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Decision Diagrams

• Used in computer science and AI for decades

– Logic circuit design

– Product configuration

• A new perspective on optimization

– Constraint programming

– Discrete optimization
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Decision Diagrams

• Relevance to planning and scheduling:

– Naturally suited to dynamic programming formulations.

– State-dependent actions and costs.

– New method for defeating curse of dimensionality.

– Branch-and-bound solution.
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Decision Diagrams

• DDs have been used in planning literature…

– To encode (or approximate) state-dependent cost or 

cost-to-go.

– See yesterday’s tutorial “Planning with State-Dependent 

Action Costs”

– By Robert Mattmüller and Florian Geißer.

• This tutorial presents DDs as a general 

optimization method.
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Decision Diagrams

• General advantages:

– No need for inequality formulations.

– No need for linear or convex relaxations.

– New approach to solving dynamic programming models.

– Very effective parallel computation.

– Ideal for postoptimality anaylsis

• Disadvantage:

– Developed only for discrete, deterministic optimization.

– …so far.
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Outline

• Decision diagram basics

• Optimization with exact decision diagrams

• A general-purpose solver that scales up

– Relaxed decision diagrams

– Restricted decision diagrams

– Dynamic programming model

– A new branching algorithm

– Computational performance

• Modeling the objective function

– Inventory management example

• Nonserial decision diagrams

• References 7



Decision Diagram Basics

• Binary decision diagrams encode Boolean functions

8
Lee (1959), Akers (1978)



Decision Diagram Basics

• Binary decision diagrams encode Boolean functions

– Historically used for circuit design & verification

9Bryant (1986), etc.



Decision Diagram Basics

• Binary decision diagrams encode Boolean functions

– Historically used for circuit design & verification

– Easily generalized to multivalued decision diagrams
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Reduced Decision Diagrams

• There is a unique reduced DD representing any given 

Boolean function.

– Once the variable ordering is specified.

• The reduced DD can be viewed as a branching tree with 

redundancy removed.

– Superimpose isomorphic subtrees.

– Remove redundant nodes.

Bryant (1986)
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Reduced Decision Diagrams

• Reduced DD for a knapsack constraint can be 

surprisingly small…

The 0-1 inequality

has 117,520 maximal feasible solutions (or minimal covers)

But its reduced BDD has only 152 nodes…

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

300 300 285 285 265 265 230 230 190 200

400 200 400 200 400 200 400 200 400 2700

x x x x x x x x x x

x x x x x x x x x

         

        





Optimization with Exact Decision 

Diagrams

24

• Decision diagrams can 

represent feasible set

– Remove paths to 0.

– Paths to 1 are feasible

solutions.

– Associate costs with

arcs.

– Find longest/shortest 

path

Hadžić and JH (2006, 2007)
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Exact DD Compilation

• Build an exact DD by associating a state with each 

node.

• Merge nodes with identical states.

32
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associate state 
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Resulting DD is 

not necessarily 

reduced

(it is in this 

case).



A General-Purpose Solver

• The decision diagram tends to grow exponentially.

• To build a practical solver:

– Use limited-width relaxed decision diagrams to bound the 

objective value.

– Use limited-width restricted decision diagrams for primal 

heuristic

– Use a recursive dynamic programming model.

– Use novel branching scheme within relaxed decision 

diagrams.



Relaxed Decision Diagrams

• A relaxed DD represents a superset of feasible set.

– Shortest (longest) path length is a bound on optimal value.

– Size of DD is controlled.

– Analogous to LP relaxation in IP, but discrete.

– Does not require linearity, convexity, or inequality constraints.

Andersen, Hadžić, JH, Tiedemann (2007) 
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Relaxed Decision Diagrams

• Alternate relaxation method: node refinement.

– Start with DD of width 1 representing Cartesian product of 

variable domains.

– Split nodes so as to remove some infeasible paths.

– Will be illustrated in next tutorial.

51

Andersen, Hadžić, JH, Tiedemann (2007) 



Relaxed Decision Diagrams

• Original application:  enhanced propagation in 

constraint programming

– In multiple alldiff problem (graph coloring), reduced 

1 million node search trees to 1 node.

52

Andersen, Hadžić, JH, Tiedemann (2007) 



Relaxed Decision Diagrams

– Wider diagrams

yield tighter bounds

– But take longer

to build.

– Adjust width

dynamically.

53Bergman, Ciré, van Hoeve, JH (2013) 



Relaxed Decision Diagrams

– DDs vs. CPLEX

bound at root node

for max stable set 

problem

– Using CPLEX

default cut 

generation

– DD max width

of 1000.

– DDs require

about 5% the

time of CPLEX

54

Bergman, Ciré, 

van Hoeve, JH (2013) 

CPLEX bound 

is better

DD bound

is better



Restricted Decision Diagrams

● A restricted DD represents a subset of the feasible set.

● Restricted DDs provide a basis for a primal heuristic.

– Shortest (longest) paths in the restricted DD provide good 

feasible solutions.

– Generate a limited-width restricted DD by deleting nodes that 

appear unpromising.

Bergman, Ciré, van Hoeve, Yunes (2014) 



Set covering problem

1 2 3

1 4 5

2 4 6

1

1

1

x x x

x x x

x x x

  

  

  

52 feasible 

solutions.

Minimum cover of 2,

e.g. x1, x2

Sets

1 2 3 4 5 6

A ● ● ●

B ● ● ●

C ● ● ●



Restricted DD of width 4

41 paths (< 52 feasible solutions)

Several shortest paths have 

length 2.

All are minimum covers.



Restricted DD of width 4

41 paths (< 52 feasible solutions)

Several shortest paths have 

length 2.

All are minimum covers.

In this case, restricted DD 

delivers optimal solutions.



Optimality gap for set covering, n variables

Restricted DDs vs

Primal heuristic at root node of CPLEX

IP

DD



Computation time

Restricted DDs vs

Primal heuristic at root node of CPLEX (cuts turned off)

IP

DD

IP

DD



Dynamic Programming Model

● Formulate problem with dynamic programming model.

– Rather than constraint set.

– Problem must have recursive structure

– But there is great flexibility to represent constraints and 

objective function.

– Any function of current state is permissible.

– We don’t care if state space is exponential, because we don’t 

solve the problem by dynamic programming.



Dynamic Programming Model

● Formulate problem with dynamic programming model.

– Rather than constraint set.

– Problem must have recursive structure

– But there is great flexibility to represent constraints and 

objective function.

– Any function of current state is permissible.

– We don’t care if state space is exponential, because we don’t 

solve the problem by dynamic programming.

● State variables are the same as in relaxed DD.

– Must also specify state merger rule.



Dynamic Programming Model

● Max stable set problem on a graph.

– State = set of vertices that can be added to stable set.

Recursion:

Cost-to-go State Immediate 

cost 

(edge weight)

Vertex j and 

neighbors

Boundary condition:

Optimal value:



Dynamic Programming Model

● Max stable set problem on a graph.

– State = set of vertices that can be added to stable set.

– State merger = union

Recursion:

Merger of states in M = 

Cost-to-go State Immediate 

cost 

(edge weight)

Vertex j and 

neighbors

Boundary condition:

Optimal value:



Dynamic Programming Model

● Single-machine scheduling with due dates

 Minimize total tardiness. 

– State = (set of jobs not yet processed, 

latest finish time of jobs processed so far)

Cost-to-go

Jobs

remaining

Tardiness of 

job j

Boundary condition:

Optimal value:

Last

finish

time



Dynamic Programming Model

● Single-machine scheduling with due dates

 Minimize total tardiness. 

– State = (set of jobs not yet processed, 

latest finish time of jobs processed so far)

– State merger = union, min

Merger of states in M = 

Cost-to-go

Jobs

remaining

Tardiness of 

job j

Boundary condition:

Optimal value:

Last

finish

time



Dynamic Programming Model

● Single machine scheduling with due dates

– Easy to add constraints that are functions of current state

• Release times

• Shutdown periods

• Precedence constraints on jobs

– Easy to use more complicated cost function that is a function 

of current state

• Step functions, etc.

• Cost that depends on which jobs have been processed.



Dynamic Programming Model

● Scheduling with sequence-dependent setup times

– State = (Ji, last job processed, fi )

– State merger requires modification of states

Last job

processed
Processing + setup timeTardiness of job j



Dynamic Programming Model

● Scheduling with sequence-dependent setup times

– To allow for state merger:

– State = ( , set      of pairs             , representing jobs 

that could have been the last processed)

Merger of states in M = 



Dynamic Programming Model

● Max cut problem on a graph.

– Partition nodes into 2 sets so as to maximize total weight 

of connecting edges.

– State = marginal benefit of placing each remaining vertex on left 

side of cut.

– State merger =

• Componentwise min if all components  0 or all  0;  0 otherwise

• Adjust incoming arc weights

● Max 2-SAT.

– Similar to max cut.



Branching Algorithm

• Solve optimization problem using a novel 

branch-and-bound algorithm.

– Branch on nodes in last exact layer of relaxed decision 

diagram.

– …rather than branch on variables.

– Create a new relaxed DD rooted at each branching node.

– Prune search tree using bounds from relaxed DD.

71

Bergman, Ciré, van Hoeve, JH (2016) 



● Solve optimization problem using a novel 

branch-and-bound algorithm.

– Branch on nodes in last exact layer of relaxed decision 

diagram.

– …rather than branch on variables.

– Create a new relaxed DD rooted at each branching node.

– Prune search tree using bounds from relaxed DD.

– Advantage:  a manageable number states may be 

reachable in first few layers.

– …even if the state space is exponential.

– Alternative way of dealing with curse of dimensionality.

72

Branching Algorithm

Bergman, Ciré, van Hoeve, JH (2016) 
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Branching Algorithm



Branch on nodes 

in this layer

Branching in a relaxed

decision diagram

74

1 

2 

3 

4 

5 

6 

Branching Algorithm



First branch

New relaxed decision diagram

Branching in a relaxed

decision diagram
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First branch

New relaxed decision diagram

Branching in a relaxed

decision diagram
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Branching Algorithm

Prune this branch if cost bound from 

relaxed DD is no better than cost 

of best feasible solution found so far

(branch and bound).



Second branch

Branching in a relaxed

decision diagram
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Branching Algorithm

Prune this branch if cost bound from 

relaxed DD is no better than cost 

of best feasible solution found so far

(branch and bound).



Third branch

Continue recursively

Branching in a relaxed

decision diagram
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Branching Algorithm

Prune this branch if cost bound from 

relaxed DD is no better than cost 

of best feasible solution found so far

(branch and bound).



● This is very different from state space relaxation.

– Problem is not solved by dynamic programming.

– Relaxation created by merging nodes of DD

– …rather than mapping into smaller state space.

– Relaxation is constructed dynamically

– …as relaxed DD is built.

– Relaxation uses same state variables as exact 

formulation

– …which allows branching in relaxed DD

79

State Space Relaxation?

Christofides, Mingozzi, Toth (1981) 



Computational performance

● Computational results…

– Applied to stable set, max cut, max 2-SAT.

– Superior to commercial MIP solver (CPLEX) on most 

instances.

– Obtained best known solution on some max cut instances.

– Slightly slower than MIP on stable set with precomputed 

clique cover model, but…

80

Bergman, Ciré, van Hoeve, JH (2016) 
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● Potential to scale up

– No need to load large inequality model into solver.

– Parallelizes very effectively

– Near-linear speedup.

– Much better than mixed integer programming.

84

Computational performance



Computational performance

● In all computational comparisons so far…

– Problem is easily formulated for IP.

● DD-based optimization is most competitive when…

– Problem has a recursive dynamic programming model…

– and no convenient IP model.



Computational performance

● In all computational comparisons so far…

– Problem is easily formulated for IP.

● DD-based optimization is most competitive when…

– Problem has a recursive dynamic programming model…

– and no convenient IP model.

● Such as…

– Sequencing and scheduling problems (next talk)

– Planning problems

– DP problems with exponential state space

• New approach to “curse of dimensionality”

– Problems with nonconvex, nonseparable objective function…



● Weighted DD can represent any objective function

– Separable functions are the easiest, but any 

nonseparable function is possible.

– Can be nonlinear, nonconvex, etc.

– The issue is complexity of resulting DD

87

Modeling the Objective Function



● Weighted DD can represent any objective function

– Separable functions are the easiest, but any 

nonseparable function is possible.

– Can be nonlinear, nonconvex, etc.

– The issue is complexity of resulting DD

● Multiple encodings

– A given objective function can be encoded by multiple 

assignments of costs to arcs.

– There is a unique canonical arc cost assignment.

– Which can reduce size of exact DD.

– Design state variables accordingly

88

Modeling the Objective Function



Modeling the Objective Function

Set covering with

separable cost 

function

Easy.  Just label arcs 

with weights.

xi = 1 when we select set i

Weight     3   5   4   6



Nonseparable cost 

function

Now what?

Modeling the Objective Function



Nonseparable cost function

Put costs on leaves

of branching tree.

Modeling the Objective Function



Nonseparable cost function

Put costs on leaves

of branching tree.

But now we can’t

reduce the tree

to an efficient

decision diagram.
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Nonseparable cost function

Put costs on leaves

of branching tree.
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Nonseparable cost function

Now the tree can

be reduced.
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Nonseparable cost function

Now the tree can

be reduced.

Modeling the Objective Function



Nonseparable cost function

DD is larger than 

reduced unweighted DD,

but still compact.

Modeling the Objective Function



Theorem. For a given variable ordering, a given 

objective function is represented by a unique 

weighted decision diagram with canonical costs.

Modeling the Objective Function

JH (2013),

Similar result for AADDs: 

Sanner & McAllester (2005) 



Inventory Management Example

● In each period i, we have:

– Demand di

– Unit production cost  ci

– Warehouse space m

– Unit holding cost hi

● In each period, we decide:

– Production level xi

– Stock level si

● Objective:

– Meet demand each period while minimizing production and 

holding costs.
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Arcs leaving each node are 

very similar.

• Transition to the same 

states.

• Have the same costs, 

up to an offset.

Reducing the Transition Graph
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Inventory Problem

1 2x  1 3x 
1 4x 

To equalize controls, let

be the stock level in next period.
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Inventory Problem

1 0x   1 1x  
1 2x  

To equalize controls, let

Be the stock level in next period.
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Inventory Problem

1 0x   1 1x  
1 2x  

To equalize controls, let

Be the stock level in next period.
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New recursion:



Inventory Problem

To obtain canonical costs,

subtract

from cost on each arc (si,si+1).

7

16

7

11

6

0 21

0 21

0 21

0

0

8

6
4

12

9

10

20

15

10

4

12

2

4

12

5

8

6
11

8



Inventory Problem

To obtain canonical costs,

subtract

from cost on each arc (si,si+1).

Add these offsets to incoming 

arcs.
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Inventory Problem

To obtain canonical costs,

subtract

from cost on each arc (si,si+1).

Add these offsets to incoming 

arcs.
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Inventory Problem

To obtain canonical costs,

subtract

from cost on each arc (si,si+1).

Add these offsets to incoming 

arcs.

Now outgoing arcs look alike.

And all arcs into state si

have the same cost
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Inventory Problem

These are canonical costs with 

offset
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Inventory Problem
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These are canonical costs with 

offset

New recursion:



Now there is only one state per period.
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New recursion:

Inventory Problem

JH (2013)



Nonserial Decision Diagrams

● Analogous to nonserial dynamic programming, 

independently(?) rediscovered many times:

– Nonserial DP (1972)

– Constraint satisfaction (1981)

– Data base queries (1983)

– k-trees (1985)

– Belief logics (1986)

– Bucket elimination (1987)

– Bayesian networks (1988)

– Pseudoboolean optimization (1990)

– Location analysis (1994)



Set Partitioning example

Find collection of sets that partition elements A, B, C, D

1 2 3 4 5 6

A ● ● ●

B ● ●

C ● ● ●

D ● ●

Sets



Set Partitioning example

Find collection of sets that partition elements A, B, C, D

1 2 3 4 5 6

A ● ● ●

B ● ●

C ● ● ●

D ● ●

Sets

For example…



Set Partitioning example

Find collection of sets that partition elements A, B, C, D

1 2 3 4 5 6

A ● ● ●

B ● ●

C ● ● ●

D ● ●

Sets

Or…



Set Partitioning example

Find collection of sets that partition elements A, B, C, D

1 2 3 4 5 6

A ● ● ●

B ● ●

C ● ● ●

D ● ●

Sets

1 2 3

2 4

3 5 6

4 6

1

1

1

1

x x x

x x

x x x

x x

  

 

  

 

0-1 formulation

1 set  selectedjx j 



Set Partitioning example

Dependency graph

1 2 3
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0-1 formulation

1 set  selectedjx j 

x1

x2

x3

x4

x5

x6



Set Partitioning example

Dependency graph
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Enumeration order

x2

x3

x4

x5

x1

x6



Set Partitioning example

Dependency graph
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Set Partitioning example

Dependency graph
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Set Partitioning example

Enumeration order
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Set Partitioning example

Dependency graph

x1

x2

x3

x4

x5

x6

Enumeration order

x2

x3

x4

x5

x1

x6

Enumeration order

x2

x3

x4

x5

x1

x6



Set Partitioning example

Enumeration order
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Set Partitioning example

Dependency graph

x1

x2

x3

x4

x5

x6

Induced width = 3

(max in-degree)

Enumeration order
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Set Partitioning example

Enumeration order

x2

x3

x4

x5

x1

x6

Solution by nonserial DP

x2
0 1

x2x3 00 01 10

x3x4 01 11
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1 0



Set Partitioning example

1 2 3 4 5 6

A ● ● ●

B ● ●

C ● ● ●

D ● ●

Sets

Solution by nonserial DP

x2
0 1

x2x3 00 01 10

x3x4 01 11

x1

x3x4x5 010 011 110 000 001

x6 0 1

00

1 0



Set Partitioning example

1 2 3 4 5 6

A ● ● ●

B ● ●

C ● ● ●

D ● ●

Sets

1    0   0   1   1   0

Feasible solution
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1 0



Set Partitioning example

1 2 3 4 5 6

A ● ● ●

B ● ●

C ● ● ●

D ● ●

Sets
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Set Partitioning example

1 2 3 4 5 6

A ● ● ●

B ● ●

C ● ● ●

D ● ●

Sets
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Set Partitioning example

Solution by nonserial DP
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Set Partitioning example
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BDD vs. DP Solution
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Set Partitioning example
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Set Partitioning example
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Constructing the Join Tree

Clique in the 

dependency graph
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Constructing the Join Tree
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Constructing the Join Tree
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Connect nodes with 

common variables
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Constructing the Join Tree
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Constructing the Join Tree
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constraint dual
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Constructing the Join Tree

Dependency graph
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when equating variables
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Constructing the Join Tree

Dependency graph
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Constructing the Join Tree

Dependency graph
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Join tree

Max node cardinality is 

tree width + 1 = 3 + 1
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Constructing the Join Tree

Dependency graph
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Designing the Nonserial BDD
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Designing the Nonserial BDD
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Designing the Nonserial BDD
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Designing the Nonserial BDD
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Another Variable Ordering

x1

x2

x3

x4

x5

x6

x3x2x1 x3x6x5

x3x6x2

x3x2

x3

x3x6

Join graph

Dependency graph

x3  x6 x2 x5 x1 x4

x6x2x4x6x2

x2

x6

Induced width = 2



Constructing the Join Tree
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Designing the BDD
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Designing the BDD
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Nonserial BDD
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● Broader applicability

– Stochastic dynamic programming

– Continuous global optimization

● Combination with other techniques

– Lagrangean relaxation.

– Column generation

– Logic-based Benders decomposition

– Solve separation problem
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