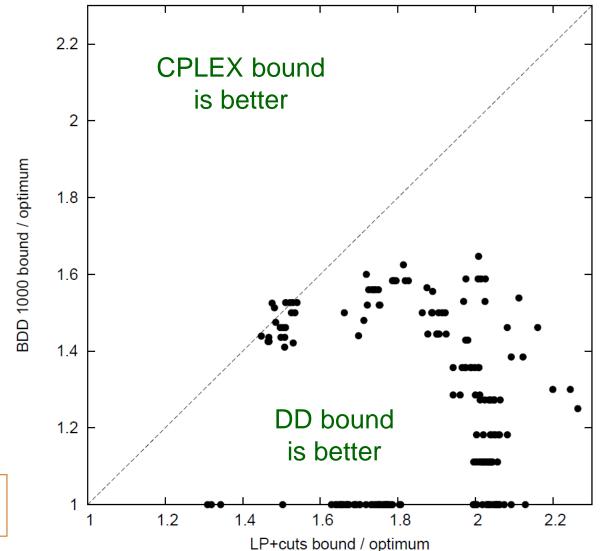
- Original application: enhanced propagation in constraint programming
 - In multiple alldiff problem (graph coloring), reduced
 1 million node search trees to 1 node.

Andersen, Hadžić, JH, Tiedemann (2007)



- DDs vs. CPLEX bound at root node for max stable set problem
 - Using CPLEX default cut generation
 - DD max width of 1000.
 - DDs require about 5% the time of CPLEX





Restricted Decision Diagrams

- A restricted DD represents a subset of the feasible set.
- Restricted DDs provide a basis for a primal heuristic.
 - Shortest (longest) paths in the restricted DD provide good feasible solutions.
 - Generate a limited-width restricted DD by deleting nodes that appear unpromising.

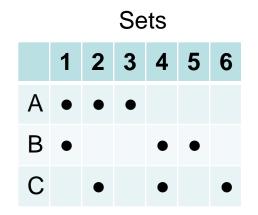
Bergman, Ciré, van Hoeve, Yunes (2014)

Set covering problem

$$x_{1} + x_{2} + x_{3} \ge 1$$

$$x_{1} + x_{4} + x_{5} \ge 1$$

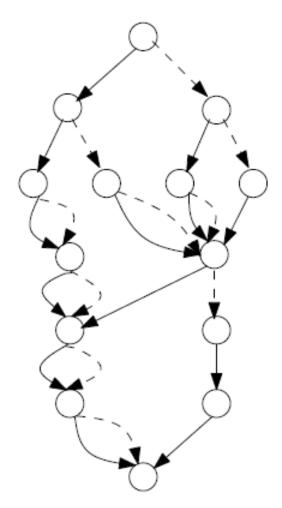
$$x_{2} + x_{4} + x_{6} \ge 1$$



52 feasible solutions.

Minimum cover of 2, e.g. x_1 , x_2

Restricted DD of width 4

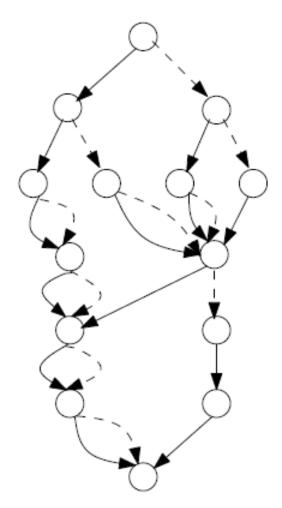


Several shortest paths have length 2.

All are minimum covers.

41 paths (< 52 feasible solutions)

Restricted DD of width 4



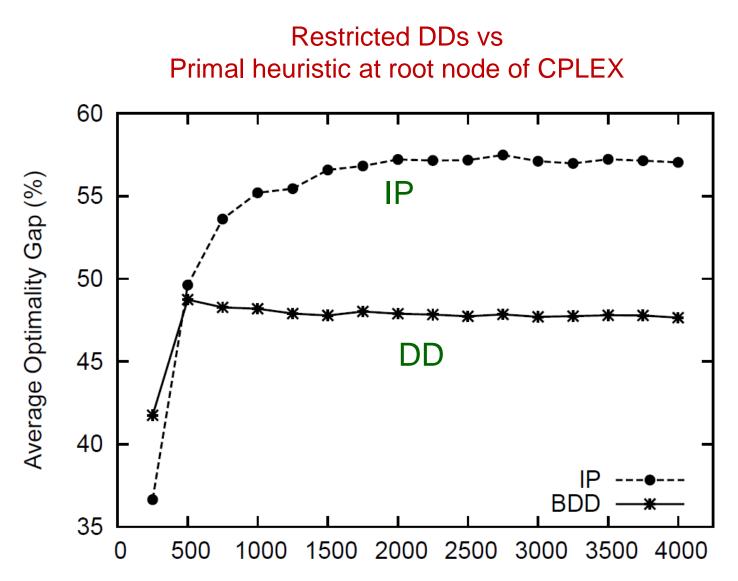
Several shortest paths have length 2.

All are minimum covers.

In this case, restricted DD delivers optimal solutions.

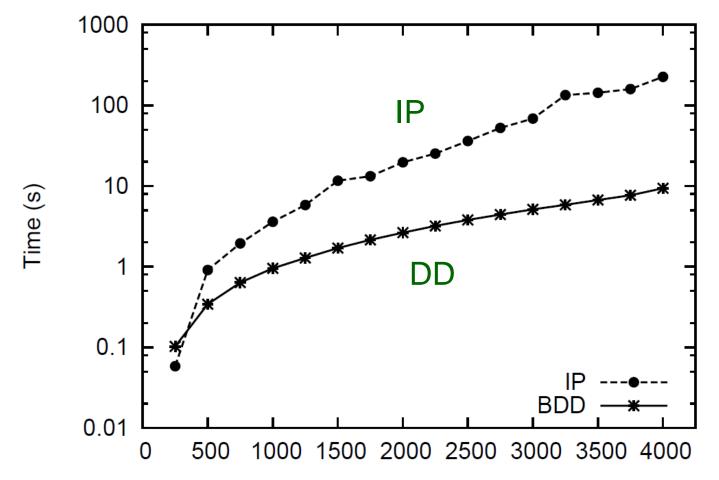
41 paths (< 52 feasible solutions)

Optimality gap for set covering, *n* variables



Computation time

Restricted DDs vs Primal heuristic at root node of CPLEX (cuts turned off)



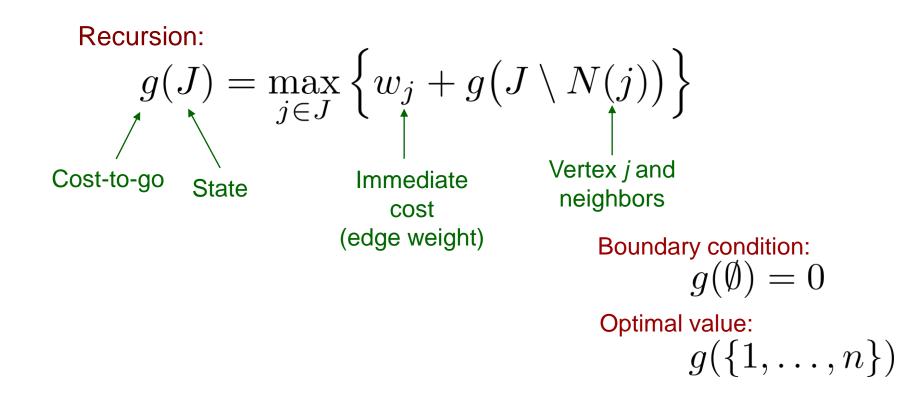
• Formulate problem with dynamic programming model.

- Rather than constraint set.
- Problem must have recursive structure
- But there is great **flexibility** to represent constraints and objective function.
- Any function of current state is permissible.
- We don't care if state space is exponential, because we don't solve the problem by dynamic programming.

• Formulate problem with dynamic programming model.

- Rather than constraint set.
- Problem must have recursive structure
- But there is great **flexibility** to represent constraints and objective function.
- Any function of current state is permissible.
- We don't care if state space is exponential, because we don't solve the problem by dynamic programming.
- State variables are the same as in relaxed DD.
 - Must also specify **state merger** rule.

- Max stable set problem on a graph.
 - State = set of vertices that can be added to stable set.



- Max stable set problem on a graph.
 - State = set of vertices that can be added to stable set.
 - State merger = union

Recursion:

$$g(J) = \max_{j \in J} \left\{ w_j + g(J \setminus N(j)) \right\}$$
Cost-to-go State Immediate cost (edge weight) Vertex *j* and neighbors
(edge weight) Boundary condition:

$$g(\emptyset) = 0$$
Optimal value:

$$g(\{1, \dots, n\})$$

- Single-machine scheduling with due dates
 - Minimize total tardiness.
 - **State** = (set of jobs not yet processed,

latest finish time of jobs processed so far)

- Single-machine scheduling with due dates
 - Minimize total tardiness.
 - **State** = (set of jobs not yet processed,

latest finish time of jobs processed so far)

- State merger = union, min

Merger of states in
$$M = \left(\bigcup_{(J_i, f_i) \in M} J_i, \min_{(J_i, f_i) \in M} \{f_i\} \right)$$

- Single machine scheduling with due dates
 - Easy to **add constraints** that are functions of current state
 - Release times
 - Shutdown periods
 - Precedence constraints on jobs
 - Easy to use more complicated cost function that is a function of current state
 - Step functions, etc.
 - Cost that depends on which jobs have been processed.

• Scheduling with sequence-dependent setup times

- **State** = (J_i , last job processed, f_i)

processed

- State merger requires modification of states

$$g_{i}(J_{i}, \ell_{i}, f_{i}) = \max_{j \in J_{i}} \left\{ (f_{i} + p_{\ell_{i}j} - d_{j})^{+} + g_{i+1} (J_{i} \setminus \{j\}, j, f_{i} + p_{\ell_{i}j}) \right\}$$

$$Last job \qquad Tardiness of job j \qquad Processing + setup time$$

Scheduling with sequence-dependent setup times

- To allow for state merger:
- **State** = (J_i , set L_i of pairs (ℓ_i , f_i), representing jobs that could have been the last processed)

$$g_{i}(J_{i}, L_{i}) = \max_{j \in J_{i}} \left\{ \left(\min_{(\ell_{i}, f_{i}) \in L_{i}} \{f_{i} + p_{\ell_{i}j}\} - d_{j} \right)^{+} + g_{i+1} \left(J_{i} \setminus \{j\}, \left\{ \left(j, \min_{(\ell_{i}, f_{i}) \in L_{i}} \{f_{i} + p_{\ell_{i}j}\} \right) \right\} \right) \right\}$$

Merger of states in
$$M = \left(\bigcup_{(J_i, L_i) \in M} J_i, \bigcup_{(J_i, L_i) \in M} L_i, \right)$$

- Max cut problem on a graph.
 - Partition nodes into 2 sets so as to maximize total weight of connecting edges.
 - State = marginal benefit of placing each remaining vertex on left side of cut.
 - State merger =
 - Componentwise min if all components ≥ 0 or all ≤ 0 ; 0 otherwise
 - Adjust incoming arc weights
- Max 2-SAT.
 - Similar to max cut.

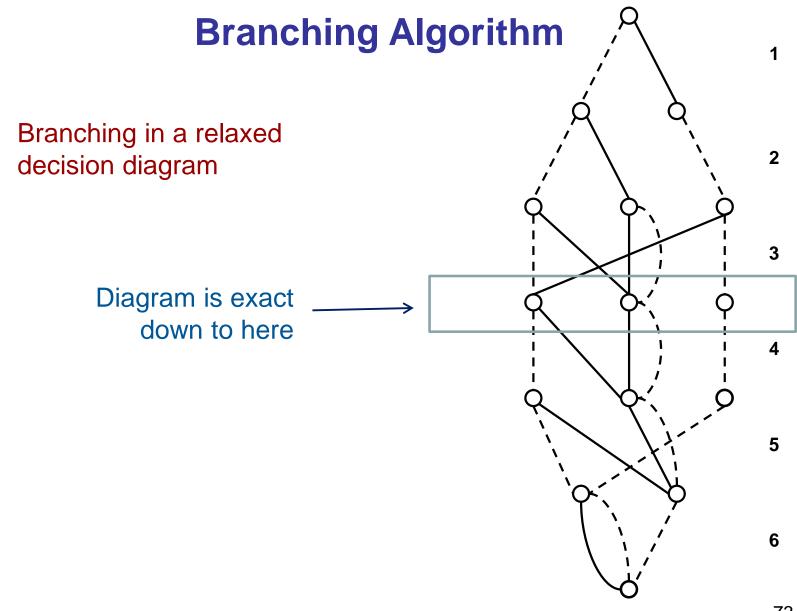
Branching Algorithm

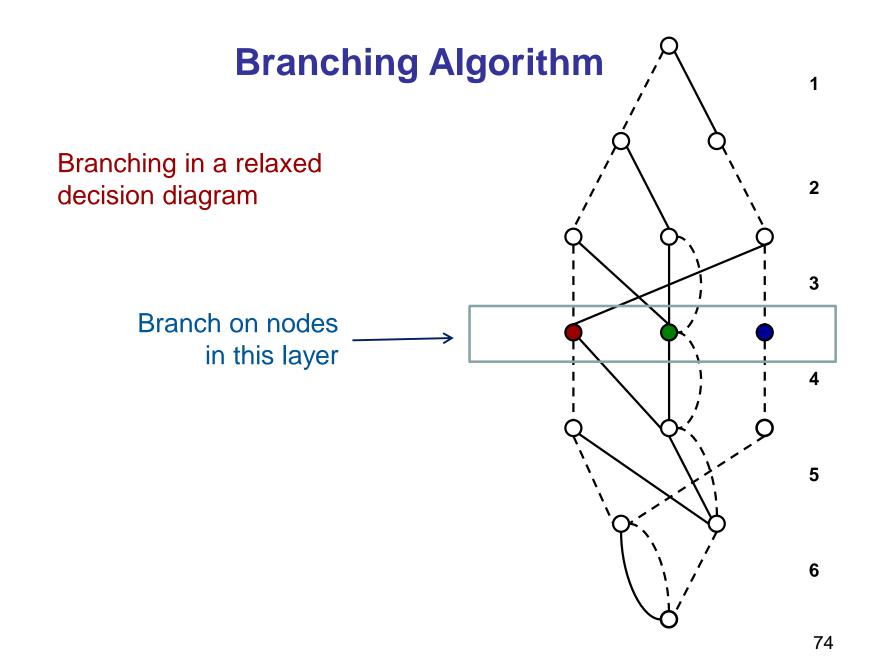
- Solve optimization problem using a novel **branch-and-bound** algorithm.
 - Branch on nodes in **last exact layer** of relaxed decision diagram.
 - ...rather than branch on variables.
 - Create a new relaxed DD rooted at each branching node.
 - Prune search tree using bounds from relaxed DD.

Branching Algorithm

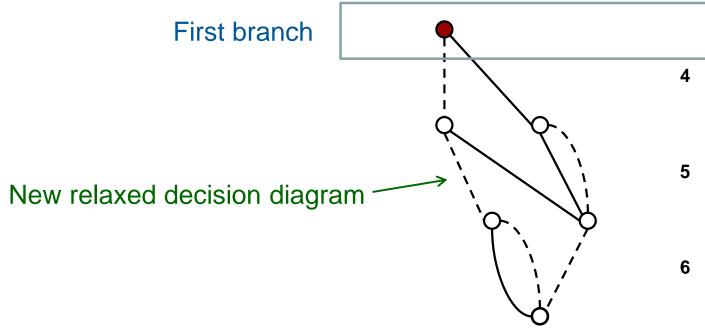
- Solve optimization problem using a novel **branch-and-bound** algorithm.
 - Branch on nodes in **last exact layer** of relaxed decision diagram.
 - ...rather than branch on variables.
 - Create a new **relaxed DD rooted** at each branching node.
 - Prune search tree using bounds from relaxed DD.
 - Advantage: a manageable number states may be reachable in first few layers.
 - ...even if the state space is **exponential**.
 - Alternative way of dealing with **curse of dimensionality**.

Bergman, Ciré, van Hoeve, JH (2016)





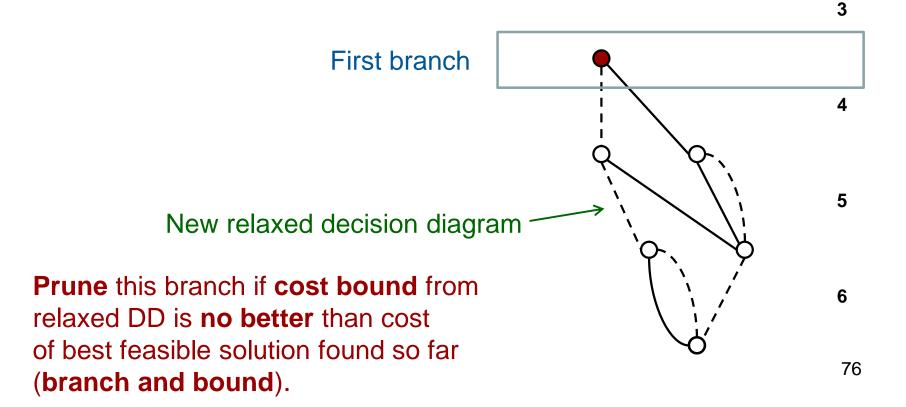
Branching in a relaxed decision diagram



1

2

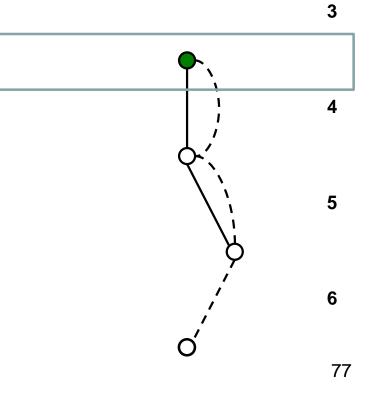
Branching in a relaxed decision diagram



Second branch

Branching in a relaxed decision diagram

Prune this branch if **cost bound** from relaxed DD is **no better** than cost of best feasible solution found so far (**branch and bound**).



1

2

1

2

3

Branching in a relaxed decision diagram

Third branch · 4 Continue recursively 5 **Prune** this branch if **cost bound** from 6 relaxed DD is **no better** than cost of best feasible solution found so far 78 (branch and bound).

State Space Relaxation?

- This is very different from state space relaxation.
 - Problem is not solved by dynamic programming.
 - Relaxation created by merging nodes of DD
 - ...rather than mapping into smaller state space.
 - Relaxation is constructed dynamically
 - ...as relaxed DD is built.
 - Relaxation uses same state variables as exact formulation
 - ...which allows branching in relaxed DD

Christofides, Mingozzi, Toth (1981)

• Computational results...

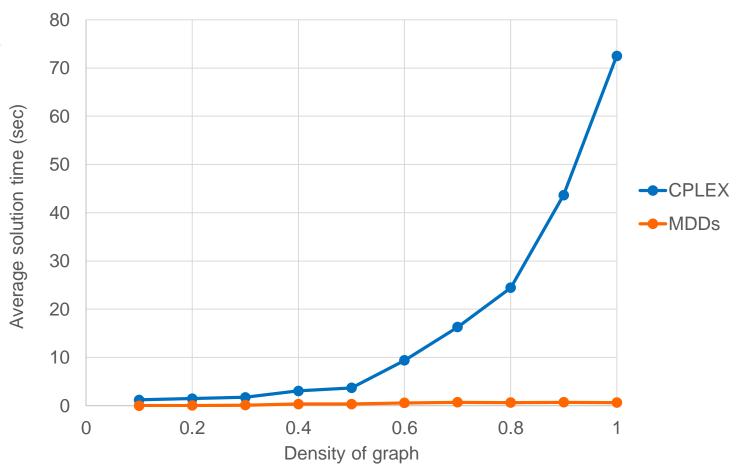
- Applied to stable set, max cut, max 2-SAT.
 - Superior to commercial MIP solver (CPLEX) on most instances.
 - Obtained best known solution on some max cut instances.
- Slightly slower than MIP on stable set with precomputed clique cover model, but...

Bergman, Ciré, van Hoeve, JH (2016)

Max cut on a graph

Avg. solution time vs graph density

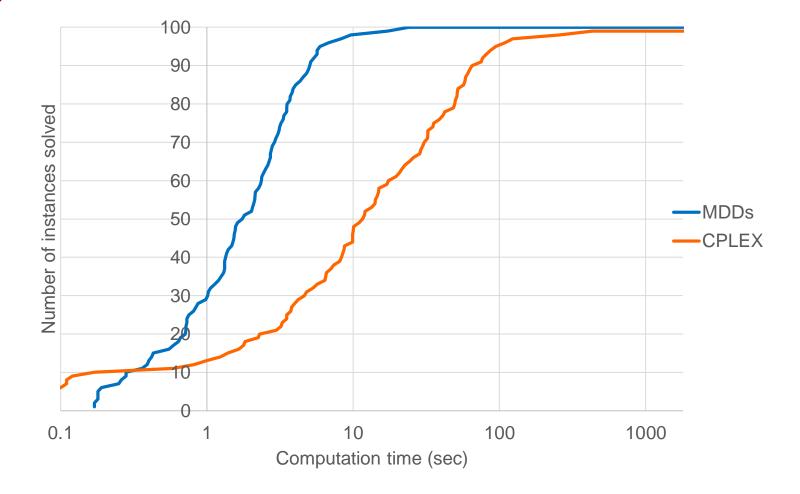
30 vertices



Max 2-SAT

Performance profile

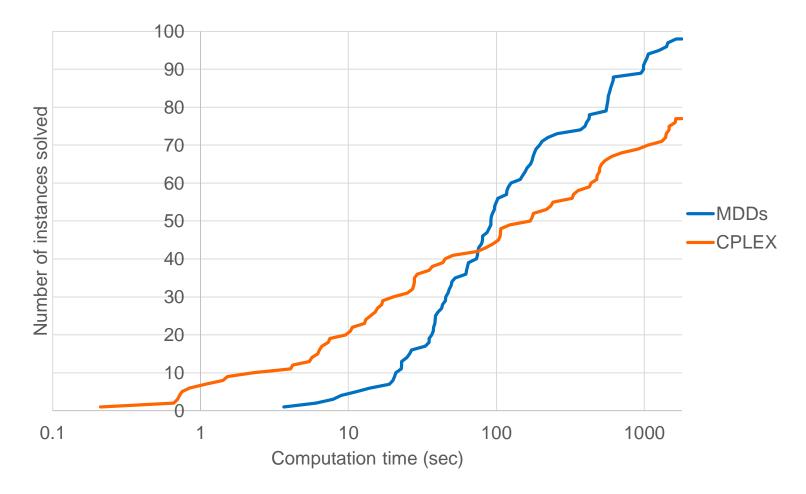
30 variables



Max 2-SAT

Performance profile

40 variables



- Potential to scale up
 - No need to load large inequality model into solver.
 - Parallelizes very effectively
 - Near-linear speedup.
 - Much better than mixed integer programming.

- In all computational comparisons so far...
 - Problem is **easily formulated for IP**.
- DD-based optimization is most competitive when...
 - Problem has a recursive dynamic programming model...
 - and no convenient IP model.

- In all computational comparisons so far...
 - Problem is **easily formulated for IP**.
- DD-based optimization is most competitive when...
 - Problem has a recursive dynamic programming model...
 - and no convenient IP model.
- Such as...
 - Sequencing and scheduling problems (next talk)
 - Planning problems
 - DP problems with exponential state space
 - New approach to "curse of dimensionality"
 - Problems with nonconvex, nonseparable objective function...

- Weighted DD can represent any objective function
 - Separable functions are the easiest, but any nonseparable function is possible.
 - Can be nonlinear, nonconvex, etc.
 - The issue is complexity of resulting DD

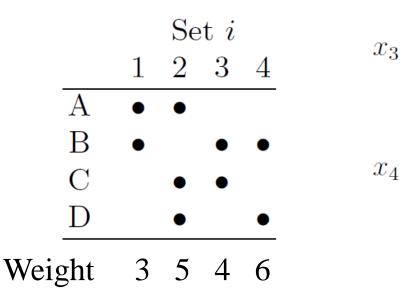
- Weighted DD can represent any objective function
 - Separable functions are the easiest, but any nonseparable function is possible.
 - Can be nonlinear, nonconvex, etc.
 - The issue is complexity of resulting DD
- Multiple encodings
 - A given objective function can be encoded by multiple assignments of costs to arcs.
 - There is a **unique canonical** arc cost assignment.
 - Which can reduce size of exact DD.
 - Design state variables accordingly

 x_1

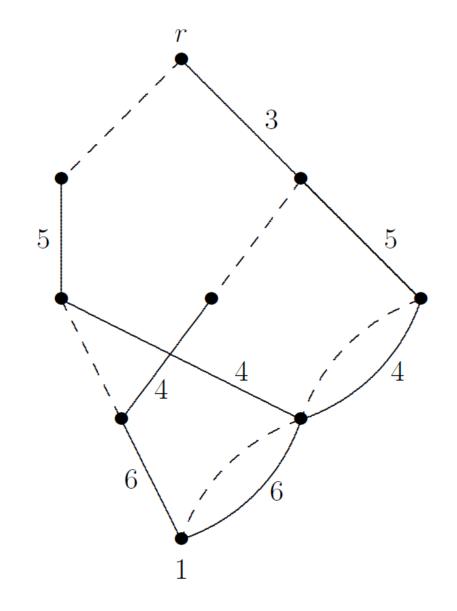
 x_2

Set covering with separable cost function

Easy. Just label arcs with weights.

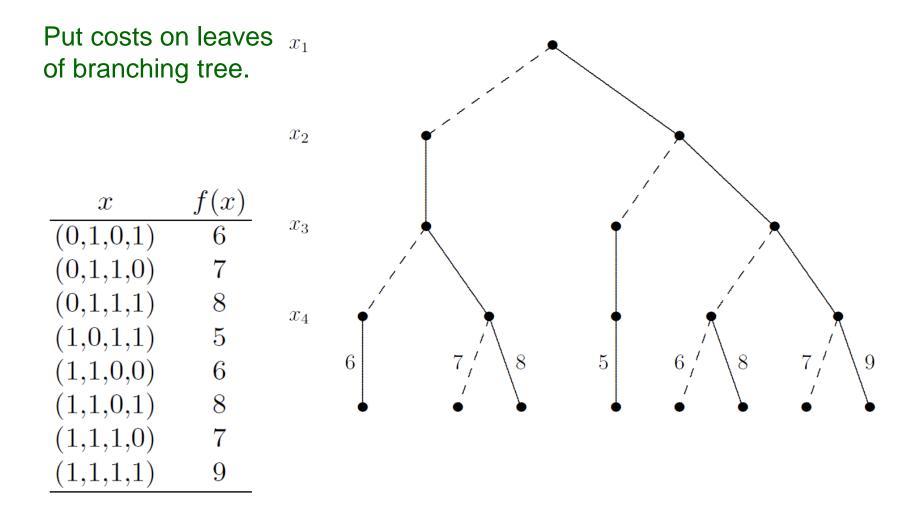


 $x_i = 1$ when we select set *i*

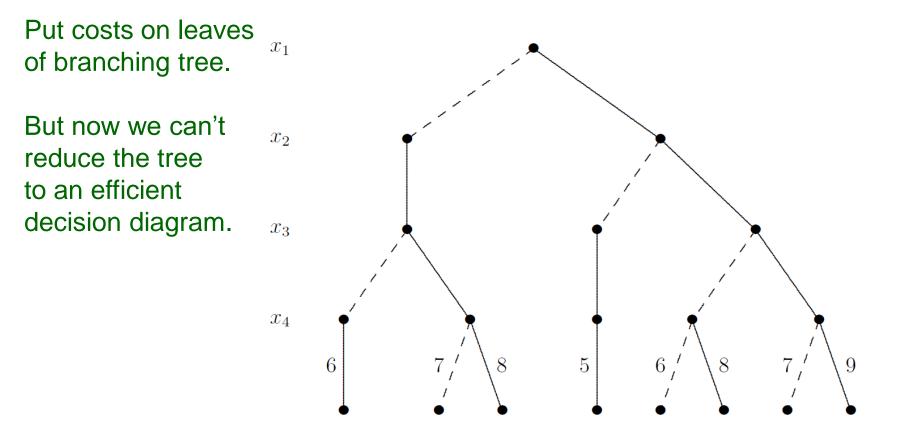




Nonseparable cost function



Nonseparable cost function



Nonseparable cost function

Put costs on leaves x_1 of branching tree. But now we can't x_2 reduce the tree to an efficient decision diagram. x_3 We will rearrange costs to obtain x_4 canonical costs. 7, 57, 6 8 6, 8

9

Nonseparable cost function

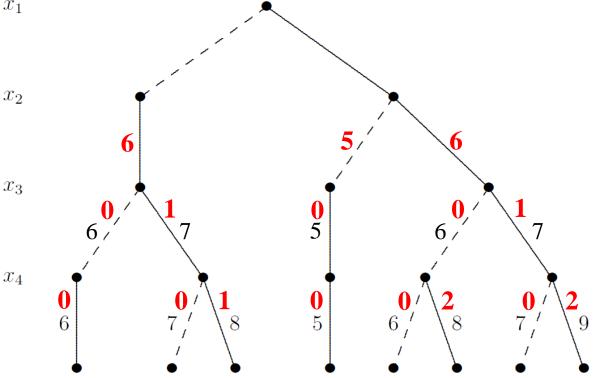
Put costs on leaves x_1 of branching tree. But now we can't x_2 reduce the tree to an efficient decision diagram. x_3 6/ 5 We will rearrange costs to obtain x_4 canonical costs. 56 8 6 8 9

Nonseparable cost function

Put costs on leaves of branching tree. x_1 But now we can't x_2 reduce the tree to an efficient

decision diagram.

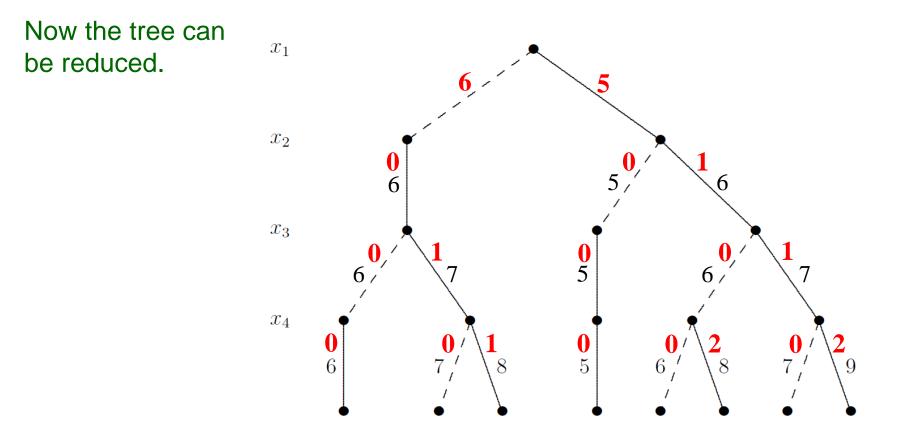
We will rearrange costs to obtain canonical costs.



Nonseparable cost function

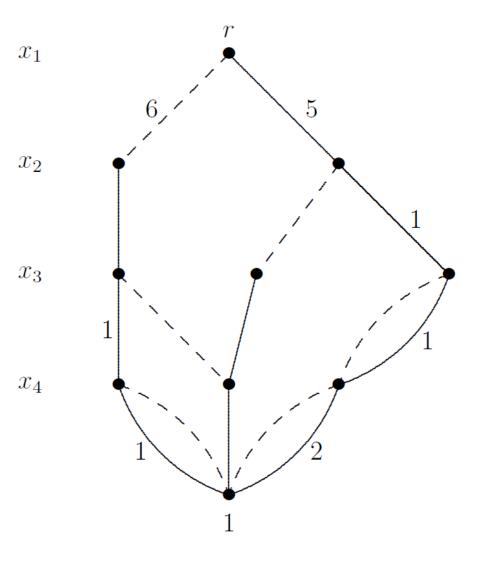
Put costs on leaves x_1 of branching tree. But now we can't x_2 reduce the tree U 6 to an efficient decision diagram. x_3 0, **U** 5 6 6 We will rearrange costs to obtain x_4 canonical costs. 56 8 6 8 9

Nonseparable cost function

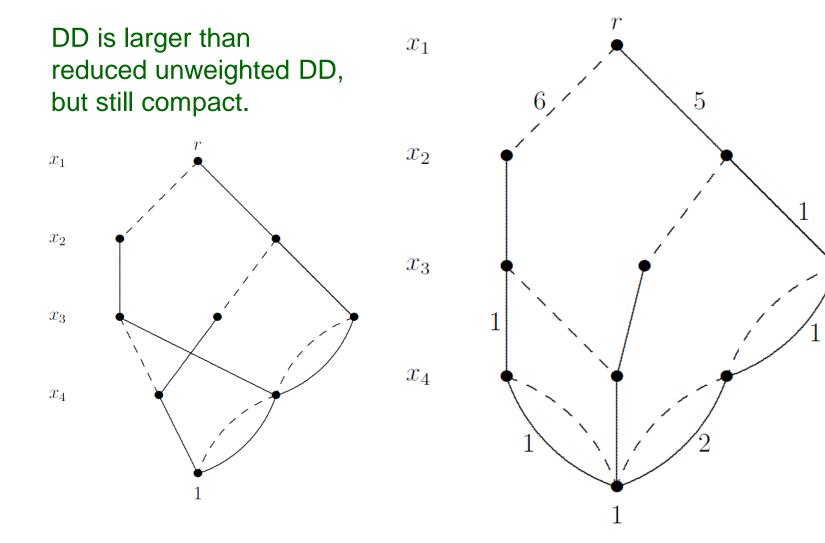


Nonseparable cost function

Now the tree can be reduced.



Nonseparable cost function



Theorem. For a given variable ordering, a given objective function is represented by a **unique** weighted decision diagram with canonical costs.

JH (2013), Similar result for AADDs: Sanner & McAllester (2005)

Inventory Management Example

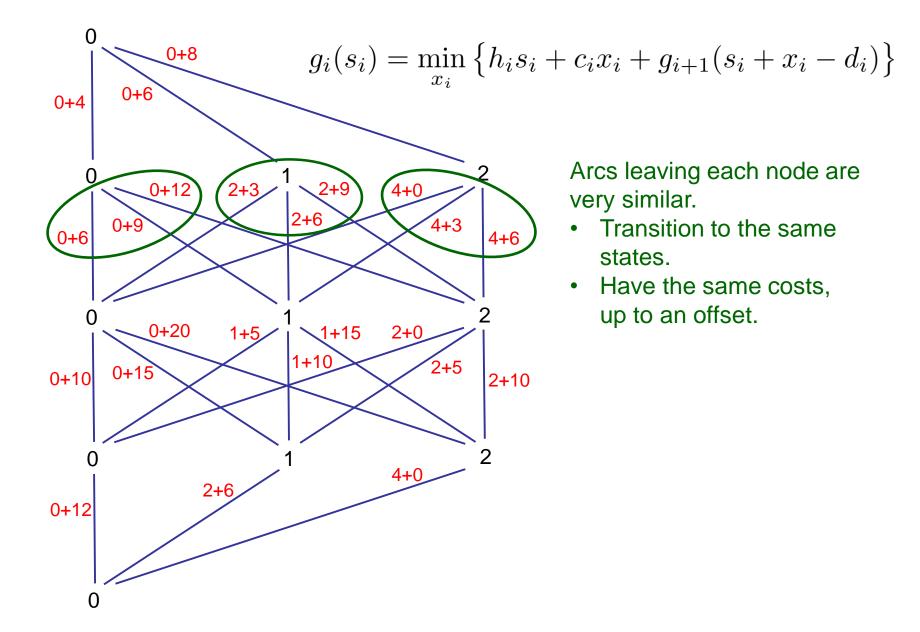
• In each period *i*, we have:

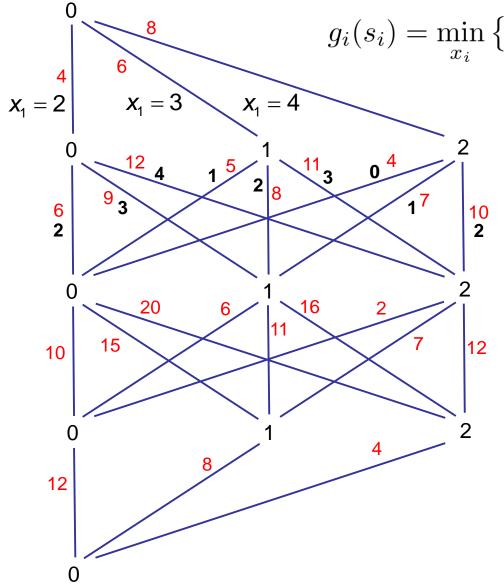
- Demand d_i
- Unit production cost c_i
- Warehouse space *m*
- Unit holding cost h_i
- In each period, we decide:
 - Production level x_i
 - Stock level s_i

• Objective:

Meet demand each period while minimizing production and holding costs.

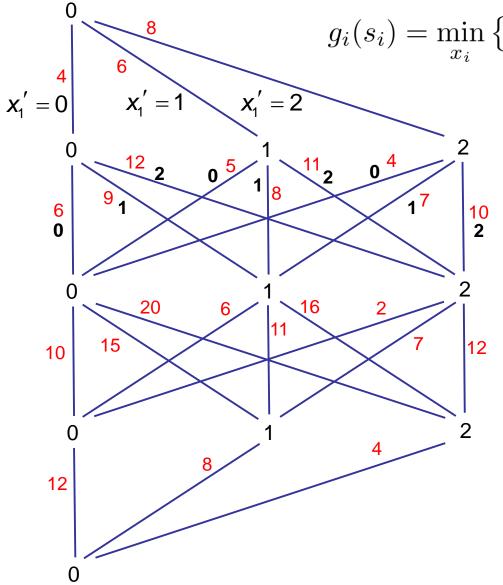
Reducing the Transition Graph





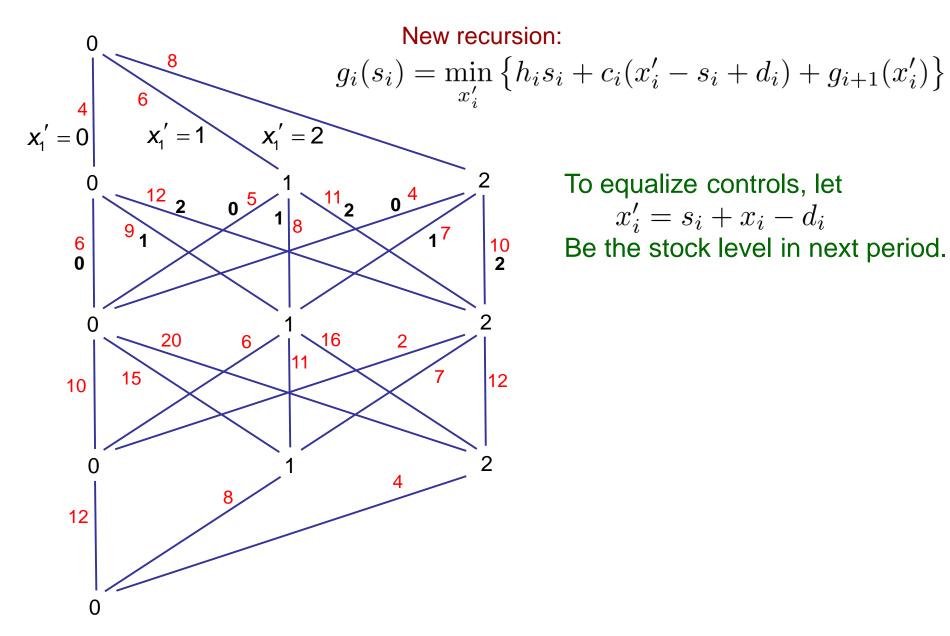
$$s_i) = \min_{x_i} \left\{ h_i s_i + c_i x_i + g_{i+1} (s_i + x_i - d_i) \right\}$$

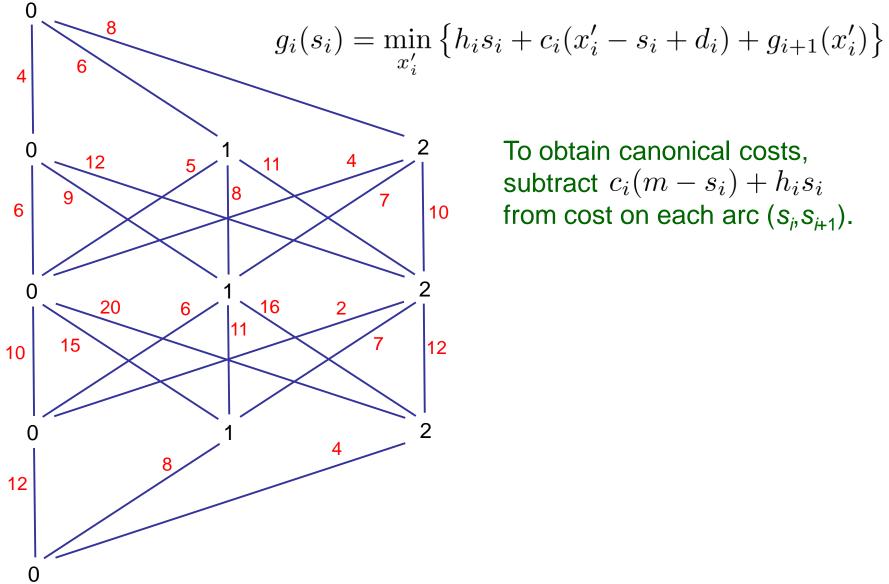
To equalize controls, let $x'_i = s_i + x_i - d_i$ be the stock level in next period.



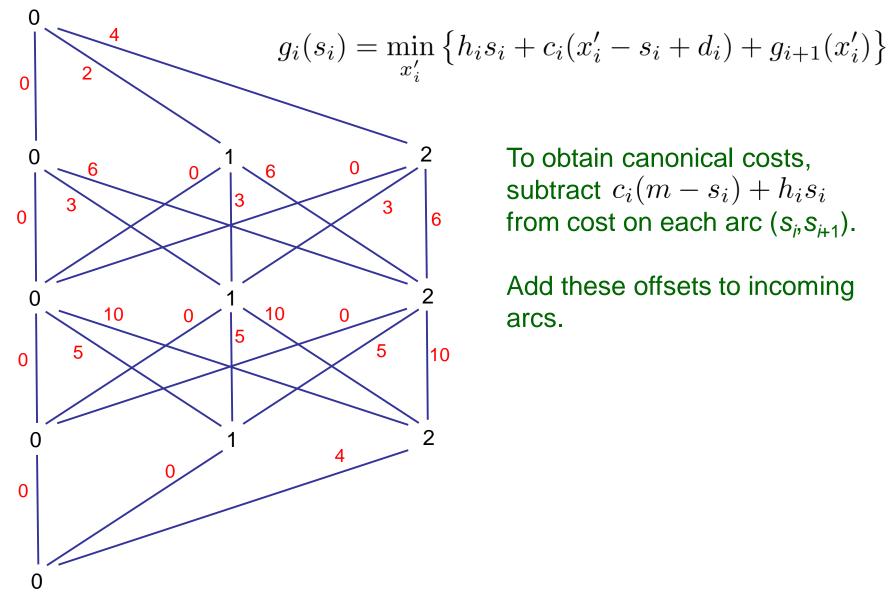
$$s_i) = \min_{x_i} \left\{ h_i s_i + c_i x_i + g_{i+1} (s_i + x_i - d_i) \right\}$$

To equalize controls, let $x'_i = s_i + x_i - d_i$ Be the stock level in next period.





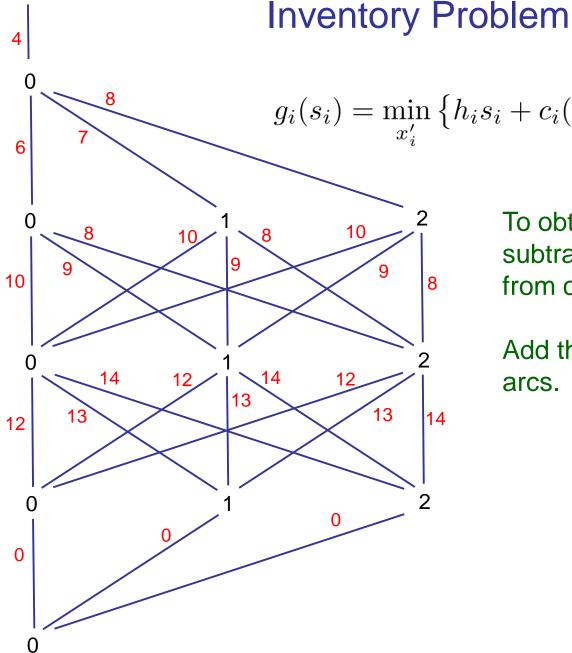
To obtain canonical costs, subtract $c_i(m-s_i) + h_i s_i$ from cost on each arc (s_{i}, s_{i+1}) .



To obtain canonical costs,
subtract
$$c_i(m - s_i) + h_i s_i$$

from cost on each arc (s_i, s_{i+1}).

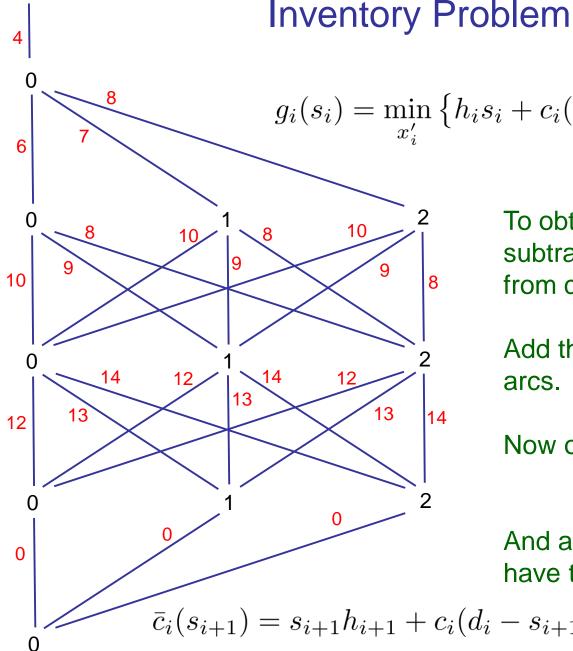
Add these offsets to incoming arcs.



 $g_i(s_i) = \min_{x'_i} \left\{ h_i s_i + c_i (x'_i - s_i + d_i) + g_{i+1}(x'_i) \right\}$

To obtain canonical costs, subtract $c_i(m - s_i) + h_i s_i$ from cost on each arc (s_i, s_{i+1}) .

Add these offsets to incoming arcs.



 $g_i(s_i) = \min_{x'_i} \left\{ h_i s_i + c_i (x'_i - s_i + d_i) + g_{i+1}(x'_i) \right\}$

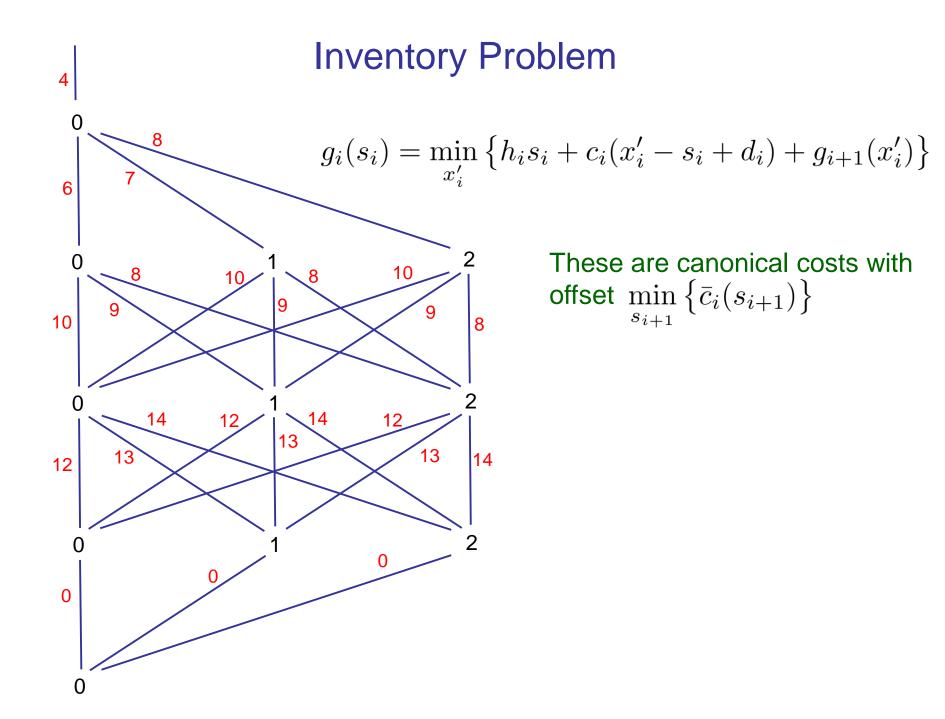
To obtain canonical costs, subtract $c_i(m-s_i) + h_i s_i$ from cost on each arc (s_i, s_{i+1}) .

Add these offsets to incoming arcs.

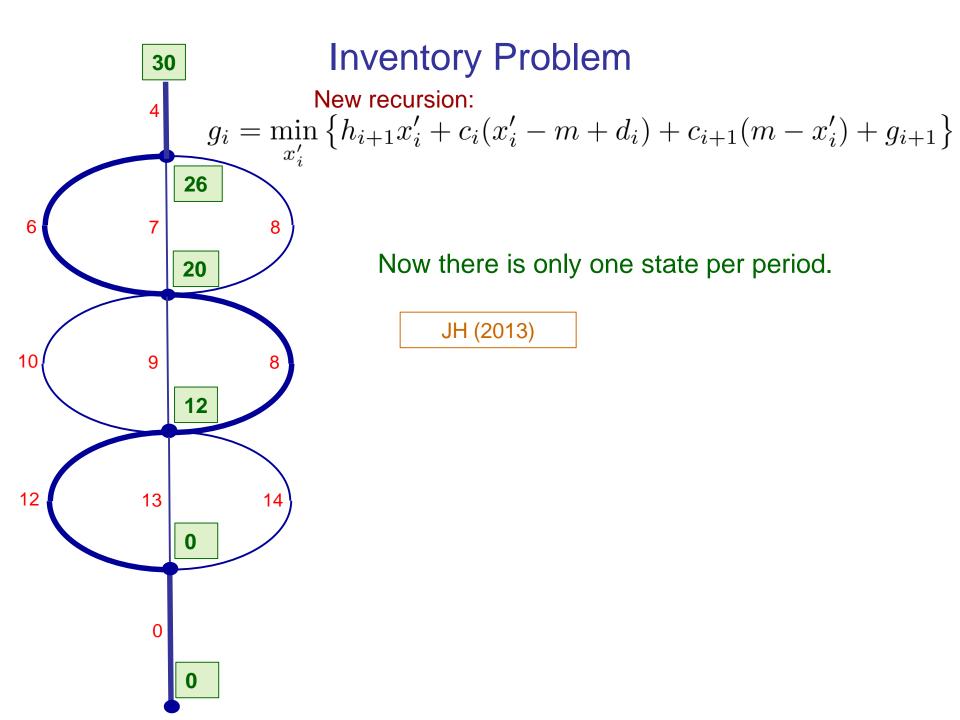
Now outgoing arcs look alike.

And all arcs into state s_i have the same cost

 $\bar{c}_i(s_{i+1}) = s_{i+1}h_{i+1} + c_i(d_i - s_{i+1} - m) + c_{i+1}(m - s_{i+1})$



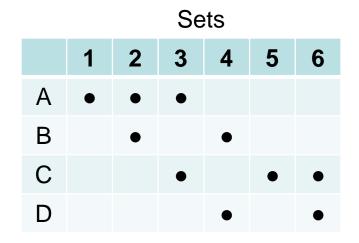




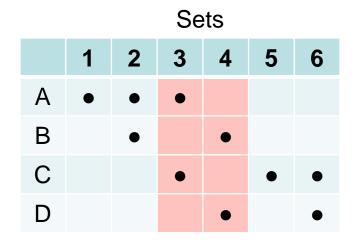
Nonserial Decision Diagrams

- Analogous to **nonserial dynamic programming**, independently(?) rediscovered many times:
 - Nonserial DP (1972)
 - Constraint satisfaction (1981)
 - Data base queries (1983)
 - k-trees (1985)
 - Belief logics (1986)
 - Bucket elimination (1987)
 - Bayesian networks (1988)
 - Pseudoboolean optimization (1990)
 - Location analysis (1994)

Find collection of sets that partition elements A, B, C, D

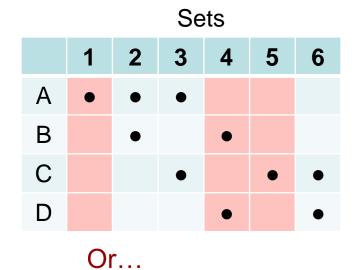


Find collection of sets that partition elements A, B, C, D

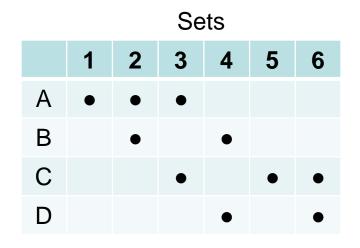


For example...

Find collection of sets that partition elements A, B, C, D



Find collection of sets that partition elements A, B, C, D

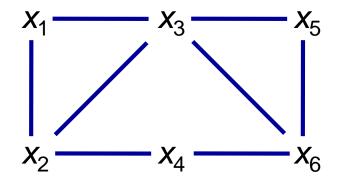


0-1 formulation

 $x_{1} + x_{2} + x_{3} = 1$ $x_{2} + x_{4} = 1$ $x_{3} + x_{5} + x_{6} = 1$ $x_{4} + x_{6} = 1$

 $x_j = 1 \implies \text{set } j \text{ selected}$

Dependency graph



0-1 formulation

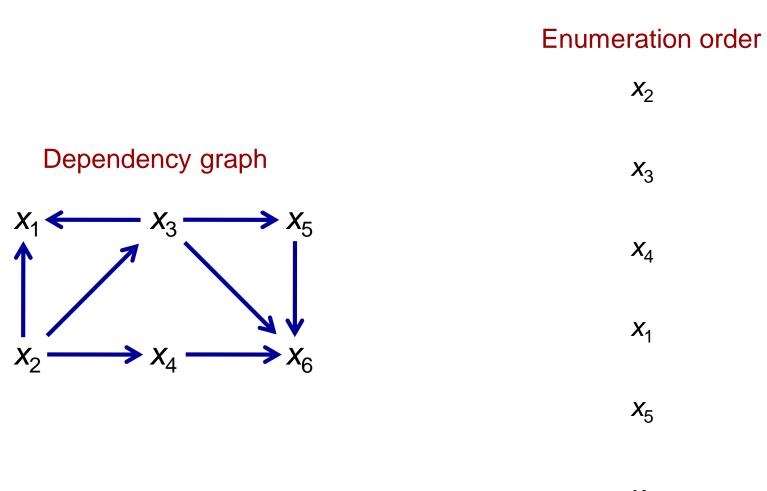
$$x_{1} + x_{2} + x_{3} = 1$$

$$x_{2} + x_{4} = 1$$

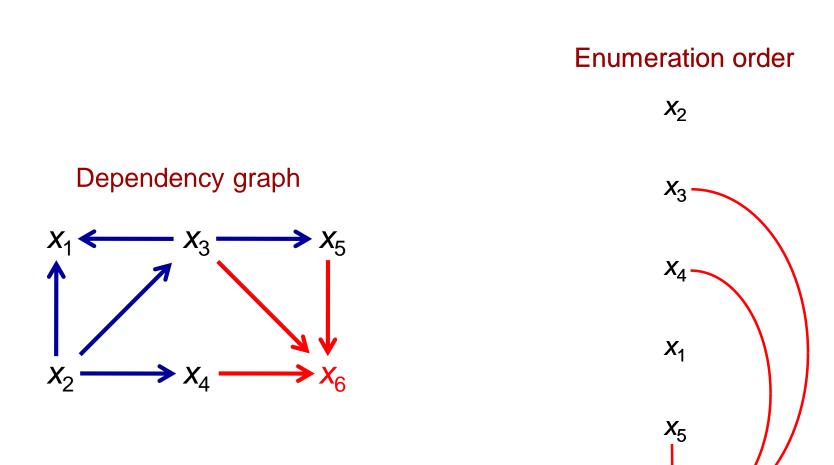
$$x_{3} + x_{5} + x_{6} = 1$$

$$x_{4} + x_{6} = 1$$

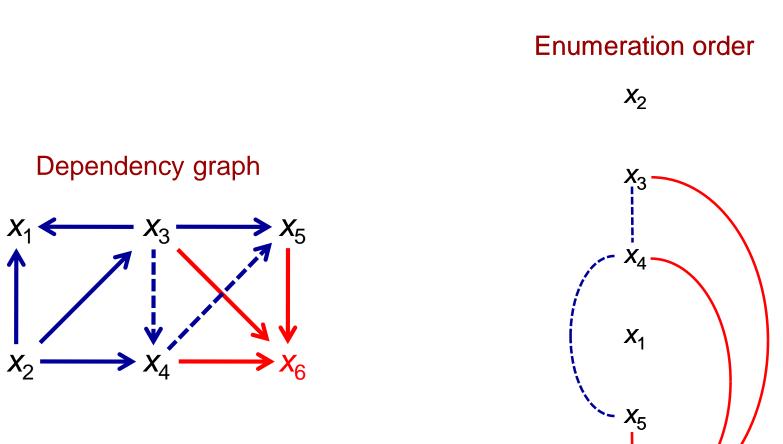
 $x_j = 1 \implies \text{set } j \text{ selected}$



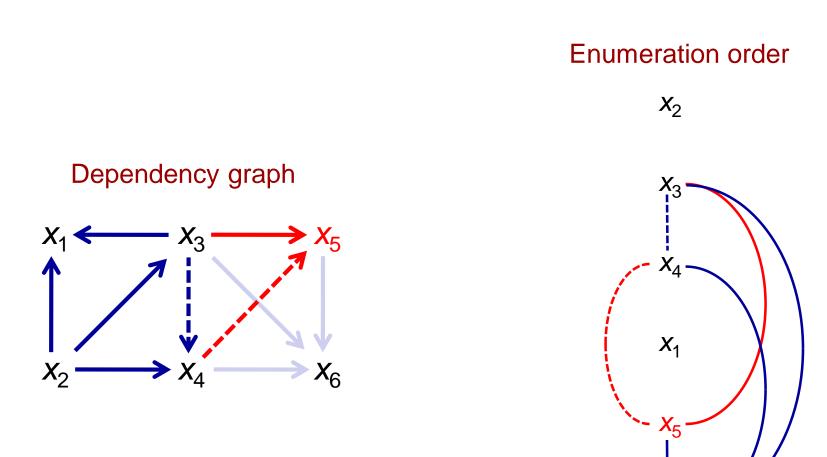
*X*₆



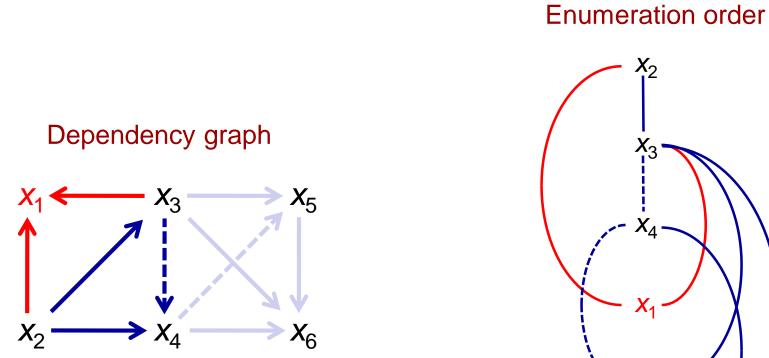
X6

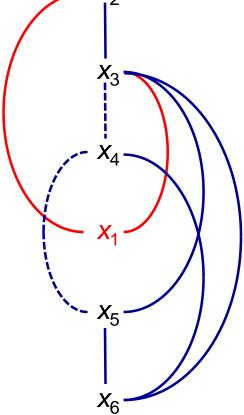


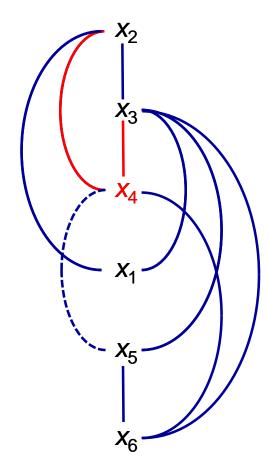
X6'



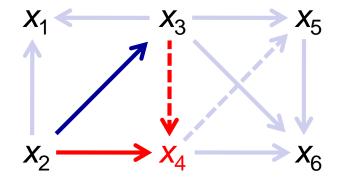
*X*₆

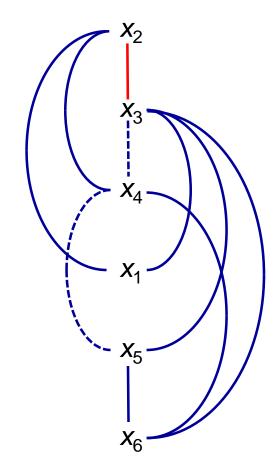




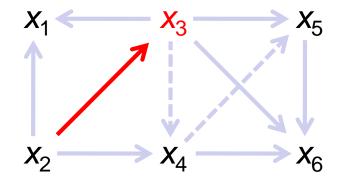


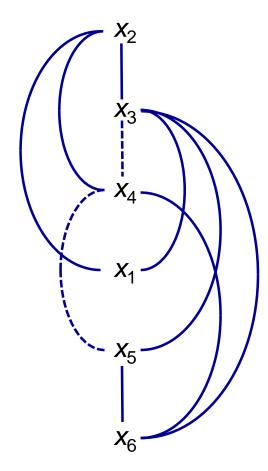
Dependency graph



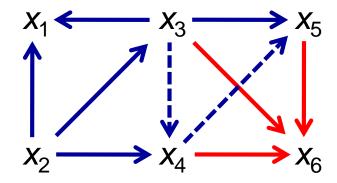


Dependency graph

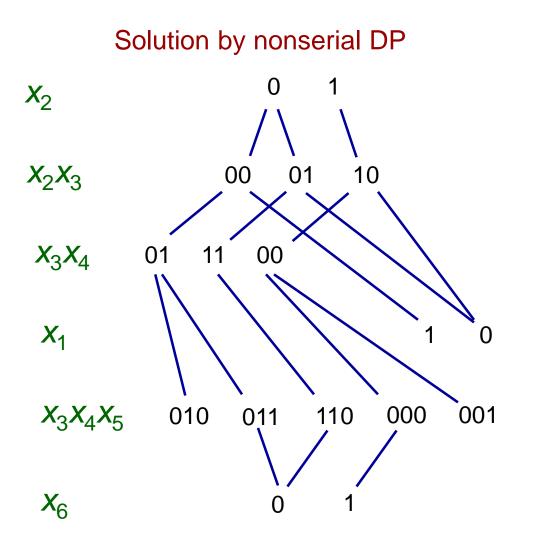




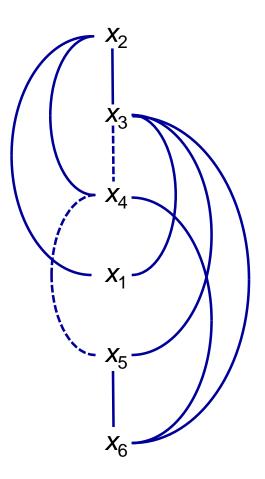
Dependency graph

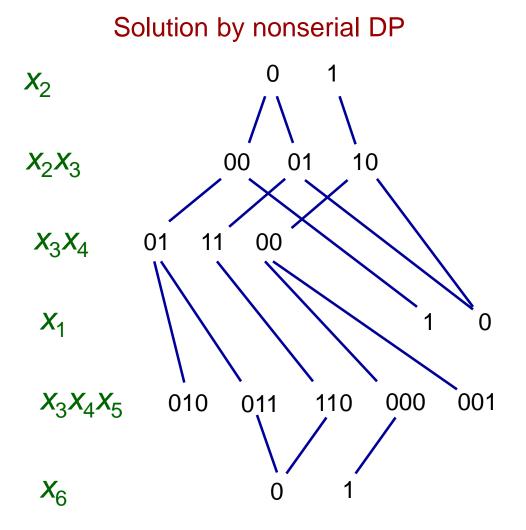


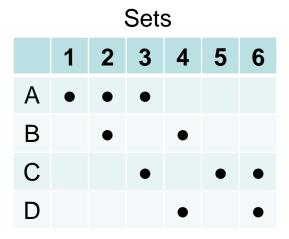
Induced width = 3 (max in-degree)

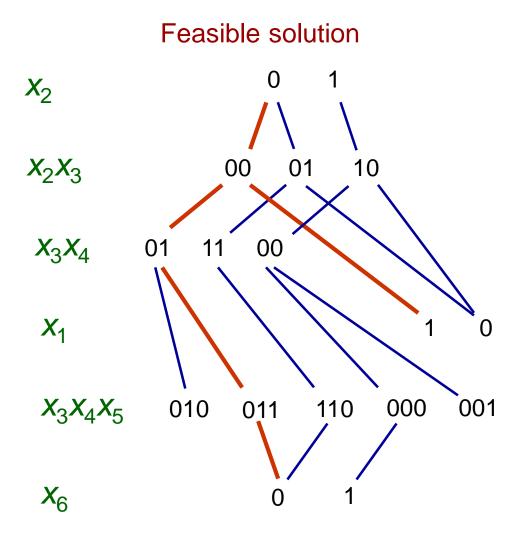


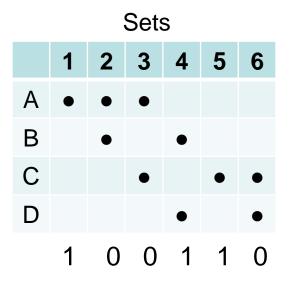
Enumeration order



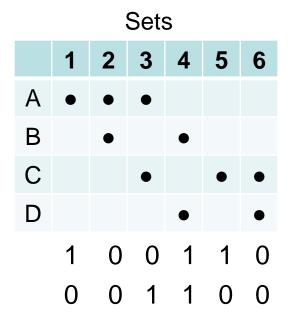




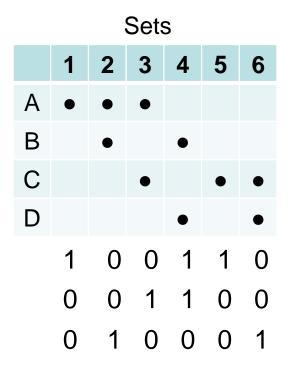


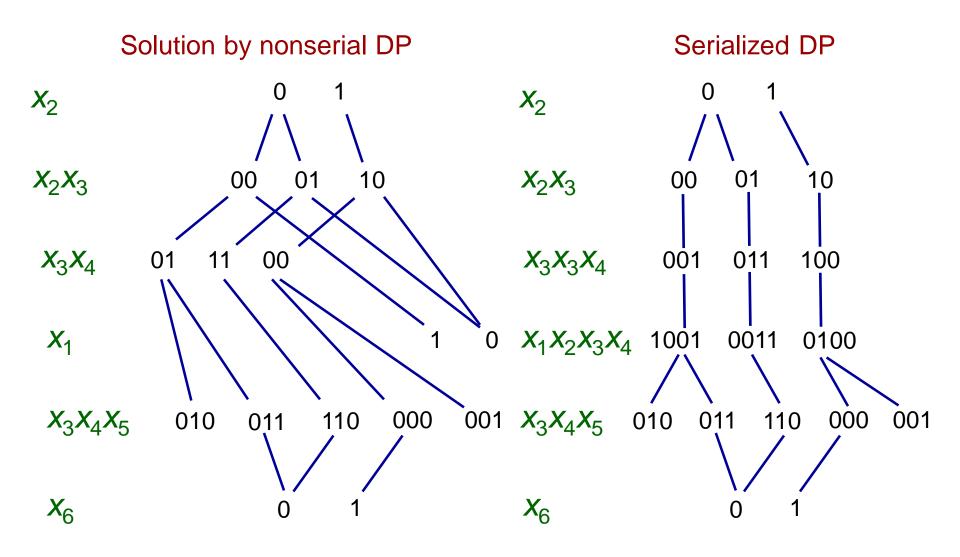


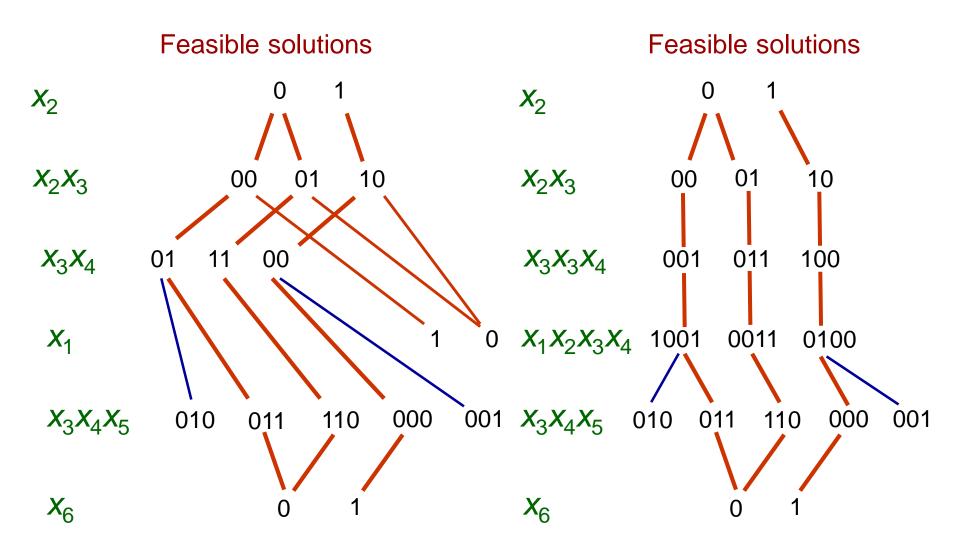
Feasible solution X₂ X_2X_3 **X**₃**X**₄ *X*₁ *X*₃*X*₄*X*₅ *X*₆



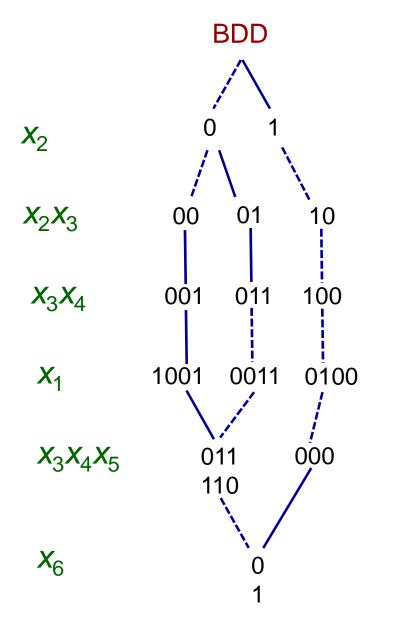
Feasible solution X₂ **X**₂**X**₃ **X**₃**X**₄ *X*₁ *X*₃*X*₄*X*₅ *X*₆

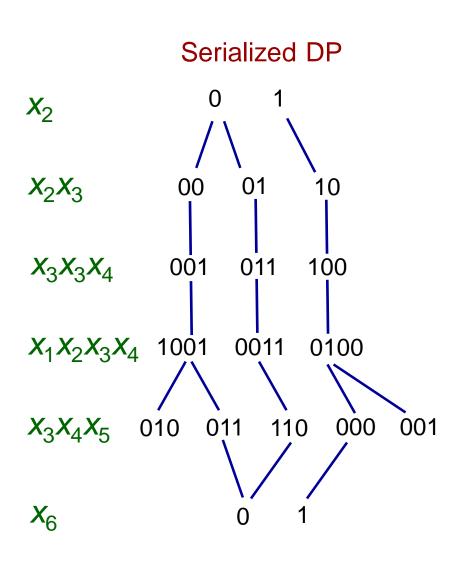




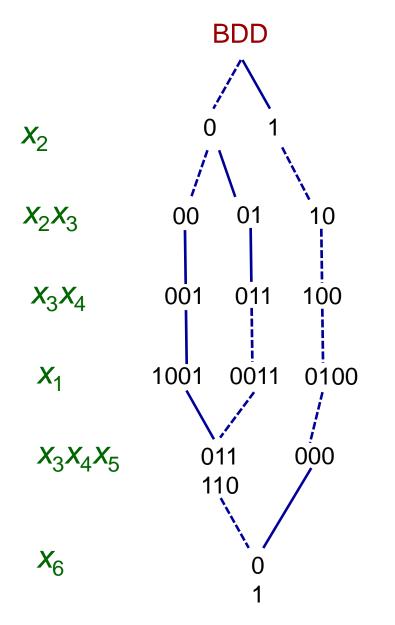


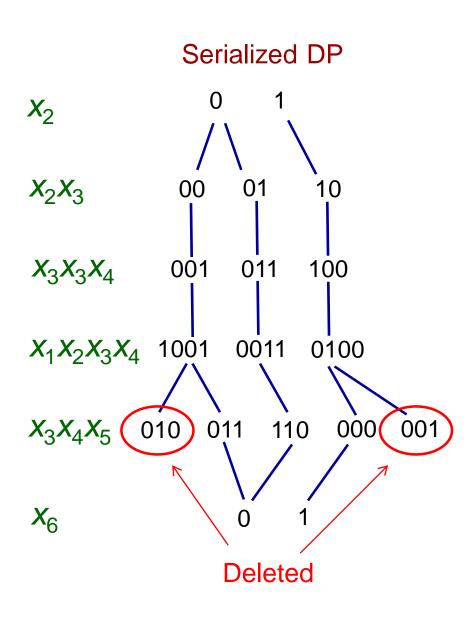
BDD vs. DP Solution



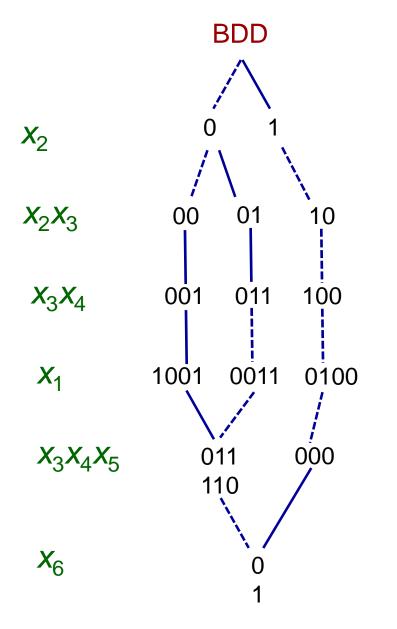


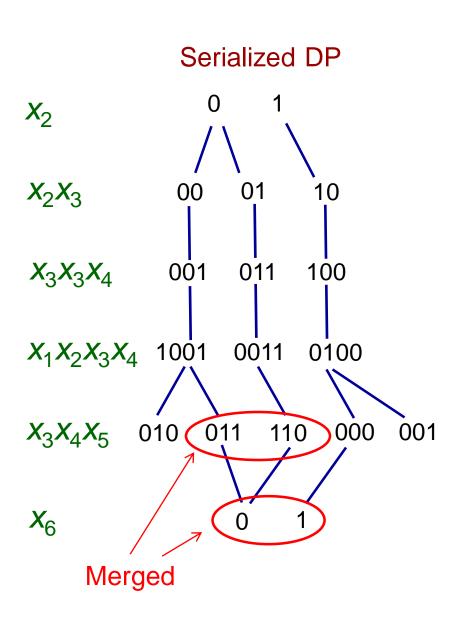
BDD vs. DP Solution

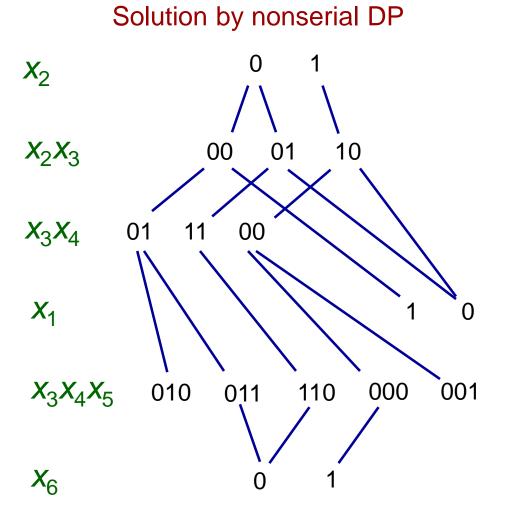




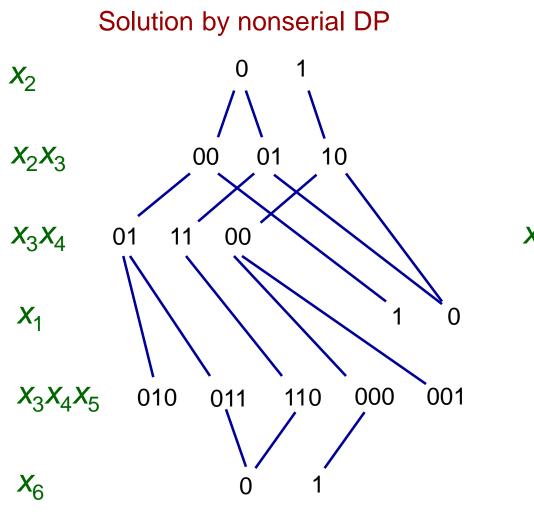
BDD vs. DP Solution

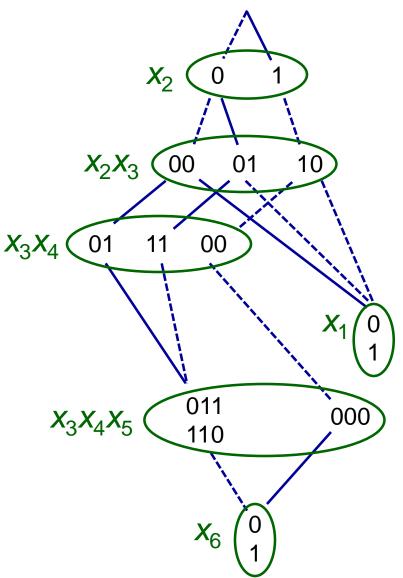






Nonserial BDD

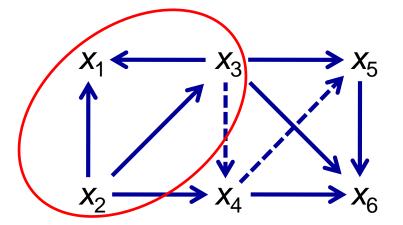




 $X_2 X_3 X_4 X_1 X_5 X_6$

Clique in the dependency graph

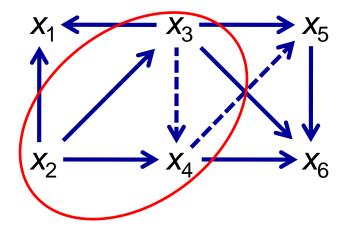
 $x_1 x_2 x_3$



 $X_2 X_3 X_4 X_1 X_5 X_6$

Clique in the dependency graph

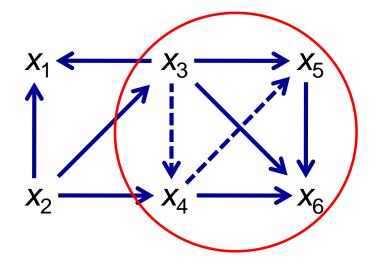
 $x_1 x_2 x_3$



 $X_2 X_3 X_4 X_1 X_5 X_6$

Clique in the dependency graph

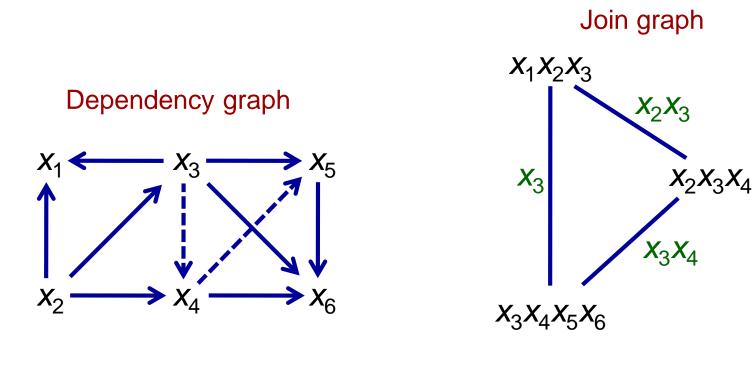
*X*₁*X*₂*X*₃



 $X_2X_3X_4$

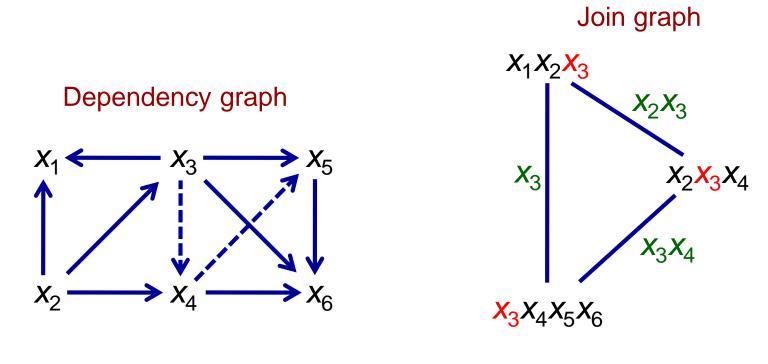
 $X_3 X_4 X_5 X_6$

 $X_2 X_3 X_4 X_1 X_5 X_6$



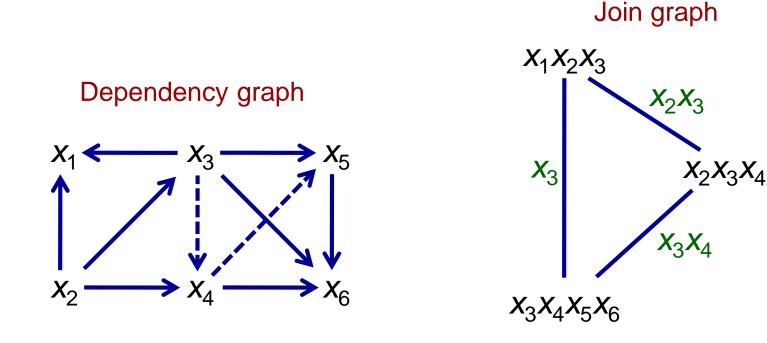
Connect nodes with common variables

 $X_2 X_3 X_4 X_1 X_5 X_6$



 x_j occurs along every path connecting x_j with x_j

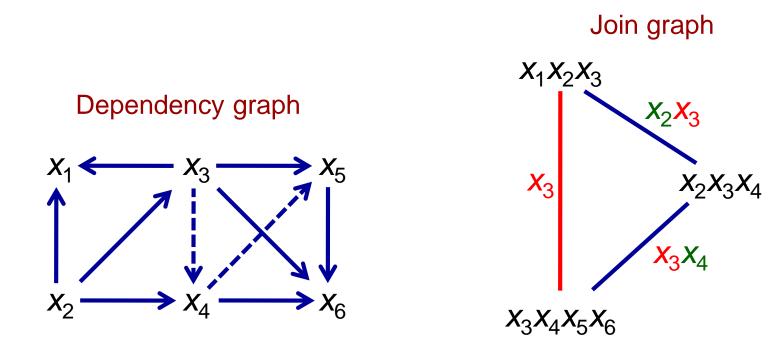
 $X_2 X_3 X_4 X_1 X_5 X_6$



This can be viewed as the constraint dual

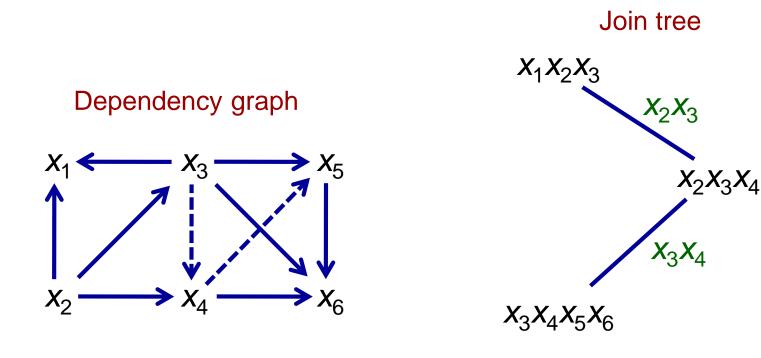
Binary constraints equate common variables in subproblems

 $X_2 X_3 X_4 X_1 X_5 X_6$



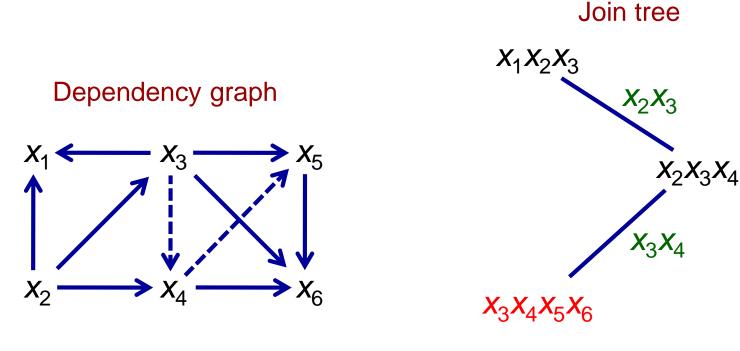
Some edges may be redundant when equating variables

 $X_2 X_3 X_4 X_1 X_5 X_6$



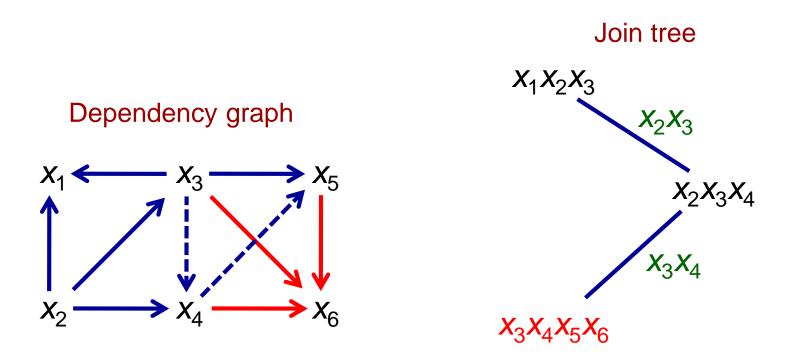
Removing redundant edges yields join tree

 $X_2 X_3 X_4 X_1 X_5 X_6$



Max node cardinality is tree width + 1 = 3 + 1

 $X_2 X_3 X_4 X_1 X_5 X_6$

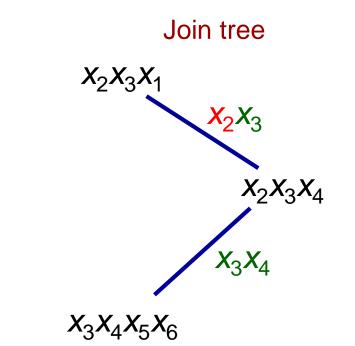


Induced width = tree width = 3

 $X_2 X_3 X_4 X_1 X_5 X_6$

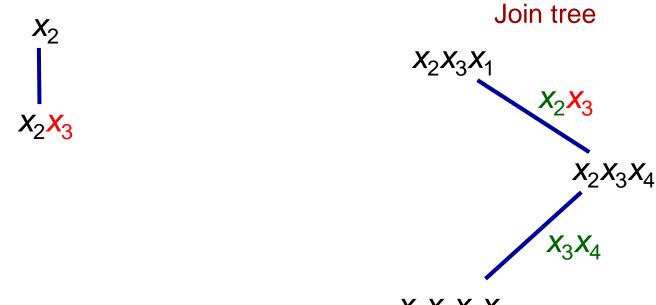
BDD design

X₂



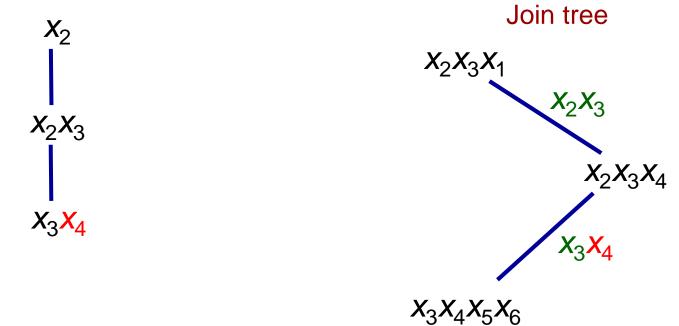
 $X_2 X_3 X_4 X_1 X_5 X_6$

BDD design



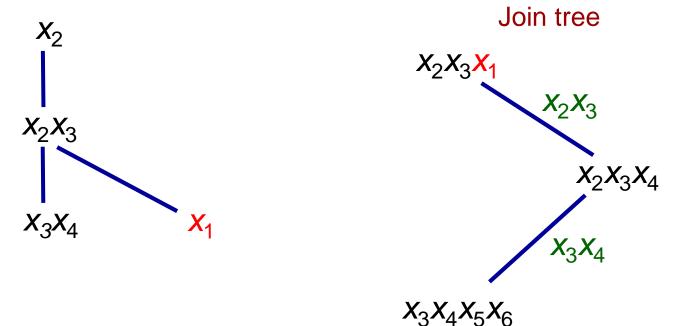
*X*₃*X*₄*X*₅*X*₆

 $X_2 X_3 X_4 X_1 X_5 X_6$



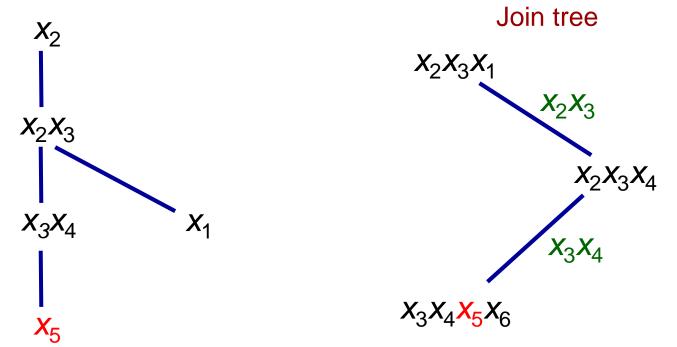
 $X_2 X_3 X_4 X_1 X_5 X_6$

BDD design



 $X_2 X_3 X_4 X_1 X_5 X_6$

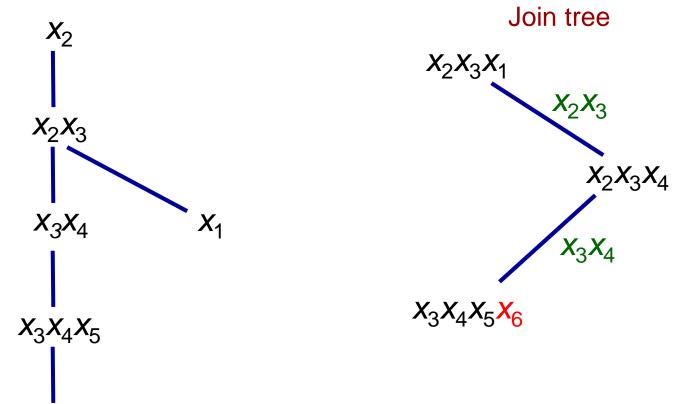
BDD design



 $X_2 X_3 X_4 X_1 X_5 X_6$

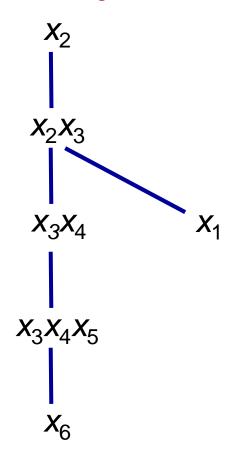
BDD design

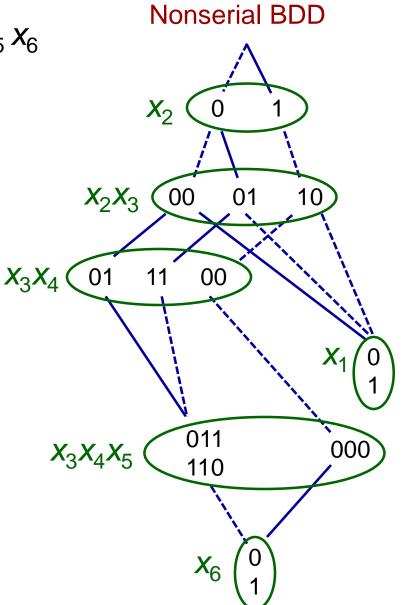
X₆



 $x_2 x_3 x_4 x_1 x_5 x_6$

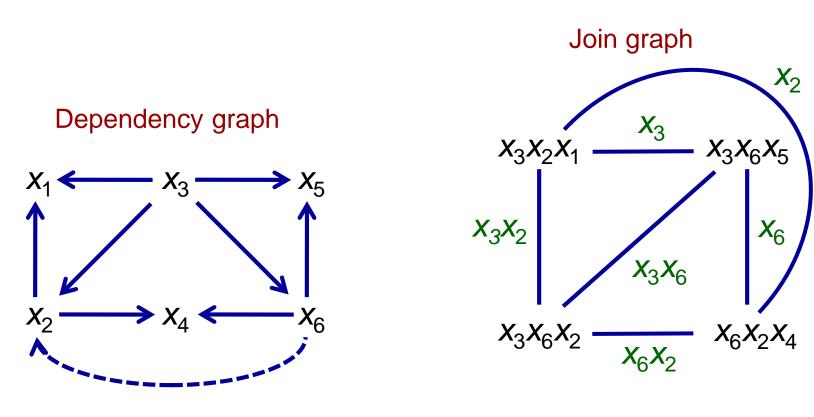
BDD design





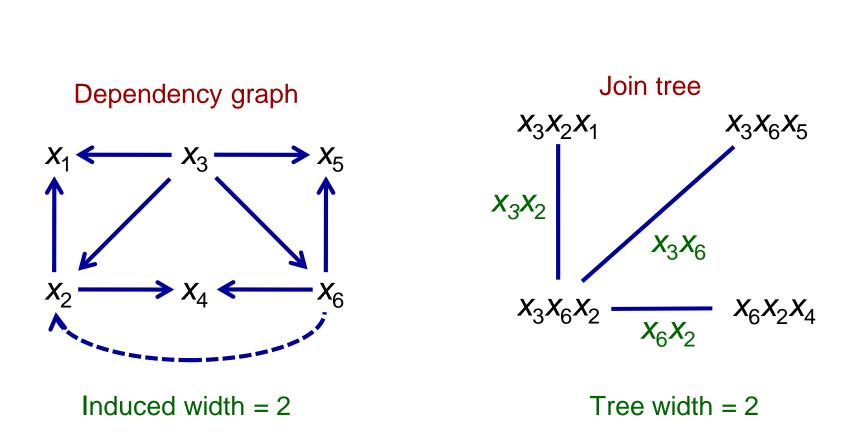
Another Variable Ordering

 $X_3 X_6 X_2 X_5 X_1 X_4$



Induced width = 2

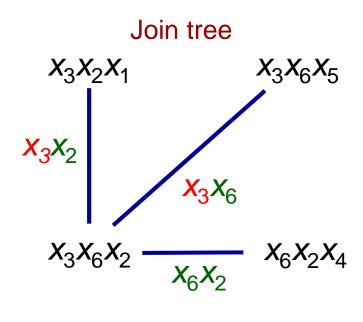
 $X_3 X_6 X_2 X_5 X_1 X_4$



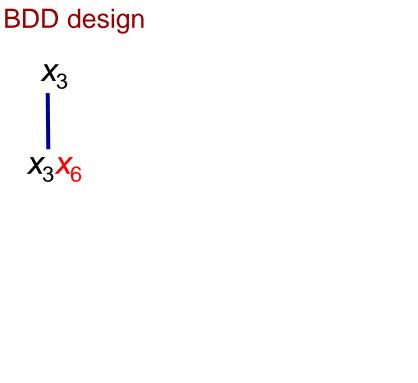
 $X_3 X_6 X_2 X_5 X_1 X_4$

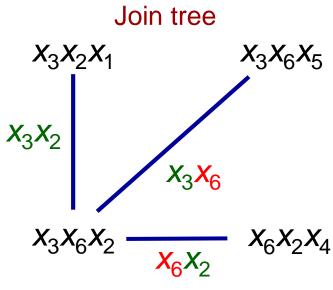
BDD design

X₃

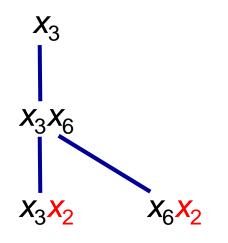


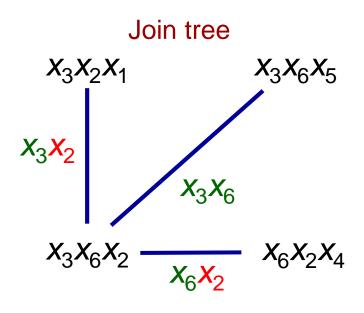
 $X_3 X_6 X_2 X_5 X_1 X_4$





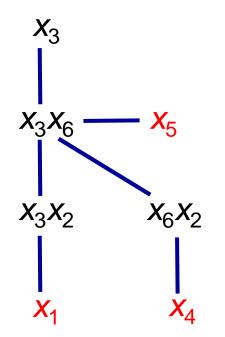
 $X_3 X_6 X_2 X_5 X_1 X_4$

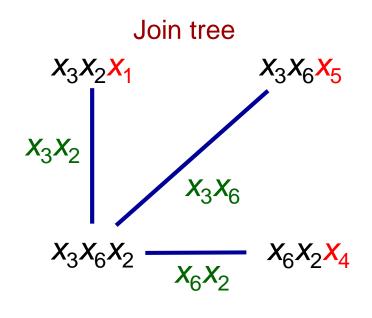




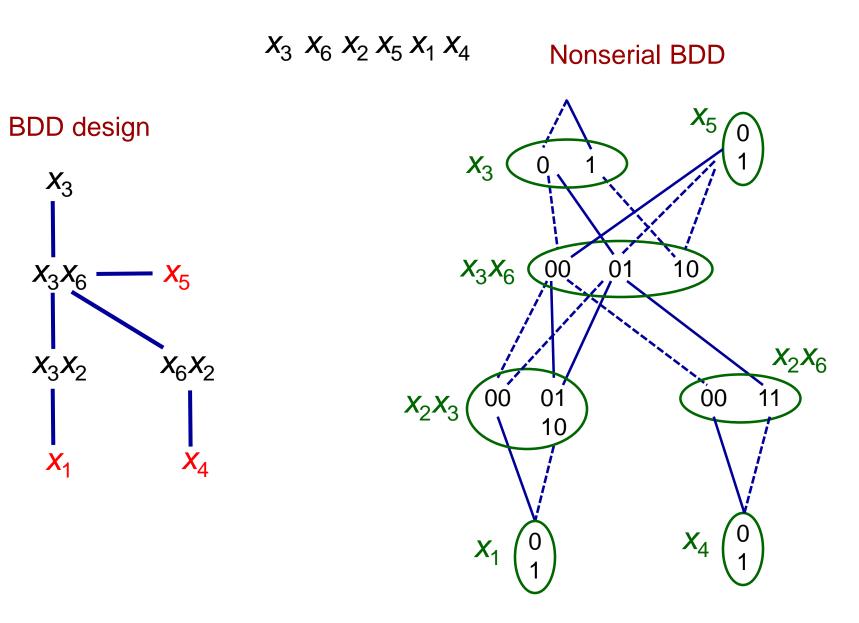
 $X_3 X_6 X_2 X_5 X_1 X_4$

BDD design





Nonserial BDD



Current Research

- Broader applicability
 - Stochastic dynamic programming
 - Continuous global optimization
- Combination with other techniques
 - Lagrangean relaxation.
 - Column generation
 - Logic-based Benders decomposition
 - Solve separation problem

2006

• T. Hadzic and J. N. Hooker. <u>Discrete global optimization with binary decision diagrams</u>. In Workshop on Global Optimization: Integrating Convexity, Optimization, Logic Programming, and Computational Algebraic Geometry (GICOLAG), Vienna, 2006.

2007

- Tarik Hadzic and J. N. Hooker. <u>Cost-bounded binary decision diagrams for 0-1</u> programming. In *Proceedings of CPAIOR*. LNCS 4510, pp. 84-98. Springer, 2007.
- Tarik Hadzic and J. N. Hooker. <u>Postoptimality analysis for integer programming using binary</u> <u>decision diagrams</u>. December 2007, revised April 2008 (not submitted).
- M. Behle. <u>Binary Decision Diagrams and Integer Programming</u>. PhD thesis, Max Planck Institute for Computer Science, 2007.
- H. R. Andersen, T. Hadzic, J. N. Hooker, and P. Tiedemann. <u>A constraint store based on</u> <u>multivalued decision diagrams</u>. In *Proceedings of CP*. LNCS 4741, pp. 118-132. Springer, 2007.

- T. Hadzic, J. N. Hooker, B. O'Sullivan, and P. Tiedemann. <u>Approximate compilation of constraints into multivalued decision diagrams</u>. In *Proceedings of CP*. LNCS 5202, pp. 448-462. Springer, 2008.
- T. Hadzic, J. N. Hooker, and P. Tiedemann. <u>Propagating separable equalities in an MDD</u> <u>store</u>. In *Proceedings of CPAIOR*. LNCS 5015, pp. 318-322. Springer, 2008.

2010

- S. Hoda. <u>Essays on Equilibrium Computation, MDD-based Constraint Programming and</u> <u>Scheduling</u>. *PhD thesis*, Carnegie Mellon University, 2010.
- S. Hoda, W.-J. van Hoeve, and J. N. Hooker. <u>A Systematic Approach to MDD-Based</u> <u>Constraint Programming</u>. In *Proceedings of CP*. LNCS 6308, pp. 266-280. Springer, 2010.
- T. Hadzic, E. O'Mahony, B. O'Sullivan, and M. Sellmann. <u>Enhanced inference for the</u> <u>market split problem</u>. In *Proceedings, International Conference on Tools for AI (ICTAI)*, pages 716–723. IEEE, 2009.

2011

 D. Bergman, W.-J. van Hoeve, and J. N. Hooker. <u>Manipulating MDD Relaxations for</u> <u>Combinatorial Optimization</u>. In *Proceedings of CPAIOR*. LNCS 6697, pp. 20-35. Springer, 2011.

- A. A. Cire and W.-J. van Hoeve. <u>MDD Propagation for Disjunctive Scheduling</u>. In *Proceedings of ICAPS*, pp. 11-19. AAAI Press, 2012.
- D. Bergman, A.A. Cire, W.-J. van Hoeve, and J.N. Hooker. <u>Variable Ordering for the</u> <u>Application of BDDs to the Maximum Independent Set Problem</u>. In *Proceedings of CPAIOR*. LNCS 7298, pp. 34-49. Springer, 2012.

2013

- A. A. Cire and W.-J. van Hoeve. <u>Multivalued Decision Diagrams for Sequencing Problems</u>. *Operations Research* 61(6): 1411-1428, 2013.
- D. Bergman. <u>New Techniques for Discrete Optimization</u>. *PhD thesis*, Carnegie Mellon University, 2013.
- J. N. Hooker. <u>Decision Diagrams and Dynamic Programming</u>. In *Proceedings of CPAIOR*. LNCS 7874, pp. 94-110. Springer, 2013.
- B. Kell and W.-J. van Hoeve. <u>An MDD Approach to Multidimensional Bin Packing</u>. In *Proceedings of CPAIOR*, LNCS 7874, pp. 128-143. Springer, 2013.

- D. R. Morrison, E. C. Sewell, S. H. Jacobson, <u>Characteristics of the maximal independent</u> <u>set ZDD</u>, Journal of Combinatorial Optimization 28 (1) 121-139, 2014
- D. R. Morrison, E. C. Sewell, S. H. Jacobson, <u>Solving the Pricing Problem in a Generic</u> <u>Branch-and-Price Algorithm using Zero-Suppressed Binary Decision Diagrams</u>,
- D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. N. Hooker. <u>Optimization Bounds from</u> <u>Binary Decision Diagrams</u>. *INFORMS Journal on Computing* 26(2): 253-258, 2014.
- A. A. Cire. <u>Decision Diagrams for Optimization</u>. *PhD thesis*, Carnegie Mellon University, 2014.
- D. Bergman, A. A. Cire, and W.-J. van Hoeve. <u>MDD Propagation for Sequence Constraints</u>. *JAIR*, Volume 50, pages 697-722, 2014.
- D. Bergman, A. A. Cire, W.-J. van Hoeve, and T. Yunes. <u>BDD-Based Heuristics for Binary</u> <u>Optimization</u>. <u>Journal of Heuristics</u> 20(2): 211-234, 2014.

2014

- D. Bergman, A. A. Cire, A. Sabharwal, H. Samulowitz, V. Saraswat, and W.-J. van Hoeve. <u>Parallel Combinatorial Optimization with Decision Diagrams</u>. In *Proceedings of CPAIOR*, LNCS 8451, pp. 351-367. Springer, 2014.
- A. A. Cire and J. N. Hooker. <u>The Separation Problem for Binary Decision Diagrams</u>. In *Proceedings of the International Symposium on Artificial Intelligence and Mathematics (ISAIM)*, 2014.]

2015

- D. Bergman, A. A. Cire, and W.-J. van Hoeve. <u>Lagrangian Bounds from Decision Diagrams</u>. *Constraints* 20(3): 346-361, 2015.
- B. Kell, A. Sabharwal, and W.-J. van Hoeve. <u>BDD-Guided Clause Generation</u>. In Proceedings of <u>CPAIOR</u>, 2015.

- D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. N. Hooker, *Decision Diagrams for Optimization*, Springer, to appear.
- D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. N. Hooker. <u>Discrete Optimization with</u> <u>Decision Diagrams</u>. *INFORMS Journal on Computing* 28: 47-66, 2016.