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Decision Diagrams

« Used in computer science and Al for decades
— Logic circuit design
— Product configuration

« Anew perspective on optimization

— Constraint programming
— Discrete optimization



Decision Diagrams

* Relevance to planning and scheduling:
— Naturally suited to dynamic programming formulations.
— State-dependent actions and costs.
— New method for defeating curse of dimensionality.
— Branch-and-bound solution.



Decision Diagrams

 DDs have been used in planning literature...

— To encode (or approximate) state-dependent cost or
cost-to-go.

— See yesterday’s tutorial “Planning with State-Dependent
Action Costs”

— By Robert Mattmuller and Florian Geil3er.

 This tutorial presents DDs as a general
optimization method.



Decision Diagrams

* General advantages:
— No need for inequality formulations.
— No need for linear or convex relaxations.
— New approach to solving dynamic programming models.
— Very effective parallel computation.
— lIdeal for postoptimality anaylsis

« Disadvantage:
— Developed only for discrete, deterministic optimization.
— ...sofar.



Outline

Decision diagram basics
Optimization with exact decision diagrams

A general-purpose solver that scales up
— Relaxed decision diagrams

— Restricted decision diagrams

— Dynamic programming model

— A new branching algorithm

— Computational performance

Modeling the objective function

— Inventory management example

Nonserial decision diagrams
References



Decision Diagram Basics

* Binary decision diagrams encode Boolean functions
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Decision Diagram Basics

* Binary decision diagrams encode Boolean functions
— Historically used for circuit design & verification

(a) Logic network (b) BOD for vanables (c) BOD for varables in the worst order
In he Dest order

FIGURE 29.11 BDDs for 2-level logic network with ANDVOR gates.

Bryant (1986), etc.




Decision Diagram Basics

* Binary decision diagrams encode Boolean functions
— Historically used for circuit design & verification
— Easily generalized to multivalued decision diagrams
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Reduced Decision Diagrams

 Thereis aunique reduced DD representing any given
Boolean function.

— Once the variable ordering is specified.

Bryant (1986)

 The reduced DD can be viewed as a branching tree with
redundancy removed.
— Superimpose isomorphic subtrees.
— Remove redundant nodes.
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Branching tree for 0-1 inequality
2X, +3X, +5X, +5X, =7

Remove redundant nodes...
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Superimpose identical
subtrees...
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Superimpose identical
leaf nodes...






as generated by software



Reduced Decision Diagrams

 Reduced DD for a knapsack constraint can be
surprisingly small...

The 0-1 inequality

300x, +300x, + 285X, + 285X, + 265X, + 265X, + 230X, + 230X, +190x%, + 200X, +
400x,, +200x,, +400x,, + 200x,, +400x,, + 200X, + 400X, +200x,, +400x,, <2700

has 117,520 maximal feasible solutions (or minimal covers)

But its reduced BDD has only 152 nodes...






Optimization with Exact Decision
Diagrams

« Decision diagrams can
represent feasible set -
— Remove paths to O.

— Paths to 1 are feasible
solutions.

— Associate costs with
arcs.

— Find longest/shortest 0
path

Hadzi¢ and JH (2006, 2007)




Stable Set Problem

Let each vertex have weight w;

Select nonadjacent vertices to maximize .; W; X;

2 3

e
AN




2—3

1

AN

o—4

Exact DD for
stable set
problem




1

2—3

AN

o—4

Exact DD for
stable set
problem




2—3

/

1

AN

o—4

Paths from top
to bottom
correspond to
the 9 feasible
solutions




40 50

2—3
201/
AN
o—4
30 10

For objective
function,
associlate

weights with

arcs

20




40 50

2——3 R
201/ (3'/ <
\ ’
5—4
30 10

For objective
function,
associate

weights with

arcs

Optimal solution
IS longest path




40 50
2——3 R -
20 0,7
l\ g
5——4
30 10

For objective
function,
associlate

weights with

arcs

Optimal solution
IS longest path




Exact DD Compilation

« Build an exact DD by associating a state with each
node.
« Merge nodes with identical states.

32
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A General-Purpose Solver

« The decision diagram tends to grow exponentially.
 To build a practical solver:

Use limited-width relaxed decision diagrams to bound the
objective value.

Use limited-width restricted decision diagrams for primal
heuristic

Use a recursive dynamic programming model.

Use novel branching scheme within relaxed decision
diagrams.



Relaxed Decision Diagrams

 Arelaxed DD represents a superset of feasible set.
— Shortest (longest) path length is a bound on optimal value.
— Size of DD is controlled.
— Analogous to LP relaxation in IP, but discrete.
— Does not require linearity, convexity, or inequality constraints.

Andersen, HadZzi¢, JH, Tiedemann (2007)
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Relaxed Decision Diagrams

Alternate relaxation method: node refinement.

— Start with DD of width 1 representing Cartesian product of
variable domains.

— Split nodes so as to remove some infeasible paths.
— Will be illustrated in next tutorial.

Andersen, Hadzi¢, JH, Tiedemann (2007)

51



Relaxed Decision Diagrams

 QOriginal application: enhanced propagation in
constraint programming

— In multiple alldiff problem (graph coloring), reduced
1 million node search trees to 1 node.

Andersen, Hadzi¢, JH, Tiedemann (2007)

52



Relaxed Decision Diagrams

— Wider diagrams

. . 80 —
yield tighter bounds \\
— But take longer 70 - T
to build.
60 -
— Adjust width
dynamically. 50 - i
-g 40 - -
30 - -
20 - oy, :
Han S
10 - e -
0 1 1 1 Lol 1 1 1 TR R R | 1 1 1 |
1 10 100 1000

Relaxation BDD Width
Bergman, Ciré, van Hoeve, JH (2013) 53




Relaxed Decision Diagrams

— DDs vs. CPLEX
bound at root node
for max stable set
problem

— Using CPLEX

default cut
generation

— DD max width
of 1000.

— DDs require
about 5% the
time of CPLEX

Bergman, Ciré,
van Hoeve, JH (2013)

BDD 1000 bound / optimum

1.8

1.6

1.4

1.2

CPLEX bound
IS better
R TITI
,/‘,.‘s... e e o L
*® Qe b
DD bound .
IS better -
! oo * | comnosenmmnd——  demmeeo— | |
1.2 14 1.6 1.8 2 2.2

LP+cuts bound / optimum




Restricted Decision Diagrams

e Arestricted DD represents a subset of the feasible set.

e Restricted DDs provide a basis for a primal heuristic.

— Shortest (longest) paths in the restricted DD provide good
feasible solutions.

— Generate a limited-width restricted DD by deleting nodes that
appear unpromising.

Bergman, Ciré, van Hoeve, Yunes (2014)




Set covering problem

Sets
X1+X2+X321 1 2 3 45 6
X, +X, +X%X:. 21 Ae oo
X, + X, +Xs 21 B e o|c
C ° ° PY
52 feasible
solutions.

Minimum cover of 2,
e.g. Xq, Xy



Restricted DD of width 4

Several shortest paths have
length 2.

All are minimum covers.

41 paths (< 52 feasible solutions)



Restricted DD of width 4

41 paths (< 52 feasible solutions)

Several shortest paths have
length 2.

All are minimum covers.

In this case, restricted DD
delivers optimal solutions.



Average Optimality Gap (%)

Optimality gap for set covering, n variables
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Computation time

Restricted DDs vs
Primal heuristic at root node of CPLEX (cuts turned off)
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Dynamic Programming Model

e Formulate problem with dynamic programming model.

Rather than constraint set.
Problem must have recursive structure

But there is great flexibility to represent constraints and
objective function.

Any function of current state is permissible.

We don’t care if state space is exponential, because we don’t
solve the problem by dynamic programming.



Dynamic Programming Model

e Formulate problem with dynamic programming model.

Rather than constraint set.

Problem must have recursive structure

But there is great flexibility to represent constraints and
objective function.

Any function of current state is permissible.

We don’t care if state space is exponential, because we don’t
solve the problem by dynamic programming.

e State variables are the same as in relaxed DD.
— Must also specify state merger rule.



Dynamic Programming Model

e Max stable set problem on a graph.
— State = set of vertices that can be added to stable set.

Recursi(on. ma}( " _I_g(J\N( ))
I g 2

: Vertex j and
Cost-to-go Immediate _
State cost neighbors
(edge weight)

Boundary condition:
g(0) =0

Optimal value:

g({1,...,n})



Dynamic Programming Model

e Max stable set problem on a graph.
— State = set of vertices that can be added to stable set.
— State merger = union

Recursi(on. ma}( " _I_g(J\N( ))
I g 2

: Vertex j and
Cost-to-go Immediate _
State cost neighbors
(edge weight)

Boundary condition:
g(0) =0

Optimal value:

JeM g({1,...,n})

Merger of statesin M = U J



Dynamic Programming Model

e Single-machine scheduling with due dates
— Minimize total tardiness.

— State = (set of jobs not yet processed,
latest finish time of jobs processed so far)

= max {(fi +p; = ;)" + g (T \ {3} fi + 2 }

g9i(Ji, fi)
\ L ast I Boundary condition:
Cost- to -go Tardiness of

finish 9n+1(®7 fnt1) =0

Jobs time Optimal value:
remaining g1({1,...,n},0)

Job |



Dynamic Programming Model

e Single-machine scheduling with due dates
— Minimize total tardiness.

— State = (set of jobs not yet processed,
latest finish time of jobs processed so far)

— State merger = union, min

gz (i, ) = max { (£ + 5 = )" + gisa(Ji\ {5}, £i + 1))

\ | ast I Boundary condition:
Cost- tO -go finish Tard_ms;s of In+1(0, fnr1) =0
JOD |
Jobs time Optimal value:
remaining g1({1,...,n},0)
Merger of states in M = ( U Ji, min {f; })
( ’l,:'f’b) M



Dynamic Programming Model

e Single machine scheduling with due dates

— Easy to add constraints that are functions of current state
* Release times
» Shutdown periods
» Precedence constraints on jobs
— Easy to use more complicated cost function that is a function
of current state
« Step functions, etc.
» Cost that depends on which jobs have been processed.



Dynamic Programming Model

e Scheduling with sequence-dependent setup times
— State = (J,, last job processed, f;)
— State merger requires modification of states

9i(Ji, 4i, fi) = max {(fz +pe; —di) T+ gia (L \ {3} 4, fi -l-peq;j)}

X Jj€J; \ /

Last job Tardiness of job | Processing + setup time
processed



Dynamic Programming Model

e Scheduling with sequence-dependent setup times
— To allow for state merger:

— State = (J,, set L; of pairs (¢;, f;), representing jobs
that could have been the last processed)

n
g;(J;, L;) = max { (( min {f?, + Do, i}t — dj)
+ git1 (Ji \ {7} {(j, (Bi,I}l,;i)IéLi{fi +pe@-j}) }) }

Merger of states in M = ( U Ji, U Li,)
(Ji, Li)eM (J;,L;)EM



Dynamic Programming Model

e Max cut problem on a graph.
— Partition nodes into 2 sets so as to maximize total weight
of connecting edges.
— State = marginal benefit of placing each remaining vertex on left
side of cut.

— State merger =
« Componentwise min if all components > 0 or all < 0; 0 otherwise

» Adjust incoming arc weights

e Max 2-SAT.

— Similar to max cut.



Branching Algorithm

« Solve optimization problem using a novel
branch-and-bound algorithm.

— Branch on nodes in last exact layer of relaxed decision
diagram.
— ...rather than branch on variables.

— Create a new relaxed DD rooted at each branching node.

— Prune search tree using bounds from relaxed DD.

Bergman, Ciré, van Hoeve, JH (2016)

71



Branching Algorithm

e Solve optimization problem using a novel
branch-and-bound algorithm.

— Branch on nodes in last exact layer of relaxed decision
diagram.
— ...rather than branch on variables.

— Create a new relaxed DD rooted at each branching node.

— Prune search tree using bounds from relaxed DD.

— Advantage: a manageable number states may be
reachable in first few layers.
— ...even if the state space is exponential.
— Alternative way of dealing with curse of dimensionality.

Bergman, Ciré, van Hoeve, JH (2016)

72



Branching Algorithm

Branching in a relaxed
decision diagram

Diagram is exact S
down to here

73



Branching Algorithm

Branching in a relaxed
decision diagram

Branch on nodes
In this layer

74



Branching Algorithm

Branching in a relaxed
decision diagram

First branch

New relaxed decision diagram

75




Branching Algorithm

Branching in a relaxed
decision diagram

First branch

New relaxed decision diagram

Prune this branch if cost bound from
relaxed DD is no better than cost

of best feasible solution found so far
(branch and bound).

76




Branching Algorithm

Branching in a relaxed
decision diagram

Second branch

Prune this branch if cost bound from
relaxed DD is no better than cost

of best feasible solution found so far
(branch and bound).

77




Branching Algorithm

Branching in a relaxed
decision diagram

Third branch

Prune this branch if cost bound from
relaxed DD is no better than cost

of best feasible solution found so far
(branch and bound).

78




State Space Relaxation?

e This is very different from state space relaxation.

— Problem is not solved by dynamic programming.
— Relaxation created by merging nodes of DD

— ...rather than mapping into smaller state space.
— Relaxation is constructed dynamically

— ...as relaxed DD is built.

— Relaxation uses same state variables as exact
formulation

— ...which allows branching in relaxed DD

Christofides, Mingozzi, Toth (1981)

79



Computational performance

e Computational results...

— Applied to stable set, max cut, max 2-SAT.

— Superior to commercial MIP solver (CPLEX) on most
instances.

— Obtained best known solution on some max cut instances.

— Slightly slower than MIP on stable set with precomputed
cligue cover model, but...

Bergman, Ciré, van Hoeve, JH (2016)

80



Computational performance

Max cut
on a graph

80
Avg. solution time
VS 70
graph density

S 60
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g 90
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g 40 —-MDDs
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o
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Density of graph



Computational performance

Max 2-SAT

Performance
profile

30 variables

Number of instances solved

0.1 1 10 100 1000
Computation time (sec)



Computational performance
Max 2-SAT

Performance
profile

40 variables

—MDDs
—CPLEX

Number of instances solved

0.1 1 10 100 1000
Computation time (sec)



Computational performance

e Potential to scale up
— No need to load large inequality model into solver.

— Parallelizes very effectively
— Near-linear speedup.
— Much better than mixed integer programming.

84



Computational performance

e |n all computational comparisons so far...
— Problem is easily formulated for IP.

e DD-based optimization is most competitive when...
— Problem has a recursive dynamic programming model...
— and no convenient IP model.



Computational performance

e |n all computational comparisons so far...
— Problem is easily formulated for IP.

e DD-based optimization is most competitive when...

— Problem has a recursive dynamic programming model...
— and no convenient IP model.

e Such as...
— Sequencing and scheduling problems (next talk)
— Planning problems

— DP problems with exponential state space
» New approach to “curse of dimensionality”

— Problems with nonconvex, nonseparable objective function...



Modeling the Objective Function

e Weighted DD can represent any objective function

— Separable functions are the easiest, but any
nonseparable function is possible.

— Can be nonlinear, nonconvex, etc.
— The issue is complexity of resulting DD

87



Modeling the Objective Function

e Weighted DD can represent any objective function

— Separable functions are the easiest, but any
nonseparable function is possible.

— Can be nonlinear, nonconvex, etc.
— The issue is complexity of resulting DD

e Multiple encodings

— A given objective function can be encoded by multiple
assignments of costs to arcs.

— There is a unique canonical arc cost assignment.
— Which can reduce size of exact DD.

— Design state variables accordingly

88



Modeling the Objective Function

Set covering with
separable cost

I

function
Easy. Just label arcs L2
with weights.
Set 1 .
1 2 3 4 o
A e e
B e o o
C ° Ly
D ° °

Weight 3 5 4 6

X; = 1 when we select set i



Modeling the Objective Function

I
Nonseparable cost
function
L9
Now what?
£ f('T) U3
0,1,0,1
0,1,1,0
0,1,1,1
1,0,1,1 T
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Modeling the Objective Function

Nonseparable cost function

Put costs on leaves
of branching tree.

Ty
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Modeling the Objective Function

Nonseparable cost function

Put costs on leaves

. T
of branching tree.
But now we can’t
reduce the tree
to an efficient
decision diagram. gz,

We will rearrange
costs to obtain Ty
canonical costs.




Modeling the Objective Function

Nonseparable cost function

Now the tree can
be reduced.

Ty




Modeling the Objective Function

Nonseparable cost function

Now the tree can T
be reduced.




Modeling the Objective Function

Nonseparable cost function
DD is larger than T

reduced unweighted DD,
but still compact.

€I
To

Wi
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Modeling the Objective Function

Theorem. For a given variable ordering, a given
objective function is represented by a unique
weighted decision diagram with canonical costs.

JH (2013),
Similar result for AADDSs:
Sanner & McAllester (2005)




Inventory Management Example

e |n each period I, we have:
— Demand d,
— Unit production cost c;
— Warehouse space m
— Unit holding cost h,

e |n each period, we decide:
— Production level x;
— Stock level s

e Objective:

— Meet demand each period while minimizing production and
holding costs.



Reducing the Transition Graph

gi(si) = min {hisi + cizi + giv1(ss + xi — dy) }

0+4

0 1,0 Arcs leaving each node are
+ . .
Liz) (23 440 very similar.

o+g| 00 " “ A3 |6  Transition to the same
states.

« Have the same costs,

0 0420 145 up to an offset.
+
o+10| O0+15
0
4+0
2+6
0+12
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20

Inventory Problem

gi(si) = min {hisi + cizi + giv1(ss + xi — dy) }

To equalize controls, let
T, = 8; +x; —d;
be the stock level in next period.



15

20

Inventory Problem

9i(s;) = min {hisi + ciwi + giv1(si + T — d;) }

To equalize controls, let
T, = 8; +x; —d;
Be the stock level in next period.
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20

Inventory Problem

New recursion:

7

gi(s;) = m'}'n {hz-s,,; + cz(.r; —s;+d;) + gz‘+1($;)}

To equalize controls, let
T, = 8; +x; —d;
Be the stock level in next period.
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Inventory Problem

\ 9i(si) = min { hys; + ¢ (x5 — i+ d) + giy1(2]) }
6 L

12 5 1 11 4
9 E i 8 i i 7
1
20 5] 16 2
11
15 V4
1
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To obtain canonical costs,
subtract ¢;(m — s;) + h;s;
from cost on each arc (S;,S;,)-



Inventory Problem

\ 9i(si) = min { hys; + ¢ (x5 — i+ d) + giy1(2]) }
0 2 L

To obtain canonical costs,
subtract ¢;(m — s;) + h;s;
from cost on each arc (S;,S;,)-

Add these offsets to incoming
arcs.




Inventory Problem

4
9 8
. / /
gi(si) = min {hys; + ci(v; — s; + di) + gir (27) }
5 7 Ly
0 _ ot s 0 .2 To obtain canonical costs,
> o g subtract ¢;(m — s;) + h;s;
10 8 from cost on each arc (S;,S;,)-
0 1 5 Add these offsets to incoming
14 12 14 12 alcCs.
13
12| 13 13 |14
0 1 2




Inventory Problem

4
0
: / /
gi(s:i) = min {hisi + ci(z; — s +di) + gi+1($7;)}
€T
6 T
0 _ g 1oL g 0 2 To obtain canonical costs,
> . g subtract ¢;(m — s;) + h;s;
10 8 from cost on each arc (s;,S;,1)-
0 1 5 Add these offsets to incoming
14 12 14 12 arcs.
13
12 13 13 14
Now outgoing arcs look alike.
0 1 2
0 And all arcs into state s,
have the same cost
Ci(Sit1) = Si+1hiv1 + ci(di — siy1 —m) + cip1(m — si41)



Inventory Problem

4
; 8
. / /
\ gi(si) = min {hys; + ci(2; — si +d;) + gir1(2f) }
7 T
6 2
0 _ ot s 0 2 These are canonical costs with
z E é offset min {¢;(s;11)
9 1\21+41
P %{ | B | |
0 1 2
14 12 14 12
13
12| 13 13 |14
0 1 2




Inventory Problem

New recursion:
gi = min {hiy12] + ci(a; — m + d;) + cip1(m — 27) + gig1 }
T’

(2

0 _ ot s 0 2 These are canonical costs with
) . : offset min {i(si41)}
10 8 i+1
0 1 2
14 12 14 12
13
12| 13 13 |14




10

12

30

26

20

12

13

14

/
{

Inventory Problem

New recursion;:

gi = min {h; 12} + ci(@; —m+d;) + cip1(m — ) + giy1 }

Now there is only one state per period.

JH (2013)




Nonserial Decision Diagrams

e Analogous to nonserial dynamic programming,
Independently(?) rediscovered many times:
— Nonserial DP (1972)

— Constraint satisfaction (1981)

— Data base queries (1983)

— k-trees (1985)

— Belief logics (1986)

— Bucket elimination (1987)

— Bayesian networks (1988)

— Pseudoboolean optimization (1990)
— Location analysis (1994)



Set Partitioning example

Find collection of sets that partition elements A, B, C, D

Sets
1 2 3 4 5 6
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Set Partitioning example

Find collection of sets that partition elements A, B, C, D

Sets
1 2 3 4 5 6
A e e o
B ° °
C ° o o
D ° °

For example...



Set Partitioning example

Find collection of sets that partition elements A, B, C, D

Sets
1 2 3 4 5 6
A e e o
B ° °
C ° o o
D ° °

Or...



O 0O ® >

Set Partitioning example

Find collection of sets that partition elements A, B, C, D

Sets |
1 2 3 4 5 6 0-1 formulation
S S X, + X, + X,
’ ‘ X,  +X,
® [ ] [
& + Xg + X
® [
X, + Xg

X; =1 = set] selected



Set Partitioning example

0-1 formulation
Dependency graph

X, + X, + X, =1

X, + X, =
/ \ X, + Xg + Xg =
X, + X, =

X; =1 = set] selected




Set Partitioning example

Enumeration order

X2

Dependency graph Xy
X, € > X

/ X4
Xy =—————> X, —>X;

X5



Set Partitioning example

Enumeration order

Dependency graph Xq

X, € > Xe

1/ \ iﬁ

X, ——> X, ——> X,



Set Partitioning example

Enumeration order

Dependency graph

X, € X3 > Xe
I
|
i

|/ iX

X = X, = X,

o ——
- ~n

d
'
/

~

I
X
al

X
o



Set Partitioning example

Dependency graph

X, € Xs > X
' A
I ’

T / : //
v,/

Enumeration order



Set Partitioning example

Dependency graph

X € X3 X5
T / I

|

|

|

\ 4

Enumeration order




Set Partitioning example

Dependency graph

X1 X3 Xg
/ :
|
|
|
v

Enumeration order




Set Partitioning example

Enumeration order

Dependency graph




Set Partitioning example

Dependency graph

X, € X3 > Xe
I
|
i

/X

X, = X, = X,

Induced width = 3
(max in-degree)

Enumeration order




Set Partitioning example

Solution by nonserial DP

AR

XgX, 01 11/;22%;Ei5::;;§:§§\

Enumeration order
X5

X1

X3X4X5 010 011 110 000 001

)/

Xg o 1




Set Partitioning example

Solution by nonserial DP

AR

XgX, 01 11/;22%;Ei5::;;§:§§\

X3X4X5 010 011 110 000 001

)/

Xg o 1

Xy



XoX3

X3X4

XX 41X

X6

Set Partitioning example

Feasible solution

0 1 Sets
/\ \ 1 2 3 4 5 6
A e e e
B ° °
C ° o o
Ol 11 00
D ° °

1 00110

010 011 110 000 001

\/"/



XoX3

X3X4

XX 41X

X6

Set Partitioning example

Feasible solution
0 1
/ \ \ :

Ol 11 00

SN\

010 011 110 000 001

\/"/

O 0O ™ >»

-



XoX3

X3X4

XX 41X

X6

Set Partitioning example

Feasible solution

AN 1

Ol 11 00

O 0O ® >»

SN

010 011 110 000 001

\/"/

— O O

o = O

O r — ®

o O B+

m O O e



Set Partitioning example

Solution by nonserial DP Serialized DP
) /°\ 1\ AN
XpX3 XpX3 00 01 10
X3X4 01 11 00 X3X3X, 001 011 100

NNk

XaX4Xs 010 011 110 000 001 XgX,Xs 010 011 110 000 001

\/"/ \//

X6 X6



Set Partitioning example

Feasible solutions Feasible solutions
h /\ \ h A\
XpXs3 10 XpX3 00 o|1 1|o
X3X, 01 11 00 X3X3X, 001 011 100

NN R

XaX4Xs 010 011 110 000 001 XgX,Xs 010 011 110 000 001

\/"/ \//

X6 X6



BDD vs. DP Solution

BDD
0 1
00 01 10

|
!
001 011 100

|
! !
1001 0011 0100

’
\ / l'
/ I
4 1
P4 !

011 00
1%0

\
\

0
1

Serialized DP
0 1
0O0 01 10

X3X3X, 001 011 100

X5

XoX3

X;X,X3X, 1001 0011 0100

/N N\ NN

X3X4X5 010 011 110 000 001

\//

X6



BDD vs. DP Solution

BDD
0 1
00 01 10

|
!
001 011 100

|
! !
1001 0011 0100

’
\ / l'
/ ]
4 1
P4 !

011 00
1%0

\
\

0
1

Serialized DP
0 1
o0 01 10

X3X3X, 001 011 100

X5

XoX3

X;X,X3X, 1001 0011 0100

X3X 4 X \011 \110
) \\/ /

Deleted



BDD vs. DP Solution

00 01 10

|
!
001 011 100

|
!
1001 0011 0100

011 000
1];0

0

1

Serialized DP

00/0\01 1\10

X5
XoX3

X3X3X, 001 011 100

X1 X5X3X, 1001 0011 0100

\\

XX 4 X5 010 000 001

Merged



Set Partitioning example

Solution by nonserial DP

AN

X3X,X5 010 011 110 000 001

)/

X6 0 1

Xy



Set Partitioning example
Nonserial BDD

Solution by nonserial DP

AN

Xy

X1

X5X,X5 010 011 110 000 001 XX 011
/ 3™ 110
Xg o 1 \ /




Constructing the Join Tree

X5 X3 X4 Xq Xg Xg

Cligue in the
dependency graph

X1XoX3
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Constructing the Join Tree

X5 X3 X4 Xq Xg Xg

Cligue in the
dependency graph

X1XoX3

XoX3X4

XX 4XcXg




Constructing the Join Tree

X5 Xg X4 X1 Xz Xg

Join graph
X1X2X3
Dependency graph X5X4
X, € X > X
1 ;3 A 5 X3 X5X3X4
! ’
: s/
T/ >\J, /?,)(4
X, ——> X, ——> X
2 4 6 X3X 4 XeXg

Connect nodes with
common variables



Constructing the Join Tree

X5 X3 X4 Xq Xg Xg

Join graph
X1X2X3
Dependency graph XX
X, € X > X
! . Ay’ X3 XoX3X4
! ’
: 4
X —)X —)X
2 4 6 XX, XeXg

X; occurs along every path
connecting x; with x;



Constructing the Join Tree

X5 X3 X4 Xq Xg Xg

Join graph
X1X2X3
Dependency graph XX
X, € X > X
! - Ay’ X3 XoX3X4
! ’
: 4
/ ,\’\ Aﬁ
X —)X — 3
2 4 6 XX, XeXg

This can be viewed as the
constraint dual

Binary constraints equate common
variables in subproblems



Constructing the Join Tree

X5 X3 X4 Xq Xg Xg

Join graph
X1X2X3
Dependency graph X,X3
X, € X > X
! - Ay’ X3 XoX3X4
! ’
: 4
X —)X —)X
2 4 6 X3X 4 XsXg

Some edges may be redundant
when equating variables



Constructing the Join Tree

X5 X3 X4 Xq Xg Xg

Join tree
X1X5X3
Dependency graph XX
X, € X > X
! - Ay’ XoX3X4
! ’
: 4
X2 E X4 >Xs XX, XeXg

Removing redundant edges
yields join tree



Constructing the Join Tree

X5 X3 X4 Xq Xg Xg

Join tree
X1X5X3
Dependency graph XX
X, € X > X
! - Ay’ XoX3X4
! ’
: 4
X2 E X4 >Xs XX XeXg

Max node cardinality is
treewidth+1=3+1



Constructing the Join Tree

X5 X3 X4 Xq Xg Xg

Join tree
X1 XX
Dependency graph XX

X, € Xz > X
: XoX3Xy
|
|

/X =

X2 E X4 > Xe XX XeXg

Induced width = tree width =3



Designing the Nonserial BDD

X5 Xg X4 Xq Xg Xg

BDD design
X, Join tree
XoX3Xq
XoX3
XoX3X4
X3X4

XX 4XcXg



Designing the Nonserial BDD

Xo X3 X4 Xq Xg Xg

BDD design
X, Join tree
XoX3Xq
X5 X
XX 23
XoX3X4
X3X4

XX 4XcXg



Designing the Nonserial BDD

X5 X3 X4 Xq Xg Xg

BDD design
X, Join tree
| XoX3Xq
XX
X,Xq 23
I XoX3X4
X3X,
X3X4

XX 4XcXg



Designing the Nonserial BDD

Xo X3 X4 X; Xg Xg

BDD design
X, Join tree
| XoX3Xq
XX
XoX3 \3
X3Xy
X3X4

XX 4XcXg



Designing the Nonserial BDD

Xo X3 X4 Xq Xg Xg

BDD design
X, Join tree
| XoX3Xq
XX

XoX3 \3
X3Xy

I X3X4

X3X 4 XcXg

X5



Designing the Nonserial BDD

Xo X3 X4 Xq Xg Xg

BDD design
X, Join tree
| XoX3Xq
XX
XoX3 \3
X3Xy
I X3Xy
XX XeX
X3X4X5 3N4N5N6



Designing the Nonserial BDD
Nonserial BDD

Xy X3 X4 X1 Xs Xg
BDD design
X2

XoX3

X3Xy X1




Another Variable Ordering

X3 Xg X5 Xg X1 X4

Join graph

Dependency graph

X, € > X
x2 —> X, €—X
; X3XgX5 XgXoXy4
\N ’/ X6X2

- -

Induced width = 2



Constructing the Join Tree

X3 Xg X5 Xg X1 X4

Dependency graph Join tree
X3X5Xyq X3XgXs
X, € > Xz
X3X2
X3Xs
x2 —> X, € Xg
/ X3XeX2 XeXoX4

- -

Induced width = 2 Tree width = 2



BDD design

X3

Designing the BDD

X3 Xg Xo Xg X1 X4

Join tree
X3XoXq X3XeX5
X3X,
X3Xg
XaXaX XXX
3XeX2 X%, 6X2X4

Tree width = 2



Designing the BDD

X3 Xg Xo Xg X1 X4

BDD design
X .

3 Join tree

X3XoXq X3XeX5
X3Xg
X3Xo

X3Xg
XaXeX XXX
38642 XX, 68244

Tree width = 2



Designing the BDD

X3 Xg X5 Xg X1 X4

BDD design
X .
3 Join tree
I X3XoXq X3XXs5
X3Xg
I \ X3X2
XX XX X3Xe
XaXaX XXX
38642 XX, 6274

Tree width = 2



Designing the BDD

X3 Xg Xo Xg Xq X,

BDD design
X .
3 Join tree
I X3XoXq X3XeXs5
X3Xg —— X5
I \ X3X2
X3Xo XX X3Xe
I I X3XeX2 XeXoX4
XgXo

Tree width = 2



BDD design

X3

X3Xg —— Xg

RN

X3X XeX5

Nonserial BDD

X3 Xg X X5 X1 Xy Nonserial BDD




Current Research

e Broader applicability
— Stochastic dynamic programming
— Continuous global optimization

e Combination with other techniques
— Lagrangean relaxation.

— Column generation

— Logic-based Benders decomposition
— Solve separation problem

163
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