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Schedule

14:00-14:40: Motivation & Concepts (Shimon)

14:40-14:50: Short Break

14:50-15:30: Motivation & Concepts cont’d (Shimon)

15:30-16:00: Coffee Break

16:00-16:40: Methods (Diederik)

16:40-16:50: Short Break

16:50-17:30: Methods & Applications (Diederik)
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Note

Get the latest version of the slides at:

http://roijers.info/motutorial.html

This tutorial is based on our survey article:

Diederik Roijers, Peter Vamplew, Shimon Whiteson, and Richard
Dazeley. A Survey of Multi-Objective Sequential Decision-Making.
Journal of Artificial Intelligence Research, 48:67—113, 2013.

and Diederik’s dissertation:
http://roijers.info/pub/thesis.pdf
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Part 1: Motivation & Concepts

Multi-Objective Motivation

MDPs & MOMDPs

Problem Taxonomy

Solution Concepts
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Medical Treatment

Chance of being cured, having side effects, or dying
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Traffic Coordination

Latency, throughput, fairness, environmental impact, etc.
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Mining Commodities

Gold collected, silver collected

village
mine

[Roijers et al. 2013, 2014]
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Grid World

Getting the treasure, minimising fuel costs

Whiteson & Roijers (Oxford) Multi-Objective Planning June 13, 2016 8 / 114



Do We Need Multi-Objective Models?

Sutton’s Reward Hypothesis: “All of what we mean
by goals and purposes can be well thought of as maxi-
mization of the expected value of the cumulative sum
of a received scalar signal (reward).”

Source: http://rlai.cs.ualberta.ca/RLAI/rewardhypothesis.html

V : Π→ R

V π = Eπ[
∑

t rt ]

π∗ = maxπ V
π
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Why Multi-Objective Decision Making?

The weak argument: real-world problems are multi-objective!

V : Π→ Rn

Objection: why not just scalarize?

Scalarization function projects multi-objective value to a scalar:

V π
w = f (Vπ,w)

Linear case:

V π
w =

n∑
i=1

wiV
π
i = w · Vπ

A priori prioritization of the objectives

The weak argument is necessary but not sufficient
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Why Multi-Objective Decision Making?

The strong argument: a priori scalarization is sometimes impossible,
infeasible, or undesirable

Instead produce the coverage set of undominated solutions

Unknown-weights scenario

I Weights known in execution phase but not in planning phase

I Example: mining commodities [Roijers et al. 2013]
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Why Multi-Objective Decision Making?

Decision-support scenario
I Quantifying priorities is infeasible
I Choosing between options is easier
I Example: medical treatment

Known-weights scenario: scalarization yields intractable problem
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Summary of Motivation

Multi-objective methods are useful because many
problems are naturally characterized by multiple ob-
jectives and cannot be easily scalarized a priori.

The burden of proof rests with the a priori scalariza-
tion, not with the multi-objective modeling.
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Markov Decision Process (MDP)
A single-objective MDP is a tuple 〈S ,A,T ,R, µ, γ〉 where:

I S is a finite set of states
I A is a finite set of actions
I T : S × A× S → [0, 1] is a transition function
I R : S × A× S → R is a reward function
I µ : S → [0, 1] is a probability distribution over initial states
I γ ∈ [0, 1) is a discount factor

(figure from Poole & Mackworth, Artificial Intelligence:
Foundations of Computational Agents, 2010)
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Returns & Policies

Goal: maximize expected return, which is typically additive:

Rt =
∞∑
k=0

γk rt+k+1

A stationary policy conditions only on the current state:

π : S × A→ [0, 1]

A deterministic stationary policy maps states directly to actions:

π : S → A
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Value Functions in MDPs

A state-independent value function V π specifies the expected return
when following π from the initial state:

V π = E [R0 | π] (1)

A state value function of a policy π:

V π(s) = E [Rt | π, st = s]

The Bellman equation restates this expectation recursively for
stationary policies:

V π(s) =
∑
a

π(s, a)
∑
s′

T (s, a, s ′)[R(s, a, s ′) + γV π(s ′)]
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Optimality in MDPs

Theorem

For any additive infinite-horizon single-objective MDP, there exists a
deterministic stationary optimal policy [Howard 1960]

All optimal policies share the same optimal value function:

V ∗(s) = max
π

V π(s)

V ∗(s) = max
a

∑
s′

T (s, a, s ′)[R(s, a, s ′) + γV ∗(s ′)]

Extract the optimal policy using local action selection:

π∗(s) = arg max
a

∑
s′

T (s, a, s ′)[R(s, a, s ′) + γV ∗(s ′)]
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Multi-Objective MDP (MOMDP)

Vector-valued reward and value:

R : S × A× S → Rn

Vπ = E [
∞∑
k=0

γkrk+1 | π]

Vπ(s) = E [
∞∑
k=0

γkrt+k+1 | π, st = s]

Vπ(s) imposes only a partial ordering, e.g.,

V π
i (s) > V π′

i (s) but V π
j (s) < V π′

j (s).

Definition of optimality no longer clear
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Axiomatic vs. Utility-Based Approach

Axiomatic approach: define optimal solution set to be Pareto front

Utility-based approach:

I Execution phase: select one policy maximizing scalar utility V π
w ,

where w may be hidden or implicit

I Planning phase: find set of policies containing optimal solution
for each possible w; if w unknown, size of set generally > 1

I Deduce optimal solution set from three factors:
1 Multi-objective scenario

2 Properties of scalarization function

3 Allowable policies
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Three Factors

1 Multi-objective scenario
I Known weights → single policy
I Unknown weights or decision support → multiple policies

2 Properties of scalarization function
I Linear
I Monotonically increasing

3 Allowable policies
I Deterministic
I Stochastic
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Problem Taxonomy

single policy multiple policies (unknown
(known weights) weights or decision support)

deterministic stochastic deterministic stochastic

linear
scalarization

one deterministic
stationary policy

convex coverage set of
deterministic stationary
policies

monotonically
increasing
scalarization

one
deterministic
non-
stationary
policy

one mixture
policy of two
or more
deterministic
stationary
policies

Pareto
coverage set
of
deterministic
non-
stationary
policies

convex
coverage set
of
deterministic
stationary
policies
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Linear Scalarization Functions

Computes inner product of w and Vπ:

V π
w =

n∑
i=1

wiV
π
i = w · Vπ, w ∈ Rn

wi quantifies importance of i-th objective

Simple and intuitive, e.g., when utility translates to money:

revenue = #cans × ppc + #bottles × ppb

V π
w typically constrained to be a convex combination:

∀i wi ≥ 0,
∑
i

wi = 1

utility = #cans × ppc

ppc + ppb
+ #bottles × ppb

ppc + ppb
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Linear Scalarization & Single Policy

No special methods required: just apply f to each reward vector

Inner product distributes over addition yielding a normal MDP:

V π
w = w · Vπ = w · E [

∞∑
k=0

γkrt+k+1] = E [
∞∑
k=0

γk(w · rt+k+1)]

Apply standard methods to an MDP with:

R(s, a, s ′) = w · R(s, a, s ′), (2)

yielding a single determinstic stationary policy
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Problem Taxonomy

single policy multiple policies (unknown
(known weights) weights or decision support)

deterministic stochastic deterministic stochastic

linear
scalarization

one deterministic
stationary policy

convex coverage set of
deterministic stationary
policies

monotonically
increasing
scalarization

one
deterministic
non-
stationary
policy

one mixture
policy of two
or more
deterministic
stationary
policies

Pareto
coverage set
of
deterministic
non-
stationary
policies

convex
coverage set
of
deterministic
stationary
policies

Example: collecting bottles and cans

Note: only cell in taxonomy that does not require multi-objective methods
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Multiple Policies

Unknown weights or decision support → multiple policies

During planning w is unknown

Size of solution set is generally > 1

Set should not contain policies suboptimal for all w

Whiteson & Roijers (Oxford) Multi-Objective Planning June 13, 2016 30 / 114



Undominated & Coverage Sets

Definition

The undominated set U(Π), is the subset of all possible policies Π for
which there exists a w for which the scalarized value is maximal,

U(Π) = {π : π ∈ Π ∧ ∃w∀(π′ ∈ Π) V π
w ≥ V π′

w }

Definition

A coverage set CS(Π) is a subset of U(Π) that, for every w, contains a
policy with maximal scalarized value, i.e.,

CS(Π) ⊆ U(Π) ∧ (∀w)(∃π)
(
π ∈ CS(Π) ∧ ∀(π′ ∈ Π) V π

w ≥ V π′
w

)
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Example

V π
w w = true w = false

π = π1 5 0

π = π2 0 5

π = π3 5 2

π = π4 2 2

One binary weight feature: only two possible weights

Weights are not objectives but two possible scalarizations

U(Π) = {π1, π2, π3} but CS(Π) = {π1, π2} or {π2, π3}
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Execution Phase

Single policy selected from CS(Π) and executed

Unknown weights: weights revealed and maximizing policy selected:

π∗ = arg max
π∈CS(Π)

V π
w

Decision support: CS(Π) is manually inspected by the user
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Linear Scalarization & Multiple Policies

Definition

The convex hull CH(Π) is the subset of Π for which there exists a w that
maximizes the linearly scalarized value:

CH(Π) = {π : π ∈ Π ∧ ∃w∀(π′ ∈ Π) w · Vπ ≥ w · Vπ′}

Definition

The convex coverage set CCS(Π) is a subset of CH(Π) that, for every w,
contains a policy whose linearly scalarized value is maximal, i.e.,

CCS(Π) ⊆ CH(Π)∧(∀w)(∃π)
(
π ∈ CCS(Π) ∧ ∀(π′ ∈ Π) w · Vπ ≥ w · Vπ′

)
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Visualization

Objective Space Weight Space
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Vw = w0V0 + w1V1 , w0 = 1− w1
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Problem Taxonomy

single policy multiple policies (unknown
(known weights) weights or decision support)

deterministic stochastic deterministic stochastic

linear
scalarization

one deterministic
stationary policy

convex coverage set of
deterministic stationary
policies

monotonically
increasing
scalarization

one
deterministic
non-
stationary
policy

one mixture
policy of two
or more
deterministic
stationary
policies

Pareto
coverage set
of
deterministic
non-
stationary
policies

convex
coverage set
of
deterministic
stationary
policies

Example: mining gold and silver
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Monotonically Increasing Scalarization Functions
Mining example: Vπ1 = (3, 0), Vπ2 = (0, 3), Vπ3 = (1, 1)
Choosing Vπ3 implies nonlinear scalarization function
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Monotonically Increasing Scalarization Functions

Definition

A scalarization function is strictly monotonically increasing if changing a
policy such that its value increases in one or more objectives, without
decreasing in any other objectives, also increases the scalarized value:

(∀i V π
i ≥ V π′

i ∧ ∃i V π
i > V π′

i )⇒ (∀w V π
w > V π′

w )

Definition

A policy π Pareto-dominates another policy π′ when its value is at least as
high in all objectives and strictly higher in at least one objective:

Vπ �P Vπ′ ⇔ ∀i V π
i ≥ V π′

i ∧ ∃i V π
i > V π′

i

A policy is Pareto optimal if no policy Pareto-dominates it.
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Nonlinear Scalarization Can Destroy Additivity

Nonlinear scalarization and expectation do not commute:

V π
w = f (Vπ,w) = f (E [

∞∑
k=0

γkrt+k+1],w) 6= E [
∞∑
k=0

γk f (rt+k+1,w)]

Bellman-based methods not applicable

Local action selection no longer yields an optimal policy:

π∗(s) 6= arg maxV ∗(s)
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Deterministic vs. Stochastic Policies

Stochastic policies are fine in most settings

Sometimes inappropriate, e.g., medical treatment

In MDPs, requiring deterministic policies is not restrictive

Optimal value attainable with deterministic stationary policy:

π∗(s) = arg max
a

∑
s′

T (s, a, s ′)[R(s, a, s ′) + γV ∗(s ′)]

Similar for MOMDPs with linear scalarization

MOMDPs with nonlinear scalarization:
I Stochastic policies may be preferable if allowed
I Nonstationary policies may be preferable otherwise
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White’s Example (1982)
3 actions: R(a1) = (3, 0),R(a2) = (0, 3),R(a3) = (1, 1)

3 deterministic stationary policies, all Pareto-optimal:

Vπ1 =
( 3

1− γ
, 0
)
,Vπ2 =

(
0,

3

1− γ

)
,Vπ3 =

( 1

1− γ
,

1

1− γ

)
πns alternates between a1 and a2, starting with a1:

Vπns =
( 3

1− γ2
,

3γ

1− γ2

)
Thus πns �P π3 when γ ≥ 0.5, e.g., γ = 0.5 and f (Vπ) = V π

1 V π
2 :

V π1 = V π2 = 0,V π3 = 4,V πns = 8
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Problem Taxonomy

single policy multiple policies (unknown
(known weights) weights or decision support)

deterministic stochastic deterministic stochastic

linear
scalarization

one deterministic
stationary policy

convex coverage set of
deterministic stationary
policies

monotonically
increasing
scalarization

one
deterministic
non-
stationary
policy

one mixture
policy of two
or more
deterministic
stationary
policies

Pareto
coverage set
of
deterministic
non-
stationary
policies

convex
coverage set
of
deterministic
stationary
policies

Example: radiation vs. chemotherapy
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Mixture Policies

A mixture policy πm selects i-th policy from set of N deterministic
policies with probability pi , where

∑N
i=0 pi = 1

Values are convex combination of values of constituent policies

In White’s example, replace πns by πm:

Vπm = p1Vπ1 + (1− p1)Vπ2 =

(
3p1

1− γ
,

3(1− p1)

1− γ

)
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Problem Taxonomy

single policy multiple policies (unknown
(known weights) weights or decision support)

deterministic stochastic deterministic stochastic

linear
scalarization

one deterministic
stationary policy

convex coverage set of
deterministic stationary
policies

monotonically
increasing
scalarization

one
deterministic
non-
stationary
policy

one mixture
policy of two
or more
deterministic
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Pareto
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convex
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Example: studying vs. networking
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Pareto Sets

Definition

The Pareto front is the set of all policies that are not Pareto dominated:

PF (Π) = {π : π ∈ Π ∧ ¬∃(π′ ∈ Π),Vπ′ �P Vπ}

Definition

A Pareto coverage set is a subset of PF (Π) such that, for every π′ ∈ Π, it
contains a policy that either dominates π′ or has equal value to π′:

PCS(Π)⊆PF (Π) ∧ ∀(π′∈Π)(∃π)
(
π∈PCS(Π) ∧ (Vπ�P Vπ′ ∨ Vπ=Vπ′

)
)
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Visualization

Objective Space Weight Space
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Problem Taxonomy

single policy multiple policies (unknown
(known weights) weights or decision support)

deterministic stochastic deterministic stochastic

linear
scalarization

one deterministic
stationary policy

convex coverage set of
deterministic stationary
policies

monotonically
increasing
scalarization

one
deterministic
non-
stationary
policy

one mixture
policy of two
or more
deterministic
stationary
policies

Pareto
coverage set
of
deterministic
non-
stationary
policies

convex
coverage set
of
deterministic
stationary
policies

Example: radiation vs. chemotherapy (again)

Note: only setting that case requires a Pareto front!
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Mixture Policies

A CCS(ΠDS) is also a CCS(Π) but not necessarily a PCS(Π)

But a PCS(Π) can be made by mixing policies in a CCS(ΠDS)
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Problem Taxonomy

single policy multiple policies (unknown
(known weights) weights or decision support)

deterministic stochastic deterministic stochastic

linear
scalarization

one deterministic
stationary policy

convex coverage set of
deterministic stationary
policies

monotonically
increasing
scalarization

one
deterministic
non-
stationary
policy

one mixture
policy of two
or more
deterministic
stationary
policies

Pareto
coverage set
of
deterministic
non-
stationary
policies

convex
coverage set
of
deterministic
stationary
policies

Example: studying vs. networking (again)
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Part 2: Methods and Applications

Convex Coverage Set Planning Methods

I Inner Loop: Convex Hull Value Iteration

I Outer Loop: Optimistic Linear Support

Pareto Coverage Set Planning Methods

I Inner loop (non-stationary): Pareto-Q

I Outer loop issues

MOPOMDP Convex Coverage Set Planning: OLSAR

Applications
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Taxonomy

single policy multiple policies (unknown
(known weights) weights or decision support)

deterministic stochastic deterministic stochastic

linear
scalarization

one deterministic
stationary policy

convex coverage set of
deterministic stationary
policies

monotonically
increasing
scalarization

one
deterministic
non-
stationary
policy

one mixture
policy of two
or more
deterministic
stationary
policies

Pareto
coverage set
of
deterministic
non-
stationary
policies

convex
coverage set
of
deterministic
stationary
policies

Known transition and reward functions → planning

Unknown transition and reward functions → learning
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Background: Value Iteration

Initial estimate value estimate V0(s)

Apply Bellman backups until convergence:

Vk+1(s)← max
a

∑
s′

T (s, a, s ′)
[
R(s, a, s ′) + γVk(s ′)

]

Can also be written:

Vk+1(s)← max
a

Qk+1(s, a),

Qk+1(s, a)←
∑
s′

T (s, a, s ′)
[
R(s, a, s ′) + γVk(s ′)

]
Optimal policy is easy to retrieve from Q-table
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Taxonomy

single policy multiple policies (unknown
(known weights) weights or decision support)

deterministic stochastic deterministic stochastic

linear
scalarization

one deterministic
stationary policy

convex coverage set of
deterministic stationary
policies

monotonically
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scalarization
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non-
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policy

one mixture
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deterministic
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Scalarize MOMDP + Value Iteration

For known w

V π
w = w · E [

∞∑
k=0

γkrt+k+1] = E [
∞∑
k=0

γk(w · rt+k+1)].

Scalarize reward function of MOMDP

Rw = w · R

Apply standard VI

Does not return multi-objective value
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Scalarized Value Iteration

Adapt Bellman backup:

w · Vk+1(s)← max
a

w ·Qk+1(s, a),

Qk+1(s, a)←
∑
s′

T (s, a, s ′)
[
R(s, a, s ′) + γVk(s ′)

]
Returns multi-objective value.
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Taxonomy

single policy multiple policies (unknown
(known weights) weights or decision support)

deterministic stochastic deterministic stochastic

linear
scalarization

one deterministic
stationary policy

convex coverage set of
deterministic stationary
policies

monotonically
increasing
scalarization

one
deterministic
non-
stationary
policy

one mixture
policy of two
or more
deterministic
stationary
policies

Pareto
coverage set
of
deterministic
non-
stationary
policies

convex
coverage set
of
deterministic
stationary
policies
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Inner versus Outer Loop

...
max ...

...

...

...
max ...

...

...

...
max ...

...

...

SO method MO inner loop MO outer loop

Inner loop
I Adapting operators of single objective method (e.g., value iteration)
I Series of multi-objective operations (e.g. Bellman backups)

Outer loop
I Single objective method as subroutine
I Series of single-objective problems
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Inner Loop: Convex Hull Value Iteration

Barrett & Narayanan (2008)

Idea: do the backup for all w in parallel

New backup operators must handle sets of values.

At backup:
I generate all value vectors for s, a-pair
I prune away those that are not optimal for any w

Only need deterministic stationary policies
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Inner Loop: Convex Hull Value Iteration

Initial set of value vectors, e.g., V0(s) = {(0, 0)}

All possible value vectors:

Qk+1(s, a)←
⊕
s′

T (s, a, s ′)
[
R(s, a, s ′) + γVk(s ′)

]
where u + V = {u + v : v ∈ V }, and

U ⊕ V = {u + v : u ∈ U ∧ v ∈ V }

Prune value vectors

Vk+1(s)← CPrune

(⋃
a

Qk+1(s, a)

)

CPrune uses linear programs (e.g., Roijers et al. (2015))
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CHVI Example

Extremely simple MOMDP:
1 state: s;
2 actions: a1 and a2

Deterministic transitions

Deterministic rewards:
R(s, a1, s)→ (2, 0)
R(s, a2, s)→ (0, 2)

γ = 0.5

V0(s) = {(0, 0)}
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CHVI Example

Deterministic rewards:
R(s, a1, s)→ (2, 0)
R(s, a2, s)→ (0, 2)

γ = 0.5

Iteration 1:
V0(s) = {(0, 0)}

Q1(s, a1) = {(2, 0)}
Q1(s, a2) = {(0, 2)}

V1(s) = CPrune(
⋃

a Q1(s, a)) =
{(2, 0), (0, 2)}
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Deterministic rewards:
R(s, a1, s)→ (2, 0)
R(s, a2, s)→ (0, 2)

γ = 0.5

Iteration 2:
V1(s) = {(2, 0), (0, 2)}

Q2(s, a1) = {(3, 0), (2, 1)}
Q2(s, a2) = {(1, 2), (0, 3)}

V2(s) =
CPrune({(3, 0), (2, 1), (1, 2), (0, 3)})
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CHVI Example

Deterministic rewards:
R(s, a1, s)→ (2, 0)
R(s, a2, s)→ (0, 2)

γ = 0.5

Iteration 2:
V1(s) = {(2, 0), (0, 2)}

Q2(s, a1) = {(3, 0), (2, 1)}
Q2(s, a2) = {(1, 2), (0, 3)}

V2(s) =
{(3, 0), (0, 3)}
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CHVI Example

Deterministic rewards:
R(s, a1, s)→ (2, 0)
R(s, a2, s)→ (0, 2)

γ = 0.5

Iteration 3:
V2(s) = {(3, 0), (0, 3)}

Q3(s, a1) = {(3.5, 0), (2, 1.5)}
Q3(s, a2) = {(1.5, 2), (0, 3.5)}

V3(s) =
CPrune({(3.5, 0), (2, 1.5), (1.5, 2), (0, 3.5)}) =
{(3.5, 0), (0, 3.5)}
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Convex Hull Value Iteration

CPrune retains at least one optimal vector for each w

Therefore, Vw that would have been computed by VI is kept

CHVI does not retain excess value vectors

CHVI generates a lot of excess value vectors

Removal with linear programs (CPrune) is expensive
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Outer Loop

...
max ...

...

...

...
max ...

...

...

...
max ...

...

...

SO method MO inner loop MO outer loop

Repeatly calls a single-objective solver

Generic multi-objective method
I multi-objective coordination graphs
I multi-objective (multi-agent) MDPs
I multi-objective partially observable MDPs
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Outer Loop: Optimistic Linear Support

Optimistic linear support (OLS) adapts and improves linear support
for POMDPs (Cheng (1988))

Solves scalarized instances for specific w

Terminates after checking only a finite number of weights

Returns exact CCS
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Linear Support
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0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

w1

V
w

Whiteson & Roijers (Oxford) Multi-Objective Planning June 13, 2016 76 / 114



Optimistic Linear Support
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Priority queue, Q, for corner weights

Maximal possible improvement ∆ as priority

Stop when ∆ < ε
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Optimistic Linear Support

Solving scalarized instance not always possible

ε-approximate solver

Produces an ε-CCS
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Comparing Inner and Outer Loop

OLS (outer loop) advantages

I Any (cooperative) multi-objective decision problem

I Any single-objective / scalarized subroutine

I Inherits quality guarantees

I Faster for small and medium numbers of objectives

Inner loop faster for large numbers of objectives
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Taxonomy

single policy multiple policies (unknown
(known weights) weights or decision support)

deterministic stochastic deterministic stochastic

linear
scalarization

one deterministic
stationary policy

convex coverage set of
deterministic stationary
policies

monotonically
increasing
scalarization

one
deterministic
non-
stationary
policy

one mixture
policy of two
or more
deterministic
stationary
policies

Pareto
coverage set
of
deterministic
non-
stationary
policies

convex
coverage set
of
deterministic
stationary
policies
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Inner Loop: Pareto-Q

Similar to CHVI

Different pruning operator

Pairwise comparisons: V(s) �P V′(s)

Comparisons cheaper but much more vectors

Converges to correct Pareto coverage set (White (1982))

Executing a policy is no longer trivial (Van Moffaert & Nowé (2014))
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Inner Loop: Pareto-Q

Compute all possible vectors

Qk+1(s, a)←
⊕
s′

T (s, a, s ′)
[
R(s, a, s ′) + γVk(s ′)

]
where u + V = {u + v : v ∈ V },
U ⊕ V = {u + v : u ∈ U ∧ v ∈ V }

Take the union across a

Prune Pareto-dominated vectors

Vk+1(s)← PPrune

(⋃
a

Qk+1(s, a)

)
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Pareto-Q Example

Extremely simple MOMDP:
1 state: s;
2 actions: a1 and a2

Deterministic rewards:
R(s, a1, s)→ (2, 0)
R(s, a2, s)→ (0, 2)

γ = 0.5

V0(s) = {(0, 0)} 0 1 2 3 4
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Pareto-Q Example

Deterministic rewards:
R(s, a1, s)→ (2, 0)
R(s, a2, s)→ (0, 2)

γ = 0.5

Iteration 1:

V0(s) = {(0, 0)}

Q1(s, a1) = {(2, 0)}
Q1(s, a2) = {(0, 2)}

V1(s) = PPrune(
⋃

a Q1(s, a)) =
{(2, 0), (0, 2)}
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Pareto-Q Example

Deterministic rewards:
R(s, a1, s)→ (2, 0)
R(s, a2, s)→ (0, 2)

γ = 0.5

Iteration 2:

V1(s) = {(2, 0), (0, 2)}

Q2(s, a1) = {(3, 0), (2, 1)}
Q2(s, a2) = {(1, 2), (0, 3)}

V2(s) =
PPrune({(3, 0), (2, 1), (1, 2), (0, 3)})
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Pareto-Q Example
Deterministic rewards:
R(s, a1, s)→ (2, 0)
R(s, a2, s)→ (0, 2)

γ = 0.5

Iteration 2:

V2(s) =
{(3, 0), (2, 1), (1, 2), (0, 3)}

Q3(s, a1) =
{(3.5, 0), (3, 0.5), (2.5, 1), (2, 1.5)}
Q3(s, a2) =
{(1.5, 2), (1, 2.5), (0.5, 3), (0, 3.5)}

V3(s) =
PPrune({(3.5, 0), (3, 0.5), (2.5, 1), (2, 1.5),
(1.5, 2), (1, 2.5), (0.5, 3), (0, 3.5)})
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Inner Loop: Pareto-Q

PCS size can explode

No longer deterministic

Cannot read policy from Q-table

Except for first action

“Track” a policy during execution (Van Moffaert & Nowé (2014))

I For deterministic transitions: s, a→ s ′

I From Qt=0(s, a) substract R(s, a)

I Correct for discount factor → Vt=1(s ′)

I Find Vt=1(s ′) in Q-tables for s ′

For stochastic transitions, see Kristoff van Moffaert’s PhD thesis
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Outer Loop?

...
max ...

...

...

...
max ...

...

...

...
max ...

...

...

SO method MO inner loop MO outer loop

Outer loop very difficult:

V π
w = f (E [

∞∑
k=0

γkrt+k+1],w) 6= E [
∞∑
k=0

γk f (rt+k+1,w)]

Maximization does not do the trick!

Heuristic with non-linear f (Van Moffaert, Drugan, Nowé (2013))

Not guaranteed to find optimal policy, or converge
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Taxonomy

single policy multiple policies (unknown
(known weights) weights or decision support)

deterministic stochastic deterministic stochastic

linear
scalarization

one deterministic
stationary policy

convex coverage set of
deterministic stationary
policies

monotonically
increasing
scalarization

one
deterministic
non-
stationary
policy

one mixture
policy of two
or more
deterministic
stationary
policies

Pareto
coverage set
of
deterministic
non-
stationary
policies

convex
coverage set
of
deterministic
stationary
policies
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Part 2: Methods and Applications

Convex Coverage Set Planning Methods

I Inner Loop: Convex Hull Value Iteration

I Outer Loop: Optimistic Linear Support

Pareto Coverage Set Planning Methods

I Inner loop (non-stationary): Pareto-Q

I Outer loop issues

MOPOMDP Convex Coverage Set Planning: OLSAR

Applications
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Multiple objectives and partial observability

Maximize coverage while minimizing damage
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Multi-objective Partially Observable MDPs
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Partially Observable MDPs

A POMDP is a tuple 〈S,A,T ,R,Ω,O〉 where,

S, A, T , and R are the same as in an MDP,

Ω, is the set of possible observations, and

O is the observation function: A× S × Ω→ [0, 1].
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Partially Observable MDPs

Equivalent to belief-MDP 〈∆S,A,Tb,Rb〉:

∆S is the belief simplex over S,

A is the same set of actions as in the POMDP

Tb(b, a, b′) belief-transition function defined using Bayesian belief
updates using b, a, and o:

b′(s ′) =
O(o|s ′, a)

P(o|b, a)

∑
s∈S

T (s ′|s, a)b(s),

Rb(b, a) =
∑

s∈S b(s)R(s, a)
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Multi-Objective Partially Observable MDPs
(MOPOMDPs)

Vector-valued reward functions:
I State-based: R(s, a)
I Belief-based: Rb(b, a)

Challenges:
I How to represent the value?
I Single-objective POMDP planning is expensive

Whiteson & Roijers (Oxford) Multi-Objective Planning June 13, 2016 95 / 114



Approach

Starting from point-based planning for POMDPs

Value representation for MOPOMDPs

Scalarized point-based planning

Point-based CCS planning

OLS with Alpha Reuse
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Value functions for POMDPs

Point-based methods
represent value by
α-vectors

α =


V (s1)
V (s2)
V (s3)
V (s4)



V α(b0) = b0 · α
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Scheme point-based planners

Sampled set of beliefs B

Set of α-vectors, A

Repeatly pick a b ∈ B

Perform point-based backup (Bellman update for b only).

Until A converges
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Point-based backups

Back-projection of α-vectors αi ∈ Ak :

g a,o
i (s) =∑

s′∈S

O(a, s ′, o)T (s, a, s ′)αi (s
′)

αb,a
k+1 = r a + γ

∑
o∈Ω

arg max
ga,o

b · g a,o

backup(Ak , b) = arg max
αb,a

k+1

b · αb,a
k+1

Value of next belief-state for

o, times probability of o

Action-values: Qk+1(b, a)

Maximization over action values:
Vk+1(b)
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Point-based planners for (MO)POMDPs

The bottleneck: the number of back-projected vectors is:
|Ak | · |A| · |Ω|

|Ak | can be huge

Multi-objective?

I Known weights → scalarized

I CCS version?
F Inner loop?

Will have way more |Ak |
F Outer loop!
F Scalarized point-based planner as subroutine
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Scalarized point-based planners for POMDPs

Set of α-vectors → Set of α-matrices

Repeatly pick a b ∈ B

Perform point-based backup for given b and w

Until A converges
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Value functions for (MO)POMDPs

Point-based methods
represent value by
α-vectors

α =


V (s1)
V (s2)
V (s3)
V (s4)



V α(b0) = b0 · α

Adapt point-based methods to return
α-matrices

A =


obj 1 : obj 2 :

V1(s1) V2(s1)
V1(s2) V2(s2)
V1(s3) V2(s3)
V1(s4) V2(s4)



VA(b0) = b0A

Adapted point-based backups
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(Scalarized) point-based backups

Back-projection of α-vectors αi ∈ Ak :

g a,o
i (s) =∑

s′∈S

O(a, s ′, o)T (s, a, s ′)αi (s
′)

αb,a
k+1 = r a + γ

∑
o∈Ω

arg max
ga,o

b · g a,o

backup(Ak , b) = arg max
αb,a

k+1

b · αb,a
k+1

Back-projection of α-matrices
Ai ∈ Ak , for a given w:

Ga,o
i (s) =∑

s′∈S
O(a, s ′, o)T (s, a, s ′)Ai (s

′)

Ab,a
k+1 = ra + γ

∑
o∈Ω

arg max
G a,o

b Ga,ow

backupMO(Ak , b,w) = arg max
Ab,a
k+1

bAa,b
k+1w
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Optimistic linear support for MOPOMDPs

Select series of w based on maximal possible improvement

Use scalarized point-based planner as subroutine

I Returns multi-objective value!

But would still require an entire run of point-based planner for each w
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Optimistic linear support with alpha reuse

Starting from scratch for each w
is inefficient

Intuition: when w and w′ are
close, so are the optimal policies
and values

Hot start point-based planner
using α-matrices from previous
calls to scalarized point-based
planner

More and more effective as w’s
lie closer together
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Theoretical results

Theorem

OLSAR requires a finite number of calls to the point-based solver to
converge.

Theorem

OLSAR produces an ε-approximate solution set.
ε is inherited from the single-objective method.
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Sample of results: 3-objective tiger

1e
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500 1000 1500 2000 2500
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RAR

OLS+

OLSAR
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Conclusions

Use point-based methods for MOPOMDPs

First method that reasonably scales

Bounded approximation

Alpha reuse is key to keeping MOPOMDPs tractable
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Part 2: Methods and Applications

Convex Coverage Set Planning Methods

I Inner Loop: Convex Hull Value Iteration

I Outer Loop: Optimistic Linear Support

Pareto Coverage Set Planning Methods

I Inner loop (non-stationary): Pareto-Q

I Outer loop issues

MOPOMDP Convex Coverage Set Planning: OLSAR

Applications
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Treatment planning

Lizotte (2010, 2012)

I Maximizing effectiveness of
the treatment

I Minimizing the severity of the
side-effects

Finite-horizon MOMDPs

Deterministic policies
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Epidemic control

Anthrax response (Soh &
Demiris (2011))

I Minimizing loss of life
I Minimizing number of false

alarms
I Minimizing cost of

investigation

Partial observability
(MOPOMDP)

Finite-state controllers

Evolutionary method

Pareto coverage set
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Semi-autonomous wheelchairs

Control system for wheelchairs
(Soh & Demiris (2011))

I Maximizing safety
I Maximizing speed
I Minimizing power

consumption.

Partial observability
(MOPOMDP)

Finite-state controllers

Evolutionary method

Pareto coverage set
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Broader Application

“Probabilistic Planning is Multi-objective” — Bryce et al. (2007)

I The expected return is not enough

I Cost of a plan

I Probability of success of a plan

I Non-goal terminal states
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Closing

Consider multiple objectives

I most problems have them

I a priori scalarization can be bad

Derive your solution set

I Pareto front often not necessary

Promising applications
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