
The 26th International Conference on Automated
Planning and Scheduling

	

	

Proceedings of the 8th Workshop on

Heuristics and Search
for Domain-independent

Planning (HSDIP)

Edited by:

J. Benton, Daniel Bryce, Michael Katz,	
 	
 Nir Lipovetzky,
Christian Muise, Miquel Ramırez,	
 	
 Alvaro Torralba

London, UK, 13/06/2016

Organizing Committee

J. Benton
NASA Ames Research Center and the RISE Foundation, USA

Daniel Bryce
SIFT, USA

Michael Katz
IBM Watson Health, Israel

Nir Lipovetzky
University of Melbourne, Australia

Christian Muise
MIT, USA

Miquel Ramrez
ANU, Australia

Álvaro Torralba
Saarland University, Germany

2

Foreword

Heuristic search is one of the main approaches in many domain-independent planning variants, including classical planning,
temporal planning, planning under uncertainty and adversarial planning.

The workshop on Heuristics and Search for Domain-Independent Planning (HSDIP) is the eighth workshop in a series that
started with the Heuristics for Domain-Independent Planning (HDIP) workshops at ICAPS 2007, 2009 and 2011. At ICAPS
2012, the workshop was held for the fourth time and was changed to its current name and scope to explicitly encourage work on
search for domain-independent planning. It was very successful under both names. Many ideas presented at these workshops
have led to contributions at major conferences and pushed the frontier of research on heuristic planning in several directions,
both theoretically and practically. The workshops, as well as work on heuristic search that has been published since then, have
also shown that there are many exciting open research opportunities in this area. Given the considerable success of the past
workshops, and since it has de facto become an annual event, we intend to continue holding it annually.

The main focus of the HSDIP workshop series is on contributions that help us find a better understanding of the ideas and
principles underlying current heuristics and search techniques, their limitations, ways for overcoming those limitations, as well
as the synergy between heuristics and search. While the workshop series has originated mainly in classical planning, it is very
much open to new ideas on heuristic schemes for more general settings, such as temporal planning, planning under uncertainty
and adversarial planning. Contributions do not have to show that a new heuristic or search algorithm “beats the competition”.
Above all we seek crisp and meaningful ideas and understanding. Also, rather than merely being interested in the “largest”
problems that current heuristic search planners can solve, we are equally interested in the simplest problems that they cannot
actually solve well.

We hope that the workshop will constitute one more step towards a better understanding of the ideas underlying current
heuristics, of their limitations, and of ways for overcoming those.

We thank the authors for their submissions and for their hard work.

June 2016 J. Benton, Daniel Bryce, Michael Katz, Nir Lipovetzky, Christian Muise, Miquel Ramirez, Álvaro Torralba.

3

Table of Contents

Evaluation of a Simple, Window-based, Replanning Approach to Plan Optimization
Shoma Endo, Masataro Asai and Alex Fukunaga 5

Correlation Complexity of Classical Planning Domains
Jendrik Seipp, Florian Pommerening, Gabriele Röger and Malte Helmert 12

Duality in STRIPS planning
Martin Suda 21

Improving Performance by Reformulating PDDL into a Bagged Representation
Pat Riddle, Jordan Douglas, Mike Barley, and Santiago Franco 28

On State-Dominance Criteria in Fork-Decoupled Search
Álvaro Torralba, Daniel Gnad, Patrick Dubbert and Jörg Hoffmann 37

Decoupled Strong Stubborn Sets
Daniel Gnad, Martin Wehrle and Jörg Hoffmann 45

Optimal Solitaire Game Solutions using A* Search and Deadlock Analysis
Gerald Paul and Malte Helmert 52

Lifting Delete Relaxation Heuristics To Successor Generator Planning
Michael Katz, Dany Moshkovich and Erez Karpas 61

Non-Deterministic Planning with Temporally Extended Goals: Completing the story for finite and infinite LTL
Alberto Camacho, Eleni Triantafillou, Christian Muise, Jorge Baier and Sheila McIlraith 68

Abstraction Heuristics for Symbolic Bidirectional Search
Álvaro Torralba, Carlos Linares López and Daniel Borrajo 77

Blind Search for Atari-like Online Planning Revisited
Alexander Shleyfman, Alexander Tuisov and Carmel Domshlak 85

Delete-free Reachability Analysis for Temporal and Hierarchical Planning
Arthur Bit-Monnot, David Smith and Minh Do 93

Cost-Optimal Algorithms for Hierarchical Goal Network Planning: A Preliminary Report
Vikas Shivashankar, Ron Alford, Mark Roberts and David Aha 102

Monte Carlo Tree Search as a Hyper-heuristic Framework for Classical Planning
Otakar Trunda 111

4

Evaluation of a Simple, Window-based, Replanning Approach to Plan
Optimization

Shoma Endo, Masataro Asai, Alex Fukunaga
Graduate School of Arts and Sciences

The University of Tokyo

Abstract

The task of satisficing planning is to find the highest quality
plan within a given time budget. Several postprocessing tech-
niques for plan optimization techniques have been developed
for improving the quality of a satisficing plan. In this paper,
we first survey a class of plan optimization techniques which
apply replanning to windows (subplans) of a given plan. We
propose and evaluate a CH-WIN, a new window-based plan
optimization algorithm based on AIRS, a previous technique
for prioritizing plan windows according to discrepancies be-
tween actual and heuristic cost accruals within a window.

1 Introduction
Minimizing the cost of the solution is a key element in sat-
isficing planning in order to obtain a reasonable solutions
for practical real-world applications. There are two major
approaches to addressing this problem. The first approach
is the development of anytime search algorithms that ini-
tially generate some solution relatively quickly, then con-
tinue searching for better solutions in the remaining time
available. Examples of this approach include Restarting
WA* (Richter and Westphal 2010), AEES (Thayer, Benton,
and Helmert 2012), Diverse Anytime Search (Xie, Valen-
zano, and Müller 2013) and so forth. Another line of
work includes plan optimization techniques, such as Ac-
tion Elimination (Nakhost and Müller 2010), Action Depen-
dency (Chrpa, McCluskey, and Osborne 2012), Plan Neigh-
borhood Graph Search(PNGS) (Nakhost and Müller 2010),
Block Deordering (Chrpa and Siddiqui 2015). Although
these approaches share the same objective, the key differ-
ence between anytime search algorithms and postprocessing
algorithms is that the former can be applied to generate a
plan from scratch, whereas the latter assumes that at least
one satisficing plan is available as an input.

This paper focuses on plan optimization techniques. In
particular, we investigate a class of techniques we call
“window-based plan optimization”. In this approach, some
part of an existing plan (a “window”) is selected, and a re-
planning algorithm is applied to this window in order to lo-
cally optimize the selected subplan. This process is repeated
until time runs out.

We first evaluate R-WIN, a simple, baseline strategy
which randomly selects the windows to be optimized. We
then propose CH-WIN, an improved variation of AIRS, a

previous method for plan optimization which was evalu-
ated on domain-specific solvers for the 15-puzzle and a grid
pathfinding domain AIRS (Estrem and Krebsbach 2012).
CH-WIN uses the same criteria as AIRS for ranking can-
didate replanning windows, but uses an improved method
for window selection. We show that CH-WIN outperforms
previous algorithms including AIRS and PNGS.

Finally, we evaluate the performance of these optimizers
when combined in sequence. Since the input of an optimiza-
tion algorithm is a plan and its output is also a plan, we can
apply a chain of several optimization algorithms. Although
this requires additional optimization time, we empirically
show that spending more time on optimization actually pays
off, compared to the performance of a single plan optimiza-
tion technique.

This paper is structured as follows. Section 2 reviews sev-
eral existing plan-optimization frameworks. Section 3 pro-
pose a class of window-based plan optimization and its two
instances, and evaluate their performance against existing
framework. Section 4 investigates the performance of the
sequence of several plan-optimization frameworks. We fi-
nally conclude with future remarks.

2 Background
A common strategy for plan optimization in sequential sat-
isficing planning is to run an anytime search algorithm with
some time limit, then allocate the remaining time to the post-
processing optimizer. The postprocessing phase can be iter-
ated, so that it continues to improve the plan quality.

Figure 1: The concept of anytime planning combined with
post-processing plan optimization.

Some algorithms run in polynomial-time while the others
are based on search algorithms that may consume exponen-
tial amount of time. We call the first variants as the polytime
optimization algorithms while the latter as the search-based
optimization algorithms.

5

Action Elimination [AE] (Nakhost and Müller 2010) is
a polytime optimization algorithm which iterates over the
actions in the plan looking for unnecessary actions whose
removal does not make the rest of the plan infeasible. A
straightforward implementation runs in O(pn2) where n is
the length of the plan and p is the maximum number of pre-
conditions among actions in the plan.

Action Dependency analysis [AD](Chrpa, McCluskey,
and Osborne 2012) is also a polytime optimization algo-
rithm. It consists of two major steps. The first step uses
a notion of direct dependency between a pair of actions and
its transitive extension called action dependency. It removes
all actions that is not dependent on the goal action, a pseudo
action whose precondition is same as the goal condition. In
the second step, AD uses the notion of inverse action which
represents a pair of actions with effects that cancels each
other. It removes a pair of inverse actions from the plan
when the actions surrounded by the pair are not affected by
the removal.

The first search-based optimization algorithm we are
aware of is by Ratner and Pohl, who proposed a plan op-
timization algorithm which divides a suboptimal plan in to
segments of length d, and tries to replace each segment with
a better subplan obtained by applyingA∗ to locally optimize
the segment (Ratner and Pohl 1986)

Plan Neighborhood Graph Search [PNGS] (Nakhost
and Müller 2010) is a search-based plan optimization tech-
nique. It takes two parametersA andN , whereA is a search
algorithm and N is an integer. PNGS generates a Plan
Neighborhood Graph of the plan as follows: Given a plan π
and initial state s0, consider the plan path P = s0, s1, ..., sg ,
which is the sequence of states that the system transitions
through when each step of π is applied in sequence. For
each such state si, it runs A until it generates N nodes. The
resulting set of nodes, which includes the original solution
itself, is then searched by another algorithm M ′, which is
brute-force Dijkstra’s algorithm in their experiments. When
the refinement finishes, it doubles the number of nodes N
and reapplies the algorithm.

Balyo, Barták, and Surynek investigated a window based,
replanning approach for temporal planning which seeks to
optimize makespan by applying a SAT-based planner to ran-
dom or fixed sized windows of a suboptimal plan (Balyo,
Barták, and Surynek 2012).

Block-deordering is a recent approach in which a totally
ordered plan is first deordered and decomposed into a set
of blocks (partially ordered plans), where each block is a
set of steps that must not be interleaved with steps that are
not in the block. Windows for planning are extracted based
on these blocks, and a large-neighborhood search algorithm
is applied in order to optimize the subplans (Siddiqui and
Haslum 2013; 2015).

Finally, Anytime Iterative Refinement of a Solution
(Estrem and Krebsbach 2012, AIRS) is a search-based plan
optimization technique which runs a local search on a part of
the plan. The portion is selected based on Greedy Plateaus,
i.e. the parts of the plan where the heuristic estimate does not
change as much as they should (relative to the actual costs).
For every pair of states si, sj in a plan, it calculates the ratio

of the heuristic distance h(si, sj) to the actual cost c(si, sj)
of the path between two states. In each iteration, the portion
of the plan starting from si ending at sj with the minimum
ratio h(si,sj)

c(si,sj)−cmin
is selected, where cmin is the smallest ac-

tion cost in the domain, and start the local search from si to
sj , using an admissible bidirectional search. It also has a
mechanism to avoid searching the same region many times
by storing the information about the portion where the ad-
missible search failed to improve the plan.

The intuition behind AIRS is as follows. When the heuris-
tic value is small while the actual cost is large between two
states, then it would be highly likely that the greedy search
algorithm which generated the initial plan has failed to find
a good solution, and the better plan can be quickly found
using admissible search because the optimal cost would be
small according to the heuristic value.

3 Window-based Plan Optimization
However, the assumptions behind AIRS may not necessar-
ily hold true for two reasons. First, it assumes that the value
h(si, sj) is reasonably accurate, and that c∗(si, sj), the op-
timal cost of moving from si to sj , is somewhat close to to
h(si, sj). This is not necessarily true when, for example, h
fails to correctly capture the search space structure and the
difference between c(si, sj) and c∗ is very small (or even
zero). In such cases, attempting to replanning the given re-
gion may not be worthwhile (because the possible gain c−c∗
is small) or even futile. Second, due to the same reason, c∗
may be too large for the admissible replanning algorithm to
find the solution within a given time limit.

In order to separate the issues which are specific to AIRS
from the general framework of local search on plan seg-
ments, we first define a class of optimization technique
called Window-based Plan Optimization.

Figure 2: Simple figure describing the concept of window-
based plan optimization.

In each iteration of plan refinement, Window-based opti-
mization selects a windowW = (si, sj) for the local search,
which is a portion of the plan that is selected according to
some criteria C, which is a free parameter of this frame-
work. si, sj are encoded as the initial state and the goal state
of an input to some standard search algorithm A. If A suc-
cessfully returns a better solution, it replaceW with the new
path. If A failed to find a better solution due to some criteria

6

such as the time limit, or because the resulting cost is worse
than the original (note that A can be inadmissible), the so-
lution is ignored. Window-based optimization is naturally
an anytime algorithm which returns the current best solution
any time it is interrupted.

A trivial baseline instance of this framework randomly se-
lects a window of fixed size L. We call this variant R-WIN
(Randomized Window-search). The parameter L controls
the size of the window as well as the upper bound for the
search conducted by the given algorithm A, so that it avoids
solving the window that is beyond the capability.

The reason we adopted a randomized strategy rather than
a deterministic strategy e.g. first select W = (s0, sL), then
W = (s1, sL+1) and so on, is to diversify the effort uni-
formly over the length of the plan. Otherwise, the effort put
by the local search could be biased toward the beginning of
the plan, while the possible refinements only exist near the
end of the plan.

3.1 Empirical Evaluation of R-WIN
We evaluated R-WIN and AIRS on the International Plan-
ning Competition (IPC) benchmark instances included with
the Fast Downward planner (Helmert 2006). We evalu-
ated all methods on the IPC satisficing problem instances
which are limited to STRIPS with action costs, since that is
the subset of PDDL currently supported by our optimizer.
All experiments in this paper were conducted on Xeon
E5410@2.33GHz CPUs. We first solved these instances
using Fast Downward LAMA2011 (Richter and Westphal
2010) using 15 minutes, 2GB setting. Among 958 problem
instances, LAMA solved 828 problem instances in the first
15 minutes.

The resulting plans are then fed into the plan optimizers,
under 2GB memory and the time limit of 15 minutes, result-
ing in 30 minutes of the total runtime. Since LAMA uses
RWA* and produce multiple solutions, we selected the cur-
rent best solution found when the time limit is reached. We
evaluated the following optimizer configurations:
• LAMA (30 min) – this baseline continues to run LAMA

for an additional 15 minutes (i.e., 30 minutes total) and
returns the best solution found.

• Action Elimination (Nakhost and Müller 2010, AE)
• Action Dependency (Chrpa, McCluskey, and Osborne

2012, AD)
• Plan Neighborhood Graph Search (Nakhost and Müller

2010, PNGS): We used N = 1000 (as in the original pa-
per).

• Anytime Iterative Refinement of a Solution (Estrem and
Krebsbach 2012, AIRS)

• R-WIN: L = 10. Since R-WIN is a randomized algo-
rithm, we ran the same experiments with two different
random seeds in order to test the robustness of the algo-
rithm. However, we could not observe any significant dif-
ference so we only show 1 set of results.
We implemented AE, AD, PNGS, and AIRS based on the

descriptions in the original papers. However, for all search-
based optimization algorithms (PNGS, AIRS, R-WIN), the

replanning algorithm we used was Fast Downward with A*
using the admissible LMcut heuristic (Helmert and Domsh-
lak 2009). This differs from the original paper in that AIRS
originally used Bidirectional A*(Pohl 1971), and PNGS
used Dijkstra Search. This allows us to focus on the effect of
the replanning strategy, as opposed to the underlying search
algorithm.

Table 1 compares the ratio between the sum of the costs
of the plans returned by LAMA with 15 minutes, against the
results of various optimizers. Running LAMA for an addi-
tional 15 minutes results in very little improvement over the
first 15 minutes, and is worse than all of the postprocessing
optimizers that we evaluated. Although the difference was
very small, R-WIN outperformed PNGS. This shows that
a simple window-based algorithm like R-WIN can outper-
form a more complicated algorithms. Interestingly, AIRS
was found to perform worse than R-WIN, a possible base-
line of the Window-based optimization algorithms. Also,
the polytime algorithms such as AE and AD perform rea-
sonably good in terms of the runtime and the quality gain,
even if these algorithms capture only the limited scope of
optimization.

Algorithm Harmonic Means
of Ratios

LAMA(15min) 100%
LAMA(30min) 99.3%
AE 98.4%
AD 97.4%
AIRS 97.9%
PNGS 96.0%
R-WIN 95.9%

Table 1: Comparison of the cost-reduction ration between
AE, AD, PNGS, AIRS, R-WIN, relative to bare LAMA
with 15 minutes (100%). We took the harmonic means of
the ratios over all problem instances. R-WIN outperformed
PNGS, but with a small difference.

The complete domain-wise results in Table 2 (which also
contains results for the next section) suggests that the perfor-
mances of R-WIN and PNGS are significantly affected by
the domain characteristics. For example, R-WIN performs
better than PNGS in 12 domains out of 39 domains, although
PNGS performs better than R-WIN in 18 domains. Thus,
there is no overall dominance relationship between these op-
timization algorithms. We can also see that R-WIN fails to
improve any plan on some domains such as floortile-sat11,
parcprinter-08/sat11, pipesworld (both tankage and notank-
age versions), sokoban-sat08/11, woodworking-sat08. In
these domains, we observed that R-WIN is consuming too
much time on “difficult” window replanning problem in-
stances. The same symptom was also observed in AIRS.
This suggests that addressing these issues would result in a
simple yet effective optimization algorithm.

3.2 CH-WIN
Since the results in the previous section suggested some pos-
sibilities for improvement within the Window-based opti-

7

domain LAMA
30min.

AD AE AIRS PNGS R-WIN CH-
WIN

airport 99.9 100 100 100 100 100 99.3
barman11 99.9 94.8 91.0 100 100 87.6 96.0
blocks 100 100 87.8 91.1 80.1 84.9 78.5
depot 98.7 92.2 93.6 99.3 93.0 89.6 88.7
driverlog 99.0 97.1 96.4 98.7 93.7 92.2 90.2
elevators08 99.8 92.0 91.7 99.9 98.0 86.3 89.5
elevators11 99.9 92.7 92.4 100 100 95.5 97.3
floortile11 91.9 97.5 94.7 100 98.3 96.7 80.4
freecell 99.3 99.1 99.0 99.8 91.8 99.8 95.1
grid 100 100 100 100 91.5 92.7 91.9
logistics00 100 98.7 98.7 96.7 98.0 97.3 94.8
logistics98 100 99.0 98.8 99.2 99.6 98.5 98.1
miconic 100 100 100 89.7 89.7 90.0 88.4
nomystery11 100 100 100 100 100 100 99.8
openstacks08 98.7 100 100 100 100 100 100
openstacks11 97.8 100 100 100 100 100 100
parcprinter08 99.0 100 98.3 100 100 100 94.2
parcprinter11 99.0 100 100 100 100 100 93.1
parking11 99.8 99.5 99.5 100 100 99.3 98.7
pegsol08 97.1 100 100 100 100 94.9 89.4
pegsol11 91.7 100 100 100 100 96.0 85.9
pipesworld-not 97.6 99.8 93.1 98.3 93.9 100 89.3
pipesworld-t 97.3 100 95.3 98.6 92.8 100 92.3
rovers 99.9 96.8 96.8 99.7 99.4 98.3 98.9
satellite 99.9 99.1 98.9 97.2 98.1 95.5 96.6
scanalyzer08 99.3 100 100 100 98.6 96.2 93.2
scanalyzer11 99.3 100 100 100 98.1 96.2 93.2
sokoban08 95.2 100 98.4 100 93.9 99.7 90.7
sokoban11 94.6 100 98.2 100 93.2 100 90.1
tpp 99.7 99.5 99.5 98.0 98.8 95.4 92.6
transport08 100 94.2 94.1 100 99.3 95.9 97.1
transport11 99.8 92.3 91.9 100 100 97.5 99.6
trucks 99.1 100 100 100 100 100 100
visitall11 99.9 100 99.7 100 100 99.6 99.5
woodworking08 100 99.6 99.3 100 100 100 88.2
woodworking11 100 99.8 98.8 100 100 100 90.8
zenotravel 100 100 100 100 98.7 100 97.3
mean(harmonic) 99.3 98.4 97.4 97.9 96.0 95.9 93.3

Table 2: Comparison of the cost-reduction ratios between
AE, AD, PNGS, AIRS, R-WIN and CH-WIN, relative to
plain LAMA with 15 minutes (100%). The costs are the
sum over all instances solved by LAMA within 15 minutes.

mization framework, we implemented a more sophisticated
window selection scheme named CH-WIN. The name re-
flects the fact that it uses the ratio between the actual cost c
and the heuristic value h, similar to AIRS (Estrem and Kreb-
sbach 2012), but with several simple improvements that ad-
dress the problems present in AIRS and R-WIN.

First, we improved the window selection / penalization
criteria in AIRS. Although AIRS adopts a mechanism which
gives a penalty to a window whose region overlaps with the
previously selected windows and tries to avoid solving them,
we found that the mechanism does not sufficiently deter the
optimizer from duplicated work, sometimes repeatedly se-
lecting the nearby windows. In CH-WIN, we never select
the same segment twice. Windows are simply sorted into a
priority queue according to the value of h(si, sj)/c(si, sj),
and no window is reinserted into the queue after being op-
timized. Thus CH-WIN simplifies AIRS by removing the
penalty mechanism – there is no need to consider the over-
laps between the currently selected window and the past
windows whose replanning attempt has failed.

In fact, although it is not worthwhile to select the same
segment more than twice , it is still possible to improve the
segments which overlap it. There are two possible reasons
that the previous attempt has failed. (1) First, the failure
may be due to the large c∗(si, sj) which makes it too diffi-
cult for admissible algorithms to obtain a refined solution.
Thus, replanning its shorter subsegments like (sk, sl) s.t.
i < k < l < j may succeed. (2) Second, the failure could
be due to a successful replanning with no improvements,
i.e. c(si, sj) = c∗(si, sj). It suggests that its subsegment
can be solved much quicker, which means that replanning
is not so harmful. Also, it does not preclude the chance of
improving a segment which overlaps it, such as (sk, sl) s.t.
k < i < l < j. Thus, we consider the simplified criteria of-
fers a wider and safer opportunity to improve the plan qual-
ity overall. As an implementation detail, each h, c, si and
sj is updated after the successful replanning of a window, in
order to reflect the changes to the plan and the positions of
states in the plan.

Second, we applied a time limit of 3 minutes for each re-
planning episode. This avoids the problem we observed in
AIRS and R-WIN that some individual replanning attempts
can consume too much time. It is possible that AIRS does
not address this issue because in the original paper, AIRS
was tested on problems where the replanning attempts were
all relatively easy (under 0.1 second per episode in the 15
puzzle with domain-specific heuristics and grid pathfind-
ing).

Third, along the same line as our second improvement
above, we apply a maximum length to the replanning win-
dow, which is dynamically adjusted as the replanning suc-
ceeds or fails. The dynamic process has two parameters L
and L̄, and runs a binary search of the appropriate length as
shown in Algorithm 1. The value of L trivially converges to
some value L∞.

We tested CH-WIN using the same experimental setting
as in the previous section. The results are shown in Ta-
ble 3, which shows that CH-WIN outperforms both R-WIN
and PNGS algorithm. Per-domain results in Table 2 also

8

Algorithm 1 Binary search of L, used for adapting the size
of the replanning window.

1: Initially L = n/4 and L̄ = n, where n is the length of
the plan.

2: When CH-WIN selects the next window, it skips win-
dows whose lengths exceed L. Skipped windows are
inserted back to the end of the queue, so that future in-
creases in L allow the optimizers to reconsider those
candidates.

3: if replanning succeeds within the time limit, then
4: L← (L+ L̄)/2.
5: else
6: L← L/2 and L̄← L.
7: end if

show that CH-WIN outperforms other algorithms in many
domains (26 domains out of 36 domains).

Algorithm Harmonic Means
of Ratios

LAMA(15min) 100%
LAMA(30min) 99.3%
PNGS 96.0%
R-WIN 95.9%
CH-WIN 93.3%

Table 3: Summary of the comparison of the cost-reduction
ration between PNGS, R-WIN and CH-WIN relative to bare
LAMA with 15 minutes (100%). We took the harmonic
means of the ratios over all problem instances. CH-WIN
outperformed both PNGS and R-WIN.

4 Evaluating Sequences of Optimization
Techniques

As a natural consequence of Plan Optimizer taking a plan
as an input and emits a plan as an output, we can combine
several different optimizer algorithms in sequence, hoping
that each algorithm addresses different kind of inefficiencies
/ redundancy in the suboptimal plan.

This idea is not new. Aras (Nakhost and Müller 2010)
applies Action Elimination to the input, then run PNGS to
its output. Siddiqui and Haslum also applied BDPO2 to the
results of PNGS in one of their experiments (Siddiqui and
Haslum 2015). However, currently there are few in-depth
analysis on the effect of combining many postprocessing op-
timization algorithms.

4.1 Sequences of Poly-Time Optimizers
We first evaluated two polytime algorithms (AD, AE) ap-
plied in different orders (AD+AE and AE+AD) and in iter-
ations (AE+AD+AE, AE+AD+AE+AD, ...) to ensure that
simply sequencing these polytime optimizers does not fur-
ther improve the plan quality.

As shown in Table 4, repeatedly alternating between AE
and AD does not improve the plan quality. Although there
is a slight difference in the result depending on which opti-
mizer is applied first, it happens only in the depot and eleva-

tors08 domains. This yields two observations: First, when
we use AE and AD as a part of optimizer sequence, apply-
ing each of AE and AD once is enough to remove the in-
efficiency addressed by AE and AD. Second, we need to
add either a search-based optimizer (such as PNGS, AIRS,
CH-WIN) or a new polytime optimizer (future work) to the
optimizer sequence in order to get a better plan.

AD AD AD AD AE AE AE AE
AE AE AE AD AD AD

AD AD AE AE
domain AE AD
mean(harmonic) 98.4 97.4 97.4 97.4 97.4 97.4 97.4 97.4

Table 4: Result of applying poly-time optimizers iteratively
to plans obtained by 15-minute runs of LAMA. The har-
monic means of the ratios over all instances are shown.

4.2 Sequences Poly-time Optimizers and a
Search-Based Optimizer

We next evaluated two polytime algorithms (AD, AE) ap-
plied in this order (AD+AE) with one of three search-based
algorithms (AIRS, PNGS, R-WIN, CH-WIN), i.e., AD + AE
+ S configuration where S is one of AIRS, PNGS, R-WIN,
CH-WIN.

We tested these configurations with the same resource
limitations (time, memory) as in the previous experiments.
Each optimizer configuration processes the input plan with
a 15 minutes time limit (total, shared among all components
of the optimizer shared) and 2GB memory limit. The input
plans are the best results output by running LAMA for 15
minutes, with a 2GB limit on each problem instance. Poly-
time algorithms usually finish very quickly, and their run-
times are negligible compared to the search-based optimiz-
ers. Thus, we assume most of the 15 minutes of runtime for
postprocessing is consumed by the search-based optimizers
in the configuration.

As shown in the previous section, repeating AD and
AE steps do not improve the quality nor result in different
plans, so we do not test configurations which repeat several
AD+AE sequences (such as AE+ AD+ AE+ AD+ PNGS).

Table 5 shows the results of running these configurations
of multiple optimizers. Combining several optimizers be-
haved as expected: The results of search-based optimizers
with polytime optimizers tends to be better than without
them, and polytime optimizers themselves are also helped
by search-based optimizers. We can see that the best per-
former was AE + AD + CH-WIN, a configuration which
applies Action Elimination first, then applies the Action De-
pendency to the output of AE, then applies CH-WIN to the
output of AD.

We also evaluated configurations where each of above
configuration is followed by an additional applications of
AE and AD (i.e. AE+ AD+S+ AE+ AD), but we could
not observe any quality improvement: The harmonic-mean
scores were 95.6, 94.4, 94.0, 91.8 (for S=AIRS, PNGS, R-
WIN, CH-WIN, respectively), which means that the search-
based optimizers we used in this paper tend not to regener-

9

ate the inefficiency which can be detected by the polytime
optimizers. This might be a natural consequence of the un-
derlying replanner A being an admissible (optimal) planner.
Investigating the cases which use inadmissible planner as A
is future work.

4.3 Sequences With Multiple Search-Based
Optimizers

We finally investigated the performance of the combinations
of multiple search-based optimizers (PNGS, R-WIN, CH-
WIN). We focus on the synergy that can happen on several
different optimizer algorithms because there are still some
domains in Table 5 where PNGS and R-WIN yield better
results than CH-WIN.

We do not include AIRS in this experiments because CH-
WIN is an improved version of AIRS and we showed in pre-
vious sections that CH-WIN outperforms AIRS. Also, we do
not need to interleave AE+AD between the runs of search-
based optimizers because we showed, in the previous sec-
tion, that the results emitted by the search-based optimizers
usually do not contain inefficiency which can be detected by
poly-time optimizers. Thus, for each search-based optimizer
S1 and S2, we tested AE+ AD+ S1+ S2 (where S1 and S2

should be different optimizers).
In this experiment, we run AE and AD first, then S1 for

7.5 minutes, then S2 for 7.5 minutes. In all cases, the re-
planning is constrained under 2GB memory limitation, and
the input was again the results of LAMA being run for 15
minutes, 2GB constraints.

The results in Table 6 show that the combination of dif-
ferent search-based optimizers does not yield better results
than AE + AD + CH-WIN. This supports our claim that CH-
WIN has both a proper window selection scheme (use of c/h
ratio), which is lacking in R-WIN and PNGS, and a window
scaling scheme (adaptive window size), which is lacking in
R-WIN and AIRS, thus outperforming those algorithms by
successfully focusing the replanning effort on to the region
of “most room for improvements”.

5 Conclusion
We proposed and evaluated a simple, window-based replan-
ning approach to plan optimization. Although it has been
conjectured that a sliding window based techniques is “un-
likely to find relevant subproblems in general planning prob-
lems where the sequential plan is often an arbitrary, inter-
leaving of separate threads” (Siddiqui and Haslum 2013),
our results indicate that a window based approach is suffi-
cient to obtain significant plan quality improvements com-
pared to the baseline, as well as to previous methods such
as PNGS. A comparison with the block-deordering strate-
gies in BDPO2 (as well as its combinations with other algo-
rithms) is an avenue for future work (Siddiqui and Haslum
2013).

One advantage of our approach is simplicity of implemen-
tation. CH-WIN is a pure, wrapper-based approach which
uses a standard off-the-shelf planner for replanning, as well
as the heuristic value computations needed for window se-
lection. Our implementation of CH-WIN required no modi-

domain AE AD
AIRS

AE AD
PNGS

AE AD
R-WIN

AE AD
CH-WIN

airport 100 100 100 99.3
barman11 91.0 91.0 85.0 89.2
blocks 84.2 82.9 83.9 80.1
depot 93.4 89.9 87.4 88.0
driverlog 95.6 92.3 89.6 87.8
elevators08 91.6 90.8 80.5 82.5
elevators11 92.4 92.4 87.7 89.8
floortile11 94.7 93.2 93.7 78.9
freecell 98.9 91.2 99.0 94.6
grid 100 91.5 92.7 91.9
logistics00 96.2 97.6 96.8 93.4
logistics98 98.3 98.5 97.4 97.1
miconic 89.8 89.8 89.8 88.4
nomystery11 100 100 100 99.8
openstacks08 100 100 100 100
openstacks11 100 100 100 100
parcprinter08 98.3 98.3 98.3 94.2
parcprinter11 100 100 100 93.1
parking11 99.5 99.5 98.2 98.6
pegsol08 100 100 94.9 89.4
pegsol11 100 100 92.1 85.9
pipesworld-not 92.6 91.6 93.1 87.8
pipesworld-t 93.9 90.5 95.3 90.4
rovers 96.7 96.8 96.3 96.4
satellite 96.7 97.3 95.6 95.6
scanalyzer08 100 98.6 96.4 93.2
scanalyzer11 100 98.5 98.2 93.2
sokoban08 98.4 94.4 98.1 88.2
sokoban11 98.2 93.7 98.2 87.2
tpp 97.6 98.8 93.0 92.5
transport08 94.1 93.1 91.1 92.1
transport11 91.9 91.9 90.9 91.8
trucks 100 100 100 100
visitall11 99.7 99.7 99.3 99.3
woodworking08 99.3 99.3 99.3 87.6
woodworking11 98.8 98.8 98.8 88.9
zenotravel 100 100 100 100
mean(harmonic) 95.6 94.4 94.0 91.8

Table 5: Results of using poly-time optimizers and search-
based optimizers, on the plans obtained by 15 minutes runs
of LAMA. The harmonic means of the ratios over all prob-
lem instances are shown. The poly-time optimizers did not
harm the successive application of search-based optimizers,
and the combination using our CH-WIN was the best per-
former, same as in the previous experiments.

10

AE AD
S1 PNGS R-WIN CH-WIN
S2 R-

WIN
CH-
WIN

PNGS CH-
WIN

PNGS R-
WIN

airport 100 99.6 100 99.5 99.6 99.6
barman11 86.2 90.1 85.9 85.6 89.9 85.8
blocks 81.9 80.1 85.2 78.6 79.9 79.6
depot 88.4 88.3 87.8 88.5 88.1 87.6
driverlog 89.8 87.4 89.9 86.9 87.0 86.4
elevators08 86.5 86.3 80.0 81.2 84.1 80.3
elevators11 91.4 92.2 88.7 88.5 90.9 88.3
floortile11 90.8 78.6 86.9 78.6 78.9 78.9
freecell 91.7 91.4 98.2 98.8 91.7 95.8
grid 91.5 91.5 91.5 92.3 91.5 91.9
logistics00 96.5 94.5 96.6 94.1 94.2 94.2
logistics98 97.6 97.6 97.9 97.6 97.6 96.8
miconic 89.4 87.3 89.6 87.7 88.6 88.6
nomystery11 100 100 100 100 100 100
openstacks08 100 100 100 100 100 100
openstacks11 100 100 100 100 100 100
parcprinter08 97.5 94.5 97.8 94.2 94.2 94.2
parcprinter11 98.5 94.2 99.5 93.7 93.2 93.2
parking11 98.6 98.9 98.1 98.7 98.9 98.2
pegsol08 93.2 88.3 91.4 87.1 91.4 93.2
pegsol11 87.7 85.9 87.7 83.8 87.7 89.4
pipesworld-not 91.6 88.8 91.6 88.7 88.5 88.7
pipesworld-t 91.0 90.1 90.8 91.2 89.0 91.4
rovers 96.7 96.4 96.5 96.2 96.4 96.3
satellite 95.2 96.0 95.2 94.9 95.9 94.8
scanalyzer08 96.6 94.8 96.1 94.2 94.0 94.0
scanalyzer11 96.7 95.6 96.2 95.7 94.8 94.3
sokoban08 95.1 89.0 96.5 94.0 91.2 91.2
sokoban11 94.4 88.7 94.6 91.6 90.6 90.4
tpp 95.1 94.7 94.7 92.9 93.7 91.7
transport08 90.9 91.7 90.9 91.8 91.7 91.6
transport11 90.9 91.4 91.0 91.0 90.9 91.1
trucks 100 100 100 100 100 100
visitall11 99.4 99.3 99.4 99.0 99.4 99.5
woodworking08 98.9 97.6 98.9 89.0 89.5 89.0
woodworking11 98.8 98.8 98.8 92.4 92.5 92.4
zenotravel 100 100 100 100 100 100
mean(harmonic) 93.4 92.5 93.6 92.2 92.1 92.0

Table 6: Results of applying polytime optimizers (AE and
AD) and multiple search-based optimizers (S1 and S2) in se-
quence, on the plans obtained by 15 minutes runs of LAMA.
The numbers show the harmonic means of the ratios over all
problem instances. Each search-based optimizer is run for
7.5 minutes under 2GB constraints.
Detailed analysis on the log file has shown that the poly-time
optimizer failed to find a better plan within the time limit in
many instances and simply passed the input plan to the next
optimizer.
Overall, participation of CH-WIN resulted in better plans
compared to those without CH-WIN, and none of these con-
figuration outperformed the configuration AE + AD + CH-
WIN (reduction ratio 91.8%), indicating that CH-WIN dom-
inates AIRS, R-WIN, PNGS.

fications to the Fast Downward planner. The CH-WIN code
is simple: aside from the simple window selection schemes
described in this paper, the only thing that the CH-WIN
code needs to do is to perform a forward simulation of a
PDDL problem (for window start/end point construction),
i.e., it is no more complicated than a simple plan validator.
Thus, CH-WIN is a promising, “quick-and-dirty” approach
for plan optimization.

6 Acknowledgments
This research was supported by a JSPS Grant-in-Aid for
JSPS Fellows and a JSPS KAKENHI grant.

References
Balyo, T.; Barták, R.; and Surynek, P. 2012. Shorten-
ing Plans by Local Re-planning. In IEEE 24th Interna-
tional Conference on Tools with Artificial Intelligence, IC-
TAI 2012, Athens, Greece, November 7-9, 2012, 1022–1028.
Chrpa, L., and Siddiqui, F. 2015. Exploiting Block Deorder-
ing for Improving Planners Efficiency. In Proc. IJCAI.
Chrpa, L.; McCluskey, T. L.; and Osborne, H. 2012. Opti-
mizing Plans through Analysis of Action Dependencies and
Independencies. In Proc. ICAPS.
Estrem, S. J., and Krebsbach, K. D. 2012. AIRS: Anytime
Iterative Refinement of a Solution. In FLAIRS Conference.
Helmert, M., and Domshlak, C. 2009. Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway? In
Proc. ICAPS.
Helmert, M. 2006. The Fast Downward Planning System.
JAIR 26:191–246.
Nakhost, H., and Müller, M. 2010. Action Elimination and
Plan Neighborhood Graph Search: Two Algorithms for Plan
Improvement. In Proc. ICAPS, 121–128.
Pohl, I. 1971. Bi-directional Search. Machine Intelligence
6:127–140.
Ratner, D., and Pohl, I. 1986. Joint and LPA*: Combina-
tion of Approximation and Search. In Proceedings of the
5th National Conference on Artificial Intelligence. Philadel-
phia, PA, August 11-15, 1986. Volume 1: Science., 173–177.
Richter, S., and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks. J.
Artif. Intell. Res.(JAIR) 39(1):127–177.
Siddiqui, F. H., and Haslum, P. 2013. Plan Quality Optimi-
sation via Block Decomposition. In Proc. IJCAI.
Siddiqui, F. H., and Haslum, P. 2015. Continuing Plan Qual-
ity Optimisation. J. Artif. Intell. Res.(JAIR) 54:369–435.
Thayer, J. T.; Benton, J.; and Helmert, M. 2012. Better
Parameter-Free Anytime Search by Minimizing Time Be-
tween Solutions. In Proc. SoCS, 120–128.
Xie, F.; Valenzano, R. A.; and Müller, M. 2013. Better Time
Constrained Search via Randomization and Postprocessing.
In Proc. ICAPS.

11

Correlation Complexity of Classical Planning Domains

Jendrik Seipp and Florian Pommerening and Gabriele Röger and Malte Helmert
University of Basel
Basel, Switzerland

{jendrik.seipp,florian.pommerening,gabriele.roeger,malte.helmert}@unibas.ch

Abstract
We analyze how complex a heuristic function must be to di-
rectly guide a state-space search algorithm towards the goal.
As a case study, we examine functions that evaluate states
with a weighted sum of state features. We measure the com-
plexity of a domain by the complexity of the required fea-
tures. We analyze conditions under which the search algo-
rithm runs in polynomial time and show complexity results
for several classical planning domains.

Introduction
Recently, potential heuristics (Pommerening et al. 2015)
have been introduced as a new class of heuristics for clas-
sical planning. A potential heuristic is defined by specifying
a numerical (possibly negative) weight for every fact of a
planning task. The heuristic value of a state is then simply
the sum of weights of the facts that are present in that state.
Potential heuristics can be viewed as linear combinations
of trivial indicator functions, where each indicator function
tests whether a certain fact is present in the given state.

Due to their simple structure, potential heuristics can
be evaluated very efficiently. Of course, the quality of
their heuristic estimates critically depends on the choice of
weights. In past work, finding suitable weights has been cast
as an optimization problem with encouraging results (Pom-
merening et al. 2015; Seipp, Pommerening, and Helmert
2015).

However, it is clear that for challenging planning tasks,
such simple potential heuristics cannot be truly informative,
as complex interactions between different state variables
cannot be adequately captured. Fortunately, the idea can be
readily generalized by considering indicator functions for
more complex state features than individual facts. An ob-
vious generalization is to test for the presence of a set (or
conjunction) of facts, similar to the generalization from the
hmax heuristic to Haslum and Geffner’s hm heuristics (2000)
or to the generalization from atomic to general projections in
pattern database (PDB) heuristics [e.g., Edelkamp 2001].

It is easy to see that with such a generalization, arbitrary
heuristics can be expressed as potential heuristics: in the ex-
treme case, we can introduce a separate feature for every sin-
gle state s and set its weight to the actual cost-to-goal h∗(s)
of that state. Again, this is analogous to the hm heuristics,
which converge to h∗ as m increases to the number of facts

of the planning task, and to PDB heuristics, which similarly
converge to h∗ as the set of pattern variables grows to in-
clude all variables. However, it is equally easy to see that in
all three cases, the size of the representation explodes, and
the heuristics become unmanageable on their way to perfec-
tion.

This raises the question how complex these heuristics
need to become in order to faithfully capture the critical in-
teractions between state variables. Many planning domains
are known to admit polynomial domain-specific solution al-
gorithms [e.g., Helmert 2003]. Perhaps “simple” heuristics
only considering conjunctions of 2 or 3 facts are already
highly accurate in these “simple” domains?

Unfortunately, there is bad news in the literature: Helmert
and Mattmüller (2008) showed that hm and (single) PDB
heuristics based on conjunctions of bounded size give rise to
arbitrarily bad heuristics in all domains they studied. How-
ever, they also showed that additive heuristics based on mul-
tiple PDBs can be significantly more accurate. This is not
just good news for PDBs but also for potential heuristics,
which are additive combinations of simpler heuristics by
definition.

So just how complex does a potential heuristic have to be
so that solving a planning task becomes simple? Following
in Hoffmann’s (2005) footsteps, we formalize this question
by considering per-domain results for the state space topol-
ogy of planning tasks. Hoffmann studied the search space
topology of a fixed heuristic, namely the optimal delete re-
laxation heuristic h+. Delete relaxation heuristics are rarely
perfect but frequently good: to quantify this, Hoffmann fo-
cused on the size of local minima in the state space to dis-
tinguish “easy” from “difficult” domains for h+.

In contrast, potential heuristics can be as accurate as we
wish, at a cost in heuristic complexity. To reflect this degree
of control, in our theoretical analysis we are more demand-
ing with state space topology, looking for heuristics that ex-
hibit no local minima at all. The question, then, is how com-
plex – measured in the size of the conjunctions required –
a potential heuristic needs to be in order to have no local
minima.1

1Throughout the paper, by “local minimum” we mean any state
which does not have a successor with lower heuristic value. This
includes states within heuristic plateaus.

12

In this paper, we study this complexity measure for a num-
ber of well-known planning domains. It turns out that the
results are very encouraging, motivating further study of po-
tential heuristics with conjunctive features. We believe that
this outcome is also relevant to researchers with no particu-
lar interest in potential heuristics, or even heuristic search.

At its core, the complexity measure we introduce de-
scribes how tightly interrelated different aspects of a plan-
ning task are, and to what extent these aspects can be con-
sidered separately. Within planning as heuristic search, such
a measure is clearly relevant for approaches such as plan-
ning with pattern databases (Edelkamp 2001; Haslum et al.
2007; Pommerening, Röger, and Helmert 2013), critical-
path heuristics (Haslum and Geffner 2000; Haslum, Bonet,
and Geffner 2005), semi-relaxed plan heuristics (Keyder,
Hoffmann, and Haslum 2014), conjunctive landmarks (Key-
der, Richter, and Helmert 2010), or flow heuristics with
merges (Bonet and van den Briel 2014). However, we think
that such a measure of “interrelatedness” can be equally use-
ful for non-heuristic planning approaches, such as factored
planning (Brafman and Domshlak 2013), planning with de-
cision diagrams [e.g., Torralba 2015], and compilations to
SAT [e.g., Rintanen 2012; Suda 2014].

The general idea of measuring the degree of interrelated-
ness between state variables of a planning task is not new.
In a line of research with very similar motivations to ours,
Chen and Giménez (2007; 2009) studied several notions
of width for planning tasks, where low width implies low
complexity of planning. In the same spirit, Lipovetzky and
Geffner (2012) also introduced a notion of width (different
from those of Chen and Giménez) and exploited it to ef-
ficiently solve a large number of standard planning bench-
marks. We return to this work towards the end of the paper,
where we discuss the relationship between our complexity
measure and the existing notions of width.

Planning Formalism
We consider SAS+ (Bäckström and Nebel 1995) planning
tasks Π = 〈V,O, sI, s?〉, where V is a finite set of state vari-
ables, O is a finite set of operators, sI is the initial state, and
s? is the goal.

Each state variable v ∈ V has a finite domain dom(v). A
pair 〈v, d〉 with v ∈ V and d ∈ dom(v) is called a fact. A
set of facts is consistent if all contained facts belong to dif-
ferent variables. A consistent set of facts p is called a partial
variable assignment. We write vars(p) to denote the set of
variables to which the facts in p belong. For v ∈ vars(p)
we write p[v] to denote the value d ∈ dom(v) for which
〈v, d〉 ∈ p. If vars(p) = V , p is called a state.

The initial state sI is a state, and the goal s? is a partial
variable assignment. A state s is consistent with partial vari-
able assignment p if p ⊆ s. A state s is a goal state if it
is consistent with the goal s?. In some contexts, we refer to
partial variable assignments as (state) features and say that a
state has the feature F if it is consistent with F .

Each operator o ∈ O is given as a pair o =
〈pre(o), eff(o)〉, where the precondition pre(o) and the effect
eff(o) are partial variable assignments. Operator o is appli-

cable in state s if s is consistent with pre(o). In this case,
o may be applied in s, yielding the successor state sJoK de-
fined by sJoK[v] = eff(o)[v] for all v ∈ vars(eff(o)) and
sJoK[v] = s[v] for all other variables v. We write succ(s)
for the set of all successor states of s, i.e., succ(s) = {sJoK |
o ∈ O is applicable in s}. Our focus in this paper is on plan-
ning algorithms that do not provide quality guarantees for
the plans they find, and hence we do not consider operator
costs.

For a state s, an s-plan 〈o1, . . . , on〉 is a finite sequence of
operators such that sJo1KJo2K . . . JonK is a goal state. We say
that s is solvable if an s-plan exists and unsolvable other-
wise. The task Π is solvable if the initial state sI is solvable.
A state s is reachable if 〈V,O, sI, s〉 is solvable. Finally, a
heuristic is a function mapping states to Z ∪ {∞}.

Potential Heuristics
Potential heuristics were introduced by Pommerening et
al. (2015) as linear combinations of indicator functions,
where each indicator function tests if a given fact is con-
tained in the evaluated state. We generalize the definition
to allow conjunctive state features. Throughout the paper,
we write indicator functions using Iverson brackets (Knuth
1992).

Definition 1 (potential heuristic). Let Π be a planning task,
let F be a set of state features of Π, and let w : F → Z ∪
{∞}.

The potential heuristic with features F and weight func-
tion w is the function ϕ mapping each state s of Π to the
integer

ϕ(s) =
∑

F∈F
w(F)[F ⊆ s].

Note that we limit the definition to integer or infinite
weights because these are sufficient for our purposes and
simplify presentation. In other contexts, it may be preferable
to permit arbitrary real-valued weights.

We measure the level of complexity of a potential heuris-
tic by the size of the largest conjunction it uses as a feature,
which we call its dimension.

Definition 2 (dimension). A potential function with features
F has dimension maxF∈F |F |.

Rephrasing what we said earlier using this terminology,
previous work introduced potential heuristics of dimension
1, while we consider arbitrary dimensions.

The dimension of a potential heuristic is not the only nat-
ural way to measure its complexity. Alternative, more fine-
grained measures include the number of features or the sum
of features sizes. We choose to focus on the dimension be-
cause our results do not require more fine-grained measures
and because dimension is a natural analogue to well-known
parameters of other heuristics, such as the parameter m in
the hm heuristics and the pattern size in PDB heuristics.

For tasks with n state variables, potential heuristics of di-
mension d can be evaluated in time O(nd). In the common
case where a family of planning tasks has a fixed bound on
the number of effects in each operator, this can be improved
toO(nd−1) with incremental computations, i.e., when asked

13

to compute the heuristic value of a state given its parent state,
generating operator and parent heuristic value. (To see this,
note that if an operator changes k state variables, then only
features involving at least one of these k state variables and
hence at most d− 1 other state variables need to be consid-
ered. The total number of such features can be bounded by
2k · (n − k)d−1, which is O(nd−1) for constant k.) In par-
ticular, in this case potential heuristics of dimension 1 can
be incrementally computed in constant time and potential
heuristics of dimension 2 can be incrementally computed in
time O(n).

State Space Topology
We want to study potential heuristics without local minima.
To formalize this, we must first clarify what we mean by
having no local minima. A tentative definition might be:
“every non-goal state has a successor with lower heuristic
value”. However, this is too strict: in a finite state space, such
a definition implies that there is a strictly descending path to-
wards a goal state from every state, which is impossible to
satisfy if the task has any unsolvable states.

Hence, we only require that solvable states have succes-
sors with lower heuristic value. To avoid a heuristic search
algorithm from getting trapped in an unsolvable region of
the state space, we also require that unsolvable successors s′
of a solvable state s never have a lower heuristic value than
s.

A second problem is that planning tasks often include
“impossible” states that violate physical constraints, such
as two blocks being stacked on top of each other in the
Blocksworld domain. It would be unnecessarily restrictive to
require that the state space topology is also well-behaved for
such impossible states. However, there is in general no sim-
ple way to distinguish possible from impossible states with-
out complicating the definition of planning tasks. A simple
remedy is to restrict attention to reachable states.
Definition 3 (alive). A state is alive if it is solvable, reach-
able, and not a goal state.

We can now introduce two criteria that together imply ab-
sence of local minima.
Definition 4 (descending). A heuristic h is descending if all
alive states have an improving successor. In symbols, for all
states s:

s alive =⇒ ∃s′ ∈ succ(s) : h(s′) < h(s).

Definition 5 (avoiding dead ends). A heuristic h avoids dead
ends if all improving successors of alive states are solvable.
In symbols, for all states s and s′:

s alive ∧ s′ ∈ succ(s) ∧ h(s′) < h(s) =⇒ s′ solvable.

Given these two properties typical heuristic search algo-
rithms for satisficing planning are guided directly towards
the goal. We give a formal proof for simple hill-climbing
(Algorithm 1).
Theorem 1. Let h be a descending, dead-end avoid-
ing heuristic for a planning task Π. Let L = h(sI) −
mins∈S h(s), where S is the set of all states of Π.

Algorithm 1 Simple hill-climbing.
s← sI
π ← 〈〉
while s is no goal state do

improvement← false
for s′ ∈ succ(s), in any order do

if h(s′) < h(s) then
improvement← true
append o ∈ O with sJoK = s′ to π
s← s′

break
if improvement is false then

fail
return π

Then simple hill-climbing with h solves Π after at most
L state expansions if Π is solvable and returns with failure
after at most L state expansions if Π is unsolvable.

Proof: Consider the case where Π is solvable. For the while
loop, we show the loop invariant that s is reachable and
solvable. Reachability is trivial. For solvability, s is initially
solvable, and in every iteration of the loop, the chosen state
s′ is solvable because s is alive (because it is not a goal state
and due to the loop invariant, it is reachable and solvable),
s′ is an improving successor of s and h avoids dead ends.

We next show that the algorithm terminates by returning a
plan (rather than failing or not terminating). Because h is de-
scending, an improving state is always found inside the for
loop, so the while loop never fails. Moreover, the while loop
must finish with a bounded number of iterations because
h(s) decreases in every iteration and hence the sequence of
expanded states never repeats. This proves that the algorithm
terminates and also establishes the stated bound on L. (Note
that h(s) is an integer and hence must decrease by at least 1
in every iteration.)

In the case where Π is unsolvable, simple hill-climbing
fails as soon as there is no more successor with lower heuris-
tic value. As in the previous case, h(s) cannot decrease more
than L times, bounding the number of steps. �

The same result holds, with the same proof, for steepest
ascent hill-climbing, a variant of hill-climbing that always
moves to a successor s′ minimizing the h value.

In the case where Π is solvable, the result also extends
to the three most common satisficing planning algorithms:
standard greedy best-first search a.k.a. eager greedy search
(Russell and Norvig 2003), greedy best-first search with
deferred evaluation a.k.a. lazy greedy search (Richter and
Helmert 2009) and enforced hill-climbing (Hoffmann and
Nebel 2001). To see this, observe that for descending, dead-
end avoiding heuristics applied to solvable planning tasks,
eager search expands the same states as steepest ascent hill-
climbing, enforced hill-climbing expands the same states
as simple hill-climbing, and lazy search evaluates the same
states as simple hill-climbing.

We conclude this section by looking in a bit more depth
at the requirement of avoiding dead ends. A special case
in which this property holds for all heuristics are tasks

14

where no solvable states have unsolvable successors. Hoff-
mann (2005) calls such planning tasks harmless. A common
special case of harmless planning tasks are undirected tasks,
where s ∈ succ(s′) iff s′ ∈ succ(s).

Instead of heuristics that avoid dead ends, one can make
the stricter requirement of recognizing dead ends (Hoffmann
2005), i.e., requiring h(s) = ∞ for all unsolvable states.
This stricter property is not needed for Theorem 1, but if it
is given and the heuristic is known to be safe (i.e., h(s) =∞
guarantees that the state is unsolvable), then the equiva-
lent of the theorem for enforced hill-climbing, eager greedy
search and lazy greedy search also holds in the case of un-
solvable planning tasks.

Instead of strengthening the requirement of avoiding dead
ends, one could also consider the weaker requirement that
unsolvable states are never among the best successors (mini-
mizing h) of solvable states. This weaker requirement would
still be sufficient for establishing a result like Theorem 1
for steepest ascent hill-climbing and eager greedy search,
but not for simple or enforced hill-climbing or lazy greedy
search.

Correlation Complexity
We now put the pieces of the previous two sections together:
correlation complexity measures how complex a potential
heuristic must be to obtain a favorable state space topology.

Definition 6 (correlation complexity of a planning task).
The correlation complexity of a planning task Π is the min-
imum dimension d of all descending, dead-end avoiding po-
tential heuristics for Π.

The correlation complexity of a planning task is trivially
bounded from above by the number of state variables n: in
the worst case, we can define a feature with weight h∗(s) for
every state s, and because |s| = n, such a potential heuris-
tic has dimension n. In particular, this guarantees that the
correlation complexity of planning tasks is well-defined.

The definition can be extended to planning domains,
which for the purposes of this paper are simply (usually in-
finite) sets of planning tasks.

Definition 7 (correlation complexity of a planning domain).
The correlation complexity of a planning domain is the max-
imal correlation complexity of all planning tasks in the do-
main, or∞ if no maximum exists.

If a domain has low correlation complexity, this is a sign
that no complex interactions between variables need to be
considered in order to solve planning tasks in this domain.
Hence, low correlation complexity is an indication that a
planning domain is “easy”.

A formal tractability result for planning in such a do-
main does not immediately follow because Definition 7 does
not guarantee that a low-dimension potential heuristic for a
given planning task is easy to construct – it only guarantees
that such a potential heuristic exists. Moreover, planning do-
mains with low correlation complexity can have exponen-
tially long plans. For example, it is easy to construct “binary
counter” tasks (Θi)i≥1 with correlation complexity 1 where
Θi requires plans of length 2i to solve. In the absence of

such complications, low correlation complexity indeed im-
plies tractability.

Theorem 2. Let D be a planning domain with correlation
complexity d <∞, and let p be a polynomial such that given
Π ∈ D with encoding size n,

1. a descending, dead-end avoiding potential heuristic ϕΠ

of dimension d can be computed in time p(n), and
2. feature weights are polynomially bounded: |w(F)| ≤
p(n) for all features F of ϕΠ.

Then plan generation inD can be solved in polynomial time.

Proof: A task with encoding size n has at most n state vari-
ables, and hence ϕΠ has no more than O(nd) features. To-
gether with the bound on the individual weights, it follows
that |ϕΠ(s)| ≤ O(nd)p(n) for all states s, and hence the
difference between the heuristic values of any two states is
bounded by a polynomial in n.

The result follows with Theorem 1, as L is bounded by a
polynomial in n, and each heuristic evaluation can be per-
formed in time O(nd), which is also polynomial in n. �

Properties of Potential Heuristics
In the rest of the paper, we study the correlation complexity
of some common planning domains. Towards this end, we
first establish some general properties of potential heuristics,
concluding in two criteria to show that a task has correlation
complexity at least 2. We begin with a result that is related
to the incremental computation of potential heuristics.

Theorem 3. Let ϕ be a potential heuristic for a planning
task Π. Let s be a state of Π, let o be an operator applicable
in s, and let s′ = sJoK. Then:

ϕ(s′)−ϕ(s) =
∑

F∈F
vars(F)∩vars(eff(o)) 6=∅

w(F)([F ⊆ s′]−[F ⊆ s])

Proof: All other features are either present in both s and s′
or absent in both s and s′. Their weights cancel out in the
difference. �

Consider a heuristic h and an operator o applicable in a
state s. We say that o is good in s under h if h(sJoK) < h(s)
and bad in s under h otherwise. We say that a planning task
is in normal form if vars(eff(o)) ⊆ vars(pre(o)) for all op-
erators o [cf. Pommerening and Helmert 2015]. It is easy to
see that for tasks in normal form, whether or not an operator
is good under a potential heuristic of dimension 1 does not
depend on the state s: either o improves the heuristic value
in all states where it is applicable, or it does so in no state.
Hence, for potential heuristics of dimension 1 we can speak
of good or bad operators without referring to a specific state.

We say that operator o is critical in planning task Π if
there exists an alive state s such that every s-plan includes o.
(In other words, o is an action landmark in some alive state.)

Theorem 4. Let ϕ be a descending potential heuristic of
dimension 1 for a planning task Π in normal form.

If o is critical in Π, then o is good under ϕ.

15

Proof: Because o is critical, there exists an alive state s from
which every s-plan includes o. Because ϕ is descending,
there exists a sequence of operator applications that reach
a goal state from s and decrease the heuristic value in every
step. All operators applied in this sequence must be good,
and one of them must be o. �

If o has an inverse operator o′ (i.e., sJoKJo′K = s for some
state s), then o and o′ cannot both be good: if going from s to
sJoK decreases the heuristic value, then returning from sJoK
to s by applying o′ must increase it to the original value.
Together with Theorem 4 we obtain the first criterion for
showing that a task cannot have correlation complexity 1.

Theorem 5. Let Π be a planning task in normal form, and
let o and o′ be critical operators of Π that are inverses of
each other. Then Π has correlation complexity at least 2.

Proof: Assume the contrary: there exists a descending po-
tential heuristic ϕ of dimension 1. From the previous theo-
rem, o and o′ are both good under ϕ. Inverse operators can-
not both be good: a contradiction. �

For the second criterion, we need the notion of dangerous
operators. Operator o is dangerous in task Π if there exists an
alive state s in which o is applicable and sJoK is unsolvable.

Theorem 6. Let Π be a planning task in normal form, and
let o be an operator that is critical and dangerous in Π. Then
Π has correlation complexity at least 2.

Proof: Assume the contrary: there exists a descending po-
tential heuristic ϕ of dimension 1 that avoids dead ends.
Since o is critical, it is good under ϕ (Theorem 4). But o
is also dangerous and hence leads from an alive to an un-
solvable state. By the definition of avoiding dead ends, this
means that o cannot be good: a contradiction. �

Spanner
We now begin our case studies of planning domains. In the
Spanner domain (IPC 2014), an agent has to walk to a gate
along a chain of m locations l1–l2–. . . –lm, with the gate at
lm. At the gate there are n nuts that the agent has to tighten
with n single-use spanners that it must pick up along the
way. The agent can only move towards the gate, not back-
wards.

Lemma 1. Spanner has correlation complexity at least 2.

Proof: Consider a task with two locations l1, l2 and one
spanner at l1. Walking from l1 to l2 is critical, but dangerous.
(Walking before picking up the spanner leads to an unsolv-
able state.) The result follows with Theorem 6. �
Theorem 7. Spanner has correlation complexity 2.

Proof: Let Π be a Spanner task with n spanners and m lo-
cations. For any location li let Si be the number of spanners
at all locations lj with j < i. Walking to location li while
carrying fewer than Si spanners leads to an unsolvable state.

The following weight function defines a descending,
dead-end avoiding potential heuristic ϕ of dimension 2 for

Π. The result then follows with the preceding lemma.

w({〈agent, li〉}) =

i∑

k=1

(Sk − 1)

w({〈agent, li〉, 〈carry-spannerj , yes〉}) = m− i
w({〈carry-spannerj , yes〉}) = −m
w({〈tightenedj , yes〉}) = −m− 1

for all 1 ≤ i ≤ m and 1 ≤ j ≤ n
We show that ϕ is descending and avoids dead ends by

showing that the heuristic difference induced by picking up a
spanner or tightening a nut is always negative and the poten-
tial difference induced by walking from li−1 to li is negative
iff the agent is carrying Si spanners.

Picking up spanner j at location li changes the potential
by m− i−m = −i < 0.

Tightening nut j is always done in location lm and
changes the potential by−m−1− (−m)− (m−m) = −1.

Walking from li−1 to li while carrying s spanners changes
the potential by

∑i
k=1(Sk − 1)−∑i−1

k=1(Sk − 1) + s((m−
i)−(m−(i−1))) = Si−s−1 which is negative iff s ≥ Si.
�

Gripper
In the Gripper domain (IPC 1998), a robot with two grip-
pers has to move n balls from room A to room B. It can
pick up and drop balls in either room and move between the
two rooms. The robot always starts in room A and the goal
is always to transport all balls to room B. In a SAS+ rep-
resentation there is a variable specifying the position of the
robot r ∈ {A,B} and variables for the position of each ball
bi ∈ {A,B,G1, G2} for 1 ≤ i ≤ n. G1 and G2 stand for
the two grippers.
Lemma 2. Gripper has correlation complexity at least 2.
Proof: In a Gripper task with more than 2 balls, moving
from A to B and moving from B to A are both critical oper-
ators, and they are inverses of each other. The result follows
with Theorem 5. �
Theorem 8. Gripper has correlation complexity 2.
Proof: The following weight function defines a descending,
dead-end avoiding potential heuristic of dimension 2 for the
Gripper task with n balls. The result then follows with the
preceding lemma.

w({〈r,B〉}) = 1

w({〈bi, A〉}) = 8

w({〈bi, Gj〉}) = 4

w({〈r,B〉, 〈bi, Gj〉}) = −2

for i ∈ {1, . . . , n} and j ∈ {1, 2}
The heuristic avoids dead ends because Gripper is undi-

rected and hence harmless. To show that the heuristic is de-
scending, we show by case distinction that every reachable
non-goal state has an improving successor.

If the robot is in room A and can pick up a ball,
picking it up changes the potential by −w({〈bi, A〉}) +

16

w({〈bi, Gj〉}) = −8 + 4 = −4. If there is no ball to
pick up, but the robot has g > 0 balls in its grippers, mov-
ing to room B changes the potential by w({〈r,B〉}) − g ·
w({〈r,B〉, 〈bi, Gj〉}) = 1− 2g < 0. If there are no balls to
pick up and no balls in the grippers, the state is a goal state.

If the robot is in room B and has a ball in one of
its grippers, dropping a ball changes the potential by
−w({〈bi, Gj〉}) − w({〈r,B〉, 〈bi, Gj〉}) = −4 − (−2) =
−2. If it does not have a ball in its grippers, moving to room
A changes the potential by −w({〈r,B〉}) = −1. �

We remark that steepest ascent hill climbing with the
given potential heuristic produces an optimal plan because
picking up a ball in room A (improvement by 4) and drop-
ping a ball in room B (improvement by 2) are always pre-
ferred to moving to the other room (improvement by 1).

VisitAll
In VisitAll (IPC 2011) an agent has to visit all vertices of a
graph. In a SAS+ encoding of the tasks there is a Boolean
variable for each vertex indicating whether the vertex has
been visited and a variable storing the position of the agent.

VisitAll tasks are not in normal form but we can transform
them to normal form by replacing each operator walk-A-
B with two operators: one for the case where B is already
visited and one to visit B for the first time. The transformed
domain has the same states and successor state relation and
hence has the same correlation complexity as the original
one.
Lemma 3. VisitAll has correlation complexity at least 2.
Proof: Consider a task with a chain of four locations (l1–
l2–l3–l4) and initial location l2. Consider the following two
alive states s and s′: in both states, l2 and l3 are the locations
that have already been visited. In s, the agent is at l2. In
s′, it is at l3. From s, we see that walk-to-visited-l2-l3 is
critical; from s′, we see that its inverse walk-to-visited-l3-l2
is critical. The result follows with Theorem 5. �
Theorem 9. VisitAll has correlation complexity 2.
Proof: Let Π be a task with n locations l1, . . . , ln forming a
connected graph. (If the graph is unconnected, the task is un-
solvable.) Let d(i, j) be the shortest path distance between li
and lj . The following weight function defines a descending,
dead-end avoiding potential function of dimension 2 for Π:

w({〈visited-li, no〉, 〈pos, lj〉}) = d(i, j)2i for all i, j.

The result then follows with the preceding lemma.
The function avoids dead ends because VisitAll is harm-

less. To show that it is descending, we consider a non-goal
state where the unvisited location with the highest index is
lm. Moving one step in the direction of lm decreases the po-
tential by at least 2m −∑1≤i<m 2i = 2. �

We remark that even though the construction uses ex-
ponential weights, it leads to a polynomial planning algo-
rithm because singly exponential numbers require only lin-
ear space to represent (hence computing the heuristic is not
expensive), and the length of the generated plan is at worst
quadratic in the number of locations. (It never takes more
than n steps to reach another previously unvisited location.)

Blocksworld
In Blocksworld [e.g., Slaney and Thiébaux 2001] there are
stacks of n blocks that must be rearranged from an initial
to a goal configuration. We assume the following standard
SAS+ encoding for the domain formulation without an ex-
plicit hand: for each block A there is a Boolean variable
clear-A denoting whether another block can be stacked on
top of A and a variable pos-A that specifies what is below
A. The possible values of pos-A are one value B for each
other block B and the special value T for being on the table.
Operators move a clear block from one block onto another,
from a block onto the table, or from the table onto a block.
Lemma 4. Blocksworld has correlation complexity at
least 2.

Proof: Consider a task with initial stateA–B–D–C (A is on
top of the tower) and goalA–B–C–D. MovingA fromB to
the table and its inverse are critical. We apply Theorem 5. �
Theorem 10. Blocksworld has correlation complexity 2.

Proof: Let Π be a Blocksworld task with blocks B where
sG is a goal state. We call the position of any block A in
sG its target position GA (which may be the table). If a
block is in its target position, it is correctly placed, other-
wise misplaced. For each tower in sG, we number the blocks
from top to bottom, i.e., the top block B of each tower has
level(B) = 1, the block directly below it has level 2, etc.
We call a block B controlled by a block A if B is anywhere
below A in a tower of sG. We say a block is done in a state if
it and all blocks that are below it in sG are correctly placed.

Blocksworld is undirected, and hence avoiding dead ends
is trivial. The following weight function defines a descend-
ing potential heuristic of dimension 2 for Π. The result then
follows with the preceding lemma.

Atomic features for all blocks A ∈ B:

w({〈pos-A, X〉}) = 2 for all X ∈ B \ {A}, X 6= GA

w({〈pos-A, T 〉}) =

{−1 if GA = T

1 otherwise

Conjunctive features for all blocks A,B ∈ B where B is
controlled by A and all X ∈ dom(pos-B) with X 6= GB :

w({〈pos-A, GA〉, 〈pos-B, X〉}) = 2level(A)

In words, the conjunctive features punish situations where
block A is correctly placed while block B controlled by A
is misplaced. We now show that every reachable non-goal
state s has an improving successor s′.

If all not-done blocks are on the table in s, consider a not-
done blockAwhereGA is done. MovingA ontoGA reduces
the heuristic value by w({〈pos-A, T 〉}) = 1.

Otherwise, s has a tower of at least two blocks such that
the top block A is not done. Let B denote the block below
A. Consider state s′ reached by moving A onto the table.

IfA is misplaced in s, then the atomic features change the
heuristic value byw({〈pos-A, T 〉})−w({〈pos-A, B〉}) in s′,
which is−1 or−3 and hence an improvement. The conjunc-
tive features can only change if A is correctly placed in s′,
which implies GA = T . Then A controls no other blocks,

17

000

001

010

011

100

101

110

111

Figure 1: State space of a planning task with correlation
complexity 3. The task has three binary variables v1, v2

and v3, and a node with label xyz represents the state
{〈v1, x〉, 〈v2, y〉, 〈v3, z〉}. Each edge represents an operator
with three preconditions and one effect. The initial state is
000 and the only goal state is 100.

and hence no conjunctive feature becomes true. Conjunctive
features related to blocks controlling A may become false,
but this only improves the heuristic value further.

If A is correctly placed in s, the part of the heuristic value
that is due to atomic features increases by 1 when going from
s to s′. The change from conjunctive features is

∆ =
∑

correctly placed C∈B
C controlsA

2level(C) −
∑

misplacedD∈B
A controlsD

2level(A).

A controls at least one misplaced block D because A is not
done in s, and hence the right sum is at least 2level(A). The
left sum is at most

∑level(A)−1
i=1 2i = 2level(A) − 2, where the

maximum is attained if all blocks controllingA are correctly
placed in s. We get ∆ ≤ (2level(A) − 2) − 2level(A) = −2.
This compensates the increase of 1 from the atomic features:
s′ is an improving successor. This completes the proof. �

Similar to VisitAll, the potential heuristics give rise to
a polynomial planning algorithm despite the exponential
weights. It is easy to verify that hill-climbing with these
potential heuristics moves each block at most two times
(steepest ascent hill-climbing) or three times (simple hill-
climbing).

Tasks with Higher Correlation Complexity
All the domains we studied so far have correlation complex-
ity 2. The natural question is whether there are tasks with
higher correlation complexity. We now answer this ques-
tion in the affirmative by giving an example of a planning
task with correlation complexity 3. The state space of the
example task is shown in Figure 1. We obtained this task
by mimicking the construction of the reflected binary code,
also known as Gray code (Gray 1953). Gray code is based on
nested layers of reflections, and because of these reflections,
intuitively speaking, the state changes that need to be made
in the example task in one half of the state space are exactly
the opposite of the state changes that need to be made in the
other half. This makes the “correct” operator to take heavily
dependent on context and hence potential heuristics of low
dimension cannot give sufficient guidance for this task.

Lemma 5. The planning task in Figure 1 has correlation
complexity at least 3.

Proof: Any descending potential function for the task has
to strictly decrease along the (unique) optimal plan. As the
heuristic values are linear combinations of weights, each
step in the plan yields a linear constraint over weights that
is a necessary condition for a given potential function to be
descending. For example, for the first step, we get the con-
straint

w0?? + w?0? + w??0 + w00? + w0?0 + w?00

> w0?? + w?0? + w??1 + w00? + w0?1 + w?01.

Here,w0?? denotes the weight for the feature {〈v1, 0〉},w0?1

denotes the weight for the feature {〈v1, 0〉, 〈v3, 1〉}, etc.
Using basic algebra or a solver for linear programs, we

can verify that there is no solution that satisfies all con-
straints. �

Intuitively, the reason why potential heuristics of dimen-
sion 2 are not sufficient for the example is that one has to
consider the values of both v1 and v2 to decide whether v3

should be changed from 0 to 1 to advance towards the goal,
or whether the opposite transition is needed. Moreover, this
dependency on v1 and v2 cannot be expressed by linear com-
binations of v1 and v2 because the correct decision is gov-
erned by their exclusive-or combination, v1 ⊕ v2.

Theorem 11. The planning task in Figure 1 has correlation
complexity 3.

Proof: As mentioned in Section , the correlation complexity
of a planning task is bounded from above by the number of
state variables in the task. The result then follows with the
preceding lemma. �

This result concludes our case studies. In the following
sections, we compare correlation complexity to related con-
cepts from the literature.

Relation to Persistent Hamming Width
Chen and Giménez (2007) introduced four related concepts
for measuring the width of a planning task. Width is an indi-
cator of complexity: they describe a planning algorithm that
finds solutions for solvable planning tasks in time that scales
exponentially (only) in the width of the task.

The most general of the width concepts considered by
Chen and Giménez is persistent Hamming width. A planning
task has persistent Hamming width k if it is unsolvable, or if
from every reachable non-goal state s, it is possible to reach
a state s′ where the set of satisfied goals in s′ is a strict su-
perset of the set of satisfied goals in s, and none of the states
on the path from s to s′ differs from s in more than k state
variables.

Unlike correlation complexity, which is defined for all
planning tasks, persistent Hamming width is undefined for
solvable planning tasks where an unsolvable state can be
reached. The planning algorithm described by Chen and
Giménez is incomplete when applied to such tasks. How-
ever, for planning domains with bounded width, it is a com-
plete polynomial-time planning algorithm.

18

The work by Chen and Giménez resembles the state space
topology study of Hoffmann (2005) in the sense that it mea-
sures how much work a search algorithm must perform to
compensate for inaccuracies of a heuristic. (Even though
Chen and Giménez do not explicitly consider heuristics,
their search algorithm behaves similarly to enforced hill-
climbing using a heuristic counting the number of unsat-
isfied goals.) In contrast, correlation complexity measures
how complex a heuristic must be in order to guide a search
algorithm directly to the goal. As the main purpose of the
search component in a heuristic search algorithm is to com-
pensate for inaccuracies of the heuristic, needing more com-
plex heuristics vs. needing more search can be viewed as two
faces of the same coin.

It is not hard to find examples where correlation complex-
ity and persistent Hamming width widely disagree on the
“difficulty” of a planning domain. This is to be expected: in
both cases, the intuition is that low complexity means that
solutions can be found efficiently (in the case of correlation
complexity with the added difficulty that low complexity
only means that accurate potential heuristics of low dimen-
sion exist, but does not tell us how to construct them). The
converse is not necessarily true: if a domain has high per-
sistent Hamming width (for example), this does not imply
that planning is hard in this domain, only that the particular
algorithm considered by Chen and Giménez might not be
suitable for it.

A simple example of disagreement between the two mea-
sures are domains with reachable dead ends, like the Span-
ner domain (Section). It has correlation complexity 2, but no
well-defined persistent Hamming width. On tasks with more
than one spanner, the algorithm by Chen and Giménez will
fail because it tries to achieve one of the goals as quickly
as possible, which means picking up only one spanner and
reaching a dead end.

The two measures can also disagree in domains with-
out dead ends. As an example, consider a family of plan-
ning tasks where the n-th task encodes an n-ary binary
counter counting backwards. We can encode this task with
n state variables {vn−1, . . . , v0}, all with domain {0, 1}, set
to 1 initially and required to be 0 in the goal. The state
{〈vn−1, dn−1〉, . . . , 〈v0, d0〉} represents the counter value∑n−1
i=0 di2

i, and there are n operators that encode decre-
menting the counter by 1. (Each operator encodes one of
the cases of 0, . . . , n− 1 carries.)

The correlation complexity for all these tasks is 1: us-
ing weight 2i for the feature {〈vi, 1〉} results in the perfect
heuristic. The persistent Hamming width of the n-th task is
n: from the state representing the counter value 2n−1, all n
state variables must be changed to make progress towards
the goal.

In a later paper, Chen and Giménez (2009) generalized
persistent Hamming width to macro persistent Hamming
width, which additionally allows the use of macros com-
puted on the fly that temporarily pass through states whose
Hamming distance from the current state is larger than k.
This modification leads to tractability results for some do-
mains where no such results could be obtained for persis-
tent Hamming width, such as a formulation of Blocksworld

with an explicit arm. However, adding macros does not in-
fluence the overall greediness of the approach (trying to
achieve each individual goal as quickly as possible), and
hence the modified algorithm still gets trapped in dead ends
in the Spanner domain. It also does not improve over per-
sistent Hamming width in the binary counter domain, al-
though it does lead to tractability in a formulation of Tow-
ers of Hanoi, where it generates (compact representations
of) exponentially long plans in polynomial time (Chen and
Giménez 2009).

Relation to Serialized Iterated Width
Lipovetzky and Geffner (2012; 2014) also introduced a no-
tion of width for planning tasks. Very roughly speaking, ac-
cording to their definition a planning task has width k if in-
teractions between at most k facts must be considered in or-
der to solve a planning task. Lipovetzky and Geffner observe
that optimal solutions to a planning task can be found in time
that is only exponential in the width of the task.

Most of the commonly considered planning domains do
not admit polynomial-time optimal planning algorithms un-
less P = NP (Helmert 2003), and consequently most plan-
ning domains do not have bounded width. To the best of
our knowledge, no examples of planning domains with
bounded width have been described in the literature. How-
ever, Lipovetzky and Geffner observe that many common
benchmark domains have bounded width when restricted to
the case where the goal is a single fact, and that many of
them can be solved by serialization, focusing on one goal
fact at a time. (This does not contradict the previously men-
tioned complexity result because such serialized solutions
are not necessarily optimal, even if the plans for the indi-
vidual goal facts are.) Based on this observation, they intro-
duce the Serialized Iterated Width algorithm, which achieves
polynomial runtime on a wide range of benchmark domains.

This notion of width and the Serialized Iterated Width al-
gorithm do not give rise to polynomial algorithms in cases
like the Spanner domain (Section) that require global re-
source reasoning. Spanner tasks with n spanners have width
Θ(n) and cannot be serialized in the sense of Lipovetzky and
Geffner, as focusing on one subgoal at a time and solving
it optimally necessarily leads to a dead end. Similarly, the
binary counter example from the previous section requires
unbounded width to be solved with the Serialized Iterative
Width algorithm: this is generally true for planning tasks
where an exponential number of steps can be required to
achieve the next goal fact. These are examples of domains
with bounded correlation complexity but unbounded width.

However, it is also possible to construct tasks with low
width and high correlation complexity. Given any planning
task with correlation complexity n, we can create a new task
(not equivalent to the original one) with width 1 by perform-
ing the usual conversion to a single goal fact (adding an arti-
ficial goal fact that can be achieved once the actual goal has
been reached) and then adding a “cheating” operator that is
only applicable in the initial state and directly achieves the
artificial goal. The resulting task can be solved by a plan
consisting only of the cheating operator and has width 1.

19

However, it still has correlation complexity n because corre-
lation complexity considers all alive states, and hence hav-
ing one obvious short solution does not automatically lead
to low correlation complexity.

Conclusion
We introduced a new measure for the complexity of clas-
sical planning tasks. Correlation complexity measures how
complex the features of a potential heuristic must be for the
induced state space to contain no local minima.

Correlation complexity is a way to quantify how inter-
related the state variables of a task are. Planning tasks for
which it is necessary to take into account large conjunctions
of facts have high correlation complexity. The benchmark
planning domains we studied in this paper all have a low
correlation complexity of 2. Given that potential heuristics
with low dimension can be evaluated very efficiently, our re-
sults motivate further research on how to find good features
and weights for potential heuristics automatically.

We also described an artificial planning task with correla-
tion complexity 3, but so far we have no examples of “nat-
urally occurring” planning domains that are tractable, yet
have high correlation complexity. We believe that studying
correlation complexity in a wider set of benchmark domains
could be useful to further improve our understanding of what
makes planning hard and what makes easy planning tasks
easy.

Acknowledgments
This work was supported by the Swiss National Sci-
ence Foundation (SNSF) as part of the project “Reasoning
about Plans and Heuristics for Planning and Combinatorial
Search” (RAPAHPACS).

References
Bäckström, C., and Nebel, B. 1995. Complexity results for SAS+

planning. Computational Intelligence 11(4):625–655.
Bonet, B., and van den Briel, M. 2014. Flow-based heuristics for
optimal planning: Landmarks and merges. In Proc. ICAPS 2014,
47–55.
Brafman, R., and Domshlak, C. 2013. On the complexity of plan-
ning for agent teams and its implications for single agent planning.
AIJ 198:52–71.
Chen, H., and Giménez, O. 2007. Act local, think global: Width
notions for tractable planning. In Proc. ICAPS 2007, 73–80.
Chen, H., and Giménez, O. 2009. On-the-fly macros. In Logic,
Language, Information and Computation, volume 5514 of LNCS,
155–169. Springer-Verlag.
Edelkamp, S. 2001. Planning with pattern databases. In Proc. ECP
2001, 84–90.
Gray, F. 1953. Pulse code communication. US Patent 2,632,058.
Haslum, P., and Geffner, H. 2000. Admissible heuristics for opti-
mal planning. In Proc. AIPS 2000, 140–149.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern database
heuristics for cost-optimal planning. In Proc. AAAI 2007, 1007–
1012.

Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admissible
heuristics for domain-independent planning. In Proc. AAAI 2005,
1163–1168.
Helmert, M., and Mattmüller, R. 2008. Accuracy of admissible
heuristic functions in selected planning domains. In Proc. AAAI
2008, 938–943.
Helmert, M. 2003. Complexity results for standard benchmark
domains in planning. AIJ 143(2):219–262.
Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. JAIR 14:253–302.
Hoffmann, J. 2005. Where ‘ignoring delete lists’ works: Local
search topology in planning benchmarks. JAIR 24:685–758.
Keyder, E.; Hoffmann, J.; and Haslum, P. 2014. Improving delete
relaxation heuristics through explicitly represented conjunctions.
JAIR 50:487–533.
Keyder, E.; Richter, S.; and Helmert, M. 2010. Sound and complete
landmarks for and/or graphs. In Proc. ECAI 2010, 335–340.
Knuth, D. E. 1992. Two notes on notation. American Mathematical
Monthly 99(5):403–422.
Lipovetzky, N., and Geffner, H. 2012. Width and serialization of
classical planning problems. In Proc. ECAI 2012, 540–545.
Lipovetzky, N., and Geffner, H. 2014. Width-based algorithms for
classical planning: New results. In Proc. ECAI 2014, 1059–1060.
Pommerening, F., and Helmert, M. 2015. A normal form for clas-
sical planning tasks. In Proc. ICAPS 2015, 188–192.
Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J. 2015.
From non-negative to general operator cost partitioning. In Proc.
AAAI 2015, 3335–3341.
Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting the
most out of pattern databases for classical planning. In Proc. IJCAI
2013, 2357–2364.
Richter, S., and Helmert, M. 2009. Preferred operators and deferred
evaluation in satisficing planning. In Proc. ICAPS 2009, 273–280.
Rintanen, J. 2012. Planning as satisfiability: Heuristics. AIJ
193:45–86.
Russell, S., and Norvig, P. 2003. Artificial Intelligence — A Mod-
ern Approach. Prentice Hall.
Seipp, J.; Pommerening, F.; and Helmert, M. 2015. New opti-
mization functions for potential heuristics. In Proc. ICAPS 2015,
193–201.
Slaney, J., and Thiébaux, S. 2001. Blocks World revisited. AIJ
125(1–2):119–153.
Suda, M. 2014. Property directed reachability for automated plan-
ning. JAIR 50:265–319.

Torralba, Á. 2015. Symbolic Search and Abstraction Heuristics for
Cost-Optimal Planning. Ph.D. Dissertation, Universidad Carlos III
de Madrid.

20

Duality in STRIPS planning∗

Martin Suda
Institute for Information Systems, Vienna University of Technology, Austria

Abstract

We describe a duality mapping between STRIPS planning
tasks. By exchanging the initial and goal conditions, taking
their respective complements, and swapping for every action
its precondition and delete list, one obtains for every STRIPS
task its dual version, which has a solution if and only if the
original does. This is proved by showing that the described
transformation essentially turns progression (forward search)
into regression (backward search) and vice versa.
The duality sheds new light on STRIPS planning by allow-
ing a transfer of ideas from one search approach to the other.
It can be used to construct new algorithms from old ones, or
(equivalently) to obtain new benchmarks from existing ones.
Experiments show that the dual versions of IPC benchmarks
are in general quite difficult for modern planners. This may be
seen as a new challenge. On the other hand, the cases where
the dual versions are easier to solve demonstrate that the du-
ality can also be made useful in practice.

1 Introduction
Propositional STRIPS language is one of the favourite for-
malisms for describing planning tasks. A STRIPS task de-
scription consists of an initial and goal condition formed by
conjunctions of propositional atoms and of a set of actions
made up by a precondition, add and delete lists. Despite its
simplicity, the modelling power of the STRIPS formalism
already captures the complexity class PSPACE (Bylander,
1994). Also, STRIPS lies in the core of the more expressive
PDDL language (McDermott, 2000) used for representing
benchmarks in the International Planning Competition.

Classical search is one of the basic but also most success-
ful approaches to determining whether a given planning task
has a solution. The search may proceed either in the forward
direction starting from the initial state and applying actions
until a goal state is reached, or in the backward direction
where the goal condition is regressed over actions to pro-
duce sub-goals until a sub-goal satisfied by the initial state
is obtained. Forward search is typically termed progression,
while backward search is called regression.

∗This research has been conducted at Max-Planck-Institut für
Informatik, Saarbrücken, Germany. The author was also supported
by the ERC Starting Grant 2014 SYMCAR 639270 and the Aus-
trian research project FWF RiSE S11409-N23.

In this paper, we show that from the computational per-
spective there is no real difference between progression and
regression in STRIPS planning. This is very surprising be-
cause progression is working with single states only while
the sub-goal conditions in regression represent whole state
sets. We show this result by describing a duality mapping
working on the domain of all STRIPS planning tasks. Per-
forming regression on the original task is shown equivalent
to performing progression on the dual.

The existence of the duality mapping has some additional
interesting consequences. For instance, any notion originally
conceived and developed with one of the search approaches
in mind has a dual counterpart within the other approach. We
give examples of this phenomenon in Section 5, one of them
being the dual of the relevance condition, an important in-
gredient in pruning the regression search space. The duality
can also be used to construct new algorithms from old ones
and to obtain new benchmarks from existing ones. Thus a
purely theoretical concept at first sight, the duality also has
immediate implications for practice.

The rest of the paper is organized as follows. After giving
the necessary preliminaries in Section 2, we recall the de-
tails about progression and regression relevant for our work
in Section 3. The duality mapping is defined and its prop-
erties are stated and proven in Section 4. We subsequently
discuss immediate theoretical implications of the duality in
Section 5. Section 6 then reports on our experiments. We
compare the performance of several modern planners on
dual versions of IPC benchmarks and also show how a plan-
ner can be adapted with the help of the duality to solve
benchmarks previously out of reach. Finally, in the conclud-
ing Section 7, we discuss the applications of the duality from
a broader perspective.

Previous work. The idea of inverting the search direction
in planning was already considered by Massey (1999) in his
dissertation. Our main theorem can be recovered from that
work, where it follows from a more general, but perhaps a
less elegant result. A proof similar to the one presented here
can be found in Pettersson (2005).

Problem reversal was used by Haslum (2008) to enable
progression-like reachability heuristics being used for re-
gression search. Alcázar and Torralba (2015) use the same
technique to compute backward invariants of planning prob-

21

lems. This is done, however, within the SAS+ formalism and
is therefore not directly comparable to our results.

It seems that although already known, the idea of duality
is not very well known among the planning community. We
hope that the discussion on both its theoretical and practi-
cal implications as well as the experimental evaluation pre-
sented in this paper will trigger further research on this in-
teresting notion.

2 Preliminaries
A propositional STRIPS planning task is defined as a tuple
P = (X, I,G,A), where X is a finite set of atoms, I ⊆ X
is the initial condition, G ⊆ X is the goal condition, and
A a finite set of actions. Every action a ∈ A is a triple a =
(prea, adda, dela) of subsets ofX referred to as the action’s
precondition, add list, and delete list, respectively.

The semantics is given by associating each planning
task P = (X, I,G,A) with a transition system TP =
(S, I, SG, T), where the set of world states S = 2X is iden-
tified with the set of all subsets of X , the initial state is the
subset I , the goal states SG = {s ∈ S | G ⊆ s} are those
states that satisfy the goal conditionG, and, finally, the tran-
sition relation T , which consists of state-action-state triples
called transitions, is defined as follows:

T = {s a→ s′ | prea ⊆ s ∧ s′ = (s ∪ adda) \ dela}.
A planning task has a solution if there is a path in the respec-
tive transition system from the initial state to a goal state,
i.e. if there is a finite sequence of transitions π = s0

a1→
s1

a2→ s2 . . . sk−1
ak→ sk such that s0 = I and sk ∈ SG.

Notice that the path π is fully determined by the sequence of
actions a1, . . . , ak, which we call a plan for P .

3 Progression and regression
There are two basic approaches to searching for solutions
of planning tasks: progression and regression Russell and
Norvig (2010). Progression, or simply forward search, pro-
ceeds systematically from the initial state and applies actions
until a goal state is reached. Regression, or backward search,
on the other hand, regresses the goal condition over actions
to produce sub-goals until a sub-goal contained in the initial
state is obtained.

In what follows we abstract away the actual search algo-
rithm and only focus on properties of the two approaches
that are important for showing their correctness. These prop-
erties depend solely on three “entry point” procedures, by
which the actual search algorithm could be parameterized:

start(), which generates a start search node,

is target(t), which tests whether a given search node
is a target node, and

succ(t), which generates successor nodes t′ of the given
search node t.

Given a plannig taskP = (X, I,G,A), the respective im-
plementations of the procedures for progression and regres-
sion are summarized in Table 1. Let us first focus on pro-
gression. There, each search node directly corresponds to a

world state, or, more specifically, to a world state reachable
from the initial state. The start search node startPr () is
equal to the initial state I itself, the is targetPr (t) pro-
cedure tests whether the given node satisfies the goal con-
dition, and the successor nodes succPr (t) are constructed
by taking for every action a ∈ A for which the applica-
bility condition prea ⊆ t is satisfied the successor node
t′ = (t ∪ adda) \ dela. This naturally corresponds to the
definition of the transition system TP and so the proof of
the following correctness theorem for progression becomes
immediate.

Theorem 1. A planning task P = (X, I,G,A) has a so-
lution if and only if there exists a sequence of search nodes
t0, . . . , tk such that t0 = startPr (), is targetPr (tk),
and for every i = 1, . . . , k ti ∈ succPr (ti−1).

In the case of regression, a search node is also represented
by a subset of X , but it should be viewed as a sub-goal to
be met, corresponding to a set of world states that satisfy
it. Here, the search nodes are manipulated in the following
way. The start search node startRe() is identified with the
(sub-)goal G itself, the is targetRe(t) procedure returns
true if and only if the initial state I satisfies t, and the suc-
cessor search nodes succRe(t) are generated by collecting
the regressed sub-goals t′ = (t \ adda)∪ prea for every ac-
tion a ∈ A for which the consistency condition dela ∩ t = ∅
holds. The key property of regression is that in every world
state s satisfying the regressed sub-goal t′ (i.e., in every s
such that t′ ⊆ s) the action a is applicable (prea ⊆ s) and
leads to a world state that satisfies the original sub-goal t.
Consistency is needed to ensure that the action does not undo
any desired atom.
Remark. Another property that is typically required, apart
from consistency, is relevance. An action a ∈ A is said to be
relevant for achieving a sub-goal t if and only if adda ∩ t 6=
∅, i.e., if when applied, it achieves a part of the sub-goal.
Because relevance is only important for efficiency and not
for correctness of algorithms based on regression, we set it
aside for now, to keep things simple, and return to it in a later
discussion.

The correctness theorem for regression has exactly the
same form as the one for progression. We do not detail its
proof, which is standard and basically just combines the in-
sights mentioned above.

Theorem 2. A planning task P = (X, I,G,A) has a so-
lution if and only if there exists a sequence of search nodes
t0, . . . , tk such that t0 = startRe(), is targetRe(tk),
and for every i = 1, . . . , k ti ∈ succRe(ti−1).

4 Duality
When looking at Table 1, which compares progression and
regression, it is not difficult to observe certain formal simi-
larities. For instance, the role played by the initial condition
I in progression is similar to the one played by G in regres-
sion and vice versa. Similarly, the precondition prea and the
delete list dela of the considered action a seem to be ex-
changing roles in a certain way. In this section we describe
an involutory mapping d : STRIPS → STRIPS acting on

22

progression: Pr regression: Re

start() I G
is-target(t) G ⊆ t t ⊆ I
succ(t) { t′ | ∃a ∈ A . prea ⊆ t ∧ { t′ | ∃a ∈ A . dela ∩ t = ∅ ∧

t′ = (t ∪ adda) \ dela } t′ = (t \ adda) ∪ prea }

Table 1: Instantiating progression and regression for a plannig task P = (X, I,G,A).

the class of all STRIPS planning tasks that shows that the
above similarities are not a coincidence and that progression
and regression are more closely related than is would seem
at first sight.

For an action a = (prea, adda, dela) a dual action ad

is formed by exchanging the precondition and delete list:
ad = (dela, adda, prea). For a set of actions A the set of
dual actions is Ad = {ad | a ∈ A}. Now, given a planning
task P = (X, I,G,A) the dual task Pd is obtained by ex-
changing the initial and goal conditions while taking their
complements with respect to X , and using the dual action
set:

Pd = (X, (X \G), (X \ I),Ad).
It is easy to see that a mapping d defined in this way is in-
deed involutory on the set of STRIPS planning tasks, mean-
ing that (Pd)d = P for every task P . This justifies the use
of the term duality.

We can now state the central theorem about duality.

Theorem 3. For every planning task P = (X, I,G,A) the
dual task Pd has a solution if and only if P does. More
specifically, a sequence of actions a1, . . . , ak is a plan for
P if and only if the sequence adk, . . . , a

d
1 is a plan for Pd.

Proof. If a planning task has a solution, it can be found by
both progression and regression, because they are both cor-
rect (Theorem 1 and 2). We prove this Theorem 3 by show-
ing that regression for P performs exactly the same opera-
tions as progression for Pd when the search nodes are rep-
resented in a complemented form for the latter, i.e. when
storing X \ t in place of t. This is done in three steps corre-
sponding to the three “entry point” procedures of Table 1.

First, we realize that

startRe
P () = X \ startPr

Pd().

In words, the start search node of regression for P , is the
complement (with respect to X) of the start search node of
progression for Pd. Similarly, a search node t ⊆ X is a
target node in regression for P if and only if (X \ t) is a
target node in progression for Pd:

is targetRe
P (t) = is targetPr

Pd(X \ t),
which follows from the equivalence

a ⊆ b↔ (X \ b) ⊆ (X \ a).
Finally, the successor nodes of a search node t ⊆ X in re-
gression for P can be computed as complements of succes-
sor nodes of (X \ t) in progression for Pd:

succRe
P (t) = {(X \ t0) | t0 ∈ succPr

Pd(X \ t)}.

For this last point, it is sufficient to verify for every action
a ∈ A that 1) the consistency condition in regression for P
and applicability condition in progression for Pd are each
other’s dual:

dela ∩ t = ∅ ↔ dela ⊆ (X \ t)
↔ pread ⊆ (X \ t),

and, 2) regressing t over a yields the complement of apply-
ing ad to the complement of t:

X \ ((t \ adda) ∪ prea) = ((X \ t) ∪ adda) \ prea
= ((X \ t) ∪ addad) \ delad .

With these two properties checked (by applying De Mor-
gan’s laws for sets) the theorem is proven by induction over
k, the length of a solution path π = s0

a1→ s1 . . . sk−1
ak→ sk

and the corresponding plan a1, . . . , ak.

5 Implications
The most striking consequence of Theorem 3 is the discov-
ery that in STRIPS planning there is no substantial differ-
ence between progression and regression. Indeed, any algo-
rithm based on one of the two approaches may be effectively
turned into an algorithm based on the other by simply apply-
ing the duality mapping to the input as a preprocessing and
running the actual algorithm on Pd instead of on P . This
transformation obviously preserves the length of the short-
est plan and its cost.

Given this perspective, it is now interesting to observe
what are the dual counterparts of notions that were originally
conceived and developed with only one of the approaches in
mind and in how do they emerge “on the other side of the du-
ality”. We will now comment on some of these observations
in the following subsections.

Relevance and usefulness
It was mentioned before that it is important for the efficiency
of regression to only regress over actions that are relevant
for the current sub-goal. Let us repeat that an action a ∈ A
is relevant for t if and only if adda ∩ t 6= ∅. Regressing
over an action that is not relevant for t results in a (possibly
strictly) stronger sub-goal t′ ⊇ t. We may safely discard
t′ from consideration, because successfully regressing t′ is
(possibly strictly) more difficult than successfully regressing
t.1 This way filtering out non-relevant actions helps to keep
the regression search space manageable.

It is now at hand to ask what the dual notion of relevance
is. For lack of a better word, we call it usefulness. We say

1If solution can be found from t′, it can be found from t as well.

23

that an action a ∈ A is useful in a state t if and only if the
add list of a is not fully contained in t. We see that usefulness
is a natural property: it does not make sense to progress via
a non-useful action, because it will never make more atoms
true in the resulting state. The reason why usefulness is gen-
erally not mentioned in the literature is that in typical bench-
marks there are seldom actions that would be applicable and
yet not useful in a given state. This is in contrast with re-
gression where consistency and non-relevance are far less
correlated.

First add, then delete?
When defining the result of action application to a state, one
needs to decide in which order should the add list and the
delete list be considered. In particular, if a description of a
planning task contains an action a such that adda and dela
have a non-empty intersection, the result of applying a to
a state s depends on this order. One can either exclude this
possibility up front by requiring that for any action the add
and delete lists are disjoint, or, alternatively, to decide on a
canonical order of their application.

There are two remarks we can make here with respect to
duality. First, if we choose the former option above, i.e.,
if we require that adda ∩ dela = ∅ for any a ∈ A, we
should perhaps (for the sake of symmetry) also require that
adda ∩ prea = ∅, because that is exactly the condition un-
der which the order of applying add list and the precondition
during regression of a sub-goal becomes irrelevant. Note that
this condition also makes sense from the perspective of pro-
gression, because atoms mentioned in the precondition will
be preserved by the action anyway (unless deleted) so they
do not need to be mentioned again in the add list.

The second remark relates to the latter option, when in
order to resolve the above situation a particular add-delete
order is chosen as canonical. Here the duality dictates (with
appeal to elegance of the theory) that adding should happen
before deleting, as done in our definition in Section 2. It is
because only with that order the proof of Theorem 3 goes
through as presented.

Let us be more specific. In progression we, quite nat-
urally, first check the applicability condition prea ⊆ s,
before applying the effects. That is why the correspond-
ing regression operation needs to first subtract the add list
from the sub-goal, before adding the preconditions: t′ =
(t \ adda) ∪ prea. Then dualizing the last equation gives us
s′ = (s∪adda)\dela as promised. This should not be inter-
preted as saying that the duality itself relies on a particular
ordering of addition and deletion in the definition of action
application. Should the other order be adopted instead, how-
ever, we would need to require that the actions of a planning
task are normalized beforehand so that the intersection of
add and delete lists is always empty.

Semantics of search nodes
Since the duality exchanges the roles of progression and
regression, one should ask what happens to the semantics
of the search nodes, which are known to represent world
states in progression and sets of world states (via conjunc-
tive conditions) in regression. The surprising answer the du-

ality gives is that both the views are equally valid for both
progression and regression. One just needs to go over to the
complement representation to see the other.

Essentially, nodes in progression can be interpreted as a
conditions, where a condition t stands for all the states s
such that s ⊆ t, i.e. states having at most those positive
facts as those stated in t, but no others. This is because in
STRIPS, we can only make a task of reaching a goal harder
by removing a fact from from a state.

Dually, regression can be thought of as performed over
single states only, the states corresponding to the search
nodes themselves, because we can only make regression
harder by adding facts to such states. We invite the reader to
check the details for herself by replaying the proof of Theo-
rem 3 from this perspective.

Note that this observation provides us with a new way
(arguably less intuitive, but nevertheless a legitimate one) to
justify the correctness of the two approaches. While this may
sometimes simplify argumentations, the actual implementa-
tion “mechanics” remains intact.

Limitations
We close this section by discussing the limitations of the du-
ality concept. A careful analysis of the proof of Theorem 3
reveals that it substantially relies on the particularly simple
form of regression in STRIPS planning. Essential is the fact
that regressed sub-goals may be represented as conjunctions
of atoms. This means the duality does not directly carry over
to more expressive formalisms which allow negated goals or
preconditions. For similar reasons, extending the duality to
Finite Domain Representation (FRD) Helmert (2009) seems
problematic. The good news is that the duality applies to the
lifted version of STRIPS as realized by the STRIPS subset of
the PDDL language McDermott (2000) used in the Interna-
tional Planning Competition (IPC).2 The IPC benchmark set
contains more than a thousand practically relevant problems
to which the duality applies.

6 Experiments
The duality mapping we have described in the previous sec-
tion provides us with a means of transforming one planning
task into another while preserving the existence of its so-
lution. It is now natural to ask how difficult are the dual
versions of IPC benchmarks for modern planners. We per-
formed a series of experiments in order to answer this ques-
tion and we report on them in this section.

Note that there are two possible ways of interpreting the
results. We may either view the dual versions as new stand-
alone problems, or imagine the duality mapping as part of
the algorithm we are currently testing. The second case may
be understood as an evaluation of a new, dual algorithm on
the original benchmarks. We will prefer the first view for
most of this section, but adopt the second where it is more
natural.

For our experiments, we collected all the benchmarks
from the satisficing tracks of the International Planning

2To complement the initial and goal condition, one first obtains
the set of all atoms X by grounding the domain predicates.

24

FF LAMA Mp
ORIG 1009 1192 1114
DUAL 136 175 329

Table 2: First experiment: number of ORIG and DUAL prob-
lems solved within 180 seconds by the respective planners.

Competitions3 (IPC) of years 1998–2011 that are in the
STRIPS subset of the PDDL language.4 Together we col-
lected 1564 problems. We then used the preprocessing part
of the planner FF Hoffmann and Nebel (2001) to produce a
grounded version of these. Note that FF’s relevance analysis
was involved in the process, so all the “rigid” predicates that
are only used for modelling purposes and the value of which
is not affected by any action were removed. Let us denote
the set of these grounded IPC benchmarks ORIG.

The preprocessing tool was then extended further to im-
plement the duality mapping: It first normalizes the actions
so that the precondition and delete list never intersect with
the add list. To conform with the official IPC semantics,
which is ”first delete, then add” Fox and Long (2003), this
is done by performing for every action a the following two
assignments in the prescribed order:

dela := dela \ adda; adda := adda \ prea.
Then the duality mapping is applied. Let the problems ob-
tained this way be denoted as DUAL. All the experiments
were performed our servers with 3.16 GHz Xeon CPU,
16 GB RAM, with Debian 6.0.

In the first experiment we ran the following three planners
on both ORIG and DUAL benchmark sets:

• the FF planner Hoffmann and Nebel (2001) as a base-
line representative of heuristic search Bonet and Geffner
(2001) planners,

• the Fast Downward planner Helmert (2006) in the con-
figuration LAMA-2011 Richter and Westphal (2010), an-
other heuristic search planner, the winner of the satisfyc-
ing track of the last IPC held in 2011, and

• the planner Mp Rintanen (2010), as a representative of
the planning as satisfiability Kautz and Selman (1996) ap-
proach.

The time limit was set to 180 seconds per problem.
The results of the first experiment are summarized in

Table 2. We see that the problems in DUAL are generally
much more difficult to solve than ORIG, and that the SAT-
based planner Mp performs better on DUAL than the heuris-
tic search planners.

We conjecture (and later partially verify) the following
reasons for the difficulty of DUAL. First, the explicit state
forward search planners suffer from not testing for use-
fulness of actions. This corresponds to omitting the rele-
vance test in the dual, regression-based algorithm and makes
the search space unnecessarily large. The second reason
is that invariant information is no longer recovered from

3http://ipc.icaps-conference.org/
4We dropped the action cost feature where present.

FF FF-U FF-UI FF-UIN
DUAL 136 204 682 695

Table 3: Second experiment: number of problems from
DUAL solved within 180 seconds by modifications of the
planner FF.

the task description by the planners. Invariant is a prop-
erty which holds in the initial state and is preserved by all
transitions. While logically redundant, invariants are known
to be usually critical for efficiency of SAT-based planners
Rintanen (2010). Moreover, the existence of simple invari-
ants formed by negative binary clauses is a prerequisite for
the reconstruction of a non-trivial Finite Domain Represen-
tation (FDR), which LAMA is attempting to build in its
preprocessing phase Helmert (2009). As we independently
checked, there are almost no binary clause invariants to be
recovered from the DUAL benchmarks. This means that Mp
has to search for plans without the useful guidance the in-
variants usually provide and LAMA most of the time dis-
covers only trivial, two-valued domains for its finite domain
variables.
Remark. Note that the problems in DUAL still contain the
original invariant information, but it has been turned into
backward invariants, properties of the goal states preserved
when traversing the transitions backwards. Obviously, the
planners do not check for backward invariants, because typ-
ically, e.g., on ORIG, it does not pay off.

In our second experiment, we set out to discover to what
extent do the above reasons explain the degraded perfor-
mance of the planners on DUAL. We focused on the planner
FF for its relative simplicity and modified it in several steps
in order to make it perform better on DUAL. We prepared the
following versions of the planner:

• FF-U, which checks for usefulness of actions and discards
the non-useful ones,

• FF-UI, which additionally computes5 binary clause back-
ward invariant, and discards successor states that violate
it,

• FF-UIN, which additionally turns off enforced hill climb-
ing (see Hoffmann and Nebel (2001)) and always directly
starts best first search.6

We ran all the modifications on DUAL, again with the time
limit of 180 seconds per problem.

The numbers of problems solved by the respective mod-
ifications are shown in Table 3. For the sake of compari-
son we also repeat the result for the original FF. It can be
seen that each of the modifications represents an improve-
ment over the previous version. Probably the most is gained
by incorporating the backward invariant test. Actually, each
modification solves a strict superset of the problems solved

5We use an efficient implementation of the fixpoint algorithm
described in Rintanen (1998).

6We observed that enforced hill climbing fails on most of the
problems in DUAL, so turning it off up front saves some time.

25

FF (unique) FF-DUAL (unique)
PSR (50) 39 (2) 45 (8)
Woodworking (50) 18 (2) 44 (28)
Floortile (20) 7 (0) 17 (10)

Table 4: Third experiment: Comparing FF and FF-DUAL on
three domains where the latter dominates the former. Size of
each domain and the number of problems uniquely solved
by the respective planner are shown in parenthesis.

by the previous one. An exception is the last step where FF-
UI solves 3 problems that FF-UIN cannot solve. However,
FF-UIN solves 16 problems that FF-UI cannot solve within
the given time limit.

Despite our efforts to improve the performance of FF on
DUAL, the planner still solves less problems from DUAL than
from ORIG. In our third experiment, we tried to discover
whether there are some problems in DUAL that the improved
FF-UIN can solve, while the original FF fails on their coun-
terparts in ORIG. This corresponds to the question whether
the duality can be made useful in practice by helping to solve
difficult IPC benchmarks. To simplify the following discus-
sion, let us call by FF-DUAL a planner composed by the pre-
processor, which grounds and dualizes inputs, followed by
FF-UIN. We will now compare FF and FF-DUAL on ORIG.

Apart from six problems from the Mystery domain, where
FF-DUAL correctly discovers that no plan can exists while
FF timeouts, there are three domains where FF-DUAL per-
forms consistently better than FF. Table 4 reports on the
number of problems solved, categorized by the domains.

In order to better understand the success of FF-DUAL on
the three domains, we more closely analyzed and compared
the output of the two versions of the planner. In particular,
we focused on the reported heuristic value of the currently
expanded state. We noticed the following facts.

• On the domain PSR the heuristic value of the initial state
is quite low (between 1 and 10). This holds for both FF
and FF-DUAL, but the value for FF-DUAL is typically
one higher than that for FF. In other words, the dual ver-
sion of relaxed plan heuristic is more informative on PSR.

• On Woodworking, the heuristic value of the initial state
ranges from 5 up to about 70. FF-DUAL’s values are typ-
ically not higher, but stay quite close to those of FF.

• Although on Floortile, FF’s heuristic is more informed
than FF-DUAL’s, FF’s goal agenda mechanism seems
to be making suboptimal decisions in decomposing the
goal into sub-goals. On three problems where FF’s en-
forced hill climbing fails within the time limit and the
goal agenda is discarded, FF then successfully finds a plan
with best first search. At the same time, FF-DUAL di-
rectly looks for a plan using best first search and its less
informed heuristic.

On all the other domains FF-DUAL’s heuristic value of the
initial state is typically much lower than the corresponding
estimate of FF. This might explain the general lower effec-
tiveness of FF-DUAL on the ORIG benchmarks.

To sum up, in our experiments we have shown that the
dual versions of IPC benchmarks are in general much more
difficult to solve by modern planners than the originals. This
can be partially remedied by adapting a planner to make use
of specific features the dual benchmarks possess, but which
are usually missing in the standard ones. Although the imag-
ined dualizing planner FF-DUAL does not beat the original
FF in the overall number of solved problems, there are cer-
tain domains where it indeed pays off to apply the duality
mapping before looking for a plan. This represents one pos-
sible application of the duality concept in practice.

7 Conclusion
In this paper, we have described a duality mapping on the
domain of all STRIPS planning tasks. Its existence shows
that computationally, there is no real difference between per-
forming progression and regression as they are each other’s
dual. Differences between the two that one can measure in
practice follow from asymmetries (with respect to the map-
ping) of the concrete benchmarks and are not inherent to the
search paradigms themselves. We believe that understand-
ing these asymmetries and their influence on the efficiency
of planning algorithms deserves further study.

Furthermore, we have pointed to several applications of
the duality itself. We have shown that new theoretical in-
sights may be obtained by translating known notions via
the mapping and analyzing the obtained duals. For instance,
there necessarily exists a “precondition relaxation heuristic”
a dual of the famous delete relaxation heuristic.

Next we studied the dual versions of the standard IPC
benchmarks and discovered they are quite difficult to solve
for modern planners. One could argue that there is nothing
interesting about difficult benchmarks in themselves if they
do not come from practical applications – for instance, ran-
dom problems form the phase transition region (see Rinta-
nen (2004)) seem to have this status. We, however, do not
think the dual IPC benchmarks fall into the same category.
After all, they still encode the same transition structures as
the originals, albeit in a non-obvious way. Therefore, we be-
lieve they should be considered as an auxiliary test set by
anyone attempting to develop a really versatile planner.

Finally, we explored the possibility of using the duality to
design new algorithms. A simple modification of the planner
FF which uses the duality was shown to improve over the
original system on several benchmark domains. Note that
this obvious schema of first dualizing the input and then run-
ning a known algorithm is not the only option of how the du-
ality can be used. More sophisticated algorithms combining
progression and regression tied together by the duality can
be imagined.

References
Vidal Alcázar and Álvaro Torralba. A reminder about

the importance of computing and exploiting invariants in
planning. In ICAPS 2015, pages 2–6. AAAI Press, 2015.

Blai Bonet and Hector Geffner. Planning as heuristic search.
Artif. Intell., 129(1-2):5–33, 2001.

26

Tom Bylander. The computational complexity of proposi-
tional STRIPS planning. Artif. Intell., 69(1-2):165–204,
1994.

Maria Fox and Derek Long. Pddl2.1: An extension to PDDL
for expressing temporal planning domains. J. Artif. Intell.
Res. (JAIR), 20:61–124, 2003.

P. Haslum. Additive and reversed relaxed reachability
heuristics revisited. In 6th International Planning Com-
petition Booklet (ICAPS-08), 2008.

Malte Helmert. The Fast Downward planning system. J.
Artif. Intell. Res. (JAIR), 26:191–246, 2006.

Malte Helmert. Concise finite-domain representations for
PDDL planning tasks. Artif. Intell., 173(5-6):503–535,
2009.

Jörg Hoffmann and Bernhard Nebel. The FF planning sys-
tem: Fast plan generation through heuristic search. J. Ar-
tif. Intell. Res. (JAIR), 14:253–302, 2001.

Henry A. Kautz and Bart Selman. Pushing the enve-
lope: Planning, propositional logic and stochastic search.
In William J. Clancey and Daniel S. Weld, editors,
AAAI/IAAI, Vol. 2, pages 1194–1201. AAAI Press / The
MIT Press, 1996.

Bart Massey. Directions In Planning: Understanding The
Flow Of Time In Planning. PhD thesis, University of Ore-
gon, 1999.

Drew V. McDermott. The 1998 AI planning systems com-
petition. AI Magazine, 21(2):35–55, 2000.

Mats Petter Pettersson. Reversed planning graphs for rel-
evance heuristics in AI planning. In Planning, Schedul-
ing and Constraint Satisfaction: From Theory to Practice,
volume 117 of Frontiers in Artificial Intelligence and Ap-
plications, pages 29–38. IOS Press, 2005.

Silvia Richter and Matthias Westphal. The LAMA planner:
Guiding cost-based anytime planning with landmarks. J.
Artif. Intell. Res. (JAIR), 39:127–177, 2010.

Jussi Rintanen. A planning algorithm not based on direc-
tional search. In Anthony G. Cohn, Lenhart K. Schubert,
and Stuart C. Shapiro, editors, KR 2004, pages 617–625.
Morgan Kaufmann, 1998.

Jussi Rintanen. Phase transitions in classical planning: An
experimental study. In Didier Dubois, Christopher A.
Welty, and Mary-Anne Williams, editors, KR 2004, pages
710–719. AAAI Press, 2004.

Jussi Rintanen. Heuristics for planning with SAT. In David
Cohen, editor, CP 2010, volume 6308 of LNCS, pages
414–428. Springer, 2010.

Stuart J. Russell and Peter Norvig. Artificial Intelligence - A
Modern Approach (3. internat. ed.). Pearson Education,
2010.

27

Improving Performance by Reformulating PDDL into a Bagged Representation

Pat Riddle, Jordan Douglas, Mike Barley Santiago Franco
Department of Computer Science Dept. de Informatica

University of Auckland Universidade Federal de Vicosa
Auckland, New Zealand Vicosa, Brazil

Abstract

This paper describes Baggy - a system which auto-
matically transforms a PDDL representation into a re-
vised PDDL representation, solves the problem using
the revised representation, and transforms the solution
back into the original representation. The basic ap-
proach involves counting objects that are indistinguish-
able, rather than treating them as individual objects.
This eliminates some unnecessary combinatorial explo-
sion. We report encouraging results on a number of
IPC11/14 domains and give algorithm details including
soundness proof sketches. We conclude by discussing
related work and outlining plans for future research.

Researchers have shown that changing the PDDL repre-
sentation can result in very different behavior by the same
planner (Riddle, Barley, and Franco 2015; Riddle, Holte,
and Barley 2011). In this paper we describe Baggy - a sys-
tem which reformulates the PDDL representation of a given
problem to reduce the size of the state space. In the origi-
nal PDDL representation, each object has a unique identi-
fier (id). However, in many domains some objects are indis-
tinguishable in the initial state. Consider a simple transport
domain: if there are 5 packages at the same location in the
initial state then it does not matter which package the plan-
ner decides to load into the truck. A plan to move a pack-
age can use any package interchangeably. In this case, re-
ferring to each of the 5 packages with a unique identifier is
contributing to unnecessary combinatorial explosion. In the
initial state of the original representation there are 5 appli-
cable grounded operators to load one of these packages onto
the truck. In the reformulated representation there is only
1 applicable grounded operator. This operator decreases the
number of packages at the location by 1 and increases the
number of packages in the truck by 1 - without referring
to the object ids. Such a transformation cannot reduce a
problem’s inherent complexity, but it can reduce “acciden-
tal complexity” in Haslum’s (2007) sense. Furthermore, the
transformation is done on the lifted representation, so less
effort may be needed in the grounding process which creates
SAS+ variables (Bäckström and Nebel 1995). The PDDL
produced by Baggy can be used by any PDDL planner, thus
the approach differs from other techniques for symmetry re-

duction, which require alterations to the planner itself1.
In this paper, there are 3 main contributions. We present

Baggy and show it is a sound method to transform PDDL,
which always results in a smaller state space. We show that
there are situations where a state-of-the-art heuristic prob-
lem solver can perform better in the reformulated represen-
tation than in the original representation. Lastly we show
that this is not always the case; for some problem/planner
combinations, the new representation can perform worse.

A System for Reformulating PDDL
Baggy operates in a three step process. Baggy (1) deter-
mines which objects can be bagged and then reformulates
the PDDL representation accordingly. If bagging takes place
then (2) the reformulated PDDL domain and problem files
can be parsed and solved by any planner to give a plan. Then
Baggy (3) transforms the plan from reformulated space
back into original space with a simple and fast mapping al-
gorithm. It is important for the reader to bear in mind that
a single bagged state maps to more than one original space
state. Therefore a single bagged plan maps to more than one
original plan, only one of which is guaranteed to be a solu-
tion to the original problem. The combination of reformulat-
ing the PDDL and transforming the solution path is sound.

Definitions The following definitions are used by both
Baggy and by the proof sketches.

PDDL problem space (PS): The 6-tuple: <Types, Predi-
cates, Actions, Objects, Initial state, Goal>.

Indexable: Type t is indexable if no predicate can have
more than one type t argument.

Non-Negated: Type t is non-negated if there are neither
negated goals nor negated operator preconditions containing
an argument of this type. An exception to this is 6=.

Monotonicity Invariant: Let C = 〈φ, V 〉 where φ = {φ1,
φ2, . . . , φn} is a set of predicates and V = {V1, V2, . . . ,
Vn} is a set of variable sets such that each element in Vi is
an argument of φi. Then C is a monotonicity invariant if the
total number of instances of φwith respect to each respective

1The experimental results in this paper have one alteration of
the planner. Baggy passes a list of invariants to “translate” so that it
makes fewer variables. It will work without this addition but it will
make more SAS+ variables in some of the reformulated domains.

28

variable in V is non-increasing over all states reachable from
the initial state. This definition and the algorithm for finding
monotonicity invariants have been borrowed from Helmert
(Helmert 2008).

Single-valued: Type t is single-valued if for every predi-
cate, p, which has an argument of type t, (1) there exists a
monotonicity invariant, C = 〈φ, V 〉, such that for some i,
p = φi and there exists a variable in Vi of type t; and (2)
the number of instances of C in the initial state, with respect
to each object of type t, is 0 or 1. For example, boxes are
single-valued, which means that in any state a box cannot be
the subject of more than one in predicate, e.g., there cannot
be both (in box1 rm1) and (in box1 rm2).

Action Equivalent: A type is action equivalent if no action
mentions any object of that type by its object id. For exam-
ple, box is not action equivalent if some action discriminates
between box1 and box2.

Baggable: Type t is baggable if it is indexable, non-
negated, single-valued, and action equivalent.

Attribute: The set of monotonicity invariants of a bag-
gable type. These attributes describe everything about an
object of a baggable type in any state.

Initial State Equivalent (ISE): A set of objects are ISE if
they have the same attribute values in the initial state.

Goal Equivalent (GE): A set of objects are GE if they
have the same attribute values in the goal description.

State Equivalent: A set of objects are state equivalent if
they are all ISE or all GE. Given a predicate, e.g., (between
box1 rock hardSpot), between is the attribute id, box1 is the
baggable object, and the attribute value is<rock hardSpot>.
If the predicate only has has one argument, e.g., (clear box1)
then the attribute value is a boolean value.

Bag: A set of pairwise state equivalent objects of the same
baggable type.

Macropredicate: A predicate which describes everything
about a bag in a state. The first argument is the bag id, fol-
lowed by one argument for each attribute and then finally
the count (i.e. the number of objects which are in this bag
and have these attributes).

Overview In Symmetry Reduction they use automor-
phisms of the state space stabilized with respect to the initial
state and the goal, or in more recent work just the goal state.
ISE and GE relations guarantee that the symmetries are sta-
bilized with respect to the initial state or the goal, respec-
tively. Our technique goes one step further than symmetry
reduction and replaces the objects, that are determined to
be indistinguishable, with a count variable. This is equiva-
lent to the reformulation done by Amarel in the Missionar-
ies and Cannibals problem (Amarel 1971). This prevents us
from having to test for symmetry during the search itself.
This does not mean that our new representation always out-
performs current symmetry reduction techniques, as is dis-
cussed in this paper’s results.

Outline of Next 3 Sections The next 3 sections corre-
spond to the 3 steps Baggy takes to solve a problem. The
first part discusses the reformulation of a problem, what it

means for that reformulation to be correct, and sketches an
informal proof that the reformulation is correct. The second
part discusses the planner itself. The third part discusses the
transformation process and sketches an informal proof that if
the reformulation is correct and the planner is sound then the
transformation of the reformulated plan results in a solution
to the originally formulated problem. These 3 sections con-
stitute an informal proof of the soundness of this approach.

1) Problem Space Reformulation

Simplifications in our Description of the Algorithm The
following simplifications are made for explaining Baggy. In
practice, Baggy accomplishes these functions by compiling
them into the PDDL domain/problem description. No mod-
ifications to the planner are necessary.

Combining Objects and Constants We will combine ob-
jects and constants and simply call them both “objects”.

Closed World for Counts If there are no objects with a
specific set of attributes, the count is 0.

Arithmetic Operations There is a predicate, (sum ?X ?Y
?Z), where ?X and ?Y must be instantiated with integers. If
?Z is uninstantiated then ?Z is instantiated to the sum of the
values of ?X and ?Y and the predicate evaluates to true. If
?Z is instantiated and equals the sum of ?X and ?Y then the
predicate evaluates to true else it evaluates to false.

Arithmetic Relations The following binary predicates ex-
ist (with customary semantics): 6=, <,≤,=,≥, >.

Using Variables in the Goal We will assume our planner
can handle goals with variables. Variables may be named or
anonymous, e.g., “?bx” or “ ”.

Simplifying Assumptions for Proof Sketch The follow-
ing are assumptions made to simplify the proof. However,
they are neither limitations of Baggy nor of the theory.

Reformulate One Type While Baggy can reformulate
many types simultaneously, we simplify our discussion by
only considering reformulating a single type, e.g., box.

Dealing with Initial State Equivalence Relation While
Baggy can create bags using both GE and ISE relations, even
within a type, we discuss bags based on the ISE relation.

One Bag Type Parameter Modified Per Operator We as-
sume no operator modifies more than one baggable type pa-
rameter.

Flat Type Hierarchy While Baggy can reformulate types
that are subtypes, we assume that the reformulated type nei-
ther is a subtype nor a supertype. For example, we do not
make box a subtype of another type, e.g., a container type.

No No-ops While Baggy handles original problem space
actions that remove and add the same attribute values for
a reformulated object (i.e., not really changing the object
because all its effects cancel each other out), we assume that
the original action preconditions prohibit this.

Running Example 1 The example is a simplified domain.

Original Problem Space Definition:
<(:types box, room),
(:predicates (in ?bx - box ?rm - room)),
(:actions

(mv_box

29

(:params ?bx - box ?from ?to - room)
(:precondition
(and (not (= ?from ?to))
(in ?bx ?from)))

(:effect
(and (not (in ?bx ?from))

(in ?bx ?to))))),
(:objects a b c d e - box r1 r2 r3 - room),
(:init ((in a r1) (in b r1) (in c r1)

(in d r1)(in e r3))),
(:goal (and (in b r2) (in c r2)

(in d r1) (in e r2)))>

Reformulated Problem Space Definition:
<(:types boxbag, room, integer),
(:predicates (bagState ?bx - boxbag ?rm - room ?cnt - integer)

(bag_size ?bx - boxbag ?size - integer)),
(:actions

(mv_box
(:params ?bx - boxbag ?from ?to - room ?size - integer

?old_room_count_pre ?old_room_count_post
?new_room_count_pre ?new_room_count_post - integer)

(:precondition (and (not (= ?from ?to))
(> ?old_room_count_pre 0)
(< ?new_room_count_pre ?size)
(bag_size ?bx ?size)
(bagState ?bx ?from ?old_room_count_pre)
(bagState ?bx ?to ?new_room_count_pre)
(sum ?old_room_count_pre -1 ?old_room_count_post)
(sum ?new_room_count_pre 1 ?new_room_count_post)))

(:effect (and (not (bagState ?bx ?from ?old_room_count_pre))
(not (bagState ?bx ?to ?new_room_count_pre))
(bagState ?bx ?to ?new_room_count_post)
(bagState ?bx ?from ?old_room_count_post))))),

(:objects bag1 bag2 - boxbag r1 r2 r3 - room),
(:init ((bagState bag1 r1 4) (bagState bag2 r3 1)),
(:goal (and (bagState bag1 r2 ?cnt1) (>= ?cnt1 2)

(bagState bag1 r1 ?cnt2) (>= ?cnt2 1)
(bagState bag2 r2 ?cnt3) (>= ?cnt3 1))>

Algorithm 1 We describe a simplified version of our
reformulation algorithm. Reformulate transforms PS into
PS′ by bagging type t, where type t satisfies the require-
ments.

reformulate(PS : problem space, Bags : partition)

// Where PS = <T,P,A,O,I,G>,
// Bags are all the bags of baggable type t
T’ ← T \ {t} ∪ {"tbag"}
O’ ← O \ {o ∈ O : type(o) = t} ∪ {bagi : 0 < i ≤ |Bags|}
Pt ← {p ∈ P : a ∈ arguments(p) ∧ type(a) = t}
Att // The attributes of type t
bagStatet ← ("bagState" ?bag - tbag Att ?cnt - integer)
P’ ← (P \ Pt) ∪ {bagStatet}
I’ ← reformulate-init(I, Bags) // Described below
G’ ← reformulate-goal(G, Bags) // Described below
A’ ← reformulate-actions(A, Bags) // Described below
PS’ ← <T’,P’,A’,O’,I’,G’>

return PS’

Algorithm Explication Reformulating Types and Ob-
jects: The reformulation of types and of objects, with respect
to the partition,Bags, is straightforward. T ′ is simply T mi-
nus type t plus the new type tbag, which is simply t’s type
id concatenated with “bag”, e.g., boxbag type replaces box.
Bags is the partition of all the objects of type t based on
the the ISE relation, where o1RISEo2 if they have exactly
the same attribute values in the initial state. Each bag has an
id and a set of initial state equivalent objects. O′ is simply
O minus the type t objects plus all the new bag ids of type
tbag, e.g., objects a, b, c, d are replaced with bag1 of type
boxbag, and e is replaced with bag2.

Reformulating Predicates: The reformulation of the pred-
icates is slightly more complicated. The goal is to assemble
all of the information about type t objects from the various
predicates with type t arguments into one macropredicate,
bagState, where we have arguments describing: (1) the bag

id; (2) the type t attribute information; and (3) the count of
how many objects in that bag have those values in the cur-
rent state. If the original predicates involving box objects
were (in ?bx - box ?rm - room) and (colorOf ?clr - color
?bx - box) then the following predicate would replace them
in the reformulated predicates: (bagState bx - boxbag rm -
room clr - color cnt - integer). We can do this because type
t is indexable, i.e., no original predicate has more than one
type t argument. For unary predicates, the attribute type is
boolean.

Reformulating the Initial State (reformulate-init): All the
predicates in the original initial state with no type t argu-
ments go unaltered into the reformulated state. Predicates
which contain an argument of type t are removed from the
initial state. Since we are focusing on ISE to define which
objects go in a bag, they all have exactly the same attribute
values. One grounded macropredicate is added to the refor-
mulated initial state for each bag. Each macropredicate de-
scribes (i) the bag id; (ii) the value of each attribute for this
bag; and (iii) the number of objects in the bag. For non-unary
predicates, if there are no instances of those predicates for a
reformulated object, then the bagState argument values for
that predicate are “noValue”.

Reformulating the Goal (reformulate-goal): The process
of reformulating the goal is different as the goal is a partial
state. Where there are no original predicates to set their cor-
responding attribute values, instead of storing noValue we
store an anonymous variable (“ ”). We also leave the count
variable in the macropredicates ungrounded, as (?cnt - in-
teger). The goal does not require exactly ?cnt bags to have
a particular set of attributes, but rather a minimum of ?cnt.
Therefore, for each macropredicate in the reformulated goal,
one≥ predicate is added, specifying the minumum count re-
quired to satisfy the goal. For example, suppose that a, b, c,
d and e are all in bag1 and the original goal is {(in a r1) (in
b r1) (color a green) (in c r1) (in d r2) }. The reformulated
goal will be {(bagState bag1 r1 ?cnt1), (bagState bag1 r1
green ?cnt2), (bagState bag1 r2 ?cnt3), (≥, ?cnt1, 3), (≥
?cnt2 1), (≥ ?cnt3 1) }. In this example, a is required to be
both green and in r1, whereas b and c are only required to be
in r1 and their color is irrelevant. Three macropredicates are
required, one describing {a}, one describing {a, b, c} and
one describing {d}. Each macropredicate has a count which
must be greater than or equal to the number of objects de-
scribed by its macropredicate’s associated helper predicate.
Just like the reformulation of the initial state, predicates with
an argument of type t are removed and those without, are un-
changed.

Reformulating Actions (reformulate-actions): Reformu-
lating the actions is the most complicated part of the refor-
mulation process. The reformulated actions are responsible
for keeping the bagState counts correct. This means that the
actions’ reformulated preconditions and effects must faith-
fully reflect the semantics of the original actions. While the
reformulated actions do not capture the object ids, they must
correctly capture the relevant bag ids.

Our simplifying assumptions of Only One Bag Type Pa-
rameter Modified Per Operator and No No-ops means there
is a one-to-one correspondence between the original actions

30

and the reformulated actions. Operator reformulation must
be done so that given an original state and its reformulated
version, (i) an original action, α, applies to the original state,
s1, iff the corresponding reformulated action, α′, applies to
the reformulated state, s1′, and (ii) the result, s2, of apply-
ing α to s1 reformulates to the same reformulated state as
the result of applying α′ to s1′.

This process affects all three parts of an action: parameter
list, preconditions and effects (see Running Example 1). If
the new attribute values differ from the old ones, then the ac-
tion will modify the bagState. We need to add 4 count fields:
the count for the old bagState before the action has been
applied and its count after; the count for the new bagState
before the action has been applied and its count after 2.

The reformulated parameter list contains all the parame-
ters from the original plus any additional parameters needed
to capture attribute/count values. When a reformulated ob-
ject is modified by an action we need to know all of the old
attribute values, all of the new attribute values, and all of
the originally unmentioned attribute values. We need these
in order to identify the new bagState and the old bagState
during solution transformation.

The reformulated preconditions contain 2 new macro-
predicates: one describing the old bag attributes before the
action has been applied and the other describing its new at-
tributes before the action has been applied. The count of the
old one will be decremented by the action, and therefore we
need a “>” predicate asserting that this count is greater than
0. The count of the new one will be incremented, and there-
fore we have a “<” predicate asserting that this count is less
than the number of objects in the bag.

The reformulated effects contain the other 2 new macro-
predicates: one describing the old bag attributes after the ac-
tion has been applied and the other describing its new at-
tributes after the action has been applied. Preconditions and
effects with an argument of type t are removed and those
without are unchanged.

Correctness of Reformulation In order to talk about
the correctness of state reformulation, we need to define
bagState refinement. Given a set of bagState instances for
a bag id and the partition Bags, the refinement of that set
of bagStates is a set of predicates for each object in that bag
having the attribute values specfied in the bagStates. For ex-
ample, given the following set of bagStates, {(bagState bag1
rm1 green 2)(bagState bag1 r3 red 3)}, and Bags; the par-
tition {{a b c d e}{f g}} where the equivalence classes are
bag1 and bag2, respectively. We refine bag1 into the follow-
ing set of predicates: {(in ?b1 r1) (color ?b1 green) (in ?b2
r1) (color ?b2 green) (in ?b3 r3)(color ?b3 red) (in ?b4 r3)
(color ?b4 red) (in ?b5 r3)(color ?b5 red)} where there is a
bijection between the sets {a, b, c, d, e} and {?b1, ?b2, ?b3,
?b4, ?b5}, so the given set of bagStates could be refined
into any one of the sets dictated by the 5!

2!3! possible bijec-
tive mappings. The refinement of a bagged state is simply

2If the action does not modify the bag (for example, an action
which requires a spare hand but the hand remains spare in the ef-
fects), then only 1 count is necessary.

the set of all original predicates which do not have a type t
argument, plus the refinement of all the bagState predicates.

Correctness of State Reformulation The reformulation
of an original state, s is correct with respect to the partition,
Bags, if every object of type t in s is correctly counted in the
corresponding bagState count, and all the other predicates in
s are in the reformulated state.

We define the state reformulation s′ as being correct if
the state s that is being reformulated is one of the possible
refinements of s′.

Lemma 1 Given any complete state description, s and par-
tition Bags of type t objects, our algorithm correctly refor-
mulates, with respect to Bags.

Proof Sketch: This is obvious by inspection of how the
reformulated bagStates are constructed.

Correctness of Goal Reformulation The reformulation,
g′, of goal g is correct with respect to partitionBags, if there
is a refinement of g′ that equals g.

Lemma 2 Given any goal, g and partition Bags of type t
objects, our algorithm correctly reformulates with respect
to the partition Bags.

Proof Sketch: This is obvious by inspection of how the
reformulated goals are constructed.

Correctness of Action Reformulation An action, a, is
correctly reformulated with respect to Bags if (1) when a
is applicable to a state, s, then the reformulated action, a′,
is applicable to the reformulated state, s′, and vice versa;
(2) when a is applied to state s1 then the resulting state, s2
reformulates to the same state, s2′, as applying a′ to s1′; (3)
when a′ is applied to s1′, s2′ can be refined into s2. The
1st condition states that the preconditions must be correctly
reformulated, and the 2nd and 3rd state that the effects must
be correctly reformulated.

Lemma 3 Given any original action and the partition,
Bags, our action reformulation algorithm correctly reformu-
lates the action with respect to Bags.

Proof Sketch: The reformulated action needs to affect the
unreformulated parts of the reformulated state exactly the
same as it does in the orignal representation. Inspecting
the algorithm shows this to be true as they are just passed
through unaltered. The reformulated parts need to do two
things. One is to effect the change to the reformulated ob-
jects exactly as the original action would. This means that
the modified object’s old attributes must correctly reflect
their values as they would for the original action and that the
new attributes correctly reflect their values as they would in
the original action. This can be seen by inspecting how these
aspects of the modified object are computed.

The second thing the reformulation must do is to correctly
adjust the counts for the modified object. The preconditions
check that there must be at least one bagged object that sat-
isfies the modified object’s old attribute values and that the
count associated with the old bagState is decremented by 1,
and the count associated with new bagState is incremented
by 1 and never exceeds the number of objects in that bag.
Since we have assumed that at most 1 reformulated object

31

can be modified by an action, and since our No No-ops as-
sumption ensures that, if a reformulated object is mentioned
in the action’s effects then it actually does make a modifica-
tion to the object, this updating of counts is correct.

2) Solving the Problem We assume we use the same
sound planner for the reformulated problem space as we
would for the original problem space. Therefore, if it solves
the bagged problem then its solution is valid in the bagged
problem space.

3) Transformation of Solution Our reformulation pro-
duces an abstraction of the original problem space, which
has lost information. A reformulated state can be refined into
a set of states. Consequently, our reformulated solution path
can be refined into a set of plans, where at least one plan
is a solution to the original problem. Transformation is the
refinement of the bagged solution into an original space so-
lution (i.e. a plan which satisfies the original space goal).

So far we have shown that: (i) the initial state bag counts
are correct; (ii) each bag count has stored every bit of in-
formation about each bagged object except for its object id;
and (iii) the bagged preconditions and effects correctly re-
flect the semantics of the original actions. This means that if
a bagged operator applies to a bagged state then the operator
it was derived from will also apply to any refinement of that
bagged state; and that the application of that operator to the
refined state will produce a state which will, when reformu-
lated, be the same as the bagged state produced by apply-
ing that bagged operator to the bagged state. In this section
we show that Baggy is guaranteed to transform a valid solu-
tion in the bagged space into a sound solution in the original
space. This transformation occurs in 3 steps, Baggy3 (3a) re-
fines the bagged solution, P ′, into a valid sequence of orig-
inal space actions, p; (3b) creates a correction mapping be-
tween objects in that final state associated with this sequence
to objects in the original goal; and (3c) applies this mapping
to p to produce a solution, P , to the original problem.

3a) Refinement of Bagged Solution into a Plan

Running Example 3a Suppose that we have a sequence
of bagged actions that change the bagged initial state into
a bagged goal state. Below we show a reformulated solu-
tion where a bagged state precedes and follows each of the
3 grounded bagged actions. Below the bagged solution we
show the original space plan it is refined into.
SOLUTION PHASE 1: REFINE OPERATOR SEQUENCE
bag1 = {a, b, c, d} bag2 = {e}
bagged init, I’ = (bagState bag1 r1 4)(bagState bag2 r3 1)
bagged goal, G’ = (and (bagState bag1 r2 ?cnt1) (≥ ?cnt1 2)

(bagState bag1 r1 ?cnt2) (≥ ?cnt2 1)
(bagState bag2 r2 ?cnt3) (≥ ?cnt3 1))

Bagged solution, P’:
(bagState bag1 r1 4) (bagState bag2 r3 1)

mv box(bag1 r1 r2 4 3 0 1)
(bagState bag1 r1 3) (bagState bag1 r2 1) (bagState bag2 r3 1)

mv box(bag1 r1 r2 3 2 1 2)
(bagState bag1 r1 2) (bagState bag1 r2 2) (bagState bag2 r3 1)

mv box(bag2 r3 r2 1 0 0 1)
(bagState bag1 r1 2) (bagState bag1 r2 2) (bagState bag2 r2 1)

original init, I = (in a r1)(in b r1)(in c r1)(in d r1)(in e r3)

3For GE bags, Baggy only needs the 1st step.

original goal, G = (and(in b r2)(in c r2)(in d r1)(in e r2))

p ← refine-plan(P’, I, {bag1, bag2})
Original plan, p:
(in a r1) (in b r1) (in c r1) (in d r1) (in e r3)

mv box(a r1 r2)
(in a r2) (in b r1) (in c r1) (in d r1) (in e r3)

mv box(b r1 r2)
(in a r2) (in b r2) (in c r1) (in d r1) (in e r3)

mv box(e r3 r2)
(in a r2) (in b r2) (in c r1) (in d r1) (in e r2)

Algorithm 3a The algorithm that refines the bagged so-
lution into a plan in the original space is shown below.
refine-plan(P’: reformPlan, I: state, Bags : partition)

p ← < > // Original space empty plan
S ← I // Current original space state

while P’ 6= < >
α’<v1, ..., vm′> ← pop(P’) // Grounded bagged operator
α <v1, ..., vm> ← refine-action(α’<v1, ..., vm′>, S, Bags)

// α is any valid original space refinement of α’
// with the bag parameters grounded to baggable objects

S ← α<v1, ..., vm>(S) // Update the state by applying α
p ← p + α<v1, ..., vm>

return p

The Refined Plan is Valid
Lemma 4 The refinement of a valid n step plan, P ′, in the
reformulated problem space by refine-plan produces a valid
n step plan, p, in the original problem space. The final state,
f , resulting from executing p in the initial state, I , is a refine-
ment of the bagged final state, f ′, resulting from executing
P ′ in the bagged initial state, I ′.

Proof Sketch:
Assume that Bags is the partition of the initial state I

using type t. We refer to this partition everywhere in this
proof when we talk about reformulating and/or refining. The
proof is by induction on the length of the bagged solution.

Base Case: Empty bagged plan. The empty bagged plan
would be refined to the empty plan in the original space.
The empty plan is always valid. Both of these plans have the
same length, zero. The result of applying the empty plan to
I is I . By Lemma 1, this is a refinement of the bagged initial
state.

Inductive Hypothesis: Assume all bagged plans of length
n are transformed into valid plans of n original actions
where the final state is a refinement of the final bagged state.

Suppose that bagged plan P ′ is of length n + 1. Take the
first n steps of P ′, call it P ′n. By the inductive hypothesis we
can refine P ′n into pn and the final state sn resulting from
executing pn in I is a refinement of the bagged state, s′n
resulting from executing P ′n in I ′.

Lemma 3 means since the last bagged step, α′, is ap-
plicable to the state s′n then α is applicable to sn and the
state, sn+1, resulting from that application is a refinement of
the state, s′n+1 resulting from applying α′ to s′n. The trans-
formed plan, p, has length n+ 1.

3b) Computing Correction Mapping

Running Example 3b While the new plan, p, can be
validly applied to the original initial state, it does not nec-
essarily result in a final state, f , which satisfies the original
goal, G. The correction mapping for our running example is
shown below. (x, y)↔ object x in f maps to object y in G.

32

SOLUTION PHASE 2: COMPUTE CORRECTION MAPPING
bag1 = {a, b, c, d} bag2 = {e}
goal, G = (and (in b r2)(in c r2)(in d r1)(in e r2))
final state, f = (in a r2)(in b r2)(in c r1)(in d r1)(in e r2)

M ← compute-correction-mapping(bag1, G, f)
∪ compute-correction-mapping(bag2, G, f)

Correction mapping, M:
{(a, c), (b, b), (c, a), (d, d), (e, e)}

Algorithm 3b We compute a bijective correction map-
ping, M , which maps objects to other objects in the bag so
that applying M satisfies the original goal G.
compute-correction-mapping(Bag : bag, G: state, f : state)

M ← {} // Correction mapping
∀ obj1 ∈ Bag
f1 ⊆ f // Predicates in f which have obj1 as an argument
∀ obj2 ∈ Bag

G2 ⊆ G // Predicates in G which have obj2 as an argument

// If replacing obj1 with obj2 in f1 satisfies G2
if G2 ⊆ replace(obj1, obj2, f1)

// Then obj1 can be mapped to obj2
M ← M ∪ (obj1, obj2)

M ← prune-mappings(M) // Prune M such that ∀ b ∈ Bag ∃ precisely
// one map (x,b) and one map (b,y) for some x,y ∈ Bag

return M

Mapping Final State to Goal State We introduce the
function correct-state(M , State) which uses correction
mapping M to return a corrected version of State.

Lemma 5 The correction mapping, M, constructed by
compute-correction-mapping, is constructed such that it is
guaranteed that correct-state(M, f) satisfies G.

Proof Sketch: Our bijection is from each bag to itself. Since
the type is baggable it must be action equivalent, i.e., that the
actions only check for attribute values not for object id. This
means that any such bijection will leave the action sequence
valid and also means it will end in a final state that satisfies
the goal.

3c) Applying Correction Mapping to Obtain Solution

Running Example 3c
SOLUTION PHASE 3: APPLY CORRECTION MAPPING TO OPERATION SEQUENCE
M = {(a, c), (b, b), (c, a), (d, d), (e, e)} // Correction mapping
p =
<mv_box(a r1 r2), mv_box(b r1 r2), mv_box(e r3 r2)>

P ← correct-plan(M, p)
Original space solution, P:
<mv_box(c r1 r2), mv_box(b r1 r2), mv_box(e r3 r2)>

Algorithm 3c
correct-plan(M : correction mapping, p : plan)

P ← < > // Empty solution
∀ step ∈ p

STEP ← correct-action(M, step) // Apply the correction mapping
P ← P + <STEP>

return P

Applying Correction Mapping to Plan Gives Solution
LetP be the sequence of actions achieved by calling correct-
plan(M , p).

Lemma 6 The state resulting from applying P to I , satisfies
G.

Proof Sketch: Let f be the state resulting from applying p
to I . Since all the bag type t objects are action equivalent
and all the objects in the same bag have the same initial state
attribute values then if we take two objects, x and y, from the
same bag and consistently map x to y and y to x in every step
in p then the final state will be exactly the same as f except
that wherever x appeared in f , y will appear in the new final
state and everywhere y appeared in f , x will appear in the
new final state. This is also obviously true if we extend that
mapping between two objects to the bijective mapping, M ,
constructed by compute-correction-mapping. Applying this
correction mapping to p and applying it to I will lead to a
state which satisfies G. Thus, P is a solution to the original
problem.
Theorem 1 The process of reformulating the problem, solv-
ing that problem with a sound planner, and transforming
that reformulated solution back into the original represen-
tation is sound.

Proof Sketch: The validity of this theorem derives from the
proof sketches of the correctness of the reformulation and
the proof sketches concerning this transformation process.

Experimental Results
We compare our system to a state-of-the-art symmetry re-
duction system, Metis (Alkhazraji et al. 2014) which has
three main components built on top of Fast Downward
(Helmert 2006); an incremental LM-cut heuristic, symme-
try reduction using Orbit search (Domshlak, Katz, and Sh-
leyfman 2015), and partial order reduction with strong stub-
born sets. In Table 1 we isolate the symmetry reduction
component and disable the other two components. All the
results in Table 1 were run with Metis’ Fast Downward
running A* with the Blind heuristic. It shows the 11 do-
mains Baggy can reformulate from the IPC-11/14 competi-
tions: Barman-opt11 (B1), Elevators-opt11 (E1), Floortile-
opt11 (F1), Nomystery-opt11 (N1), Transport-opt11 (T1),
Barman-opt14 (B4), Childsnack-opt14 (C4), Floortile-opt14
(F4), Hiking-opt14 (H4) Tetris-opt14 (Te4), Transport-opt14
(T4). We include a new domain (N2), discussed later. SA de-
notes the largest number of problems solved by any one of
the settings over the total number of reformulatable prob-
lems from the domain. Under each setting we report s, the
number of problems solved and E, defined as E = E∗/Es
where Es is the number of nodes expanded by this setting
and E∗ is the minimum nodes expanded by any setting. If a
setting expanded the fewest nodes it will receive a 1 for that
problem and if it expanded twice as many nodes it would
receive 0.5. These values are summed across all the prob-
lems within a domain, so if 20 domain problems were solved
then a perfect E value would be 20. This is the same formula
used in (Domshlak, Katz, and Shleyfman 2012). The last two
columns show the reduction factor for the reformulation and
orbit search respectively. This is the number of times the
search space has been reduced for each compared to blind
search in the original space. (A 2 means the original blind
space is twice the size). If no problem is solved in either

33

Table 1: Summarized results for s, and E of 2 representations
using Blind Search with and without Symmetry breaking

Reformulated Original Reduction
Do SA Blind Orbit Srch Blind Orbit Srch Factor

BR BOSR BO BOSO Ref Orb
s E s E s E s E

B1 12/20 12 5.38 12 12 4 0.07 8 0.42 36. 4.5
E1 8/15 8 7.20 8 8 6 2.94 8 5.40 1.8 1.2
F1 2/20 2 1.04 2 2 2 0.29 2 0.93 3.6 3.2
N1 9/20 9 9 9 9 8 4.94 9 8.57 3.7 3.7
T1 6/19 6 5.15 6 6 6 3.00 6 4.72 1.5 1.5
B4 8/14 6 1.72 8 8 0 0 3 0.06 >192. >12.
C4 8/20 6 1.16 10 10 0 0 6 4.46 >3430. >8790.
F4 0/20 0 0 0 0 0 0 0 0 >1.3 >1.5
H4 17/20 14 4.59 17 17 11 1.89 17 17 5.0 27
Te4 8/14 7 5.71 8 8 4 1.56 8 8 2.13 6.07
T4 6/14 6 5.52 6 6 6 3.36 6 5.49 1.8 2.6
N2 3/6 3 3 3 3 2 0.9 2 0.9 9.9 1
Tot 87/203 79 49.47 89 89 49 18.95 75 55.95

space, the last common f-bound is used to calculate a lower
bound. Throughout this analysis we use number of nodes ex-
panded since last jump to normalize for different tree order-
ings on the last level. We used the 4GB memory restriction
from IPC, but we increased the time to an hour. Baggy itself
is very fast - the maximum reformulation time was 316s and
the maximum solution transformation time was 0.15s. The
median times were 0.54s and 0.15s respectively. For these
experiments, we used both ISE and GE relations to produce
bags.

Table 2: Summarized results for s, and E of 2 representations
with 3 state-of-the-art planners

Reformulated Original
Do SA Sym Metis iPDB Sym Metis iPDB

s s E s E s s E s E
B1 20/20 20 8 8 12 6.4 11 8 1.3 4 0
E1 14/15 14 14 10.8 12 0.5 14 13 9.9 12 2.1
F1 14/20 12 9 9 3 0 14 9 4.2 2 0
N1 20/20 14 13 0.4 18 6.4 16 17 12.7 20 9.8
T1 9/19 9 7 4.7 6 0.1 9 7 6.2 8 1.3
B4 10/14 10 3 3 6 3.6 6 3 0.3 0 0
C4 13/20 13 4 3.9 6 0.6 3 8 7.9 0 0
F4 20/20 12 8 8 2 0.0 20 8 3.1 0 0
H4 19/20 14 13 11.1 17 7.8 19 14 7.4 13 3.2
Te4 11/14 11 7 5.4 3 1.4 8 8 7 1 1
T4 7/14 7 6 5.0 6 1.3 7 5 4.7 6 1.2
N2 6/6 6 4 0.0 5 1.1 4 3 4 4 1.6
Tot 163/203 142 96 69.3 96 29.2 131 103 68.7 70 20.2

Table 1 shows that the blind heuristic on the reformulated
domain (BR) always solves at least as many problems as the
blind heuristic on the original domain (BO). In addition the
E value is almost always much larger for BR than BO (the
totals are 49.47 versus 18.95). The reformulated state space
is always smaller and usually a lot smaller.

BR and blind orbit search on the original representation
(BOSO) solve the same number of problems in 7 domains.
BOSO solves 3 more problems in the Hiking domain and
1 more problem in the Tetris domain. BR solves 4 more
problems in Barman11 and 3 more problems in Barman14.
The E values tell a more important story. In all domains ex-
cept Childsnack, Hiking and Tetris, BR has a smaller search
space, often significantly smaller. This is surprising as these
domains are not ideal for our technique. We perform worse
in Childsnack because we cannot bag child as it is not single-
valued4. In some domains we do better than BOSO because

4The serve sandwich operator has a precondition of (waiting
?c - child,?p - place), which is not removed in the effects when
(served ?c - child) is added. We have techniques for improving
this, by running a PDDL-repair process before Baggy, but this is
not included in this paper.

Figure 1: Total planner time for each reformulatable prob-
lem which was solved by the planner (from Table 1). Con-
tours indicate the difference in running time between refor-
mulated and original space. Problems which were solved in
one search space but not the other are along the dotted line
(at 3600s). The u value counts the number of points along
the unsolved line.

some of the problems are ISE baggable and therefore we find
symmetries which BOSO cannot find.

One of the advantages of reformulating the lifted PDDL
as preprocessing, rather than doing symmetry breaking dur-
ing the search process itself, is that you can run any PDDL-
based planner on it. We also ran Orbit Search on the refor-
mulated representation (BOSR), to check whether it finds
extra symmetries that Baggy does not (this is why the E
value is the same as the s value). In terms of the E-value,
BOSR never does worse and often does better than either
BR or BOSO. With the exception of N1 and N2, BOSO al-
ways finds further symmetries not exploited by Baggy. For
instance Orbit search can find more complicated symmetries
then object symmetries

In Table 2 we run 3 state-of-the-art planners on both
the original representation and the reformulated represen-
tation. These are SymBA*5 (Torralba et al. 2014), Metis
(Alkhazraji et al. 2014), and iPDB (Haslum et al. 2007).
SymBA* (Sym) and iPDB both solve more problems in the
reformulated representation than in the original representa-
tion. Metis solves fewer problems in the reformulated space,
this is because the delete relaxation that is the basis of LM-
cut is not an appropriate heuristic for a bagged representa-
tion. Once you pick up one “ball” you can put it down as
many times as you wish. So heuristics based on delete relax-
ation are very inaccurate in the bagged representation. iPDB
is not as disadvantaged by the reformulated representation,

5There is no E given for the SymBA* system since it does not
represent nodes in the same way as Fast Downward, there is no way
to directly compare the nodes expanded .

34

but there are still domains where the original representation
does better. This is probably caused by the number of SAS+
variables and operators. You can see in Table 3 that some-
times the reformulated representation has fewer variables
and operators, and sometimes there are more. In addition
you will notice that you frequently get fewer variables and
operators if you use the SymBA* Translator and Preproces-
sor, but these experiments were all done using the regular FD
Translator and Preprocessssor (except when SymBA* was
run). Fewer variables is often an advantage for iPDB.

Figure 1 shows the times for all the problems in Table 1.
You can see that there is a time penalty for reformulation on
the smaller problems. But for the bigger problems the refor-
mulated problems are frequently faster. Bear in mind, since
this is a log graph, the win for the bigger problems is much
larger than the loss for the smaller problems. In addition,
the numbers of problems which the reformulated represen-
tation solved and the original representation didn’t is much
higher than the inverse number. A similar graph for Table 2
would not be as clear cut. The reformulated representation
is obviously confusing for traditional heuristics. This is an
opportunity for the community to develop heuristics which
work well on non-standard representations.

We created a new set of nomystery problems, N2. These
use the same domain file as the regular problems, but all the
packages start in location l0 and are delivered each to its
own location. This domain should show the biggest differ-
ence between Baggy and Orbit Search, since there should
be no GE. BOSR and BR perform the same since there are
no additional symmetries to remove. Both do better than BO
and BOSO. With the state-of-the-art planners, they all solve
more problems in the reformulated representation, but Metis
again performs worse on the reformulated representation
than the others because of its delete relaxation based heuris-
tic. This shows the real power of Baggy over other symme-
try reduction techniques. Since in the original nomystery do-
main the new representation performed worse, it has become
obvious that its performance is based upon the specific prob-
lems chosen and the size of the bags created, as opposed to
something that can be determined at the domain level. This
highlights the need to chose a heuristic/representation com-
bination on a problem by problem basis Notice that none of
the planners got anywhere close to the 163 problems solved
overall (see Tot/SA cell of Table 2). A system like RIDA*
(Barley, Franco, and Riddle 2014) should be used to decide
when to use which representation/heuristic combination.

Table 3: Largest number of SAS variables and operators for
each representation and translator and preprocessor pair. The
last column contains the size of the largest bag.

Domain Reformulation Reform-SymBA* Original Original-SymBA* Bag
Vars Ops Vars Ops Vars Ops Vars Ops Size

B1 95 49400 67 25691 162 1016 162 908 9
E1 93 1296 93 1296 16 1008 16 1008 3
F1 162 4040 162 482 48 1104 45 540 3
N1 86 9106 86 8170 14 8890 14 7954 5
T1 132 4536 132 4536 15 3408 15 3408 3
B4 104 60920 72 32891 172 1078 172 970 9
C4 35 442971 34 26992 48 1025 48 1025 15
F4 135 1146 135 397 39 476 37 296 2
H4 58 27072 58 27072 14 8200 14 8200 4
Te4 2020 32720 320 788 1982 32588 282 920 4
T4 384 12186 384 12186 13 10746 13 10746 2
N2 16 6564 16 6564 14 4848 14 4848 12

Related Research
There has been considerable work on problem reformula-
tion, starting with George Polya’s How to Solve It (1957).
Due to lack of space we will focus on planning-specific re-
formulation research. The Fast Downward system (Helmert
2006) first transforms the PDDL representation into a multi-
valued planning task, similar in spirit to SAS+. Using this
representation, the system generates four internal data struc-
tures, which it uses to search for a plan. Helmert (Helmert
2009), extending this work, focused on turning PDDL into
a concise grounded representation of SAS+. Additional
work in this area transforms PDDL into binary decision
diagrams (Haslum 2007), transforms between PDDL and
causal graphs (Helmert 2006), and identifies and removes
irrelevant parts from a problem representation (Haslum,
Helmert, and Jonsson 2013).

As noted earlier, our system has much in common with
symmetry reduction systems. Fox and Long (1999) group
symmetric objects together in TIM. They require objects to
be indistinguishable in both the initial state and the goal
description. They keep track of the symmetry groups dur-
ing planning but only with respect to the goal description,
so they cannot remove all the symmetries in gripper. They
have a constraint similar to our action equivalence, which
tests if objects are used as constants within actions. Pochter
et. al. (2011) generalize the work by Fox and Long, by us-
ing generators to create automorphic groups. These groups
are based on SAS+ and so are more general than objects.
They still require the symmetric groups to be indistinguish-
able in both the initial state and goal description. Domshlak
et. al. (2012) extended this work to only require symmetric
groups to be indistinguishable in the goal description in the
DKS system. They compared their work to Pochter’s sys-
tem, where they solved 8 more problems over 30 domains.
Metis (Alkhazraji et al. 2014), uses orbit search to do sym-
metry breaking. It is an improvement on DKS, since it does
not store extra information in each state. Metis also includes
an incremental LM-cut heuristic and partial order reduction
with strong stubborn sets.

The closest work to our automated system for creating
these transformations is the system by de la Rosa et. al.
(2015). They reformulate PDDL into PDDL and they merge
objects in a similar way. The main differences are 1) we
merge objects if they are the same in the initial state or the
same in the goal description whereas their system merges
objects if they do not appear in the goal description 2) they
explicitly use numeric fluents in their modeling, restricting
them to planners that support them such as metric-FF (Hoff-
mann 2003) 3) both our systems transform the solution back
to the original representation but our system can generate
plans which have different explicit values specified in the
goal state. In addition recent work by Bartak et. al. (Barták,
Dovier, and Zhou 2015; Zhou, Bartak, and Dovier 2015;
Bartak and Vodrazka 2015) has looked at representing plan-
ning problems in the PICAT planner module for tabled logic
programming. They have shown that representing the plan-
ning task as a structured state representation leads to in-
creased problem solving performance. Our bagState predi-
cates are related to this structured state representation.

35

Concluding Remarks
We have shown that one can solve more problems and ex-
pand fewer nodes, at least in some domains, by spending
just a little time transforming the lifted PDDL representa-
tion. When we create a new state space, it is always smaller
than the original space. Our transformation involves group-
ing into bags, objects that are indistinguishable with respect
to the actions and the initial state or the goal description. By
doing so, we only keep track of their counts instead of iden-
tifying them individually, and we avoid unnecessary combi-
natorial explosion. Since the transformations produce PDDL
files, they can be used with any planning system. Our experi-
ments show that, in some domains, we reduce the state space
more than state-of-the-art symmetry reduction techniques.

This paper had 3 main contributions. We presented Baggy
and showed it is a sound method to transform PDDL, which
always results in a smaller state space. We showed that
there are situations where a state-of-the-art heuristic prob-
lem solver can perform better in the reformulated represen-
tation than in the original representation. Lastly we showed
that this is not always the case, for some problem/planner
combinations, the new representation can perform worse.

These encouraging results suggest many directions for fu-
ture work. Our new representation does not work well with
all heuristics (especially delete-relaxation based ones) so we
planning to us a RIDA* type system to choose an appro-
priate representation/heuristic combination on a problem by
problem basis. We are currently creating heuristics which
work better on Bagged representations. One of our main ar-
eas of future research is to look at planners that do not used
grounded SAS+ representations, such as metric-ff (Hoff-
mann 2003) or SAT-based planners (Davies et al. 2015). We
have found that the compactness of the SAS+ representation
is very sensitive to the specific PDDL formulation. We will
be exploring this space of equivalent PDDL representations
in order to make the PDDL we create more efficient in terms
of its SAS+ representation. We have develop several tech-
niques for optimizing the PDDL we create to make efficient
SAS+ representations.

Acknowledgements
This material is based upon work supported by the Air Force
Office of Scientific Research, Asian Office of Aerospace
Research and Development (AOARD) under award num-
ber FA2386-15-1-4069. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of the United States Air Force. Financial support for this
research was in part provided by Brazil’s CAPES (Science
Without Borders). Special thanks to Rob Holte and Alvaro
Torralba for comments on earlier versions of this paper.

References
Alkhazraji, Y.; Katz, M.; Mattmuller, R.; Pommerening, F.;
Shleyfman, A.; and Wehrle, M. 2014. Metis: Arming fast
downward with pruning and incremental computation. In
The 2014 ICAPS - Description of Planners.
Amarel, S. 1971. Representations and modeling in problems
of program formation. Machine Intelligence 6.

Bäckström, C., and Nebel, B. 1995. Complexity results for
sas+ planning. Computational Intelligence 11(4):625–655.
Barley, M.; Franco, S.; and Riddle, P. 2014. Overcoming the
utility problem in heuristic generation: Why time matters. In
ICAPS.
Bartak, R., and Vodrazka, J. 2015. The effect of domain
modeling on efficiency of planning: Lessons from the no-
mystery domain. In TAAI.
Barták, R.; Dovier, A.; and Zhou, N.-F. 2015. On modeling
planning problems in tabled logic programming. In PPDP.
Davies, T.; Pearce, A. R.; Stuckey, P.; and Lipovetzky, N.
2015. Sequencing operator counts. In ICAPS.
de la Rosa, T., and Fuentetaja, R. 2015. Automatic compi-
lation of objects to counters in automatic planning. case of
study: Creation planning.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2012. En-
hanced symmetry breaking in cost-optimal planning as for-
ward search. In ICAPS.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2015. Sym-
metry breaking in deterministic planning as forward search:
Orbit space search algorithm. Technical Report IS/IE-2015-
02, Israel Institute of Technology.
Fox, M., and Long, D. 1999. The detection and exploitation
of symmetry in planning problems. In IJCAI, 956–961.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In AAAI.
Haslum, P.; Helmert, M.; and Jonsson, A. 2013. Safe, strong
and tractable relevance analysis for planning. In ICAPS.
Haslum, P. 2007. Reducing accidental complexity in plan-
ning problems. In IJCAI, 1898–1903.
Helmert, M. 2006. The fast downward planning system.
JAIR 26(1):191–246.
Helmert, M. 2008. Understanding planning tasks: domain
complexity and heuristic decomposition.
Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. Artificial Intelligence 173(5).
Hoffmann, J. 2003. The metric-ff planning system: Trans-
lating“ignoring delete lists”to numeric state variables. JAIR.
Pochter, N.; Zohar, A.; and Rosenschein, J. S. 2011. Exploit-
ing problem symmetries in state-based planners. In AAAI.
Pólya, G. 1957. How to solve it: A new aspect of mathemat-
ical method. Princeton University Press, second edition.
Riddle, P.; Barley, M.; and Franco, S. 2015. Bagged repre-
sentations in PDDL. In IPC Workshop.
Riddle, P.; Holte, R.; and Barley, M. 2011. Does represen-
tation matter in the planning competition? In SARA.
Torralba, Á.; Alcázar, V.; Borrajo, D.; Kissmann, P.; and
Edelkamp, S. 2014. SymBA*: A symbolic bidirectional
A* planner. In The 2014 ICAPS - Description of Planners.
Zhou, N.-F.; Bartak, R.; and Dovier, A. 2015. Planning as
tabled logic programming. Theory and Practice of Logic
Programming 15(4-5):543–558.

36

On State-Dominance Criteria in Fork-Decoupled Search

Álvaro Torralba and Daniel Gnad and Patrick Dubbert and Jörg Hoffmann
Saarland University

Saarbrücken, Germany
{torralba, gnad, hoffmann}@cs.uni-saarland.de; s9padubb@stud.uni-saarland.de

Abstract
Fork-decoupled search is a recent approach to classical plan-
ning that exploits fork structures, where a single center com-
ponent provides preconditions for several leaf components.
The decoupled states in this search consist of a center state,
along with a price for every leaf state. Given this, when
does one decoupled state dominate another? Such state-
dominance criteria can be used to prune dominated search
states. Prior work has devised only a trivial criterion. We de-
vise several more powerful criteria, show that they preserve
optimality, and establish their interrelations. We show that
they can yield exponential reductions. Experiments on IPC
benchmarks attest to the possible practical benefits.

Introduction
Fork-decoupled search is a new approach to state-space de-
composition in classical planning, recently introduced by
Gnad and Hoffmann (2015). The approach partitions the
state variables into disjoint subsets, factors, like in fac-
tored planning (e. g. (Amir and Engelhardt 2003; Kelareva
et al. 2007; Fabre et al. 2010; Brafman and Domsh-
lak 2013)). While factored planning is traditionally de-
signed to handle arbitrary cross-factor interactions, fork-
decoupling assumes these interactions to take a fork struc-
ture (Katz and Domshlak 2008; Katz and Keyder 2012;
?), where a single center provides preconditions for several
leaves. A simple pre-process can determine whether such a
fork structure exists, and extract a corresponding factoring
if so.

Fork factorings identify a form of “conditional indepen-
dence” between the leaf factors: Given a fixed center path
πC , the compliant leaf moves – those leaf moves enabled
by the preconditions supplied along πC – can be selected
independently for each leaf. The decoupled search thus
searches only over center paths πC . Each decoupled state
in the search represents the compliant leaf moves in terms
of a pricing function, mapping each leaf-factor state sL to
the cost of a cheapest πC-compliant path achieving sL. As
Gnad and Hoffmann (henceforth: GH) show, this can expo-
nentially reduce state space size. It may also cause exponen-
tial blow-ups though.

The worst-case exponential blow-ups result from irrele-
vant distinctions in pricing functions. One means to combat
this, and more generally to improve search, is dominance

pruning, pruning a state sF if a better state tF has already
been seen. But, given the complex structure of decoupled
states, when is one “better” than another? GH employ the
trivial criterion, where sF and tF must have the same cen-
ter state and tF needs to have cheaper prices than sF for all
leaf states. Here we introduce advanced methods, analyzing
the structure of decoupled states to identify (and then, disre-
gard) irrelevant distinctions. We devise several such meth-
ods, using different sources of information. We show that
the methods preserve optimality, and we characterize their
relative pruning power. We show that they can yield ex-
ponential search reductions. Experiments on International
Planning Competition (IPC) benchmarks attest to the possi-
ble practical benefits.

For space reasons, we can only outline our proof argu-
ments. The full proofs are available in an online TR (Tor-
ralba et al. 2016).

Background
We use finite-domain state variables (Bäckström and Nebel
1995; Helmert 2006). A planning task is a tuple Π =
〈V,A, I, G〉. V is a set of variables, each associated with
a finite domain D(v). I is the initial state. The goal G is
a partial assignment to V . A is a finite set of actions, each
a triple 〈pre(a), eff(a), cost(a)〉 of precondition, effect, and
cost, where pre(a) and eff(a) are partial assignments to V ,
and cost(a) ∈ R0+. For a partial assignment p, we denote
with V(p) ⊆ V the subset of variables on which p is de-
fined. For V ⊆ V(p), we denote with p[V] the assignment
to V made by p. We identify (partial) variable assignments
as sets of variable/value pairs, written as (var, val). A state
is a complete assignment to V . Action a is applicable in
state s if pre(a) ⊆ s. Applying a in s changes the value of
all v ∈ V(eff(a)) to eff(a)[v], and leaves s unchanged else-
where. We will sometimes write s a−→ t for a transition from
s to t with action a. A plan for Π is an action sequence π
iteratively applicable in I which results in a state sG where
G ⊆ sG. The plan is optimal if its summed-up cost, denoted
cost(π), is minimal among all plans for Π.

We next give a recap of GH’s definitions. A fork fac-
toring F is a partition of V identifying a fork structure.
Namely, (i) every action a ∈ A affects (touches in its ef-
fect) exactly one element (factor) of F , which we denote
F (a). And (ii) there is a center FC ∈ F s.t., for every

37

a ∈ A, V(pre(a)) ⊆ FC ∪ F (a). We refer to the factors
FL ∈ FL := F \ {FC} as leaves. We refer to actions af-
fecting FC as center actions, and to actions affecting a leaf
as leaf actions. By construction (each action affects only
one factor) these two kinds of actions are disjoint. Center
actions are preconditioned only on FC , leaf actions may be
preconditioned on FC and the leaf they affect. In brief: the
center provides preconditions for the leaves, and there are
no other cross-factor interactions.

As a running example, we use a Logistics-style planning
task with a truck variable t, a package variable p, and n lo-
cations l1, . . . , ln. I = {(t, l1), (p, l1)} and G = {(p, l2)}.
Action drive(x, y) moves the truck from any location x to
any other location y. The package can be loaded/unloaded at
any location x with actions load(x)/unload(x) respectively.
Then F = {{t}, {p}} is a fork factoring where {t} is the
center and {p} is the single leaf. If we have m packages pi,
we can set each {pi} as a leaf.

Not every task Π has a fork factoring. GH analyze Π’s
causal graph (e. g. (Knoblock 1994; Jonsson and Bäckström
1995; Brafman and Domshlak 2003; Helmert 2006)) in a
pre-process, identifying a fork factoring if one exists, else
abstaining from solving Π. We follow this approach here.
In what follows, we assume a fork factoring F . Variable
assignments to FC are called center states, and for each
FL ∈ FL assignments to FL are leaf states. We denote
by SL the set of all leaf states, across FL ∈ FL. For each
leaf, sLI denotes the initial leaf state. For simplicity (wlog),
we will assume that every leaf has a single goal leaf state,
sLG.

Decoupled search searches over sequences of center ac-
tions πC , called center paths, that are applicable to I . For
each πC , it maintains a compact representation of the leaf
paths πL that comply with πC . A leaf path is a sequence of
leaf actions applicable to I when ignoring preconditions on
FC . Intuitively, given the fork structure, a fixed center path
determines what each leaf can do (independently of all other
leaves, as they interact only via the center). This is captured
by the notion of compliance: πL complies with πC if it uses
only the center preconditions supplied along πC , i. e., if πL
can be scheduled alongside πC s.t. the combined action se-
quence is applicable in I . Decoupled search goes forward
from I until it finds a center path πC to a center goal state
where every leaf has a πC-compliant leaf path πL to its goal
leaf state. The global plan then results from augmenting πC
with the paths πL.

In detail: A decoupled state sF is given by a center
path cp(sF). Its center state cs(sF) and pricing function
prices(sF) : SL 7→ R0+ are induced by cp(sF), as fol-
lows. cs(sF) is the outcome of applying cp(sF) to sLI .
prices(sF) maps each leaf state sL to the cost of a cheap-
est cp(sF)-compliant leaf path ending in sL (or ∞ if no
such path exists).1 The initial decoupled state IF has the
empty center path cp(IF) = 〈〉. A goal decoupled state
sFG is one with a goal center state cs(sFG) ⊇ G[FC] and

1Pricing functions can be maintained in time low-order poly-
nomial in the size of the individual leaf state spaces. See GH for
details.

where, for every leaf factor FL ∈ FL, its goal leaf state
sLG has been reached, i. e., prices(sFG)[sLG] < ∞. The
actions applicable in sF are those center actions a where
pre(a) ⊆ cs(sF). Applying a to sF results in tF where
cp(tF) := cp(sF)◦ 〈a〉, inducing cs(tF) and prices(tF) as
above.

In the running example, cs(IF) = {(t, l1)},
prices(IF)[(p, l1)] = 0, prices(IF)[(p, t)] = 1, and
prices(IF)[(p, li)] = ∞, for all i 6= 1. Observe that
prices(IF)[(p, t)] represents the cost of a possible package
move, not a move we have already committed to. The
actions applicable to IF are drive(l1, li). Applying any
such action, in the outcome decoupled state sF we have
prices(sF)[(p, li)] = 2, while all other prices remain
the same. If we apply drive(l1, l2), then sF is a goal
decoupled state. The global plan is then extracted from sF

by augmenting the center path cp(sF) = 〈drive(l1, l2)〉
with the compliant goal leaf path 〈load(l1),unload(l2)〉.

A completion plan for sF consists of a center path πC

leading from sF to some goal center state, augmented with
goal leaf paths compliant with cp(sF)◦πC . That is, we col-
lect the postfix path for the center, and the complete path for
each leaf. The completion cost of sF , denoted hF∗(sF), is
defined as the cost of a cheapest completion plan for sF . By
dF∗(sF), we denote the minimum, over all optimal comple-
tion plans πF , of the number of center actions (decoupled-
state transitions) in πF .

Decoupled State Dominance
A binary relation � over decoupled states is a decoupled
dominance relation if sF � tF implies that hF∗(sF) ≥
hF∗(tF) and dF∗(sF) ≥ dF∗(tF). In dominance prun-
ing, given such a relation �, we prune a state sF at gen-
eration time if we have already seen another state tF (i. e.,
tF is in the open or closed list) such that sF � tF and
g(sF) ≥ g(tF). Intuitively, tF dominates sF if it has an
at least equally good completion plan and center path. The
center path condition is needed only in the presence of 0-cost
actions, and ensures that the completion plan for tF does not
have to traverse sF . If tF can be reached with equal or better
g-cost, pruning sF preserves completeness and optimality of
the search algorithm.

We derive practical decoupled dominance relations by ef-
ficiently testable sufficient criteria. The relations differ in
terms of their pruning power. We capture their relative
power with two simple terms of two simple notions. First,
we say that �′ subsumes � if �′⊇�, i. e., if �′ recognizes
every occurrence of dominance recognized by �. Second,
we say that�′ is exponentially separated from� if there ex-
ists a family of planning tasks in which the decoupled state
space is exponential in the size of the input task under domi-
nance pruning using � and polynomial when using �′.2 We
will devise several decoupled dominance relations, weaker
and stronger ones. Weaker relations are useful in practice
(only) when they cause less computational overhead.

2More precisely, as the pruning depends on the expansion order:
in which this statement is true for any expansion order.

38

Previous work only considered what we will refer to as
the basic decoupled dominance relation, denoted �B .

Definition 1 (�B relation) �B is the relation over decou-
pled states defined by sF �B tF iff cs(sF) = cs(tF) and,
for all sL ∈ SL, prices(sF)[sL] ≥ prices(tF)[sL].

This method simply does a point-wise comparison be-
tween prices(sF) and prices(tF), whenever both have the
same center state. Basic dominance pruning often helps to
reduce search effort, but is unnecessarily restrictive in its
insistence on all leaf prices being cheaper. This is inappro-
priate in cases where sF has some irrelevant cheaper prices.
It may, indeed, cause exponential blow-ups as, e. g., in our
running example.

The standard state space in our running example is small,
since |V| = 2. Yet the decoupled state space has size
exponential in the number n of locations. Through the
leaf state prices, the decoupled states “remember” the lo-
cations visited by the truck in the past. For example,
the decoupled state reached through the center sequence
〈drive(l1, l3), drive(l3, l4)〉 has finite prices for (p, l1),
(p, t), (p, l3), and (p, l4), and price∞ elsewhere; while the
decoupled state reached through the sequence 〈drive(l1, l4)〉
has finite prices for (p, l1), (p, t), and (p, l4). Intuitively, the
difference between the two pricing functions does not mat-
ter, because, with initial location l1 and goal location l2, the
prices for (p, li), i > 2 are irrelevant. But without recogniz-
ing this fact, the decoupled state space enumerates (pricing
functions corresponding to) every combination of visited lo-
cations.

It is remarkable here that the blow-up occurs in a simple
Logistics task. This is a new insight. GH already pointed
out the risk of blow-ups, but only in complex artificial exam-
ples. On IPC benchmarks, empirically the decoupled state
space always is smaller than the standard one. Our insight
here is that this is not because blow-ups don’t occur, but be-
cause the blow-ups (e. g. remembering truck histories) are
hidden behind the gains (e. g. not enumerating combinations
of package locations). Indeed, in the standard IPC Logistics
benchmarks, the blow-up above occurs for all non-airport lo-
cations within every city, and these blow-ups multiply across
cities. All our advanced dominance pruning methods get rid
of this blow-up (though none guarantees to avoid blow-ups
in general).

Frontier-Based Dominance
Our first dominance relation is based on the idea that dif-
fering prices on a leaf state sL do not matter if “sL has no
purpose”. In our running example, say that we are check-
ing whether sF � tF and prices(sF)[(p, l3)] = 2 while
prices(tF)[(p, l3)] = ∞, and thus sF 6�B tF . However,
say that prices(sF)[(p, t)] = 1. Then the cheaper price for
(p, l3) in sF does not matter, because the only purpose of
having the package at l3 is to load it into the truck. Indeed,
the only outgoing transition of the leaf state (p, l3) leads to
(p, t).

We capture the relevant leaf states in sF in terms of its
frontier: those leaf states that are either themselves relevant

(this applies only to the goal leaf state), or that can still con-
tribute to achieving cheaper prices somewhere.

Definition 2 (Frontier) We define the frontier of a decou-
pled state sF , F (sF) ⊆ SL as F (sF) := {sLG} ∪ {sL |
∃sL a−→ tL : prices(sF)[sL] + cost(a) < prices(sF)[tL]}.

We now obtain a decoupled dominance relation by com-
paring prices only on the frontier of sF :

Definition 3 (�F relation) �F is the relation over decou-
pled states defined by sF �F tF iff cs(sF) = cs(tF) and,
for all sL ∈ F (sF), prices(sF)[sL] ≥ prices(tF)[sL].

Theorem 1 �F is a decoupled dominance relation.

Comparing the prices on the frontier is enough because,
in any completion plan for sF , if a compliant leaf path πL
decreases the price of the goal leaf state (e. g., from ∞ to
some finite value), then πL must pass through a frontier state
sL. Hence, in a completion plan for tF , we can use the
postfix behind sL. This completion plan can only be better
than that for sF because prices(sF)[sL] ≥ prices(tF)[sL].

It is easy to see that �F is strictly better than �B :

Theorem 2 �F subsumes �B and is exponentially sepa-
rated from it.

The first part of this claim is trivial as both relations
are based on comparing prices, but �F does so on a sub-
set of leaf states. A task family demonstrating the sec-
ond part of the claim is our running example. The only
leaf action applicable in any leaf state (p, li) is load(li),
leading to (p, t). However, for any reachable sF , we have
prices(sF)[(p, t)] = 1 because this price is already achieved
in the initial state, and prices can only decrease. So the
only possible frontier state, apart from (p, t), is the goal
(p, l2). But only two different prices are reachable for
(p, l2), namely∞ and 2. This shows the claim.

Effective-Price Dominance
Our next method appears orthogonal to frontier-based dom-
inance at first sight, but turns out to subsume it. The method
is based on replacing the prices in tF , i. e., the dominating
state in the comparison sF � tF , with smaller effective
prices, denoted Eprices(tF). We then simply compare all
such prices:

Definition 4 (�E relation) �E is the relation over decou-
pled states defined by sF �E tF iff cs(sF) = cs(tF) and,
for all sL ∈ SL, prices(sF)[sL] ≥ Eprices(tF)[sL].

The modified comparison is sound because the effec-
tive prices are designed to preserve hF∗(tF). Precisely:
(*) For any center path πC starting in tF , and for any
leaf state sL of leaf FL, if πLs is a πC-compliant leaf
path from sL to sLG, then there exists a path πL from
sLI to sLG that complies with cp(tF) ◦ πC such that

39

cost(πL) ≤ Eprices(tF)[sL] + cost(πLs). In other words,
if prices(tF)[sL] > Eprices(tF)[sL], then any completion
plan can be modified to use some other leaf state which does
provide a total price of Eprices(tF)[sL] + cost(πLs) or less.

It turns out that this can be ensured with the following
simple definition. We define Eprices(tF) as the point-wise
minimum pricing function p that satisfies:

p[sL] =





prices(tF)[sL] if sL = sLG
min{prices(tF)[sL],

max
sL

a−→tL

(
p[tL]− cost(a)

)
} otherwise

For each FL, Eprices(tF) can be computed by a simple
backwards algorithm starting at the goal leaf state sLG. To
illustrate the definition, consider any tF in our running ex-
ample. The price of (p, t) is 1, and its effective price also
is 1 because its successor leaf state sLG = (p, l2) always has
effective price ≥ 2. For any irrelevant location li, i > 2,
however, due to the transition to (p, t) whose effective price
is 1, we get Eprices(tF)[(p, li)] = 0 regardless of what
the actual price of (p, li) in tF is. The effective price 0 is
sound because, in any completion plan for tF starting with
load(li), we can use load(l1) instead to get (p, t) with price
1.

Theorem 3 �E is a decoupled dominance relation.

To prove Theorem 3, observe that, whenever sF �E
tF , given a completion plan for sF , we can construct an
equally good completion plan for tF by using the same
center path πC , and, with (*) above, constructing equally
good or cheaper compliant goal leaf paths. It remains to
prove (*). Consider any tF , center path πC , leaf state
sL, and πC-compliant goal leaf path πLs starting in sL. In
our example, e. g., say tF is reached from IF by applying
drive(l1, l3); that πC = 〈drive(l3, l2)〉; that sL = (p, l3);
and that πLs = 〈load(l3), unload(l2)〉. Then, exists πL =
〈load(l1), unload(l2)〉 that is compliant with cp(tF) ◦ πC .

Formally, denote πLs = 〈a1, . . . , an〉 and denote the leaf
states it traverses by sL = sL0 , . . . , s

L
n = sLG. Observe

that, as Eprices(tF)[sLn] = prices(tF)[sLn], πLs necessar-
ily passes through a leaf state sLi whose effective and actual
prices in tF are identical. Let i be the smallest index for
which that is so. Then, for all j < i, Eprices(tF)[sLj] 6=
prices(tF)[sLj], and thus by the definition of effective prices
we have that Eprices(tF)[sLj] ≥ Eprices(tF)[sLj+1] −
cost(aj+1). Accumulating these inequalities, we get (**)
Eprices(tF)[sL0] ≥ Eprices(tF)[sLi] − ∑i

j=1 cost(aj).
Consider now the path πL from sLI to sLG constructed as
the concatenation of: a cheapest cp(tF)-compliant path to
sLi (in our example, 〈load(l1)); with the postfix of πLs be-
hind sLi (in our example, 〈unload(l2)). Then cost(πL) =
prices(tF)[sLi] +

∑n
j=i+1 cost(aj). As Eprices(tF)[sLi] =

prices(tF)[sLi], we get cost(πL) = Eprices(tF)[sLi] +∑n
j=i+1 cost(aj). With (**), we get the desired prop-

erty that cost(πL) ≤ Eprices(tF)[sL0] +
∑i
j=1 cost(aj) +

∑n
j=i+1 cost(aj) = Eprices(tF)[sL] + cost(πLs), conclud-

ing the proof.

Theorem 4 �E subsumes �F and is exponentially sepa-
rated from it.

To prove the exponential separation, we extend our run-
ning example with a teleport(li, lj) action, for i, j > 2, that
moves the package between irrelevant locations if the truck
is at l2. Then, as long as l2 and at least one such li have
not been visited yet, all leaf states (p, li) for i > 2 with fi-
nite price are in the frontier, and �F suffers from the same
blow-up as �B . The effective prices of (p, li), however, re-
main 0 as before.

To see that �E subsumes �F , observe that the for-
mer can be viewed as a recursive version of the latter,
when reformulating the frontier condition to “∃sL a−→ tL :
p[sL] < p[tL] − cost(a)”. Formally, one can show that,
if Eprices(tF)[sL] ≤ prices(sF)[sL] holds for all frontier
states sL ∈ F (sF), then it also holds for all non-frontier
states sL 6∈ F (sF). This shows the claim as, for sF �F tF ,
we have prices(sF)[sL] ≥ prices(tF)[sL] on sL ∈ F (sF),
and thus prices(sF)[sL] ≥ Eprices(tF)[sL] on these states.

Note that, with the above, to evaluate �E it suffices to
compare the price of sF vs. effective price of tF on F (sF).
This is equivalent to, but faster than, comparing all prices.

Simulation-Based Dominance
We use the concept of simulation relations (Milner 1971;
Gentilini et al. 2003) on leaf state spaces in order to identify
leaf states tL which can do everything that another leaf state
sL can do.3 In this situation, suppose that we are checking
whether sF � tF , and prices(tF)[sL] > prices(sF)[sL],
but prices(tF)[tL] ≤ prices(sF)[sL]. Then tF can still
dominate sF , because if a solution for sF relies on sL, then
starting from tF we can use tL instead.

Definition 5 (Leaf simulation) Let FL be a leaf factor. A
binary relation �L on FL leaf states is a leaf simulation if:
sLG 6�L sL for all sL 6= sLG; and whenever sL1 �L tL1 , for
every transition sL1

a−→ sL2 either (i) sL2 �L tL1 or (ii) there

exists a transition tL1
a′−→ tL2 s.t. sL2 �L tL2 , pre[FC](a′) ⊆

pre[FC](a), and cost(a′) ≤ cost(a).

This follows common notions, except for (i) which, intu-
itively, “allows tL1 to stay where it is”, and except for allow-
ing in (ii) different actions a′ so long as they are at least as
good in terms of center precondition and cost.

It is easy to see that, whenever sL �L tL, if a leaf path
πLs starting in sL complies with a center path πC , then
there exists a πC-compliant leaf path πLt starting in tL s.t.
cost(πLt) ≤ cost(πLs). Consequently, we allow sL to take a
cheaper price from any leaf state that simulates it:

3This is inspired by, but differs in scope and purpose from, the
use of simulation relations on the state space for dominance prun-
ing in standard search (Torralba and Hoffmann 2015).

40

Definition 6 (�S Relation) The relation �S over decou-
pled states is defined by sF �S tF iff cs(sF) =
cs(tF) and, for all sL ∈ SL, prices(sF)[sL] ≥
minsL�LtL prices(tF)[tL].

Theorem 5 �S is a decoupled dominance relation.

It is easy to see that this is strictly better than �B :

Theorem 6 �S subsumes �B and is exponentially sepa-
rated from it.

The first part of this claim holds simply because �L
is reflexive (and therefore minsL�LtL prices(tF)[tL] ≤
prices(tF)[sL]). For the second part, we use again our run-
ning example. Leaf simulation captures that (p, li) �L (p, t)
for all i > 2, since (p, t) is the only successor of any (p, li)
and naturally (p, t) �L (p, t). So, �S reduces the price of
such (p, li) to 1, avoiding the exponential blow-up.

Inspired by (Torralba and Kissmann 2015), we also em-
ploy leaf simulation to remove superfluous leaf states and
leaf actions, discovering transitions that can be replaced by
other transitions, then running a reachability check on the
leaf state space (details are in the TR). This reduces leaf
state space size, and may sometimes improve the heuristic
function due to the removal of some actions.

Method Interrelations and Combination
We have already established the relation of our methods rel-
ative to�B , as well as the relation between�E and�F . We
next design a combination �ES of �E and �S , with their
respective strengths, and we establish the remaining method
interrelations. Figure 1 provides the overall picture.

�B
�F �E

�S
�ES6

Figure 1: Summary of method interrelations. “A → B”: B
subsumes A and is exponentially separated from it. “A 6↔
B”: A is exponentially separated from B and vice versa.

The combined relation �ES is obtained by modifying the
effective prices underlying �E , enriching their definition
with a leaf simulation, �L. We define ESprices(tF) as the
point-wise minimum pricing function p that satisfies:

p[sL] =





prices(tF)[sL] if sL = sLG
min{minsL�LtL prices(tF)[tL],

max
sL

a−→tL

(
p[tL]− cost(a)

)
} otherwise

We integrate the information from a leaf simulation into
the effective prices by allowing sL to take cheaper prices
from simulating states tL. This amounts to substituting
prices(tF)[sL] with minsL�LtL prices(tF)[tL] in the equa-
tion. We thus obtain, again, a decoupled dominance relation:

Definition 7 (�ES Relation) �ES is the relation over de-
coupled states defined by sF �ES tF iff cs(sF) = cs(tF)
and, for all sL ∈ SL, prices(sF)[sL] ≥ ESprices(tF)[sL].

Theorem 7 �ES is a decoupled dominance relation.

Theorem 7 is shown by adapting the property (*) under-
lying the proof of Theorem 3. Say πLs = 〈a1, . . . , an〉
is a πC-compliant goal leaf path starting in sL, travers-
ing the leaf states sL = sL0 , . . . , s

L
n = sLG. Then, with

the same arguments as before, there exists i such that (a)
ESprices(tF)[sL0] ≥ ESprices(tF)[sLi] −∑i

j=1 cost(ai),
and (b) ESprices(tF)[sLi] = minsLi �LtL prices(tF)[tL].
We construct our desired path πL from sLI to sLG by a cheap-
est cp(tF)-compliant path to a tL minimizing the expression
in (b), concatenated with a πC-compliant goal leaf path πLt
starting in tL where cost(πLt) ≤ cost(πLs). Such πLt exists
by the properties of leaf simulation, as in Theorem 5.
�ES subsumes each of its components. The exponen-

tial separations therefore follow directly from the individual
ones:

Theorem 8 �ES subsumes �E and �S , and is exponen-
tially separated from each of them.

One can also construct cases where �ES yields an ex-
ponentially stronger reduction than both �E and �S , i. e.,
where �ES is strictly more than the sum of its components.
We complete our analysis by filling in the missing cases:

Theorem 9 �S is exponentially separated from �E , and
therefore also from �F . �F , and therefore also �E , is ex-
ponentially separated from �S .

Experiments
We implemented our dominance pruning methods within the
fork-decoupled search variant of FD (Helmert 2006) by GH.
Our baseline is GH’s basic pruning �B . For simplicity,
we stick to the factoring strategy used by GH. This method
greedily computes a factoring that maximizes the number
of leaf factors. In case there are less than two leaves, the
method abstains from solving a task. The rationale behind
this is that the main advantage of decoupled search origi-
nates from not having to enumerate leaf state combinations
across multiple leaf factors. Like GH, we show results on all
IPC domains up to and including 2014 where the strategy
does not abstain.

We focus on optimal planning, the main purpose of
optimality-preserving pruning. We run a blind heuristic to
identify the influence of different pruning methods per se,
and we run LM-cut (Helmert and Domshlak 2009) as a state-
of-the-art heuristic. GH introduced two decoupled variants
of A∗, “Fork-Decoupled” A∗ and “Anytime Fork-Root” A∗,
which to simplify terminology we will refer to as Decou-
pled A∗ (DA∗) and Anytime Decoupled A∗ (ADA∗). DA∗

is a direct application of A∗ to the decoupled state space.
ADA∗ orders the open list based on the heuristic estimate of

41

remaining center-cost, uses the heuristic estimate of remain-
ing global-cost for pruning against the best solution so far,
and runs until the open list is empty. Both algorithms re-
sult in similar coverage, with moderate differences in some
domains. Our techniques turn out to be more beneficial for
ADA∗, which tends to have larger search spaces but less per-
node runtime than DA∗. We show detailed data for ADA∗,
and include data for baseline DA∗ (with �B) for compari-
son. All experiments are run on a cluster of Intel E5-2660
machines running at 2.20 GHz, with time (memory) cut-offs
of 30 minutes (4 GB).

Blind Heuristic LM-cut
ADA∗ DA∗ ADA∗

Domain # �B �F �E �S �ES �B �B �F �E �S �ES

Driverlog 20 11 11 11 11 11 13 13 13 13 13 13
Logistics00 28 22 22 22 22 22 28 25 25 27 26 28
Logistics98 35 4 4 5 5 5 6 6 6 6 6 6
Miconic 145 36 45 45 45 45 135 135 135 135 135 135
NoMystery 20 17 20 20 20 20 20 20 20 20 20 20
Pathways 29 3 3 3 3 3 4 4 4 4 4 4
Rovers 40 7 6 6 7 6 9 9 9 9 9 9
Satellite 36 6 6 6 6 5 7 9 9 8 9 9
TPP 27 23 23 22 23 22 18 23 23 22 22 22
Woodwork08 13 5 5 5 5 5 10 11 11 11 11 11
Woodwork11 5 1 1 1 1 1 4 5 5 5 5 5
Zenotravel 20 11 11 12 12 12 13 11 11 12 12 13∑

418 146 157 158 160 157 267 271 271 272 272 275

Table 1: Coverage data.

Table 1 shows the number of instances solved, compar-
ing to both baselines DA∗ and ADA∗. Data for DA∗ with
the blind heuristic is not shown as it is identical to that for
ADA∗. The main gain for blind search stems from Miconic
(+9), and NoMystery (+3). When using LM-cut, the ad-
vantage over �B is much smaller. We still gain +3 (+2)
instances in Logistics00 (Zenotravel). In Satellite and TPP,
we lose 1 instance in some configurations due to overhead at
no search space reduction. �ES reliably removes the disad-
vantages of ADA∗ relative to DA∗, and is best in the over-
all. We never strictly improve coverage over both baselines,
though. As we shall see below, this is due to benchmark
scaling, i. e., there are domains where runtime is improved
over both baselines.

We next analyze the search space size reduction (top part
of Table 2). In general, the blind heuristic has more margin
of improvement except in Logistics98, where the improve-
ment with LM-cut gets magnified due to the relevance analy-
sis performed when enabling �S . In that domain, removing
irrelevant leaf states and leaf actions renders LM-cut a lot
stronger.4 Regarding the relative behavior of pruning tech-
niques, in two domains, namely Miconic and NoMystery,
already the simplest technique (�F) gets the maximal im-
provement factor. In four domains, enabling effective-price

4It may be surprising that, elsewhere, the improvements in Lo-
gistics are moderate, despite the inherent blow-up we explained
earlier. This is because, in the commonly solved instances, the
number of non-airport locations in each city is very small, mostly
1.

pruning on top of frontier pruning results in additional prun-
ing. Combining all techniques in �ES always inherits the
strongest search space reduction of its components and in
Logistics with LM-cut, it often is strictly better.

Consider now runtime, Table 2 bottom. One key observa-
tion is that, whenever the search space is reduced, the same
holds for runtime, even for small search space reduction fac-
tors like, e. g., in Zenotravel. Remarkably, in some domains
(e. g. Woodworking) where no search reduction is obtained,
runtime decreases nevertheless for some simple methods
such as �F . This is due to the cheaper dominance check
– prices are compared only on frontier leaf states. There
are also some bad cases, though, mainly in TPP, but also in
Pathways, Rovers, and Satellite. These are also the domains
in which coverage slightly decreases. What makes these do-
mains special is the structure of their leaf state spaces. In
Pathways, Rovers, and Satellite, all leaves are single vari-
ables with a single transition, sLI → sLG, so there is no room
for improvement. In TPP, the leaf state spaces are quite large
(up to 5000 states), so our methods incur substantial over-
head, but are unable to perform pruning. Presumably, this is
because most of the leaf states can play a role in optimally
reaching the goal.

Coming back to our previous observation that coverage
is never improved over both baselines, the runtime analy-
sis reveals an improvement over both baselines in several
domains. ADA∗ with �S is faster than DA∗ with �B in all
domains except Zenotravel, where the geomean per-instance
runtime factor is 0.7. The other factors are: Driverlog 2.3;
Logistics00 2.3; Logistics98 3.4; Miconic 2.7; NoMystery
3.2; Pathways 1.1; Rovers 2.1; Satellite 2.9; TPP 23.2;
Woodworking08 1.4; and Woodworking11 2.0. In particu-
lar, in Driverlog, both Logistics domains, NoMystery, and
Woodworking11, ADA∗ with �S improves runtime over
both baselines.

Finally, consider the use of our pruning methods in DA∗.
For blind search, the numbers are almost identical to those
for ADA∗ in Table 2, as DA∗ and ADA∗ differ mainly in
their use of a (non-trivial) heuristic. With LM-cut, the prun-
ing methods do not work as well for DA∗. For example, for
�S , the geomean per-instance runtime factors are: Driverlog
1.8; Logistics00 and Logistics98 2.5; NoMystery 2.0; TPP
0.9; Woodworking08 0.9; Woodworking11 1.3; Zenotravel
1.2; and 1.0 in the other domains. The picture is similar for
the other pruning methods. The big runtime advantages ob-
served with ADA∗ vanish, but the method also becomes less
risky, i. e., the big runtime disadvantage in TPP vanishes as
well. This makes sense since DA∗ searches less nodes (it
has less potential for pruning) while spending more time on
each node (making the dominance-checking overhead less
pronounced).

Conclusion
Dominance pruning methods can be quite useful for decou-
pled search. Our analysis of such methods is fairly complete,
although of course other variants may be thinkable. More
pressingly, the question remains whether there exist dupli-
cate checking methods guaranteeing to avoid all blow-ups.

42

Expansions with Blind Heuristic: Improvement factor relative to�B Expansions with LM-cut: Improvement factor relative to�B

�F �E �S �ES �F �E �S �ES

Domain #
∑

D GM max
∑

D GM max
∑

D GM max
∑

D GM max #
∑

D GM max
∑

D GM max
∑

D GM max
∑

D GM max

Driverlog 11 1.0 1.0 1.0 5.0 1.8 6.5 2.4 1.3 2.8 5.0 1.8 6.5 13 1.0 1.0 1.0 2.4 1.3 4.3 1.9 1.2 3.4 2.4 1.3 4.3
Logistics00 22 1.2 1.0 1.2 2.5 1.4 3.8 2.5 1.4 3.8 2.5 1.4 3.8 25 1.0 1.0 1.0 2.1 1.2 2.3 1.4 1.3 3.0 2.2 1.4 3.0
Logistics98 4 1.0 1.0 1.0 3.9 2.1 4.2 2.3 1.7 2.4 3.9 2.1 4.2 6 1.0 1.0 1.0 1.7 1.3 1.7 109.8 10.2 1245.2 134.7 10.8 1245.2
Miconic 36 3.3 1.7 5.2 3.3 1.7 5.2 3.3 1.7 5.2 3.3 1.7 5.2 135 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
NoMystery 17 4.4 1.7 8.5 4.4 1.7 8.5 4.4 1.7 8.5 4.4 1.7 8.5 20 6.3 1.7 9.2 6.3 1.7 9.2 6.8 1.9 9.3 6.8 1.9 9.3
TPP 22 1.0 1.0 1.0 1.0 1.0 1.2 1.0 1.0 1.0 1.0 1.0 1.2 22 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Zenotravel 11 1.0 1.0 1.0 1.4 1.1 1.6 1.3 1.1 1.5 1.4 1.1 1.6 11 1.0 1.0 1.0 1.2 1.1 1.4 1.2 1.0 1.3 1.2 1.1 1.4

Runtime with Blind Heuristic: Improvement factor relative to�B Runtime with LM-cut: Improvement factor relative to�B

�F �E �S �ES �F �E �S �ES

Domain #
∑

D GM max
∑

D GM max
∑

D GM max
∑

D GM max #
∑

D GM max
∑

D GM max
∑

D GM max
∑

D GM max

Driverlog 9 0.9 0.9 1.0 30.7 2.6 38.9 10.3 2.2 14.4 35.3 2.9 47.5 5 0.8 0.9 1.0 5.5 2.6 14.3 4.4 2.5 11.3 5.5 2.7 14.6
Logistics00 7 1.4 1.3 1.5 6.4 5.9 15.2 8.4 8.3 22.5 7.5 7.0 19.7 9 0.9 0.9 0.9 3.8 1.5 4.6 2.7 3.7 6.4 4.1 3.5 5.0
Logistics98 3 0.8 0.8 0.8 21.2 4.1 22.4 12.1 5.4 12.3 26.4 6.2 27.5 4 0.9 0.9 0.9 2.2 1.2 2.2 895.9 30.4 2643.9 750.2 26.2 2259.3
Miconic 19 24.0 10.0 53.9 24.3 9.0 47.9 22.6 8.6 45.7 23.5 8.8 47.0 81 0.9 1.0 1.2 1.0 0.9 1.1 1.0 1.0 1.2 0.9 0.9 1.0
NoMystery 9 47.3 5.6 157.1 36.2 4.1 118.8 64.2 7.4 210.2 53.7 6.0 182.7 12 13.3 3.0 21.0 12.6 2.9 22.4 16.2 3.8 28.9 14.6 3.6 26.0
Pathways 2 0.9 0.9 0.9 0.7 0.7 0.7 1.0 1.0 1.0 0.6 0.6 0.6 1 0.9 0.9 0.9 0.9 0.9 0.9 1.0 1.0 1.0 0.9 0.9 0.9
Rovers 2 0.8 0.8 0.8 0.5 0.5 0.6 1.0 1.0 1.0 0.5 0.5 0.5 5 0.9 0.9 0.9 0.7 0.7 0.8 1.0 1.0 1.0 0.7 0.7 0.8
Satellite 3 0.9 0.9 1.0 0.6 0.7 0.9 1.0 1.0 1.0 0.5 0.6 0.8 4 1.0 1.0 1.0 0.9 0.8 0.9 1.0 1.0 1.0 0.9 0.8 0.9
TPP 13 0.8 0.8 1.0 0.0 0.1 0.3 0.1 0.3 0.8 0.0 0.1 0.3 11 0.8 0.8 1.0 0.1 0.2 0.4 0.1 0.4 0.8 0.1 0.1 0.3
Woodwork08 2 1.5 1.2 1.5 0.7 0.8 1.0 1.5 0.3 1.5 1.0 0.3 1.0 8 1.0 1.0 1.1 1.0 1.0 1.0 1.2 0.9 1.7 1.1 0.8 1.4
Woodwork11 1 1.5 1.5 1.5 0.7 0.7 0.7 1.5 1.5 1.5 1.0 1.0 1.0 5 1.0 1.0 1.0 1.0 1.0 1.0 1.3 1.2 1.3 1.3 1.2 1.3
Zenotravel 4 0.8 0.8 1.0 1.2 1.2 1.4 1.7 1.8 2.9 1.3 1.3 1.8 4 0.9 0.9 1.0 1.1 1.0 1.2 1.3 1.3 1.6 1.1 1.1 1.3

Table 2: Improvement factor on commonly solved instances relative to �B , using ADA∗. We show expansions up to last f -
layer (top), and runtime (bottom), with the blind heuristic (left) and LM-cut (right). In the top part, some domains are skipped
as all their factors are rounded to 1.0. In the bottom part, we only take into account the instances that are not trivially solved by
all planners (< 0.1s).

∑
D: Ratio over the per-domain sum. GM (max): geometric mean (maximum) of per-instance ratios.

Acknowledgments
This work was partially supported by the German Re-
search Foundation (DFG), under grant HO 2169/6-1, “Star-
Topology Decoupled State Space Search”.

References
Eyal Amir and Barbara Engelhardt. Factored planning. In
G. Gottlob, editor, Proceedings of the 18th International
Joint Conference on Artificial Intelligence (IJCAI’03), pages
929–935, Acapulco, Mexico, August 2003. Morgan Kauf-
mann.
Christer Bäckström and Bernhard Nebel. Complexity results
for SAS+ planning. Computational Intelligence, 11(4):625–
655, 1995.
Ronen Brafman and Carmel Domshlak. Structure and com-
plexity in planning with unary operators. Journal of Artifi-
cial Intelligence Research, 18:315–349, 2003.
Ronen Brafman and Carmel Domshlak. On the complexity
of planning for agent teams and its implications for single
agent planning. Artificial Intelligence, 198:52–71, 2013.
Eric Fabre, Loı̈g Jezequel, Patrik Haslum, and Sylvie
Thiébaux. Cost-optimal factored planning: Promises and
pitfalls. In Ronen I. Brafman, Hector Geffner, Jörg Hoff-
mann, and Henry A. Kautz, editors, Proceedings of the
20th International Conference on Automated Planning and
Scheduling (ICAPS’10), pages 65–72. AAAI Press, 2010.

Raffaella Gentilini, Carla Piazza, and Alberto Policriti.
From bisimulation to simulation: Coarsest partition prob-
lems. Journal of Automated Reasoning, 31(1):73–103, 2003.
Daniel Gnad and Jörg Hoffmann. Beating LM-cut with
hmax (sometimes): Fork-decoupled state space search. In
Ronen Brafman, Carmel Domshlak, Patrik Haslum, and
Shlomo Zilberstein, editors, Proceedings of the 25th Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS’15). AAAI Press, 2015.
Malte Helmert and Carmel Domshlak. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Alfonso Gerevini, Adele Howe, Amedeo Cesta, and Ioan-
nis Refanidis, editors, Proceedings of the 19th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’09), pages 162–169. AAAI Press, 2009.
Malte Helmert. The Fast Downward planning system. Jour-
nal of Artificial Intelligence Research, 26:191–246, 2006.
Peter Jonsson and Christer Bäckström. Incremental plan-
ning. In European Workshop on Planning, 1995.
Michael Katz and Carmel Domshlak. Structural patterns
heuristics via fork decomposition. In Jussi Rintanen, Bern-
hard Nebel, J. Christopher Beck, and Eric Hansen, editors,
Proceedings of the 18th International Conference on Au-
tomated Planning and Scheduling (ICAPS’08), pages 182–
189. AAAI Press, 2008.
Michael Katz and Emil Keyder. Structural patterns be-
yond forks: Extending the complexity boundaries of clas-

43

sical planning. In Jörg Hoffmann and Bart Selman, editors,
Proceedings of the 26th AAAI Conference on Artificial Intel-
ligence (AAAI’12), pages 1779–1785, Toronto, ON, Canada,
July 2012. AAAI Press.
Elena Kelareva, Olivier Buffet, Jinbo Huang, and Sylvie
Thiébaux. Factored planning using decomposition trees.
In M. Veloso, editor, Proceedings of the 20th International
Joint Conference on Artificial Intelligence (IJCAI’07), pages
1942–1947, Hyderabad, India, January 2007. Morgan Kauf-
mann.
Craig Knoblock. Automatically generating abstractions for
planning. Artificial Intelligence, 68(2):243–302, 1994.
Robin Milner. An algebraic definition of simulation between
programs. In Proceedings of the 2nd International Joint
Conference on Artificial Intelligence (IJCAI’71), pages 481–
489, London, UK, September 1971. William Kaufmann.
Álvaro Torralba and Jörg Hoffmann. Simulation-based ad-
missible dominance pruning. In Qiang Yang, editor, Pro-
ceedings of the 24th International Joint Conference on Ar-
tificial Intelligence (IJCAI’15), pages 1689–1695. AAAI
Press/IJCAI, 2015.
Álvaro Torralba and Peter Kissmann. Focusing on what re-
ally matters: Irrelevance pruning in merge-and-shrink. In
Levi Lelis and Roni Stern, editors, Proceedings of the 8th
Annual Symposium on Combinatorial Search (SOCS’15),
pages 122–130. AAAI Press, 2015.
Álvaro Torralba, Daniel Gnad, Patrick Dubbert, and
Jörg Hoffmann. On state-dominance criteria in
fork-decoupled search (technical report). Techni-
cal report, Saarland University, 2016. Available at
http://fai.cs.uni-saarland.de/hoffmann/
papers/ijcai16b-tr.pdf.

44

Decoupled Strong Stubborn Sets

Daniel Gnad
Saarland University

Saarbrücken, Germany
gnad@cs.uni-saarland.de

Martin Wehrle
University of Basel
Basel, Switzerland

martin.wehrle@unibas.ch

Jörg Hoffmann
Saarland University

Saarbrücken, Germany
hoffmann@cs.uni-saarland.de

Abstract

Recent work has introduced fork-decoupled search, address-
ing classical planning problems where a single center com-
ponent provides preconditions for several leaf components.
Given a fixed center path πC , the leaf moves compliant with
πC can then be scheduled independently for each leaf. Fork-
decoupled search thus searches over center paths only, main-
taining the compliant paths for each leaf separately. This
can yield dramatic benefits. It is empirically complemen-
tary to partial order reduction via strong stubborn sets, in
that each method yields its strongest reductions in different
benchmarks. Here we show that the two methods can be com-
bined, in the form of strong stubborn sets for fork-decoupled
search. This can yield exponential advantages relative to both
methods. Empirically, the combination reliably inherits the
best of its components, and often outperforms both.

Introduction
In classical AI planning, the task is to find a sequence of
actions leading from a given initial state to a state that satis-
fies a given goal condition, in a large deterministic transition
system (the task’s state space). Gnad and Hoffmann (2015a)
(henceforth: GH) have recently introduced a new approach,
fork-decoupled search, to decompose the state space. The
approach relates to factored planning (e.g. (Amir and En-
gelhardt 2003; Kelareva et al. 2007; Fabre et al. 2010;
Brafman and Domshlak 2013)), where the factors are dis-
joint subsets of state variables. Fork-decoupled search as-
sumes that the factors induce a fork structure: a single cen-
ter factor provides preconditions for several leaf factors,
and no other cross-factor interactions exist. As GH show,
such a fork factoring, if one exists, can be easily identi-
fied in a pre-process to planning, based on the task’s causal
graph (e.g. (Knoblock 1994; Jonsson and Bäckström 1995;
Brafman and Domshlak 2003; Helmert 2006)).

In a fork factoring, the leaves are “conditionally indepen-
dent”, in the sense that, given a fixed center path πC , the
compliant leaf moves – those leaf moves enabled by the pre-
conditions supplied along πC – can be scheduled indepen-
dently for each leaf. This can be exploited by searching only
over center paths, and maintaining the possible compliant
paths separately for each leaf, thus avoiding the enumeration
of state combinations across leaves. GH show how to em-
ploy standard heuristic search planning algorithms, preserv-

ing optimality guarantees. They obtain dramatic benefits
in several International Planning Competition (IPC) bench-
marks.

Fork-decoupling can be thought of as a reformulation of
the search space. Can known search reduction methods
be applied on the reformulated search space as well? We
herein answer this in the affirmative for a prominent reduc-
tion method, namely state-of-the-art partial order reduction
via strong stubborn sets (SSS) (Valmari 1989; Alkhazraji et
al. 2012; Wehrle and Helmert 2012; 2014). This method
prunes applicable actions on states s during (standard, non-
decoupled) search, namely those not contained in an SSS
for s. The SSS is guaranteed to contain at least one action
starting an optimal plan for s, so optimality is preserved.

Fork-decoupled search and SSS yield their respective best
reductions in different IPC domains. We show that the two
methods are indeed exponentially separated, i.e., that there
are cases where one yields exponentially stronger reductions
than the other. We show how to combine them in the form of
decoupled strong stubborn sets (DSSS), for fork-decoupled
search. We show that this combination is exponentially sep-
arated from both its components. There are cases – not com-
plex artificial examples, but simple variants of the Logistics
benchmark – where DSSS yield exponentially stronger re-
ductions than both fork-decoupling and SSS. Empirically,
DSSS reliably inherit the strengths of each component, and
sometimes outperform both. In some cases, DSSS even is
“more than the sum of its components”, yielding a stronger
reduction in fork-decoupled search than SSS do in standard
search.

For space reasons, we give proof sketches only. The full
proofs are available in an online TR (Gnad et al. 2016).

Background
We employ a finite-domain state variable formalization of
planning (e.g. (Bäckström and Nebel 1995; Helmert 2006)).
A finite-domain representation planning task, short FDR
task, is a tuple Π = 〈V,A, s0, s?〉. V is a set of state vari-
ables, each v ∈ V associated with a finite domain D(v).
We identify (partial) variable assignments with sets of vari-
able/value pairs. A complete assignment to V is a state. s0
is the initial state, and the goal s? is a partial assignment to
V . A is a finite set of actions. Each action a ∈ A is a triple
〈pre(a), eff (a), cost(a)〉where the precondition pre(a) and

45

effect eff (a) are partial assignments to V , with eff (a) 6= ∅;
cost(a) ∈ R0+ is a’s non-negative cost.

Given a partial assignment p, by vars(p) ⊆ V we denote
the subset of state variables on which p is defined. For V ⊆
vars(p), by p[V] we denote the assignment to V made by p.
Action a is applicable in state s if s |= pre(a), i.e., pre(a) ⊆
s. Applying a in s changes the value of v ∈ vars(eff (a))
to eff (a)[v], and leaves s unchanged elsewhere. A plan for
Π is an action sequence π applicable in s0 and ending in a
state s such that s |= s?. The plan is optimal if its summed-
up cost, denoted cost(π), is minimal among all plans for Π.

We next give a summary of fork-decoupled search. We
will often write “decoupled” instead of “fork-decoupled”.

A factoring F is a partition of V . F is a fork factoring if
|F| ≥ 2 and there exists FC ∈ F s.t. the arcs inF’s interac-
tion graph are exactly {(FC , FL) | FL ∈ F\{FC}}. Here,
the interaction graph is the quotient of the task’s causal
graph over F , i.e., it contains an arc (F, F ′) if there ex-
ists a ∈ A s.t. F ∩ [vars(pre(a)) ∪ vars(eff (a))] 6= ∅ and
F ′ ∩ vars(eff (a)) 6= ∅. We refer to FC as the center of F ,
and to all other factors FL ∈ FL := F \{FC} as its leaves.

As a running example, consider a Logistics-style planning
task with 1 truck variable t,N package variables pi, and two
locations A and B. The truck and all packages are initially
atA, and the goal is for the packages to be atB. The actions
(unit costs) are drive, load, and unload, with the usual pre-
conditions and effects (e.g. load(t, pi, A) requires both t and
pi to be atA, and moves pi into the truck). Setting {t} as the
center and each {pi} as a leaf, we obtain a fork factoring.

Not every task Π has a fork factoring. We assume GH’s
approach of analyzing Π’s causal graph in a pre-process,
identifying a fork factoring if one exists, else abstaining
from solving Π. In what follows, assume a fork factoring
F .

Given the structure of the interaction graph, every action
affects (touches in its effect) either only FC , or only one leaf
FL. We refer to the former kind as center actions, and to the
latter kind as leaf actions. Observe that center actions do not
have any preconditions on leaves. Furthermore, if leaf action
a affects leaf FL, then it can be preconditioned only on FC
and FL, i.e., vars(pre(a)) ⊆ FC ∪ FL.

Due to these action behaviors, a fork factoring encapsu-
lates a particular form of “conditional independence” be-
tween leaves. Assume a center path πC , i.e., a sequence
of center actions applicable to s0. A leaf path is a sequence
of leaf actions applicable to s0 when ignoring preconditions
on FC . A leaf path πL complies with πC if it uses only
the center preconditions supplied along πC , i.e., if πL can
be scheduled alongside πC so that the combined action se-
quence is applicable in s0. Intuitively, fixing πC , the compli-
ant leaf paths are the possible leaf moves given πC . Observe
that these possible moves are independent across leaf factors
FL, i.e., for each FL we can choose a compliant πL inde-
pendently from that choice for any other leaf factor. Hence
we can search over center paths πC only, maintaining all
possible compliant paths separately for each leaf. We com-
mit to the actual choices of compliant leaf paths only when
the goal is reached.

Concretely, a decoupled state sF is given by a center path

πC(sF). It is associated with its center state ct(sF), simply
the outcome of applying πC(sF) to s0[FC]; and with its
pricing function prices(sF). The latter maps each leaf state
sL, i.e., each value assignment to some leaf FL, to its price,
defined as the cost of a cheapest leaf path that complies with
πC(sF) and ends in sL (or∞ if no such path exists). Pricing
functions can be maintained in time low-order polynomial in
the size of the individual FL state spaces; we omit the details
for space reasons. Note the word “price”: prices(sF)[sL] is
not a cost we have already paid; rather, it is the cost we will
have to pay in case we commit to sL in sF later on.

The initial decoupled state sF0 results from the empty
center path πC(sF0) = 〈〉. We denote by ReachedL(sF)
the set of leaf states sL reachable in sF , i.e., where
prices(sF)[sL] < ∞. A goal decoupled state sF? is one
with a goal center state ct(sF?) |= s?[F

C] and where, for
every leaf factor FL ∈ FL, there exists a reachable goal leaf
state sL, i.e., sL ∈ ReachedL(sF?) such that sL |= s?[F

L].
The actions applicable in sF are those center actions whose
precondition is satisfied in ct(sF) (recall here that we do
not branch over leaf actions). Applying a to sF results in
tF where πC(tF) := πC(sF) ◦ 〈a〉, and ct(tF) as well as
prices(tF) arise from πC(tF) as defined above.

In our example, ct(sF0) = {(t, A)}, and for each pi
the price of (pi, A) is 0, that of (pi, t) is 1, and that of
(pi, B) is ∞. Observe here that the prices represent possi-
ble package moves given the initial center state, rather than
moves we have already committed to. The only action ap-
plicable to sF0 in the decoupled search is the center action
drive(t, A,B), leading to the goal decoupled state sF? where
ct(sF?) = {(t, B)} and the prices are as before except that
(pi, B) now has price 2, i.e., the package goals are reach-
able.

Once a goal decoupled state sF? is reached, a plan π for
the input task Π can be constructed by augmenting the center
path πC(sF?) with compliant leaf paths ending in goal leaf
states sL? (i.e., we now select such leaf paths, and commit
to them). In our example, for each pi we may select the
compliant leaf path 〈load(t, pi, A),unload(t, pi, B)〉.

Selecting, for the plan π, the cheapest compliant paths
ending in the goal leaf states sL? , by construction we have
cost(π) = cost(πC(sF?)) +

∑
FL∈FL prices(sF?)[sL?]. If

we select sL? with minimal prices(sF?)[sL?], such π is op-
timal among the plans for Π whose center action subse-
quence is πC(sF?). Given this, we refer to the cost of such
π as the local cost of sF? , denoted LocalCost(sF?). We set
LocalCost(sF) :=∞ for non-goal decoupled states sF .

LocalCost(sF?) is optimal for sF? (locally optimal) but not
necessarily optimal for Π (globally optimal). Indeed, it can
happen that, from sF? , a better plan can be obtained from a
descendant of sF? . This is because, with additional center
actions, cheaper leaf paths may become available. For ex-
ample, say in sF the leaf goal have-car has price 1000 via
the applicable leaf action buy-car. But if we apply a center
action get-manager-job, then the leaf action get-company-
car becomes applicable, reducing the leaf goal price to 0.

In contrast to the standard setting, to guarantee optimality
one must therefore continue the search on goal decoupled
states (GH show that standard search algorithms are easy to

46

adapt to this situation). The purpose of such search, trying to
decrease leaf prices, differs from that of non-goal decoupled
states, trying to reach the goal in the first place. Our design
of strong stubborn sets for decoupled search distinguishes
between the two cases.

SSS for Non-Goal Decoupled States
We show that, for non-goal decoupled states, the definition
of strong stubborn sets (SSS) for planning (Alkhazraji et al.
2012) can be extended to decoupled search by suitable ex-
tensions of its basic components.

A SSS for a given state s is a set Ts ⊆ A constructed
so that, for every plan π for s, at least one permutation of
π starts with an action a ∈ Ts. Hence SSS are fundamen-
tally based on the concept of “plans for a given state”. That
concept is trivial for classical state spaces. But in decoupled
state spaces the structure of “states” sF is more complex.
GH did not require, so did not introduce, such a concept.
For our purposes, the following notions will suffice.

A path πF in the decoupled state space is a decoupled
plan for sF if it leads from sF to a goal decoupled state. We
say that sF is solvable if at least one such πF exists. We de-
note the center-action sequence underlying πF by πC(πF).
The completion plan given πF , denoted ComPlan(πF),
consists of πC(πF) together with cheapest goal leaf paths
πL compliant with πC(sF) ◦ πC(πF), ending in cheapest
goal leaf states. In other words, ComPlan(πF) collects the
postfix path for the center, and the complete path for each
leaf. Observe that ComPlan(πF) is not uniquely defined,
as there may be multiple suitable πL. For our purposes,
this does not matter and we assume any suitable choice of
πL. We say that πF is optimal if cost(ComPlan(πF)) is
minimal among all decoupled plans for sF . In our run-
ning example, assume a third location C and the road map
A → B → C. Say we apply drive(t, A,B) to sF0 to obtain
sF . Then πC := 〈drive(t, B,C)〉 yields a decoupled plan
πF for sF , and ComPlan(πF) consists of all load(t, pi, A)
actions, then πC , then all unload(t, pi, C) actions.

Clearly, to preserve optimality, it suffices for Ts to con-
tain at least one center action starting an optimal decou-
pled plan for sF . Towards identifying sets Ts qualify-
ing for this, we will need to focus exclusively on the part
of the completion plan “behind” sF . We denote this by
PostPlan(πF), the postfix plan. The center action subse-
quence in PostPlan(πF) is πC(πF). For any leaf factor
FL, say πL = 〈aL1 , . . . , aLn〉 is the goal leaf path for FL
in ComPlan(πF), traversing leaf states 〈sL0 , . . . , sLn〉. Then
the leaf action subsequence for FL in PostPlan(πC) is de-
fined as 〈aLi+1, . . . , a

L
n〉, where i is the highest index for

which sLi ∈ ReachedL(sF). In other words, we consider
the postfix of πL not contained in ReachedL(sF).

Two notions, of completion plan and postfix plan, are re-
quired because postfix plans are (in contrast to the standard
setting) not suited to define optimality. The decoupled plan
leading to the cheapest postfix plan may differ from that
leading to the cheapest completion plan. This is because the
postfix plan ignores the price of the sF leaf states it starts
from.

The original definition of SSS in states s relies on the ba-
sic concepts of disjunctive action landmarks, action interfer-
ence, necessary enabling sets, and action applicability. For
a corresponding definition for decoupled states sF , the con-
cept of action interference remains the same, but all other
concepts must be extended. We start with applicability:
Definition 1 (Action Applicability). Let sF be a decoupled
state. A center action a is applicable in sF if ct(sF) |=
pre(a). A leaf action a affecting leaf FL is applicable in
sF if ct(sF) |= pre(a)[FC], and there exists a leaf state
sL ∈ ReachedL(sF) such that sL |= pre(a)[FL]. The set
of actions applicable in sF is denoted with appdec(sF).

Note that this definition encompasses both, center actions
and leaf actions. This is in contrast to the decoupled search
which branches only over (applicable) center actions. Thus
the notion of “applicability” as per Definition 1 is different
from the notion used in decoupled search. It is better suited
for the definition of strong stubborn sets, lending itself to a
direct extension of the original definition.

Let us next focus on the concept of necessary enabling
sets. Given an action a whose preconditions are not true,
a necessary enabling set should be a set of actions one of
which must necessarily be applied in order to enable a. In
the standard setting, such a set is trivial to obtain, by picking
a precondition value not currently true and selecting all ac-
tions achieving that value. In decoupled search, this is not as
easy because decoupled states do not assign unique values to
leaf-factor state variables. We adjust the concept as follows:
Definition 2 (Decoupled Necessary Enabling Set). Let sF
be a decoupled state, and let a be an inapplicable action
a 6∈ appdec(sF). An action set A is a decoupled necessary
enabling set for a in sF if either of the following cases holds:

(i) A = {a′ ∈ A | eff (a′)[v] = pre(a)[v]} where v ∈
vars(pre(a)) ∩ FC s.t. ct(sF)[v] 6= pre(a)[v].

(ii) A = {a′ ∈ A | eff (a′)[v] = pre(a)[v]} where v ∈
vars(pre(a)) \ FC s.t., for all sL ∈ ReachedL(sF),
we have sL 6|= pre(a)[v].

(iii) A =
⋃
v∈V {a′ ∈ A | eff (a′)[v] = pre(a)[v]} where

V 6= ∅ is the set of all v ∈ vars(pre(a)) s.t. exists
sL ∈ ReachedL(sF) with sL 6|= pre(a)[v].

Case (i) in this definition corresponds to the standard set-
ting, where A are the achievers of an open precondition on
the center, whose assignment is fixed in sF . Case (ii) cap-
tures the situation where a leaf precondition is false in all
reachable leaf states. Case (iii) is relevant because a leaf ac-
tion may have several preconditions, each satisfied by some
reachable leaf state, but not all satisfied jointly in any reach-
able leaf state. We then collect the achievers of precondi-
tions open in any reachable leaf state. Clearly, in every case
at least one a′ ∈ A must be used by any postfix plan for
sF that contains a. At least one of the cases must apply as
a 6∈ appdec(sF). For center actions, only case (i) is possi-
ble. For leaf actions, we first test (ii), then (iii), and finally
(i), the motivation being to focus on the open center precon-
ditions “closest” to sF .

We finally need to adjust the concept of disjunctive action
landmarks. Given our notion of postfix plans, this is direct:

47

Definition 3 (Decoupled Disjunctive Action Landmark).
Let sF be a non-goal decoupled state. An action set L is a
decoupled disjunctive action landmark for sF if, for all de-
coupled plans πC for sF , we have PostPlan(πC) ∩ L 6= ∅.

In our implementation, we find decoupled disjunctive ac-
tion landmarks simply in terms of a necessary enabling set
for the goal condition s?, i.e., exactly as in Definition 2 but
using s? as the precondition of a hypothetical action a.

The last basic concept we need is the standard notion of
interference between pairs of actions. We say that a and a′
interfere if ex. v s.t. eff (a′)[v] 6= eff (a)[v] or eff (a)[v] 6=
pre(a′)[v] or eff (a′)[v] 6= pre(a)[v]. Decoupled strong
stubborn sets are now defined as follows:

Definition 4 (DSSS for Non-Goal Decoupled States). Let
sF be a non-goal decoupled state. An action set Ts is a
decoupled strong stubborn set (DSSS) for sF if the following
conditions hold:

(i) Ts contains a decoupled disjunctive action landmark.
(ii) For all actions a ∈ Ts and a /∈ appdec(sF), Ts con-

tains a decoupled necessary enabling set for a.
(iii) For all center actions a ∈ Ts and a ∈ appdec(sF), Ts

contains all actions that interfere with a.

Thanks to the adapted basic concepts, this definition mir-
rors the original one (Alkhazraji et al. 2012). Intuitively,
condition (i) ensures that Ts makes progress to the goal; con-
dition (ii) ensures that Ts backchains all the way to the cur-
rent state; condition (iii) ensures that, if we branch over a,
then we also branch over all actions that may be in conflict
with a. All three conditions are identical to the respective
original one, modulo the adapted basic concepts. The sin-
gle exception is the restriction to center actions in condition
(iii). We do not need to include interfering actions for ap-
plicable leaf actions. That is so because postfix plans do not
contain applicable leaf actions anyhow: everything that can
be done using such actions is already reachable in sF .

By adapting the proof arguments from the standard set-
ting, one can show that DSSS preserve optimality:

Theorem 1. Let sF be a solvable non-goal decoupled state.
Let Ts be a DSSS in sF . Then Ts contains a center action
that starts an optimal decoupled plan for sF .

The proof considers any decoupled plan πF for sF . De-
note π = 〈a1, . . . , am〉 = PostPlan(πF), and let i be the
smallest index so that ai ∈ Ts. For the same reasons as
shown in the original proof for SSS (Alkhazraji et al. 2012),
such ai exists, must be applicable, and – together with the
fact that ai must be a center action, as PostPlan(sF) does
not contain any applicable leaf actions – can be moved to the
front of π.

SSS for Goal Decoupled States
Say we are facing a goal decoupled state sF? . Instead of
actions required for reaching the goal, we need to capture
actions required to reduce the leaf-goal prices. One may
consider to define landmarks relative to the decoupled plans
reaching states tF? where LocalCost(tF?) < LocalCost(sF?),
and then re-use the remainder of Definition 4 unchanged.

Indeed, this was our first solution attempt. The problem is
that the landmark actions may pertain to leaf states already
reached, only at non-optimal prices; and then we may miss
the actions required to reduce those prices.

To illustrate, say that, as before, we have a leaf action
buy-car (cost 1000) applicable to sF , and a center action
get-manager-job which enables leaf action get-company-car
(cost 0). However, now the leaf goal is not have-car, but be-
at-NYC for which another leaf action drive-car is needed.
Then {drive-car} is a landmark: Any optimal completion
plan for sF has to use this action behind sF , i.e., after ap-
plying another center action. But drive-car is applicable in
sF , so Definition 4 would stop here, and Ts would not con-
tain get-company-car. In other words, the notion of neces-
sary enabling sets is suited to reachability but is not suited
to capture what’s needed to decrease prices.

We tackle this situation through a notion of frontier ac-
tions, required to make any progress on the prices:

Definition 5 (Frontier Action). Let sF? be a decoupled goal
state, and let a be a leaf action affecting leaf FL. We say
that a is a frontier action in sF? if (i) a 6∈ appdec(sF?); and
(ii) there exists a leaf state sL ∈ ReachedL(sF?) such that
sL |= pre(a)[FL], and, denoting the outcome of applying a
to sL with tL, prices(sF?)[sL] + cost(a) < prices(sF?)[tL].

The frontier of sF? is the set of all frontier actions in sF? .

In words, the frontier consists of those leaf actions that
are not currently applicable, but enabling whose center pre-
condition would result in a reduced price for at least one leaf
state. This set of actions now takes the role of the landmark:

Definition 6 (DSSS for Goal Decoupled States). Let sF? be a
goal decoupled state. An action set Ts is a decoupled strong
stubborn set (DSSS) for sF? if the following conditions hold:

(i) Ts contains the frontier of sF? .
(ii) For all actions a ∈ Ts and a /∈ appdec(sF?), Ts con-

tains a decoupled necessary enabling set for a.
(iii) For all center actions a ∈ Ts and a ∈ appdec(sF?), Ts

contains all actions that interfere with a.

Consider now a state sF? where 〈〉 is not an optimal de-
coupled plan, i.e., we can find a better plan below sF? .
Consider any decoupled plan πF leading to tF? where
LocalCost(tF?) < LocalCost(sF?). Then ComPlan(πF)
contains at least one frontier action aF , intuitively because
these actions are needed to decrease prices relative to sF? .
By construction, aF has a center precondition not satisfied
in sF? . Therefore, with the inclusion of necessary enabling
sets, we get that Ts must contain an applicable center action
a of πF . For the same reasons as before we can move a
to the front, proving that DSSS as per Definition 6 preserve
optimality:

Theorem 2. Let sF? be a goal decoupled state for which 〈〉
is not an optimal decoupled plan. Let Ts be a decoupled
strong stubborn set for sF? . Then Ts contains a center action
that starts an optimal decoupled plan for sF? .

Observe that Frontier(sF) may be empty. In that case,
the DSSS will be empty, too. This is valid because, in this
case, necessarily 〈〉 is an optimal decoupled plan for sF? , i.e.,

48

no better plan can be found below sF? and the search can
stop.

Exponential Separations
Before proceeding to the empirical part of our research, let
us state some basic theoretical facts evaluating the power of
DSSS. We say that a search space reduction method X is
exponentially separated from a method Y if there exists a
parameterized example family F such that, on F , X yields
an exponentially stronger reduction than Y.

Decoupled search and SSS are complementary in that
each is exponentially separated from the other:

Theorem 3. Fork-decoupled search is exponentially sepa-
rated from SSS, and vice versa.

Our running example with locations A and B is a suitable
family F for the first claim. There are only 3 reachable de-
coupled states (sF0 ; drive to B; drive back). But SSS do not
yield any pruning because, in any state s, to make progress
to the goal, Ts must include an applicable (un)load action;
which interferes with the applicable drive action; which in
turn interferes with all applicable (un)load actions. The op-
posite claim follows from examples, e.g. IPC Parcprinter,
with no fork factoring but strong SSS pruning.

Trivially, DSSS is exponentially separated from each of
fork-decoupled search and SSS, simply because DSSS nat-
urally generalizes each of these components, so we can use
the same families F as in Theorem 3. As a much stronger
testimony to the power of DSSS, there are cases where it is
exponentially separated from both its components:

Theorem 4. There exists a parameterized example family
F such that, on F , DSSS yields an exponentially stronger
reduction than both, fork-decoupled search and SSS.

Two suitable families F arise from simple modifications
of our running example. First, say we have M trucks and
N ∗M packages, where each truck ti is associated with a
group of N packages that only ti can transport. The num-
ber of reachable decoupled states is exponential in M be-
cause all trucks must be in the center factor. The SSS-pruned
reachable standard state space has size exponential in N be-
cause including an (un)load action into Ts necessitates, due
to interference via the truck move as above, to include all ap-
plicable (un)load actions for the respective package group.
However, in decoupled search with DSSS pruning, there are
only M reachable states. This is because the two sources
of pruning power combine gracefully. Decoupling gets rid
of the blow-up in N (the packages within a group become
independent leaves), while DSSS gets rid of the blow-up in
M (only a single truck is committed to at a time).

In our second example, DSSS even is exponentially more
than the sum of its components: stubborn sets have expo-
nentially more impact on the decoupled search space than
on the standard one. Say we have N packages and M trucks
(where every truck may transport every package). Then de-
coupled search blows up in M , and SSS does not do any-
thing because any package may require any truck. Applying
DSSS to decoupled search, no truck move is pruned in sF0 .
However, after applying any one drive(ti, A,B) action, all

package prices are the cheapest possible ones, the frontier is
empty, and DSSS stops the search. So, again, there are only
M reachable states. As we shall see next, similar phenom-
ena seem to occur in the standard IPC Logistics benchmarks.

Experiments
We extended GH’s implementation of fork-decoupled search
in FD (Helmert 2006). To extract the fork factorings, we use
GH’s method. It computes the strongly connected compo-
nents (SCCs) of the causal graph, and, arranging the acyclic
graph of SCCs with roots “at the top” and leaves “at the bot-
tom”, greedily finds a “horizontal line” through that graph.
The part above the line becomes the center, each weakly
connected component below the line becomes a leaf. The
technique abstains if there is ≤ 1 leaf, the rationale being
that decoupling pays off mainly through avoiding enumer-
ation across > 1 leaves. We show results for those bench-
marks on which the technique does not abstain. From the
International Planning Competition (IPC) STRIPS bench-
marks (’98–’14), this is the case for instances from 12 do-
mains.

We focus here on optimal planning, the main purpose of
the optimality-preserving pruning via strong stubborn sets.
We run A∗ with a blind heuristic as a measure of search
space size, and with LM-cut (Helmert and Domshlak 2009)
as a representative of the state of the art, using GH’s method
(Fork-Decoupled A∗) to adopt these techniques for decou-
pled search. We compare decoupled search with DSSS prun-
ing (simply referred to as “DSSS” in what follows) against
decoupled search without that pruning (“DS” in what fol-
lows). We furthermore compare against A∗ in the standard
state space without pruning (“A∗” in what follows), and with
SSS pruning (“SSS” in what follows). All experiments are
run on a cluster of Intel E5-2660 machines running at 2.20
GHz, with time (memory) cut-offs of 30 minutes (4 GB).

Blind Heuristic LM-cut
Domain # A∗ SSS DS DSSS A∗ SSS DS DSSS
Driverlog 20 7 7 11 11 13 13 13 13
Logistics’00 28 10 10 22 24 20 20 28 28
Logistics’98 35 2 2 4 5 6 6 6 6
Miconic 145 50 45 35 36 136 136 135 135
NoMystery 20 8 7 17 15 14 14 20 19
Pathways 29 3 3 3 3 4 4 4 4
Rovers 40 6 7 7 9 7 9 9 11
Satellite 36 6 6 6 6 7 11 7 11
TPP 27 5 5 23 22 5 5 18 18
Wood’08 13 4 6 5 7 6 11 10 11
Wood’11 5 0 1 1 2 2 5 4 5
Zenotravel 20 8 7 11 11 13 13 13 13∑

418 109 106 145 151 233 247 267 274

Table 1: Coverage (number of instances solved).
Table 1 shows coverage results. The most important com-

parison for our purposes here is that between DSSS vs. DS,
i.e., the direct benefit our pruning technique yields over the
baseline search. DSSS is rarely worse (NoMystery -2 and
TPP -1 for blind search, only NoMystery -1 for LM-cut).
It is often better (6 domains for blind, 4 domains for LM-
cut), and consequently is better, though not dramatically bet-
ter, in the overall. Comparing to A∗ and SSS, we see that

49

Blind Heuristic LM-cut
Expansions Runtime Expansions Runtime

Inst A∗ SSS DS DSSS A∗ SSS DS DSSS Inst A∗ SSS DS DSSS A∗ SSS DS DSSS

Logistics’00
p6-9 368109 368109 30 9 2.2 5.2 0.0 0.0 p12-0 116544 116544 149 98 132.3 141.8 0.2 0.1
p12-0 – – 8101 882 – – 15.1 0.2 p14-0 – – 4130 2193 – – 17.1 6.6
p12-1 – – 22644 1338 – – 46.4 0.3 p14-1 – – 8263 4726 – – 42.3 17.9
p14-0 – – – 197855 – – – 605.8 p15-0 – – 41259 15977 – – 280.3 62.5
p14-1 – – – 324152 – – – 1256.9 p15-1 – – 11710 5978 – – 59.6 21.7

Logistics’98
p1 – – 75954 15404 – – 325.48 14.2 p1 12634 12634 555 379 13.6 15.2 1.0 0.5
p5 – – – 20410 – – – 45.24 p31 56 56 12 12 0.0 0.0 0.0 0.0
p31 133855 133855 586 224 1.31 3.53 0.16 0.04 p32 108 47 20 15 0.0 0.0 0.0 0.0
p32 218003 218003 368 124 1.39 3.3 0.04 0.01 p33 92692 92692 388 104 85.8 94.2 0.4 0.1
p33 – – 3550 592 – – 1.43 0.2 p35 1636 1636 360 360 11.8 12.5 4.8 1.8

Pathways
p2 2916 531 2366 489 0.0 0.0 0.0 0.0 p3 98 64 98 66 0.0 0.0 0.0 0.0
p3 53603 2252 16030 609 0.3 0.0 0.7 0.0 p4 189 150 189 150 0.0 0.0 0.1 0.0
p4 300600 10331 31903 2131 3.8 0.2 2.6 0.1 p5 46402 6675 27346 3989 51.8 6.2 39.9 4.1

Rovers
p5 7.52M 213647 152871 6861 71.5 5.3 15.2 0.5 p5 71222 4562 9533 1154 9.7 0.5 2.2 0.2
p6 – 1.20M 6.28M 28693 – 21.0 763.8 1.9 p8 – – 1.16M 1.00M – – 896.1 630.5
p7 32.78M 25.19M 522185 406676 301.1 489.6 43.8 35.2 p9 – 892779 – 8573 – 205.5 – 3.8
p9 – – – 397564 – – – 55.8 p12 19195 11788 8915 4915 9.9 5.1 6.1 2.6
p12 – – – 1.52M – – – 278.8 p14 – – – 780716 – – – 481.7

Satellite
p2 1539 1471 303 249 0.0 0.0 0.0 0.0 p7 95606 3204 77253 10735 120.8 4.9 156.7 12.3
p3 13243 5839 1484 857 0.1 0.1 0.1 0.1 p9 – 3722 – 40514 – 35.1 – 194.1
p4 274070 14510 27706 16225 3.1 0.3 19.0 7.9 p10 – 172718 – – – 1399.1 – –
p5 22.98M 3.01M 364513 217733 636.5 106.2 181.1 149.6 p11 – 0 – 0 – 9.2 – 16.2
p6 19.81M 142382 2.17M 121935 402.7 6.3 1358.1 40.2 p18 – 8366 – 4665 – 98.2 – 140.5

Woodworking’08
p1 9797 1002 1 1 0.1 0.0 0.0 0.0 p7 32418 177 224 46 601.0 1.7 5.4 1.2
p2 23287 70 0 0 0.2 0.0 0.0 0.0 p8 – 694 – 5268 – 10.8 – 61.8
p9 – 1.65M – 30851 – 88.9 – 4.5 p9 – 5157 1103 43 – 5.7 9.3 0.3
p16 – – – 1.78M – – – 223.1 p24 9868 425 615 168 19.8 0.4 1.3 0.3
p24 – 137867 1210202 21721 – 5.2 120.6 1.7 p30 – 308 525 62 – 50.7 463.6 18.1

Woodworking’11
p5 – 137867 1.21M 21721 – 5.4 132.4 1.7 p5 9868 425 615 168 19.9 0.4 1.2 0.3
p12 – – – 1.78M – – – 220.7 p12 – 18317 22072 1920 – 30.3 118.9 5.5

p13 – 0 0 0 – 0.1 0.2 0.1
p16 32418 177 224 46 621.2 1.7 5.6 1.1
p19 – 694 – 5268 – 10.4 – 61.5

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

DS vs. DSSS

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

SSS vs. DSSS

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

SSS vs. DS

Figure 1: Runtime, and expansions to prove optimality (before last f -layer in A∗). Table: Per-instance data on selected IPC
instances “Inst” (see text). “M”: million, “–”: out of time or memory. Scatter plots: Runtime with LM-cut, for all pairs “X vs.
Y” of non-baseline configurations. X on x-axis, Y on y-axis, time-out 1800 seconds inserted for unsolved instances.

DSSS improves DS whenever (i.e., in all domains where)
SSS improves A∗. Whenever SSS outperforms DS, DSSS
fully makes up for this advantage: the per-domain cover-
age of DSSS dominates that of SSS. The single exception to
the latter is Miconic, where DSSS just inherits the weakness
(runtime overhead at not much search gain) of decoupled
search.

Figure 1 shows fine-grained performance data. Consider
first the scatter plots. The plot at the top reveals that DSSS
often improves over DS, up to 2 orders of magnitude on
commonly solved instances, while bad cases are consistently
limited to a moderate overhead. The plot SSS vs. DS shows
that, without pruning, decoupled search is in the advantage
yet also incurs several bad cases. We see in the plot SSS vs.
DSSS that, with DSSS pruning, this risk mostly disappears.

The table in Figure 1 shows data for those domains where
DSSS sometimes reduces expansions relative to DS (we dis-
cuss the other domains below). For each of blind search and
LM-cut, from the instances solved by at least one method,
we selected at most 5, namely the most challenging ones
(largest expansions under standard A∗). Where these did
not include an instance solved by all methods, to exemplify
the cross-comparison we included the most challenging such
instance.

As the table shows, on those domains where DSSS does

yield pruning, it consistently improves over DS, both in ex-
pansions and runtime, for both blind search and LM-cut.
The behavior in Logistics is especially remarkable. On the
standard state space, SSS yields little or no reduction, while
in the decoupled state space, DSSS yields strong reductions.
This establishes a practical case of DSSS being more than
the sum of its components. Compared to SSS, decoupled
search with DSSS is superior in Logistics, Pathways, and
Rovers, and is inferior in Satellite; the picture in Woodwork-
ing is mixed.

On the domains where DSSS does not reduce expansions
(Driverlog, Miconic, NoMystery, TPP, and Zenotravel), a
runtime overhead is incurred. For blind search, we get slow-
down factors up to 218.5 in NoMystery, 26.9 in TPP, and
4.8 in the other 3 domains. This is due to the small per-
state search effort in blind search, relative to which com-
puting a DSSS can consume substantial runtime. For the
state-of-the-art search using LM-cut, where per-state effort
is much higher, the overhead is small. The maximum (ge-
ometric mean) slow-down factor is 1.3 (1.1) for Driverlog,
2.0 (1.0) for Miconic, 3.1 (2.2) for NoMystery, 2.0 (1.3) for
TPP, and 2.0 (1.1) for Zenotravel. Using a simple “safety
belt” which switches DSSS off after 1000 expansions if no
action was pruned, the slow-down disappears in almost all
cases.

50

Conclusion
We have shown that fork-decoupled search and strong stub-
born sets combine gracefully in theory, and that the combi-
nation can yield good results in practice. Our next step will
be to extend decoupled strong stubborn sets to star-topology
decoupling as per Gnad and Hoffmann (2015b). More gen-
erally, decoupled search is a new paradigm that, presum-
ably, can be fruitfully combined not only with (heuristic
search and) strong stubborn sets, but also with other search
techniques like symmetry reduction or symbolic representa-
tions.

Acknowledgments
Daniel Gnad was partially supported by the German Re-
search Foundation (DFG), as part of project grant HO
2169/6-1, ”Star-Topology Decoupled State Space Search”.
Martin Wehrle was supported by the Swiss National Science
Foundation (SNSF) as part of the project “Automated Refor-
mulation and Pruning in Factored State Spaces (ARAP)”.

References
Yusra Alkhazraji, Martin Wehrle, Robert Mattmüller, and
Malte Helmert. A stubborn set algorithm for optimal plan-
ning. In Luc De Raedt, Christian Bessiere, Didier Dubois,
Patrick Doherty, Paolo Frasconi, Fredrik Heintz, and Peter
Lucas, editors, Proceedings of the 20th European Confer-
ence on Artificial Intelligence (ECAI 2012), pages 891–892.
IOS Press, 2012.
Eyal Amir and Barbara Engelhardt. Factored planning.
In Georg Gottlob and Toby Walsh, editors, Proceedings of
the 18th International Joint Conference on Artificial Intel-
ligence (IJCAI 2003), pages 929–935. Morgan Kaufmann,
2003.
Christer Bäckström and Bernhard Nebel. Complexity results
for SAS+ planning. Computational Intelligence, 11(4):625–
655, 1995.
Ronen I. Brafman and Carmel Domshlak. Structure and
complexity in planning with unary operators. Journal of Ar-
tificial Intelligence Research, 18:315–349, 2003.
Ronen Brafman and Carmel Domshlak. On the complexity
of planning for agent teams and its implications for single
agent planning. Artificial Intelligence, 198:52–71, 2013.
Eric Fabre, Loı̈g Jezequel, Patrik Haslum, and Sylvie
Thiébaux. Cost-optimal factored planning: Promises and
pitfalls. In Ronen Brafman, Héctor Geffner, Jörg Hoff-
mann, and Henry Kautz, editors, Proceedings of the Twen-
tieth International Conference on Automated Planning and
Scheduling (ICAPS 2010), pages 65–72. AAAI Press, 2010.
Daniel Gnad and Jörg Hoffmann. Beating LM-cut with hmax

(sometimes): Fork-decoupled state space search. In Ronen
Brafman, Carmel Domshlak, Patrik Haslum, and Shlomo
Zilberstein, editors, Proceedings of the Twenty-Fifth Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS 2015), pages 88–96. AAAI Press, 2015.
Daniel Gnad and Jörg Hoffmann. From fork decoupling
to star-topology decoupling. In Proceedings of the Eighth

Annual Symposium on Combinatorial Search (SoCS 2015),
pages 53–61. AAAI Press, 2015.
Daniel Gnad, Martin Wehrle, and Jörg Hoffmann. De-
coupled strong stubborn sets (technical report). Tech-
nical report, Saarland University, 2016. Available at
http://fai.cs.uni-saarland.de/hoffmann/
papers/ijcai16a-tr.pdf.
Malte Helmert and Carmel Domshlak. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Alfonso Gerevini, Adele Howe, Amedeo Cesta, and Ioannis
Refanidis, editors, Proceedings of the Nineteenth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2009), pages 162–169. AAAI Press, 2009.
Malte Helmert. The Fast Downward planning system. Jour-
nal of Artificial Intelligence Research, 26:191–246, 2006.
Peter Jonsson and Christer Bäckström. Incremental plan-
ning. In Malik Ghallab and Alfredo Milani, editors, New Di-
rections in AI Planning: EWSP ’95 — 3rd European Work-
shop on Planning, volume 31 of Frontiers in Artificial Intel-
ligence and Applications, pages 79–90, Amsterdam, 1995.
IOS Press.
Elena Kelareva, Olivier Buffet, Jinbo Huang, and Sylvie
Thiébaux. Factored planning using decomposition trees. In
Manuela M. Veloso, editor, Proceedings of the 20th Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2007), pages 1942–1947, 2007.
Craig A. Knoblock. Automatically generating abstractions
for planning. Artificial Intelligence, 68(2):243–302, 1994.
Antti Valmari. Stubborn sets for reduced state space gen-
eration. In Grzegorz Rozenberg, editor, Proceedings of the
10th International Conference on Applications and Theory
of Petri Nets (APN 1989), volume 483 of Lecture Notes in
Computer Science, pages 491–515. Springer-Verlag, 1989.
Martin Wehrle and Malte Helmert. About partial order re-
duction in planning and computer aided verification. In Lee
McCluskey, Brian Williams, José Reinaldo Silva, and Blai
Bonet, editors, Proceedings of the Twenty-Second Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2012). AAAI Press, 2012.
Martin Wehrle and Malte Helmert. Efficient stubborn sets:
Generalized algorithms and selection strategies. In Proceed-
ings of the Twenty-Fourth International Conference on Auto-
mated Planning and Scheduling (ICAPS 2014), pages 323–
331. AAAI Press, 2014.

51

Optimal Solitaire Game Solutions using A∗ Search and Deadlock Analysis

Gerald Paul
Boston University

Boston, Massachusetts, USA
gerryp@bu.edu

Malte Helmert
University of Basel
Basel, Switzerland

malte.helmert@unibas.ch

Abstract

We propose and implement an efficient method for determin-
ing optimal solutions to such skill-based solitaire card games
as Freecell and King Albert solitaire. We use A* search to-
gether with an admissible heuristic function that is based on
analyzing a directed graph whose cycles represent deadlock
situations in the game state. To the best of our knowledge,
ours is the first algorithm that efficiently determines optimal
solutions for Freecell games. We believe that the underlying
ideas should be applicable not only to games but also to other
classical planning problems which manifest deadlocks.

1 Introduction
Games have always been a fertile ground for advancements
in computer science, operations research and artificial in-
telligence. Solitaire card games, and Freecell in particular,
have been the subject of study in both the academic liter-
ature (Elyasaf, Hauptman, and Sipper 2011; 2012; Sipper
and Elyasaf 2014; Long and Fox 2000; Bacchus 2001; Fox
and Long 2001; Helmert 2003; Hoffmann 2005; Hoffmann
and Nebel 2001; Hoffmann, Porteous, and Sebastia 2004;
Morris, Tarassenko, and Kenward 2005; Pecora and Cesta
2003; Russell and Norvig 2003), where they are used as
a benchmark for planning heuristics, and in popular litera-
ture (Fish 2015; Heineman 2015; FreeCell solutions 2015;
Keller 2015; PySolFC 2015; Levin 2008; Van Noorden
2006; Mlot 2015).

Our work applies to skill-based solitaire games in which
all cards are dealt face up. For these games, after the ini-
tial deal, there is no element of chance involved. Examples
of such games include Freecell, King Albert, Bakers dozen,
and Eight-off (Morehead and Mott-Smith 1983). Skill-based
solitaire games are examples of classical planning problems
(Ghallab, Nau, and Traverso 2004).

The Freecell solitaire game was introduced by Microsoft
as a free desktop game in early versions of the Windows
operating system. The rules of Freecell are described in Ap-
pendix A. While our examples and solution results are for
Freecell, they apply to a large class of skill-based solitaire
games.

We use Freecell because it is the most widely played and
analyzed skill solitaire card game with free on-line, desktop
and mobile versions of the game. Freecell games are de-
noted by the randomization seed that produces them in the

Windows implementation of the game. Because the random-
ization algorithm for Freecell deals is public (Horne 2015),
given a seed the random deals are reproducible, so compar-
isons can be made with other work. While Freecell differs
in detail from other skill solitaire games, such concepts as
foundation cells to which cards must ultimately be moved,
and a tableau of columns of cards is common to many skill
solitaire games. Freecell has been shown to be NP-hard
(Helmert 2003) and thus provides a demanding test of our
approach.

There are a number of Freecell computer solvers avail-
able which provide solutions to any Freecell deal (Elyasaf,
Hauptman, and Sipper 2011; Fish 2015; Heineman 2015;
Keller 2015; PySolFC 2015). However, we know of no
work which provides provably optimal solutions to solitaire
games. We consider a solution optimal if no other solution
exists which requires a smaller number of moves.

One of the defining attributes of such skill-based games
as Freecell is that deadlocks1 are present and, in order to
resolve the deadlocks, actions are required that do not con-
tribute directly to reaching the goal state. Deadlock has long
been recognized as a feature that makes finding optimal so-
lutions to planning problems hard (Gupta and Nau 1992).
When the state of the game is appropriately mapped to a di-
rected graph, the deadlocks are represented by cycles of the
graph.

A key insight of this work is that very strong admissible
heuristic functions for Freecell can be constructed by ana-
lyzing these deadlock cycles. Graph analysis has been em-
ployed in analysis of problem complexity (Gupta and Nau
1992) and planning heuristics (Helmert 2004). One of the
main contributions of this work is that we show how it can
be used to optimally solve a highly popular class of puzzles
that have so far defied optimal solution.

In the following sections, we review the A* algorithm, de-
scribe our approach, and presents results of our solver imple-
mentation. We conclude by discussing connections to recent
research in classical planning, future research directions and
open questions towards the end of this paper. While our al-
gorithmic contributions and experimental evaluation are fo-

1In general, a deadlock situation exists when an action, A, can-
not be taken until another action, B, is taken but action B, cannot
be taken until action A is taken (and the generalization to circular
waiting of multiple actions.

52

cused on Freecell, we believe that the key insights under-
lying the deadlock heuristic have much wider applicability
within and outside of classical planning.

2 A* Search Algorithm
The A* search algorithm (Hart, Nilsson, and Raphael 1968)
uses a best-first search and finds a least-cost path from a
given initial state to the goal state. As A* traverses the state
space, it builds up a tree of partial paths. The leaves of this
tree (called the open set) are stored in a priority queue that
orders the leaf states by a cost function:

f(n) = g(n) + h(n). (1)

Here, g(n) is the known cost of getting from the initial state
to state n. h(n) is a heuristic estimate of the cost to get
from n to the goal state. For the algorithm to find the actual
least cost path, the heuristic function must be admissible,
meaning that it never overestimates the actual cost to get to
the goal state. Roughly speaking, the closer the heuristic
estimate is to the actual cost of reaching the goal state, the
more efficient the algorithm.2

In our case, g(n) is simply the number of moves that have
been made to reach the state n and h(n) is an estimate of
the number of moves to reach the solution of the game from
state n.

3 Freecell Heuristics for A*
The simplest non-trivial heuristic is 52 − mf (n) where
mf (n) is the number of cards in the foundation in state
n. This estimate, however, is extremely optimistic because
some cards are usually blocked from movement to the foun-
dation. The simplest example of this is a column where a
card of a given suit and rank is higher3 in the column than
a card of the same suit and greater rank. Until the greater
rank card is moved to a temporary location in a free cell or
another tableau cell, the lower rank card cannot be moved to
the foundation. Then later, the greater rank card may be able
to be moved to the foundation. Thus, a more robust heuristic
is

h(n) = 52−mf (n) +me(n) (2)
where me(n) is an optimistic estimate of the number of
moves to temporary locations that must be made to remove
these blocking or deadlock situations.

There are more complicated deadlock situations than the
example above. With the mapping of the game state to a di-
rected graph described in the next section, we can associate
all deadlock situations with cycles in the graph. The dead-
lock situations are removed when all cycles are eliminated;
a cycle is eliminated when one or more edges of the cycle

2While not universally true (Holte 2010), the rule “more accu-
rate heuristic = lower search effort” is generally a good approxima-
tion of reality.

3Throughout the paper, we use “higher” and “lower” to refer to
the usual visual representation of card columns in solitaire games.
For example, the “lowest” card in the leftmost column of Fig. 1 is
6♠. This is the only card in the column that may be moved directly.
To move any other cards, the cards below them must first be moved
out of the way.

are removed. Now, the only way to remove an edge is to
move a card and moving a card cannot remove more than
one edge. Thus, the number of remaining moves must be
at least as great as the number of moves to eliminate these
cycles. For this reason, we take me(n) to be an optimistic
estimate of the number of edges which must be removed to
eliminate all cycles. Note that this estimate may still not be
an exact estimate of the number of remaining moves needed
to win because the use of temporary locations is limited by
the availability of open free cells, empty cells in the tableau,
or a column to which the card can be moved to extend a cas-
cade. Also note that we can use forme(n) an estimate of the
number of edges needed to remove a consistent subset of all
cycles. This allows for performance tuning the implementa-
tion as discussed in Section 10.

4 Solitaire State to Directed Graph Mapping
We map the solitaire game layout to a directed graph as fol-
lows:

• We treat each card as a node of the graph.
• We create a directed edge from each card to the card of

next lower rank of the same suit (e.g., from the 8♥ to
the 7♥). We call these edges dependency edges because
being able to move a card to the foundation depends on
the card of next lower rank of the same suit being in the
foundation. Dependency edges are permanent; they are
never removed and are not affected when a card is moved.
We define the suit of a dependency edge as the suit of the
cards to which the edge is incident.

• We create a directed edge from each card in the tableau
to the card below it in the tableau (if any). We denote
these edges blocking edges because a card in the tableau
is blocked from being moved to the foundation unless it
is the exposed card (lowest card) in the tableau column.
Blocking edges are removed and added when a move is
made to reflect the new state of the game.

An example of dependency and blocking edges that are part
of a cycle is shown in Fig. 1.

5 Cycle Determination
At first glance, the task of dealing with the cycles of the
created by the mapping is daunting. For example, there
are 26133 unique cycles in the graph created from mapping
Freecell game #1 .

However, we can reduce the number of cycles to be con-
sidered by eliminating redundant cycles. A cycle c1 is re-
dundant if the set of blocking edges of any other cycle c2 is
a subset of the set of edges of c1, in which case the removal
of any edge in cycle c2 results not only in the destruction of
c2 but also c1.

Here we describe how to construct all non-redundant cy-
cles. The approach depends on the fact that all dependency
edges are always present. So from any card in a suit to any
card of lower rank of the same suit we can always create a
path that does not contain any blocking edges.

For conciseness, let us define a cycle that includes depen-
dency edges of q different suits as a q-suit cycle. Now, first

53

Figure 1: Initial state of Microsoft Freecell game #1. A cycle consisting of blocking edges (solid arrows) 3♠ → 6♦, 6♦ → 6♠
and dependency edges (dashed lines) 6♠ → 5♠, 5♠ → 4♠, 4♠ → 3♠ is shown.

consider cycles in which all dependency edges are of the
same suit (1-suit cycles), an example of which is shown in
Fig. 2. The blocking edges in the cycle in Fig. 2(a) are a
subset of the blocking edges in the cycle in Fig. 2(b). So
the cycle in Fig. 2(b) is a redundant cycle. We can infer the
rule that if all dependency edges of a cycle are of the same
suit, we need only consider cycles in which the dependency
edges of the same suit in the cycle are consecutive (i.e., not
interrupted by blocking edges). This rule implies that all
blocking edges in a single-suit cycle are in the same tableau
column.

Now consider cycles in which the dependency edges in-
clude cards of two suits (2-suit cycles), an example of which
is shown in Fig. 3. Again, the cycle in Fig. 3(b) is redundant
because blocking edges in the cycle in Fig. 3(a) are a subset
of the blocking edges of the cycle in Fig. 3(b). Generaliz-
ing to cycles containing dependency edges of any number of
suits, we can infer that

• if the dependency edges of any suit in the cycle are not
consecutive, (i.e., are interrupted by blocking edges) the
cycle is redundant, and that

• for a cycle containing dependency edges of q suits, the
blocking edges of non-redundant cycles are contained in
at most q tableau columns.

Based on the above, we can construct non-redundant q-
suit cycles, (q = 1, 2, 3, 4), by considering O(tq) combi-

nations of the tableau columns, where t is the number of
tableau columns (8 for Freecell). Pseudo code for identifica-
tion of 1-suit and 2-suit cycles is presented in Appendix B.

6 Relevant Cycle Edges
In considering edges for removal from a cycle, not all edges
must be considered. Clearly, only blocking edges (as op-
posed to dependency edges) must be considered, since de-
pendency edges are never removed.

Also, in solitaire, cards higher in a column than a given
card cannot be moved before the given card is moved. Thus,
as seen in the example in Fig. 2(a), while the edge 2♦ →
A♣ is part of the cycle shown, if the edge A♣ → 9♠ is
removed, which must be done before the edge 2♦ → A♣
can be removed, the cycle no longer exists. Thus, there is
no reason to consider the edge 2♦ → A♣ as a candidate
for removal during the calculation of edges required to be
removed. We denote edges that must be considered as can-
didates for removal as relevant cycle edges and edges that
need not be considered irrelevant cycle edges.

7 Duplicate Cycles
Since we are only concerned with the number of edges
which must be removed to eliminate cycles, we can remove
from consideration cycles which are duplicates of other cy-
cles. We consider cycles to be duplicates if the set of rel-

54

K

9

2

5

7

7

A

4

8

4

6

4 K

9

2

5

7

7

A

4

8

4

6

4

(a) (b)

Single Suit Cycles

3 3

Figure 2: Fragment of tableau illustrating (a) single suit cy-
cle in which all blocking edges are in a single column and
(b) redundant single suit cycle consisting of blocking edges
(in two columns) that are a superset of blocking edges in (a).

evant edges in the cycles are identical, independent of the
order, and eliminate them from consideration.

8 Determination of the Minimum Number of
Edges that Must be Removed to Eliminate

Cycles
By eliminating redundant cycles, duplicate cycles and irrele-
vant edges of cycles, the complexity of determining the min-
imum number of edges that must be removed to eliminate
cycles, me, can be reduced significantly. For example, we
must actually only consider a total of 87 cycles (12 1-suit, 39
2-suit, 34 3-suit, and 2 4-suit cycles) for removal in the ini-
tial state of Freecell game #1, compared to the 26133 cycles
present if redundant and duplicate cycles are included.

We use a brute-force, depth-first exhaustive search of all
combinations of edge removals that eliminate all cycles. Be-
cause only one edge of a cycle must be removed to elim-
inate the cycle, the worst case number of combinations of
removed edges that we must consider is:

C =

mc∏

i=1

ei, (3)

where mc is the number of cycles and ei is the number of
relevant edges in cycle i.

In practice, the number of combinations actually consid-
ered can be reduced, in some cases by an order of magni-
tude, by removing edges in decreasing order of the number
of other cycles in which an edge is contained. With this or-
dering many cycles are eliminated early in the calculation.

9 Implementation
Our solver is implemented in C++. In addition to elimi-
nating redundant cycles, duplicate cycles and non-relevant

K

9

2

5

7

7

A

4

8

4

6

4 K

9

2

5

7

7

A

4

8

4

6

4

(a) (b)

Two Suit Cycles

3 3

Figure 3: Fragment of tableau illustrating (a) 2-suit cycle
in which all blocking edges are in a two columns and (b)
redundant 2-suit cycle consisting of blocking edges (also in
two columns) that are a superset of blocking edges in (a).

edges, we improve performance with:

• A transposition table with Zobrist hashing to eliminate
duplicate states during the A* search (Akagi, Kishimoto,
and Fukunaga 2010; Zobrist 1990).

• The priority queue used by A* implemented as a series
of buckets (as opposed to a binary heap), providing O(1)
queue performance (Paul 2007; Burns et al. 2012). This
is possible because the costs (estimated solution lengths)
are integers and in a relatively small range (≈ 60–100).

• Use of a hash table to detect duplicate cycles.

• Incremental cycle determination. We identify all cycles
in the initial configuration. After that, we incrementally
identify cycles removed and added as a result of a move,
only considering the card(s) moved.

10 Solver Results
Our test cases were games 1–5000 of Microsoft Freecell.
We ran all tests on an Intel core i3 4160 processor running
at 3.60 GHz with 8 GB of memory. The program working
set is ≈ 2 GB for most games. Results for games 1–10 are
shown in Table 1.

Before discussing the results, it is necessary to discuss
the trade-off between the accuracy of our heuristic and the
computer resources to achieve that accuracy. Our work can
be thought of as providing a family of heuristic functions,
hq(n), where q = 1, 2, 3, 4 is the maximum number of dif-
ferent suits of the dependency edges in the cycles we con-
sider. Now, the processing time per state explored to deter-
mine cycles increases with q. The number of states which
must be explored, however, decreases with q because the
heuristic becomes more accurate with increasing q and the
heuristic more effectively guides the search. Reducing the

55

initial state solution

Freecell
Game
#

1-suit
cycles

2-suit
cycles

length
esti-
mate

length time
(sec)

states
searched

1 12 39 73 82 30.8 567699
2 13 5 68 73 1.9 101186
3 15 8 70 70 0.6 20499
4 37 34 72 79 31.0 1220026
5 16 46 78 85 122.0 3687136
6 12 24 73 75 1.1 31912
7 13 39 72 76 1.7 74369
8 8 58 70 74 13.2 367784
9 19 25 77 81 2.0 77990
10 16 18 73 80 7.7 315643

Table 1: Results of our program for the Freecell games 1-10.

number of states which must be explored is important be-
cause it also reduces the amount of memory A* requires and
memory is often the limiting factor in A* implementations.

Varying q, we find that, while using cycles containing
more than 2 suits reduces the number of states needed for
a solution, the time per state is increased so much that the
overall average time per solution is increased. For this rea-
son, we did not identify or use cycles containing greater than
2 suits in our testing.

We found that across the 5000 games used for testing

• Optimal solutions have been found for all games tested.

• As expected, the initial estimated length is never greater
than the actual optimal length – a requirement for the
search to find the optimal solution.

• The initial estimated length and the actual optimal length
are relatively close – in some cases (e.g., game 3) iden-
tical, indicating that the heuristic strongly guides the
search.

• There are typically / 20 initial 1-suit cycles and / 100
2-suit cycles.

• CPU processing time is dominated by the tasks of finding
cycles and determining which edges must be removed to
eliminate all cycles.

• The shortest, average and longest solution lengths were
64, 77 and 93 moves, respectively.

• The shortest, average and longest processing times were
0.4, 39.9 and 6579 seconds, respectively.

11 Solitaire and Blocks World
By mapping game states to directed graphs and using the
number of edges required to remove cycles in the graph as
input to the A* heuristic function, we develop, for the first
time, an effective method for finding optimal solutions to
skill-based solitaire games. These games are characterized
by the presence of deadlock situations in which the goal
state requires objects to be ordered in a specified way but
constraints exist on the order in which actions can be taken.

The presence of deadlocks in these games makes them hard
to solve, and in particular hard to solve optimally.

This is reminiscent of the classic blocks world domain,
where nonoptimal solutions can be generated easily, but
computing optimal solutions is an NP-equivalent problem
due to the existence of deadlocks (Gupta and Nau 1992;
Slaney and Thiébaux 2001). Indeed, the Freecell heuris-
tics described in this paper can be understood as a two-stage
relaxation. Firstly, relax the Freecell game into a blocks
world task. Secondly, compute an admissible heuristic for
this blocks world task.

In more detail, we first relax the Freecell game by treat-
ing it as a blocks world task where the cards forming each
tableau column or foundation pile are reinterpreted as a
tower of blocks, and cards in free cells are reinterpreted
as individual blocks lying on the table. This simplifies the
problem (and hence leads to an admissible heuristic rather
than a perfect distance estimate) because blocks world, un-
like Freecell, has unlimited table positions. Interestingly,
removing the constraint on table positions is the only rel-
evant way in which this transformation simplifies the prob-
lem: while the Freecell rules impose a number of constraints
regarding the movement of cards, none of these constraints
affect the optimal solution length in the presence of unlim-
ited table positions. In other words, Freecell with unlim-
ited table positions (or unlimited free cells) always has ex-
actly the same optimal solution length as the corresponding
blocks world task.4

The second relaxation we apply in our experiments is to
abstain from covering all deadlocks of the problem graph.
Recall that hq (1 ≤ q ≤ 4) is the variant of our heuristic
that only considers q′-suit cycles with q′ ≤ q. The most

4To see this, observe that with unlimited space there is never an
incentive in Freecell to move a card onto another card except for
its final move to foundations. This is equivalent to the observation
that in blocks world, there is never an incentive to move a block
onto another block except to move it into its final position. The
challenge, in both cases, is to minimize the number of moves of
cards/blocks onto the table that cannot yet be moved directly into
their final position.

56

powerful of these heuristics, h4, includes all relevant cycles
and hence amounts to solving the blocks world relaxation of
the Freecell game perfectly. In our experiments, this level of
heuristic accuracy turned out not to be beneficial due to the
high computational effort for each state evaluation, with h2
providing the best balance between heuristic accuracy and
computational effort per state.

12 Implications for Domain-Independent
Planning

Looking beyond solitaire games and blocks world, are there
wider implications of our work for domain-independent
planning? We believe that this is the case: that deadlocks are
a phenomenon that occurs in a much wider range of domains
than Freecell games or blocks world tasks, and that heuris-
tic functions based on covering deadlocks are a promising
direction for a wide range of planning domains.

For example, deadlocks of essentially the same form as
in the blocks world domain are the major source of hard-
ness in the Logistics domain and the only source of hard-
ness in the Miconic-STRIPS and Miconic-SimpleADL do-
mains (Helmert 2001). Many other planning domains with
a “transportation” component share this problem aspect,
though often mixed with other aspects. Deadlock covering
problems also occur at the computational core of many opti-
mization problems outside of planning, such as many of the
implicit hitting set problems identified by Chandrasekaran et
al. (2011).5

Finally, a similar form of deadlocks (a set of actions cycli-
cally supporting each other’s preconditions without being ul-
timately supported by effect/precondition links from the cur-
rent state) is the major source of inaccuracy in flow heuristics
that have recently attracted much attention in planning (van
den Briel et al. 2007; Bonet 2013; Bonet and van den Briel
2014; Pommerening et al. 2014). A better understanding of
the role of dependency deadlocks in classical planning tasks
could go a long way towards overcoming the limitations of
these heuristics.

References
Akagi, Y.; Kishimoto, A.; and Fukunaga, A. 2010. On trans-
position tables for single-agent search and planning: Sum-
mary of results. In Felner, A., and Sturtevant, N., eds., Pro-
ceedings of the Third Annual Symposium on Combinatorial
Search (SoCS 2010), 2–9. AAAI Press.
Bacchus, F. 2001. The AIPS’00 planning competition. AI
Magazine 22(3):47–56.
Bonet, B., and van den Briel, M. 2014. Flow-based heuris-
tics for optimal planning: Landmarks and merges. In Pro-
ceedings of the Twenty-Fourth International Conference on
Automated Planning and Scheduling (ICAPS 2014), 47–55.
AAAI Press.

5See also the recent paper by Slaney (2014) for deeper connec-
tions between blocks world, implicit hitting sets, and combinatorial
optimization in general.

Bonet, B. 2013. An admissible heuristic for SAS+ planning
obtained from the state equation. In Rossi, F., ed., Proceed-
ings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI 2013), 2268–2274.
Burns, E.; Hatem, M.; Leighton, M. J.; and Ruml, W. 2012.
Implementing fast heuristic search code. In Borrajo, D.; Fel-
ner, A.; Korf, R.; Likhachev, M.; Linares López, C.; Ruml,
W.; and Sturtevant, N., eds., Proceedings of the Fifth Annual
Symposium on Combinatorial Search (SoCS 2012), 25–32.
AAAI Press.
Chandrasekaran, K.; Karp, R.; Moreno-Centeno, E.; and
Vempala, S. 2011. Algorithms for implicit hitting set
problems. In Randall, D., ed., Proceedings of the Twenty-
Second Annual ACM-SIAM Symposium on Discrete Algo-
rithm (SODA 2011), 614–629. SIAM.
Elyasaf, A.; Hauptman, A.; and Sipper, M. 2011. GA-
FreeCell: evolving solvers for the game of FreeCell. In
Proceedings of the 13th annual conference on Genetic and
evolutionary computation (GECCO 2011), 1931–1938.
Elyasaf, A.; Hauptman, A.; and Sipper, M. 2012. Evolu-
tionary design of FreeCell solvers. IEEE Transactions on
Computational Intelligence and AI in Games 4(4):270–281.
Fish, S. 2015. Freecell solver. http://fc-solve.
shlomifish.org/. Retrieved 11/9/2015.
Fox, M., and Long, D. 2001. Hybrid STAN: Identifying
and managing combinatorial optimisation subproblems in
planning. In Nebel, B., ed., Proceedings of the 17th Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2001), 445–452. Morgan Kaufmann.
FreeCell solutions. 2015. FreeCell solutions to 1000000
games. http://freecellgamesolutions.com/.
Retrieved 11/9/2015.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.
Gupta, N., and Nau, D. S. 1992. On the complexity of
blocks-world planning. Artificial Intelligence 56(2–3):223–
254.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2):100–107.
Heineman, G. T. 2015. Algorithm to solve FreeCell solitaire
game. http://broadcast.oreilly.com/2009/
01/january-column-graph-algorithm.html.
Retrieved 11/9/2015.
Helmert, M. 2001. On the complexity of planning in trans-
portation domains. In Cesta, A., and Borrajo, D., eds.,
Proceedings of the Sixth European Conference on Planning
(ECP 2001), 120–126. AAAI Press.
Helmert, M. 2003. Complexity results for standard
benchmark domains in planning. Artificial Intelligence
143(2):219–262.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Zilberstein, S.; Koehler, J.; and Koenig,
S., eds., Proceedings of the Fourteenth International Confer-

57

ence on Automated Planning and Scheduling (ICAPS 2004),
161–170. AAAI Press.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. Journal of Artificial Intelligence Re-
search 22:215–278.
Hoffmann, J. 2005. Where ‘ignoring delete lists’ works:
Local search topology in planning benchmarks. Journal of
Artificial Intelligence Research 24:685–758.
Holte, R. C. 2010. Common misconceptions concerning
heuristic search. In Felner, A., and Sturtevant, N., eds., Pro-
ceedings of the Third Annual Symposium on Combinatorial
Search (SoCS 2010), 46–51. AAAI Press.
Horne, J. 2015. Description of microsoft FreeCell shuffle
algorithm. http://www.solitairelaboratory.
com/mshuffle.txt. Retrieved 11/9/2015.
Keller, M. 2015. Solitaire laboratory. http:
//solitairelaboratory.com/index.html. Re-
trieved 11/9/2015.
Levin, J. 2008. Solitaire-y confinement: Why we can’t stop
playing a computerized card game. Slate May 16, 2008.
Long, D., and Fox, M. 2000. Automatic synthesis and use of
generic types in planning. In Chien, S.; Kambhampati, S.;
and Knoblock, C. A., eds., Proceedings of the Fifth Inter-
national Conference on Artificial Intelligence Planning and
Scheduling (AIPS 2000), 196–205. AAAI Press.
Mlot, S. 2015. Microsoft tournament celebrates 25 years
of solitaire. http://www.pcmag.com/article2/
0,2817,2484370,00.asp. Published May 19, 2015;
retrieved 11/9/2015.
Morehead, A. H., and Mott-Smith, G. 1983. The Complete
Book of Solitaire and Patience Games. Bantam.
Morris, R.; Tarassenko, L.; and Kenward, M. 2005. Cogni-
tive Systems – Information Processing Meets Brain Science.
Elsevier.
Paul, G. 2007. A complexity o(1) priority queue for event
driven molecular dynamics simulations. Journal of Compu-
tational Physics 221(2):615–625.
Pecora, F., and Cesta, A. 2003. The role of different solvers
in planning and scheduling integration. In Proceedings of
the 8th Congress of the Italian Association for Artificial In-
telligence (AI*IA 2003), 362–374.
Pommerening, F.; Röger, G.; Helmert, M.; and Bonet, B.
2014. LP-based heuristics for cost-optimal planning. In Pro-
ceedings of the Twenty-Fourth International Conference on
Automated Planning and Scheduling (ICAPS 2014), 226–
234. AAAI Press.
PySolFC. 2015. PySolFC: a Python solitaire game col-
lection. http://pysolfc.sourceforge.net/. Re-
trieved 11/9/2015.
Russell, S., and Norvig, P. 2003. Artificial Intelligence — A
Modern Approach. Prentice Hall.

Sipper, M., and Elyasaf, A. 2014. Lunch isn’t free, but cells
are: Evolving FreeCell players. SIGEvolution newsletter of
the ACM Special Interest Group on Genetic and Evolution-
ary Computation 6(3–4):2–10.
Slaney, J., and Thiébaux, S. 2001. Blocks World revisited.
Artificial Intelligence 125(1–2):119–153.
Slaney, J. 2014. Set-theoretic duality: A fundamental fea-
ture of combinatorial optimisation. In Schaub, T.; Friedrich,
G.; and O’Sullivan, B., eds., Proceedings of the 21st Eu-
ropean Conference on Artificial Intelligence (ECAI 2014),
843–848. IOS Press.
van den Briel, M.; Benton, J.; Kambhampati, S.; and Vossen,
T. 2007. An LP-based heuristic for optimal planning. In
Bessiere, C., ed., Proceedings of the Thirteenth Interna-
tional Conference on Principles and Practice of Constraint
Programming (CP 2007), volume 4741 of Lecture Notes in
Computer Science, 651–665. Springer-Verlag.
Van Noorden, R. 2006. Computer games could save your
brain. Nature news item published 24 July 2006.
Wikipedia. 2015. FreeCell. https://en.wikipedia.
org/wiki/FreeCell. Retrieved 11/9/2015.
Zobrist, A. L. 1990. A new hashing method with application
for game playing. ICCA Journal 13(2):69–73.

A Freecell Rules
The following Freecell rules are taken from Wikipedia
(2015).

Construction and layout: One standard 52-card deck is
used. There are four open cells and four open foundations.
Cards are dealt face-up into eight cascades, four of which
comprise seven cards and four of which comprise six.

Building during play: The top card of each cascade begins
a tableau. Tableaux must be built down by alternating colors.
Foundations are built up by suit.

Moves: Any cell card or top card of any cascade may
be moved to build on a tableau, or moved to an empty cell,
an empty cascade, or its foundation. Complete or partial
tableaus may be moved to build on existing tableaus, or
moved to empty cascades, by recursively placing and remov-
ing cards through intermediate locations.

Victory: The game is won after all cards are moved to
their foundation piles.

B Cycle Identification Algorithm
Figures 4 and 5 contain pseudo code for determining 1-suit
and 2-suit cycles, respectively.

Note that there is no need to explicitly follow the depen-
dency edges from a card in one column to a card of the same
suit in another column since we are assured that there is al-
ways a chain of dependency edges from a card in a given
suit to a card of lower rank in that suit.

Extension to 3-suit and 4-suit cycles is straightforward;
paths of dependency edges to one or two additional columns,
respectively, must be identified before returning to the initial
column.

58

/* identify 1-suit cycles*/

for (all tableau columns,c)
{
 for (all cards, cardX, in column c)
 {
 for (all cards,cardY, below cardX)
 {
 if (cardY suit != cardX suit || cardY rank > cardX rank)
 continue; /* need same suit, lower rank than X*/

 /* cycle found */
 store cycle;
 }
 }
}

Figure 4: Pseudo code illustrating the algorithm to identify 1-suit cycles.

59

/* identify 2-suit cycles*/

for (all tableau columns, c1)
{
 for (all cards, cardX1, in column c1)
 {
 for (all tableau columns, c2)
 {
 for (all cards, cardY2 in column c2)
 {
 if (cardY2 suit != card X1 suit || cardY2 rank > cardX1 rank)
 continue; /* need same suit, lower rank than X1*/

 for (all cards, cardY1, above cardY2 in column c2)
 {
 if (cardY1 suit == card Y2 suit) /* need different suit */
 continue;

 for (all cards, cardX2, below cardX1 in column c1)
 {
 if (cardX2 suit != cardY1 suit || cardX2 rank > cardY1 rank)
 continue; /* need same suit, lower rank than Y1*/

 /* cycle found */
 store cycle;
 }
 }
 }
 }
 }
}

Figure 5: Pseudo code illustrating the algorithm to identify 2-suit cycles.

60

Lifting Delete Relaxation Heuristics To Successor Generator Planning

Michael Katz
IBM Watson Health, Israel

katzm@il.ibm.com

Dany Moshkovich
IBM Watson Health, Israel

mdany@il.ibm.com

Erez Karpas
Technion, Israel

karpase@technion.ac.il

Abstract
The problem of deterministic planning, i.e., of finding a se-
quence of actions leading from a given initial state to a goal,
is one of the most basic and well studied problems in artificial
intelligence. Two of the best known approaches to determin-
istic planning are the black box approach, in which a pro-
grammer implements a successor generator, and the model-
based approach, in which a user describes the problem sym-
bolically, e.g., in PDDL. While the black box approach is
usually easier for programmers who are not experts in AI to
understand, it does not scale up without informative heuris-
tics. We propose an approach that we baptize as semi-black
box (SBB) that combines the strength of both. SBB is im-
plemented as a set of Java classes, which a programmer can
inherit from when implementing a successor generator. Us-
ing the known characteristics of these classes, we can then
automatically derive heuristics for the problem. Our empir-
ical evaluation shows that these heuristics allow the planner
to scale up significantly better than the traditional black box
approach.

Introduction
The field of artificial intelligence has spent considerable ef-
fort on the seemingly simple problem of deterministic plan-
ning. At a high level, this problem can be formulated as:
given an initial state, a desired goal, and a set of possible (de-
terministic) actions, find a sequence of actions which leads
from the initial state to a state satisfying the goal. One pop-
ular approach to solving deterministic planning problems is
heuristic search. However, two very different ways of using
heuristic search algorithms to solve deterministic planning
problems have been pursued throughout the history of the
field.

The first approach, which we will refer to as the “black
box” approach, involves implementing a piece of software
to represent the planning problem. While the details of de-
terministic planning problems can be quite complex, it is
enough to implement a very simple interface consisting of
three functions: GET-INIT-STATE(), which returns an object
representing the initial state, GET-SUCCESSORS(s), which
returns the successors of a given state s, and IS-GOAL?(s),
which checks whether the given state s is a goal state. Stan-
dard forward search algorithms, such as breadth first search,
depth first search, or depth-first iterative deepening (Korf
1985), can use these three functions to solve the planning

problem. However, in order to solve the problem more
quickly, it is possible to use a heuristic evaluation function,
or heuristic for short, which estimates the distance from a
given state to the goal. Heuristic search algorithms such as
A∗ (Hart, Nilsson, and Raphael 1968) and its variants can
use such a heuristic to solve the problems more quickly. Of
course, the developer now also has to implement the H(s)
function, in order to allow heuristic search algorithms to be
used.

The second approach is the model-based approach
(Geffner 2010), wherein one uses some symbolic language,
such as PDDL (Mcdermott et al. 1998), to describe the
planning problem. This typically involves defining a set
of state variables and describing the initial state, the goal,
and action preconditions and effects in terms of these state
variables. It is then possible to automatically derive the
same three functions mentioned above, as well as a heuristic
evaluation function from the problem description (for ex-
ample (Bonet and Geffner 1999)). Thus, it is possible to
use the same heuristic search algorithms to solve domain-
independent planning problems.

However, a major challenge for using the model-based ap-
proach to solve planning problems of interest to real-world
users is that the average software developer has little to no
experience with modeling. This is further compounded by
the fact that some aspects of real world problems can be very
hard to model symbolically, as evidenced by approaches
such as planning with semantic attachments (Dornhege et
al. 2009; Hertle et al. 2012) and planning modulu theories
(Gregory et al. 2012), which allow the modeler to plug in ex-
ternal code in a general programming language to deal with
specific aspects of the problem.

Our main motivation in this paper is the desire to make
solving deterministic planning problems accessible to soft-
ware developers who are not necessarily experts in artificial
intelligence. The need to solve deterministic planning prob-
lems occurs not infrequently in real life, yet we are not aware
of any frameworks which are both accessible to non-experts,
and provide reasonable performance “out of the box”.

In this paper, we describe such a framework, which brings
the benefits of the model based approach, namely automat-
ically derived heuristics, into black box successor genera-
tor planning. The key insight behind our framework is that,
while planning problems can vary in their details, there are

61

some common underlying principles behind the vast major-
ity of these problems. Our framework provides an imple-
mentation of these common principles, which is transparent
to the model-based view, yet can still be used inside a “black
box” implementation.

Background
We now describe the two approaches we mention above in
more detail. We begin by defining a deterministic plan-
ning problem over a state space, which is a tuple Π =
〈S,A, s0, SG, f〉, where S is a finite set of states, A is a
finite set of action labels, s0 ∈ S is the initial state, SG ⊆ S
is the set of goal states, and f : S × A → S is the transi-
tion function, such that f(s, a) is the state which applying
action a in state s leads to. A solution to such a problem is
a sequence of action labels π = 〈a0, a1, . . . an〉, such that
f(f(f(s0, a0), a1), . . . an) ∈ SG — that is, a sequence of
action labels which leads from the initial state to some goal
state, using the transition function f .

While deterministic planning over a state space provides
a nice mathematical model, the question of how the state
space is described has more than one answer. The “black
box” approach uses a tuple Πbb = 〈s0, succ, goal?〉, where
s0 is the initial state, succ : S → 2A×S is a succes-
sor generator, and goal? : S → {T, F} is the goal test
function. In order to obtain a “black box” description of
state space planning problem Π, we use the same initial
state, and define succ(s) = {〈a, s′〉 | f(s, a) = s′}, and

goal?(s) =

{
T s ∈ SG
F otherwise

.

On the other hand, the model-based approach assumes
that the state space, S, can be factored, and represented by a
set of variables. Different mathematical formalisms for such
models exist (Fikes and Nilsson 1971; Bäckström and Nebel
1995), but we will focus on describing PDDL (Mcdermott
et al. 1998), which includes both a mathematical formal-
ism and a syntax for writing text files describing a planning
problem in this formalism.

For ease of presentation, we describe a limited subset of
PDDL, which corresponds to STRIPS (Fikes and Nilsson
1971). A planning task in PDDL is described by a tuple
Πpddl = 〈O,P,Op, s0, G〉, where O is a set of objects, P
is a set of predicates, Op is a set of operator schemas, s0 is
the initial state, and G is the goal condition. Each predicate
p ∈ P has an arity ar(p), and defines the set of boolean
propositions {p(o1 . . . on) | ar(p) = n, o1 . . . on ∈ O}. We
will denote the union of these propositions from all predi-
cates by F . Then the set of states defined by Πpddl is 2F ,
the initial state s0 is defined by a list of the propositions
which are true in the initial state, and the goal condition G
is a list of propositions which we want to be true in the end,
that is SG = {s | G ⊆ s}.

Each operator scheme op ∈ Op has a set of named
arguments, args(op), as well as a list of preconditions,
add effects, and delete effects. Each element in these
lists is a predicate p ∈ P , with a list of arguments from
args(op) of size ar(p). A grounded action a is obtained
from op by applying a substitution θ : args(op) →

O to all preconditions, add effects, and delete effects,
which results in a 3-tuple 〈pre(a), add(a), del(a)〉, such
that pre(a), add(a), del(a) ⊆ F . We can finally de-
scribe the transition function f that is defined by Πpddl, as

f(s, a) =

{
(s \ del(a)) ∪ add(a) pre(a) ⊆ s
s otherwise

.

Note that it is always possible to crate a PDDL description
Π of a finite state space S, by defining a predicate of arity
0 for each state s ∈ S. However, the number of states that
is described by this planning problem is exponential in |S|.
Finding a compact PDDL description of a state space plan-
ning problem Π requires understanding the structure of Π,
and is not always an easy task.

Additionally, PDDL is not always easy to deal with. For
example, the occasional need to define actions with a very
large number of parameters has been addressed by automatic
domain transformations (Areces et al. 2014). PDDL also
makes the “closed world assumption”, that the only objects
in the world are O. When this assumption does not hold,
using PDDL planners is much more difficult (Talamadupula
et al. 2010).

From Model-Based to Black Box
As previously mentioned, our objective is to provide devel-
opers who are not AI experts with off-the-shelf solvers to
solve problems they are interested in. Modeling a problem
in PDDL is often difficult for such non-experts. For exam-
ple, many non-experts find it hard to understand why we
can not define an action that moves agent A to location Y
by move(A, Y), and why we instead need to define the ac-
tion as move(A,X, Y). Thus, writing code to describe their
problem (the “black box” approach) remains their only vi-
able option. However, as the solver can not automatically
derive a heuristic evaluation function using this approach, it
is unlikely to scale.

In order to be able to combine both being able to program-
matically specify the planning problem, and yet still be able
to derive some heuristic guidance automatically, we propose
a new framework, which we call object oriented planning.
In this framework, the state of the planning problem is rep-
resented by a set of objects referred to as entities, each with
their own internal state. The successor generator is defined
by another set of classes, each of which represents a single
operator, using two functions: IS-APPLICABLE(s,p)? which
takes a state s and a list of parameters p, and checks if the
action with parameters p is applicable in s, and APPLY(s,p)
which returns the state resulting from applying the action
with parameters p in state s. Note that while this is similar in
spirit to PDDL, this is still a black box, since these functions
are defined procedurally, not symbolically. The successor
generator is implemented by calling IS-APPLICABLE? on
the current state with all possible combinations of param-
eters, where each parameter can be any entity in the state.
This allows the programmer to add and delete entities on the
fly, a challenge with PDDL.

So far, we have described a framework which makes the
“black box” approach slightly easier to use. However, the
key idea behind our framework is that there is a small num-

62

ber of stereotypes of entities, which appear in many differ-
ent planning domains. The developer can inherit from these
stereotypes, saving some implementation effort. We also
provide a number of operator stereotypes with known be-
havior. Since our framework understands these stereotypes,
it can derive some heuristic guidance for these entities. The
next section describes the stereotypes available in our proto-
type implementation.

Our current prototype implementation focuses on trans-
portation domains, and supports two major stereotypes: tem-
poral, which describes an entity with a clock, and mobile,
which inherits the clock from temporal and can also be in
one of several locations. Our framework also provides a
place stereotype, which represents an immobile entity, and
a roadmap interface, which allows the programmer to de-
fine the time and distance to travel directly between any two
places, or to specify that they are not directly connected. For
a mobile entity, we support specifying a set of temporally ex-
tended goal locations, constraining the allowed behavior of
the entity.

Additionally, the framework provides operator stereo-
types, which correspond to common operations on the en-
tity stereotypes: move, which moves a mobile entity from
one place to another, load which changes the location of a
mobile entity to inside a mobile entity, and unload, which
changes the location of a mobile entity from inside a mobile
entity to the location of the entity. In the latter two cases,
the clocks of all involved entities increase to reflect earliest
applicability. As our framework is implemented in an ob-
ject oriented language (specifically, in Java), the developer
can inherit from the entity and action stereotypes, and im-
plement the desired additional behavior, on top of what the
framework provides.

Operators with the move stereotype take a mobile entity
and a destination place as parameters, and update the lo-
cation of the mobile entity to the destination, as well as
incrementing the internal clock by the duration it takes to
travel. Each such operator is associated with an instance of
roadmap to use for obtaining the travel time. Thus, walk and
drive can both inherit from move, be defined over the same
set of places, but have different roadmaps defining different
travel times, costs, and even connectivity. The cost of the
operator is a linear combination of the travel time and travel
distance, where the weights are specified by the program-
mer.

Operators with the load stereotype take two mobile enti-
ties, which must be in the same place, and change the lo-
cation of the second to inside the first, and increment both
their clocks to the maximum among their clocks plus the ac-
tion duration. This represents having to meet up in the same
place at the same time.

Operators with the unload stereotype take a mobile entity,
which has been loaded inside another mobile entity, and un-
loads it, setting its location to the location of the external
entity, and updates the clocks of both entities to the maxi-
mum among their clocks plus the action duration.

public class Vehicle extends MobileEntity {
private int vehicleCurrentCapacity;
private final int maximalCapacity;
public Vehicle(String entityId, long time,

long timeBound, Place location,
RoutingRequest constraints,
int maxCapacity) {

super(entityId, time, timeBound,
location, constraints);

maximalCapacity = maxCapacity;
vehicleCurrentCapacity = -1;

}
}

public class Participant
extends MobileEntity {

private final String availableVehicleID;
public Participant(String entityId,

long time, long timeBound,
Place location,
RoutingRequest constraints,
String vehicleID) {

super(entityId, time, timeBound,
location, constraints);

this.availableVehicleID = vehicleID;
}

}

Figure 1: Commuter pooling domain Vehicle and Participant
entities implementation example.

Examples
We now demonstrate the advantages of the Semi-Black Box
approach on two concrete examples.

Commuter Pooling Domain
Our first example demonstrates the simplicity of modeling
with the Semi-Black Box approach. We model a commuter
pooling planning problem, where co-workers share rides on
their way to work and back home.

A commuter pooling planning problem is defined by a set
of participants P , which are mobile entities, as well as their
home locations L and a work location w which are places.
Some participants have a vehicle with limited capacity avail-
able, which is also a mobile entity. Figure 1 describes how
these are implementated in our Semi-Black Box framework,
and shows how Vehicle and Participant are implemented as
classes which inherit from MobileEntity.

Each participant p ∈ P is initially at her home location
home(p) ∈ L, which she can leave no earlier than hd(p),
and arrive to the work location no later than wa(p). On her
way home, she can leave her work location no earlier than
wd(p), and arrive back home no later than ha(p). These are
implemented as temporally extended goals on p.

To model the roadmap, we implement the ILocationSer-
vice interface, which specifies travel time and cost between
different places. For each pair of locations, l1, l2, a duration
and distance of moving from l1 to l2 are given by T (l1, l2)
and D(l1, l2), respectively.

63

public class Drive extends Move {
public Drive(

ILocationService locationService){
super("DRIVE_ACTION", Vehicle.class,

Place.class, locationService,
1, 0, 0);

}

@Override
public boolean isApplicable(IState state,

IEntity[] params) {
Vehicle v = (Vehicle)params[0];
return

(v.getVehicleCurrentCapacity()>-1)
&& super.isApplicable(state,params);

}
}

Figure 2: Implementation of Drive action in commuter pool-
ing domain.

public class Board extends Load {

public Board(){
super("BOARD_ACTION", Participant.class,

Vehicle.class, 1);
}

@Override
public boolean isApplicable(IState state,

IEntity[] params){
if (!super.isApplicable(state,params))

return false;

Participant p = (Participant)params[0];
Vehicle v = (Vehicle) params[1];
int capacity =

v.getVehicleCurrentCapacity();

if (capacity == -1)
return p.getAvailableVehicleID()

.equals(v.getEntityId());

if (capacity < v.getMaximalCapacity())
return !p.getAvailableVehicleID()

.equals(v.getEntityId());

return false;
}

@Override
public void apply(IState state,

IEntity[] params){
super.apply(state, params);

Vehicle v = (Vehicle)params[1];
int capacity =

v.getVehicleCurrentCapacity();
v.setVehicleCurrentCapacity(capacity+1);

}
}

Figure 3: Implementation of Board action in commuter
pooling domain.

Each participant’s vehicle is initially located at that par-
ticipant’s home location. Each participant with an avail-
able vehicle can board/disembark that vehicle as a driver
and any vehicle as a rider, as long as its full capacity is
not reached. Vehicles with boarded drivers can drive be-
tween two connected locations. Figure 2 shows the imple-
mentation of the drive action, which inherits from Move.
Note that the isApplicable method is overriden, and an
extra check for checking if there is a driver in the car
(v.getVehicleCurrentCapacity() > −1) is added.

Figure 3 shows the implementation of the board action,
which checks if the vehicle is full or not by comparing cur-
rent occupancy to the passenger capacity. In PDDL , this
would have required having named slots for each seat. We
omit the description of the other actions for the sake of
brevity.

Evolution Domain
Our second example demonstrates that the Semi-Black Box
approach is more expressive than PDDL. Our objective here
is to create an organism that will merge the qualities of sev-
eral organisms, a common task in evolutionary biology.

An Evolution planning task is defined by a set of organ-
isms, who are either male or female. Each of them is initially
at some location, and can move between locations. Two or-
ganisms of an opposite sex can reproduce, given that they
are at the same location.

Given a subset of organisms G, the goal is to obtain a
new organism, whose predecessors contain all organisms in
G. Note that this planning problem involves creating an un-
known number of new entities, and is therefore beyond the
ability of PDDL to express.

Planning with Semi Black Box
Representations

Having described our representation framework, we must
now describe how we can solve problems formulated in this
representation. We have already described how we can im-
plement a successor generator and a goal test, and there-
fore we can use any uninformed search algorithm, such as
BFS, DFS, ID-DFS (Korf 1985), etc. to solve the problem.
However, uninformed search will not scale to large problem
sizes.

In order to be able to scale up, we must make use of
the extra information we have available — the model-based
portion of the representation. Since we already have some
known operator stereotypes, we exploit our knowledge of
how these affect some aspects of the entities they are ap-
plied to, which also have known stereotypes. We do this by
deriving a heuristic evaluation function, which estimates the
distance from a given state to the goal. This allows us to use
informed search algorithms, such as GBFS or weighted A∗
and solve larger problems.

Our framework provides operator stereotypes with known
behavior, and entity stereotypes with known properties.
Therefore, we derive a heuristic estimate of the distance to
the goal by first “projecting” the problem onto its known
aspects (that is, the known properties of entities and known

64

behavior of operators), and then deriving a heuristic estimate
for this projection. Note that this projection is not a true ab-
straction in the formal sense of the word, as an operator with
a known stereotype can modify its inherited behavior in ar-
bitrary ways. However, that would constitute poor software
engineering, and our purpose here is to provide a useful tool
for software developers. Furthermore, even if the program-
mer did do this, it would only lead to inaccurate heuristic
estimates, but will never affect the correctness of the plan
that is returned.

We illustrate this point for our prototype implementation
on mobile entities, and provide a PDDL-like description of
this projection. The objects in our PDDL description are the
set of entities and locations. The predicates we use are:

• Each mobile entity E can be in location L (at(E,L))

• Each mobile entity E can be inside another entity E′

(in(E,E′))

• Each temporal entity (including mobile ones) has a clock
with value T (time(E, T))

• For each mobile entity’s temporally extended goal loca-
tions G, we need to indicate whether it was satisfied or
not (satisfied(E,G)).

Finally, we can describe the effects of move, load, and un-
load using the above predicates.

While one might think it is possible to use any of the ex-
isting heuristics from the model-based planning community,
there is a subtle issue here — unlike in PDDL, it is pos-
sible to add or delete entities on the fly in our framework.
Therefore, if we ground the projection according to the ini-
tial state, as is commonly done in model-based planning, we
might end up deriving a heuristic for the wrong problem as
soon as some entity is added or deleted. Another issue is
that with temporal entities, we can not ground their clocks,
as the domain of the variable is all non-negative integers,
and is thus unbounded. Therefore, we opt for computing a
heuristic estimate over a lifted representation.

Devising meaningful estimates from lifted representation
poses a challenge to the planning community (Ridder and
Fox 2014). Our current implementation is a lifted variant
of the hFF(ΠC) heuristic (Keyder, Hoffmann, and Haslum
2014; Hoffmann and Fickert 2015). Given a set of sets of
facts C, hFF(ΠC) finds a semi-relaxed plan, in which delete
effect interactions between the fluents in each set X ∈ C
are preserved. In our framework, these sets of fluents corre-
spond to {AT(E) ∪ IN(E) ∪ TIME(E) ∪ SATISFIED(E) |
E is a moblie entity}, where

• AT(E) = {at(E,L) | L is a location},
• IN(E) = {in(E,E′) | E′ is an entity},
• TIME(E) = {time(E, T) | T is a clock value}, and

• SATISFIED(E) = {satisfied(E,G) |
G is a temporally extended goal location}.
Naturally, these sets are quite large, and impractical to be

exploited in the grounded setting. In our framework, how-
ever, these sets correspond exactly to the possible values of
mobile entities.

Specifically, we construct a variant of the relaxed plan-
ning graph, which is a layered graph, describing the relaxed
action application from a given state. The layers are added
until a fixpoint is reached, that is no new relaxed entity is
added. During the construction of the graph, a successor
generator is used to create concrete grounded instances of
the move, load, and unload actions and add these instances
to the graph. Additionally, if we can achieve some entity
E being at some location L at two different times, we only
keep the earliest. Thus, the overall procedure is guaranteed
to terminate, since the aforementioned actions change mo-
bile entities, with location having a finite number of possi-
ble values. Since each layer adds at least one such modified
mobile entity to the graph, the overall bound on the number
of layers is polynomial in the number of these values.

Once the relaxed planning graph is constructed, the last
layer is checked to consists of a representative with all tem-
porally extended goals on locations achieved for each mo-
bile entity of the evaluated state. If that does not hold,
an infinity value is returned. Otherwise, similarly to hFF,
the heuristic is computed using best supporters from either
hmax or hadd heuristics on the nodes of the constructed lay-
ered graph1 (Bonet and Geffner 2001; Keyder and Geffner
2008).

In order to speed up the heuristic computation, we intro-
duced a simple dead end detection check, validating that
each mobile entity can reach each location it is explicitly
constrained to visit within the defined temporal bounds in
a relaxed fashion. We note that our implementation of the
heuristic function is rather naive and can be significantly
sped up by introducing sophisticated data structures, etc.

Related work
We are not the first to identify the difficulty of using sym-
bolic languages such as PDDL to model some interesting,
useful planning problems. Functional STRIPS (Geffner
2000; Francés and Geffner 2015) introduces function sym-
bols which can be nested, and thus allows us to have objects
without explicit names — something that PDDL does not
support.

Planning with semantic attachments (Dornhege et al.
2009; Hertle et al. 2012) and planning modulu theories
(Gregory et al. 2012) both allow the user to combine
symbolic models with more expressive modules (or theo-
ries), which are implemented as external function calls to a
generic programming language. These external calls are tied
into the symbolic model via an interface involving a set of
predicates of the symbolic model.

None of the approaches described above alleviate the need
for symbolic modeling. In fact, they force the user to think
of a good abstraction for the external modules, which will
serve as the interface. Our approach, on the other hand, frees
the user from the need for symbolic modelling, except where
she specifically chooses to do so.

1We currently do not implement the preferred operators feature
that proved to be extremely helpful in the model-based planning,
leaving it for the future work.

65

Plan cost Quality Total time
LAMA FF SBB BB LAMA FF SBB BB optic LAMA FF SBB BB

02 0 1108 1108 1108 1108 1.00 1.00 1.00 1.00 0.1 0.2 0.1 0.1 0.1
02 1 1108 1108 1108 1108 1.00 1.00 1.00 1.00 0.0 0.1 0.1 0.1 0.0
04 0 2176 1136 0.52 0.00 1.00 0.00 8.3 1322.5 280.4
04 1 1136 1136 1136 1.00 1.00 1.00 0.00 0.3 1203.7 737.8 29.3
04 2 1140 1140 1140 1140 1.00 1.00 1.00 1.00 22.2 93.2 25.9 1.5 2.0
04 3 1136 1136 1136 1136 1.00 1.00 1.00 1.00 0.2 4.8 1.1 0.3 0.6
06 0 5324 4332 0.81 0.00 1.00 0.00 50.3 3.5
06 1 5364 5374 1.00 0.00 1.00 0.00 22.2 5.3
06 2 4304 3270 0.76 0.00 1.00 0.00 437.4 35.1 1.1
06 3 3264 3304 2244 0.69 0.68 1.00 0.00 22.6 627.0 471.7
06 4 2244 2244 2244 2244 1.00 1.00 1.00 1.00 54.7 304.6 6.7 25.9
08 0 7472 5426 0.73 0.00 1.00 0.00 151.3 39.0
08 1 6412 6402 1.00 0.00 1.00 0.00 208.6 6.7
08 6 ∞ 0.00 0.00 1.00 0.00 239.9
10 0 9560 1.00 0.00 0.00 0.00 244.6
10 2 8560 1.00 0.00 0.00 0.00 368.4
Sum 13.51 6.68 14.00 5.00

Table 1: Empirical Results on Commuter Pooling Domain.

task 03 3 04 3 04 4 06 3 06 4 08 3 08 4 10 3
cost 250 250 340 240 320 220 320 220
time 0.564 0.311 0.511 1.27 1.224 0.482 6.88 2.368

Table 2: Empirical Results for SBB on Evolution Domain.

Empirical evaluation
In order to empirically evaluate the effectiveness of solving
complex problems with the semi-black box approach, we
implemented the approach in Java, together with the greedy
best-first search, and the lazy weightedA∗ search. The com-
parison was performed on 25 generated problems of an in-
creasing size of the commuter pooling domain. The results
are depicted in Table 1, showing the instances where at least
one of the planners was able to find a solution. We used a
2GB memory bound and 30 minutes time bound on a single
core of an Intel(R) Core(TM) i7 2.5 GHz machine.

Our approach (SBB in Table 1) performs an iterative
search with found solution cost passed as an upper bound
to the next iteration, similarly to the LAMA planner (Richter
and Westphal 2010). We start with a greedy best first search,
and then weightedA∗ with decreasing weights 5, 3, 2, and 1,
continuing with weight 1 until no solution is found. First, we
compare our approach to a state-of-the-art temporal planner
optic (Benton, Coles, and Coles 2012). Second, we com-
pare to the pure black box approach (BB in Table 1) — BFS
without the automatically derived heuristic.

The commuter pooling domain corresponds to a tempo-
rally simple fragment of temporal planning, and thus can be
mapped to STRIPS in linear time (Cushing et al. 2007).
Therefore, we also compare to two classical planners, man-
ually adjusting the time granularity and manually removing
(unrecognized by the preprocessor) unreachable time values,
to allow for successful grounding of reasonable size tasks.
We used the Fast Downward planning framework (Helmert
2006) with two configurations: an iterative search with the
FF heuristic (Hoffmann and Nebel 2001) without preferred

operators, which is the closest configuration to our solution
method (FF in Table 1), and the state-of-the-art LAMA plan-
ner (Richter and Westphal 2010).

The leftmost part of Table 1 shows the best found plan
cost for four of the approaches that aim at optimizing plan
cost. The middle part shows the best obtained solution qual-
ity, which is a standard IPC score allocating a number be-
tween 0 and 1 to each run, where 1 is given to a planner that
found the best solution for that task, and 0 stands for not
being able to solve the task within the given bounds. The
rightmost part shows the total run time until the best solu-
tion was found.

As these results show, SBB outperforms all other plan-
ners on IPC score. Comparing to the second best performer,
LAMA, LAMA solves two instances that SBB did not, while
SBB solves one instance that LAMA did not (proving that
it is infeasible). On instances that they both solve, SBB is
typically much faster, except for a single instance. A com-
parison to the most similar technique, FF, shows that SBB is
much better, indicating that there is some value in the lifted
heuristic computation. Finally, comparing to BB shows the
automatically derived heuristic is essential.

In addition, to test the feasibility of our approach for solv-
ing tasks outside the PDDL fragment, we performed an
evaluation of the Evolution domain. The results are depicted
in Table 2. The tasks are named x y, where x is the num-
ber of initially existing organizms, and y is the size of G,
the subset of organizms that should be among the predeces-
sors of the target organizm. The results clearly show that our
approach is able to cope with sufficiently large instances.

Discussion and future work
We introduce a framework that brings the benefits of the
model based approach into black box successor generator
planning by allowing annotating planning problem entities
and actions with certain predefined stereotypes. By that, we
take a major step toward making solving deterministic plan-

66

ning problems accessible to software developers who are not
necessarily experts in artificial intelligence.

For future work, we intend to extend our framework
by both introducing and exploiting additional stereotypes,
and by introducing additional search enhancements, such as
additional automatically derived heuristics (landmarks, ab-
stractions) and search boosting techniques, such as preferred
operators.

References
Areces, C.; Bustos, F.; Dominguez, M. A.; and Hoffmann,
J. 2014. Optimizing planning domains by automatic action
schema splitting. In Proc. ICAPS 2014.
Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence 11:625–656.
Benton, J.; Coles, A. J.; and Coles, A. 2012. Temporal
planning with preferences and time-dependent continuous
costs. In Proc. ICAPS 2012.
Bonet, B., and Geffner, H. 1999. Planning as heuristic
search: New results. In Proc. ECP 1999, 360–372.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2):5–33.
Cushing, W.; Kambhampati, S.; Mausam; and Weld, D. S.
2007. When is temporal planning really temporal? In Proc.
IJCAI 2007, 1852–1859.
Dornhege, C.; Eyerich, P.; Keller, T.; Trüg, S.; Brenner, M.;
and Nebel, B. 2009. Semantic attachments for domain-
independent planning systems. In Proc. ICAPS 2009.
Fikes, R., and Nilsson, N. J. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving.
Artificial Intelligence 2(3/4):189–208.
Francés, G., and Geffner, H. 2015. Modeling and compu-
tation in planning: Better heuristics from more expressive
languages. In Proc. ICAPS 2015.
Geffner, H. 2000. Functional strips: A more flexible lan-
guage for planning and problem solving. In Minker, J.,
ed., Logic-Based Artificial Intelligence, volume 597 of The
Springer International Series in Engineering and Computer
Science. Springer US. 187–209.
Geffner, H. 2010. The model-based approach to autonomous
behavior: A personal view. In Proc. AAAI 2010.
Gregory, P.; Long, D.; Fox, M.; and Beck, J. C. 2012. Plan-
ning modulo theories: Extending the planning paradigm. In
Proc. ICAPS 2012.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A formal
basis for the heuristic determination of minimum cost paths.
IEEE Trans. Systems Science and Cybernetics 4(2):100–
107.
Helmert, M. 2006. The fast downward planning system. J.
Artif. Intell. Res. (JAIR) 26:191–246.
Hertle, A.; Dornhege, C.; Keller, T.; and Nebel, B. 2012.
Planning with semantic attachments: An object-oriented
view. In Proc. ECAI 2012, 402–407.

Hoffmann, J., and Fickert, M. 2015. Explicit conjunc-
tions without compilation: Computing hff(pic) in polyno-
mial time. In Proc. ICAPS 2015, 115–119.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Keyder, E., and Geffner, H. 2008. Heuristics for planning
with action costs revisited. In Proc. ECAI 2008, 588–592.
Keyder, E. R.; Hoffmann, J.; and Haslum, P. 2014. Im-
proving delete relaxation heuristics through explicitly repre-
sented conjunctions. J. Artif. Intell. Res. (JAIR) 50:487–533.
Korf, R. E. 1985. Depth-first iterative-deepening: An op-
timal admissible tree search. Artificial Intelligence 27:97–
109.
Mcdermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL – the
planning domain definition language. Technical Report TR-
98-003, Yale Center for Computational Vision and Control.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. J. Ar-
tif. Intell. Res. (JAIR) 39:127–177.
Ridder, B., and Fox, M. 2014. Heuristic evaluation based on
lifted relaxed planning graphs. In Proc. ICAPS 2014.
Talamadupula, K.; Benton, J.; Schermerhorn, P. W.; Kamb-
hampati, S.; and Scheutz, M. 2010. Integrating a closed
world planner with an open world robot: A case study. In
Proc. AAAI 2010.

67

Non-Deterministic Planning with Temporally Extended Goals:
Completing the story for finite and infinite LTL

Alberto Camacho†, Eleni Triantafillou†, Christian Muise∗, Jorge A. Baier‡, Sheila A. McIlraith†
†Department of Computer Science, University of Toronto

∗CSAIL, Massachusetts Institute of Technology
†Departamento de Ciencia de la Computación, Pontificia Universidad Católica de Chile

†{acamacho,eleni,sheila}@cs.toronto.edu, ∗{cjmuise}@mit.edu, ‡{jabaier}@ing.puc.cl

Abstract

Temporally extended goals are critical to the specification of
a diversity of real-world planning problems. Here we exam-
ine the problem of planning with temporally extended goals
over both finite and infinite traces where actions can be non-
deterministic, and where temporally extended goals are speci-
fied in linear temporal logic (LTL). Unlike existing LTL plan-
ners, we place no restrictions on our LTL formulae beyond
those necessary to distinguish finite from infinite trace in-
terpretations. We realize our planner by compiling tempo-
rally extended goals, represented in LTL, into Planning Do-
main Definition Language problem instances, and exploit-
ing a state-of-the-art fully observable non-deterministic plan-
ner to compute solutions. The resulting planner is sound and
complete. Our approach exploits the correspondence between
LTL and automata. We propose several different compila-
tions based on translations of LTL to (Büchi) alternating or
non-deterministic finite state automata, and evaluate various
properties of the competing approaches. We address a diverse
spectrum of LTL planning problems that, to this point, had not
been solvable using AI planning techniques. We do so while
demonstrating competitive performance relative to the state
of the art in LTL planning.

1 Introduction
Most real-world planning problems involve complex goals
that are temporally extended, require adherence to safety
constraints and directives, necessitate the optimization of
preferences or other quality measures, and/or require or may
benefit from following a prescribed high-level script that
specifies how the task is to be realized. In this paper we focus
on the problem of planning for temporally extended goals,
constraints, directives or scripts that are expressed in Linear
Temporal Logic (LTL) for planning domains in which ac-
tions can have non-deterministic effects, and where LTL is
interpreted over either finite or infinite traces.

Planning with deterministic actions and LTL goals has
been well studied, commencing with the works of Bacchus
and Kabanza (2000) and Doherty and Kvarnström (2001).
Significant attention has been given to compilation-based
approaches (e.g., (Rintanen 2000; Cresswell and Codding-
ton 2004; Edelkamp 2006; Baier and McIlraith 2006; Pa-
trizi et al. 2011)), which take a planning problem with an
LTL goal and transform it into a classical planning prob-
lem for which state-of-the-art classical planning technology

can often be leveraged. The more challenging problem of
planning with non-deterministic actions and LTL goals has
not been studied to the same extent; Kabanza, Barbeau, and
St.-Denis (1997), and Pistore and Traverso (2001) have pro-
posed their own LTL planners, while Patrizi, Lipovetzky, and
Geffner (2013) have proposed the only compilation-based
approach that exists. Unfortunately, the latter approach is
limited to the proper subset of LTL for which there exists
a deterministic Büchi automata. In addition, it is restricted
to the interpretation of LTL over infinite traces and the com-
pilation is worst-case exponential in the size of the goal for-
mula.

In this paper, we propose a number of compilation-based
approaches for LTL planning with non-deterministic actions.
Specifically, we present two approaches for LTL planning
with non-deterministic actions over infinite traces and two
approaches for LTL planning with non-deterministic actions
over finite traces1. In each case, we exploit translations
from LTL to (Büchi) alternating or non-deterministic finite
state automata. All of our compilations are sound and com-
plete and result in Planning Domain Definition Language
(PDDL) encodings suitable for input to standard fully ob-
servable non-deterministic (FOND) planners. Our compila-
tions based on alternating automata are linear in time and
space with respect to the size of the LTL formula, while
those based on non-deterministic finite state automata are
worst-case exponential in time and space (although opti-
mizations in the implementation avoid this in our experi-
mental analysis).

Our approaches build on methods for finite LTL planning
with deterministic actions by Baier and McIlraith (2006)
and Torres and Baier (2015), and for the infinite non-
deterministic case, on the work of Patrizi, Lipovetzky, and
Geffner (2013). While in the finite case the adaptation of
these methods was reasonably straightforward, the infinite
case required non-trivial insights and modifications to Torres
and Baier’s approach. We evaluate the relative performance
of our compilation-based approaches using state-of-the-art
FOND planner PRP (Muise, McIlraith, and Beck 2012),
demonstrating that they are competitive with state-of-the-art
LTL planning techniques.

1Subtleties relating to the interpretation of LTL over finite
traces are discussed in (De Giacomo and Vardi 2013).

68

Our work presents the first realization of a compilation-
based approach to planning with non-deterministic actions
where the LTL is interpreted over finite traces. Furthermore,
unlike previous approaches to LTL planning, our compila-
tions make it possible, for the first time, to solve the com-
plete spectrum of FOND planning with LTL goals inter-
preted over infinite traces. Indeed, all of our translations
capture the full expressivity of the LTL language. Table 1
summarizes existing compilation-based approaches and the
contributions of this work. Our compilations enable a di-
versity of real-world planning problems as well as support-
ing a number of applications outside planning proper rang-
ing from business process analysis, and web service com-
position to narrative generation, automated diagnosis, and
automated verification. Finally and importantly, our com-
pilations can be seen as a practical step towards the ef-
ficient realization of a class of LTL synthesis tasks us-
ing planning technology (e.g., (Pnueli and Rosner 1989;
De Giacomo and Vardi 2015)). We elaborate further with
respect to related work in Section 5.

2 Preliminaries
2.1 FOND Planning
Following Ghallab, Nau, and Traverso (2004), a Fully Ob-
servable Non-Deterministic (FOND) planning problem con-
sists of a tuple 〈F , I,G,A〉, where F is a set of proposi-
tions that we call fluents, I ⊆ F characterizes what holds
in the initial state; G ⊆ F characterizes what must hold
for the goal to be achieved. Finally A is the set of actions.
The set of literals of F is Lits(F) = F ∪ {¬f | f ∈ F}.
Each action a ∈ A is associated with 〈Prea,Eff a〉, where
Prea ⊆ Lits(F) is the precondition and Eff a is a set of out-
comes of a. Each outcome e ∈ Eff a is a set of conditional
effects, each of the form (C → `), where C ⊆ Lits(F) and
` ∈ Lits(F). Given a planning state s ⊆ F and a fluent
f ∈ F , we say that s satisfies f , denoted s |= f iff f ∈ s.
In addition s |= ¬f if f 6∈ s, and s |= L for a set of literals
L, if s |= ` for every ` ∈ L. Action a is applicable in state s
if s |= Prea. We say s′ is a result of applying a in s iff, for
some e in Eff a, s′ is equal to s \ {p | (C → ¬p) ∈ e, s |=
C} ∪ {p | (C → p) ∈ e, s |= C}. The determinization
of a FOND problem 〈F , I,G,A〉 is the planning problem
〈F , I,G,A′〉, where each non-deterministic action a ∈ A is
replaced by a set of deterministic actions, ai, one action cor-
responding to each of the distinct non-deterministic effects
of a. Together these deterministic actions comprise the set
A′.

Solutions to a FOND planning problem P are policies. A
policy p is a partial function from states to actions such that
if p(s) = a, then a is applicable in s. The execution of a pol-
icy p in state s is an infinite sequence s0, a0, s1, a1, . . . or
a finite sequence s0, a0, . . . , sn−1, an−1, sn, where s0 = s,
and all of its state-action-state substrings s, a, s′ are such
that p(s) = a and s′ is a result of applying a in s. Finite ex-
ecutions ending in a state s are such that p(s) is undefined.
An execution σ yields the state trace π that results from re-
moving all the action symbols from σ.

Alternatively, solutions to P can be represented by means

of finite-state controllers (FSCs). Formally, a FSC is a tu-
ple Π = 〈C, c0,Γ,Λ, ρ,Ω〉, where C is the set of controller
states, c0 ∈ C is the initial controller state, Γ = S is the
input alphabet of Π, Λ = A is the output alphabet of Π,
ρ : C × Γ→ C is the transition function, and Ω : C → Λ is
the controller output function (cf. (Geffner and Bonet 2013;
Patrizi, Lipovetzky, and Geffner 2013)). In a planning state
s, Π outputs action Ω(ci) when the controller state is ci.
Then, the controller transitions to state ci+1 = ρ(ci, s

′) if
s′ is the new planning state, assumed to be fully observ-
able, that results from applying Ω(ci) in s. The execution
of a FSC Π in controller state c (assumed to be c = c0)
and state s is an infinite sequence s0, a0, s1, a1, . . . or a fi-
nite sequence s0, a0, . . . , sn−1, an−1, sn, where s0 = s, and
such that all of its state-action-state substrings si, ai, si+1

are such that Ω(ci) = ai, si+1 is a result of applying ai in
si, and ci+1 = ρ(ci, si). Finite executions ending in a state
sn are such that Ω(cn) is undefined. An execution σ yields
the state trace π that results from removing all the action
symbols from σ.

Following Geffner and Bonet (2013), an infinite execution
σ is fair iff whenever s, a occurs infinitely often within σ,
then so does s, a, s′, for every s′ that is a result of applying
a in s. A solution is a strong cyclic plan for 〈F , I,G,A〉 iff
each of its executions in I is either finite and ends in a state
that satisfies G or is (infinite and) unfair.

2.2 Linear Temporal Logic
Linear Temporal Logic (LTL) was first proposed for verifica-
tion (Pnueli 1977). An LTL formula is interpreted over an in-
finite sequence, or trace, of states. Because the execution of
a sequence of actions induces a trace of planning states, LTL
can be naturally used to specify temporally extended plan-
ning goals when the execution of the plan naturally yields an
infinite state trace, as may be the case in non-deterministic
planning.

In classical planning –i.e. planning with deterministic ac-
tions and final-state goals–, plans are finite sequences of
actions which yield finite execution traces. As such, ap-
proaches to planning with deterministic actions and LTL
goals (e.g., (Baier and McIlraith 2006)), including the
Planning Domain Definition Language (PDDL) version 3
(Gerevini and Long 2005), use a finite semantics for LTL,
whereby the goal formula is evaluated over a finite state
trace. De Giacomo and Vardi (2013) formally described and
analyzed such a version of LTL, which they called LTLf ,
noting the distinction with LTL (De Giacomo, Masellis, and
Montali 2014).
LTL and LTLf allow the use of modal operators next (),

and until (U), from which it is possible to define the well-
known operators always () and eventually (). LTLf , in
addition, allows a weak next () operator. An LTLf formula
over a set of propositions P is defined inductively: a propo-
sition in P is a formula, and if ψ and χ are formulae, then
so are ¬ψ, (ψ ∧ χ), (ψUχ), ψ, and ψ. LTL is defined
analogously.

The semantics of LTL and LTLf is defined as follows. For-
mally, a state trace π is a sequence of states, where each
state is an element in 2P . We assume that the first state in π

69

Infinite LTL Finite LTL
Deterministic Actions Non-Deterministic Actions Deterministic Actions Non-Deterministic Actions
[Albarghouthi et al., 2009] (EXP)
[Patrizi et al., 2011] (EXP)

[Patrizi et al., 2013] (limited LTL) (EXP)
[this paper (BAA)] (LIN)
[this paper (NBA)] (EXP)

[Edelkamp, 2006] (EXP)
[Cresswell & Coddington, 2006] (EXP)
[Baier & McIlraith, 2006] (EXP)
[Torres & Baier, 2015] (LIN)

[this paper (NFA)] (EXP)
[this paper (AA)] (LIN)

Table 1: Automata-based compilation approaches for LTL planning. (EXP): worst case exponential. (LIN): linear.

is s1, that the i-th state of π is si and that |π| is the length
of π (which is∞ if π is infinite). We say that π satisfies ϕ
(π |= ϕ, for short) iff π, 1 |= ϕ, where for every natural
number i ≥ 1:

• π, i |= p, for a propositional variable p ∈ P , iff p ∈ si,
• π, i |= ¬ψ iff it is not the case that π, i |= ψ,

• π, i |= (ψ ∧ χ) iff π, i |= ψ and π, i |= χ,

• π, i |= ϕ iff i < |π| and π, i+ 1 |= ϕ,

• π, i |= (ϕ1 Uϕ2) iff for some j in {i, . . . , |π|}, it holds
that π, j |= ϕ2 and for all k ∈ {i, . . . , j − 1}, π, k |= ϕ1,

• π, i |= ϕ iff i = |π| or π, i+ 1 |= ϕ.

Observe operator  is equivalent to  iff π is infinite.
Therefore, henceforth we allow  in LTL formulae, we do
not use the acronym LTLf , but we are explicit regarding
which interpretation we use (either finite or infinite) when
not obvious from the context. As usual, ϕ is defined as
(trueUϕ), and ϕ as ¬¬ϕ. We use the release operator,
defined by (ψ Rχ)

def
= ¬(¬ψU¬χ).

2.3 LTL, Automata, and Planning
Regardless of whether the interpretation is over an infinite
or finite trace, given an LTL formula ϕ there exists an au-
tomata Aϕ that accepts a trace π iff π |= ϕ. For infi-
nite interpretations of ϕ, a trace π is accepting when the
run of (a Büchi non-deterministic automata) Aϕ on π vis-
its accepting states infinitely often. For finite interpreta-
tions, π is accepting when the final automata state is ac-
cepting. For the infinite case such automata may be ei-
ther Büchi non-deterministic or Büchi alternating (Vardi and
Wolper 1994), whereas for the finite case such automata
may be either non deterministic (Baier and McIlraith 2006)
or alternating (De Giacomo, Masellis, and Montali 2014;
Torres and Baier 2015). Alternation allows the generation
of compact automata; specifically,Aϕ is linear in the size of
ϕ (both in the infinite and finite case), whereas the size of
non-deterministic (Büchi) automata is worst-case exponen-
tial.

These automata constructions have been exploited in de-
terministic and non-deterministic planning with LTL via
compilation approaches that allow us to use existing plan-
ning technology for non-temporal goals. The different state
of the art automata-based approaches for deterministic and
FOND LTL planning are summarized in Table 1. Patrizi,
Lipovetzky, and Geffner (2013) present a Büchi automata-
based compilation for that subset of LTL which relies on the
construction of a Büchi deterministic automata. It is a well-
known fact that Büchi deterministic automata are not equiv-

alent to Büchi non-deterministic automata, and thus this last
approach is applicable to a limited subset of LTL formulae.

3 FOND Planning with LTL Goals
An LTL-FOND planning problem is a tuple 〈F , I, ϕ,A〉,
where F , I, andA are defined as in FOND problems, and ϕ
is an LTL formula. Solutions to an LTL-FOND problem are
FSCs, as described below.

Definition 1 (Finite LTL-FOND). An FSC Π is a solution
for 〈F , I, ϕ,A〉 under the finite semantics iff every execu-
tion of Π over I is such that either (1) it is finite and yields a
state trace π such that π |= ϕ or (2) it is (infinite and) unfair.

Definition 2 (Infinite LTL-FOND). An FSC Π is a solution
for 〈F , I, ϕ,A〉 under the infinite semantics iff (1) every ex-
ecution of Π over I is infinite and (2) every fair (infinite)
execution yields a state trace π such that π |= ϕ.

Below we present two general approaches to solving LTL-
FOND planning problems by compiling them into standard
FOND problems. Each exploits correspondences between
LTL and either alternating or non-deterministic automata,
and each is specialized, as necessary, to deal with LTL inter-
preted over either infinite (Section 3.1) or finite (Section 3.2)
traces. We show that FSC representations of strong-cyclic
solutions to the resultant FOND problem are solutions to the
original LTL-FOND problem. Our approaches are the first to
address the full spectrum of FOND planning with LTL inter-
preted over finite and inifinte traces. In particular our work
is the first to solve full LTL-FOND with respect to infinite
trace interpretations, and represents the first realization of a
compilation approach for LTL-FOND with respect to finite
trace interpretations.

3.1 From Infinite LTL-FOND to FOND
We present two different approaches to infinite LTL-FOND
planning. The first approach exploits Büchi alternating au-
tomata (BAA) and is linear in time and space with respect to
the size of the LTL formula. The second approach exploits
Büchi non-deterministic automata (NBA), and is worst-case
exponential in time and space with respect to the size of the
LTL formula. Nevertheless, as we see in Section 4, the sec-
ond compilation does not exhibit this worst-case complexity
in practice, generating high quality solutions with reduced
compilation run times and competitive search performance.

3.1.1 A BAA-based Compilation Our BAA-based com-
pilation builds on ideas by Torres and Baier (2015) for al-
ternating automata (AA) based compilation of finite LTL
planning with deterministic actions (henceforth, TB15), and
from Patrizi, Lipovetzky, and Geffner’s compilation (2013)

70

(henceforth, PLG13) of LTL-FOND to FOND. Combining
these two approaches is not straightforward. Among other
reasons, TB15 does not yield a sound translation for the in-
finite case, and thus we needed to modify it significantly.
This is because the accepting condition for BAAs is more
involved than that of regular AAs.

The first step in the compilation is to build a BAA for our
LTL goal formula ϕ over propositions F , which we hence-
forth assume to be in negation normal form (NNF). Trans-
forming an LTL formula ϕ to NNF can be done in linear
time in the size of ϕ. The BAA we use below is an adapta-
tion of the BAA by Vardi (1995). Formally, it is represented
by a tupleAϕ = (Q,Σ, δ, qϕ, QFin), where the set of states,
Q, is the set of subformulae of ϕ, sub(ϕ) (including ϕ), Σ
contains all sets of propositions in P , QFin = {αRβ ∈
sub(ϕ)}, and the transition function, δ is given by:

δ(`, s) =

{> if s |= ` (`, literal)
⊥ otherwise

δ(α ∧ β, s) = δ(α, s) ∧ δ(β, s)
δ(α, s) = α

δ(α ∨ β, s) = δ(α, s) ∨ δ(β, s)
δ(αUβ, s) = δ(β, s) ∨ (δ(α, s) ∧ αUβ)

δ(αRβ, s) = δ(β, s) ∧ (δ(α, s) ∨ αRβ)

As a note for the reader unfamiliar with BAAs, the transi-
tion function for these automata takes a state and a sym-
bol and returns a positive Boolean formula over the set of
statesQ. Furthermore, a run of a BAA over an infinite string
π = s1s2 . . . is characterized by a tree with labeled nodes,
in which (informally): (1) the root node is labeled with the
initial state, (2) level i corresponds to the processing of sym-
bol si, and (3) the children of a node labeled by q at level
i are the states appearing in a minimal model of δ(q, si).
As such, multiple runs for a certain infinite string are pro-
duced when selecting different models of δ(q, si). A spe-
cial case is when δ(q, si) reduces to > or ⊥, where there is
one child labeled by > or ⊥, respectively. A run of a BAA
is accepting iff all of its finite branches end on > and in
each of its infinite branches there is an accepting state that
repeats infinitely often. Figure 1 shows a run of the BAA
for p ∧¬p—a formula whose semantics forces an
infinite alternation, which is not necessarily immediate, be-
tween states that satisfy p and states that do not satisfy p.

In our BAA translation for LTL-FOND we follow a simi-
lar approach to that developed in the TB15 translation: given
an input problem P , we generate an equivalent problem P ′
in which we represent the configuration of the BAA with
fluents (one fluent q per each state q of the BAA). P ′ con-
tains the actions in P plus additional synchronization ac-
tions whose objective is to update the configuration of the
BAA. InP ′, there are special fluents to alternate between so-
called world mode, in which only one action ofP is allowed,
and synchronization mode, in which the configuration of the
BAA is updated.

Before providing details of the translation we overview
the main differences between our translation and that of
TB15. TB15 recognizes an accepting run (i.e., a satisfied

p ∧¬p

p

p

p

p

>

¬p

¬p

¬p ¬p

p

>

.

Figure 1: An accepting run of a BAA for p ∧ ¬p
over an infinite sequence of states in which the truth
value of p alternates. Double-line ovals are accepting
states/conditions.

Sync Action Effect
tr(qS`) {¬qS` , qT` → ¬qT` }
tr(qSα∧β) {qSα , qSβ ,¬qSα∧β , qTα∧β → {qTα , qTβ ,¬qTα∧β}}
tr1(q

S
α∨β) {qSα ,¬qSα∨β , qTα∨β → {qTα ,¬qTα∨β}}

tr2(q
S
α∨β) {qSβ ,¬qSα∨β , qTα∨β → {qTβ ,¬qTα∨β}}

tr(qSα) {qα,¬qSα, qTα → {qTα ,¬qTα}}
tr1(q

S
αU β) {qSβ ,¬qSαU β , q

T
αU β → {qTβ ,¬qTαU β}}

tr2(q
S
αU β) {qSα , qαU β ,¬qSαU β , q

T
αU β → qTα}

tr1(q
S
α R β) {qSβ , qSα ,¬qSα R β , q

T
α R β → ¬qTα R β}

tr2(q
S
α R β) {qSβ , qα R β ,¬qSα R β , q

T
α R β → ¬qTα R β}

tr1(q
S
α) {qSα ,¬qSα, qTα → {qTα ,¬qTα}}

tr2(q
S
α) {qα,¬qSα}

tr(qSα) {qSα , qα,¬qSα, qTα → ¬qTα}

Table 2: Synchronization actions. The precondition of
tr(qSψ) is {sync, qSψ}, plus ` when ψ = ` is a literal.

goal) by observing that all automaton states at the last level
of the (finite) run are accepting states. In the infinite case,
such a check does not work. As can be seen in the exam-
ple of Figure 1, there is no single level of the (infinite) run
that only contains final BAA states. Thus, when building a
plan with our translation, the planner is given the ability to
“decide” at any moment that an accepting run can be found
and then the objective is to “prove” this is the case by show-
ing the existence of a loop or lasso in the plan in which any
non-accepting state may turn into an accepting state. To keep
track of those non-accepting states that we require to even-
tually “turn into” accepting states we use special fluents that
we call tokens.

For an LTL-FOND problemP = 〈F , I, ϕ,A〉, where ϕ is
an NNF LTL formula with BAA Aϕ = (Q,Σ, δ, qϕ, QFin),
the translated FOND problem is P ′ = 〈F ′, I ′,G′,A′〉,
where each component is described below.
Fluents P ′ has the same fluents as P plus fluents for
the representation of the states of the automaton FQ =
{qψ | ψ ∈ Q}, and flags copy, sync, world for con-
trolling the different modes. Finally, it includes the set
FSQ = {qSψ | ψ ∈ Q} which are copies of the automata
fluents, and tokens FTQ = {qTψ | ψ ∈ Q}. We describe
both sets below. Formally, F ′ = F ∪ FQ ∪ FSQ ∪ FTQ ∪
{copy, sync,world,goal}.

The set of actions A′ is the union of the sets Aw and As
plus the continue action.

71

World Mode Aw contains the actions in A with precon-
ditions modified to allow execution only in world mode. Ef-
fects are modified to allow the execution of the copy action,
which initiates the synchronization phase, described below.
Formally, Aw = {a′ | a ∈ A}, and for all a′ in Aw:

Prea′ = Prea ∪ {world},
Eff a′ = Eff a ∪ {copy,¬world}.

Synchronization Mode This mode has three phases. In
the first phase, the copy action is executed, adding a copy qS
for each fluent q that is currently true, deleting q. Intuitively,
qS defines the state of the automaton prior to synchroniza-
tion. The precondition of copy is {copy}, while its effect
is:

Eff copy = {q → {qS ,¬q} | q ∈ FQ} ∪ {sync,¬copy}
As soon as the sync fluent becomes true, the second

phase of synchronization begins. Here the only executable
actions are those that update the state of the automaton,
which are defined in Table 2. These actions update the state
of the automaton following the definition of the transition
function, δ. In addition, each synchronization action for a
formula ψ that has an associated token qTψ , propagates such
a token to its subformulae, unless ψ corresponds to either an
accepting state (i.e., ψ is of the form αRβ) or to a literal `
whose truth can be verified with respect to the current state
via action tr(qS`).

When no more synchronization actions are possible, we
enter the third phase of synchronization. Here only two ac-
tions are executable: world and continue . The objective of
world action is to reestablish world mode. Its precondition
is {sync} ∪ FSQ , and its effect is {world,¬sync}.

The continue action also reestablishes world mode, but
in addition “decides” that an accepting BAA can be reached
in the future. This is reflected by the non-deterministic effect
that makes the fluent goal true. As such, it “tokenizes” all
states that are not final states in FQ, by adding qT for each
BAA state q that is non-final and currently true. Formally,

Precontinue = {sync} ∪ {¬qTϕ | ϕ 6∈ QFin}
Eff continue = {{goal},

{qϕ → qTϕ | ϕ 6∈ QFin} ∪ {world,¬sync}}
The set As is defined as the one containing actions copy,

world, and all actions defined in Table 2.
Initial and Goal States The resulting problem P ′ has ini-
tial state I ′ = I ∪ {qϕ, copy} , and goal G′ = {goal}.

In summary, our BAA-based approach builds on TB15
while integrating ideas from PLG13. Like PLG13 our ap-
proach uses a continue action to find plans with lassos, but
unlike PLG13, our translation does not directly use the ac-
cepting configuration of the automaton. Rather, the planner
“guesses” that such a configuration can be reached. The to-
ken fluents FTQ , which did not exist in TB15, are created for
each non-accepting state and can only be eliminated when a
non-accepting BAA state becomes accepting.

Now we show how, given a strong cyclic policy for P ′,
we can generate an FSC for P . Observe that every state ξ,

which is a set of fluents in F ′, can be written as the disjoint
union of sets sw = ξ ∩ F and sq = ξ ∩ (F ′ \ F). Abusing
notation, we use sw ∈ 2F to represent a state in P . For a
planning state ξ = sw ∪ sq green in which p(ξ) is defined,
we define Ω(ξ) to be the action in A whose translation is
p(ξ). Recall now that executions of a strong-cyclic policy p
for P ′ in state ξ generate plans of the form a1α1a2α2 . . .
where each ai is a world action in Aw and αi are sequences
of actions inA′ \Aw. Thus Ω(ξ) can be generated by taking
out the fluents world and copy from the precondition and
effects of p(ξ). If state s′w is a result of applying Ω(ξ) in
sw, we define ρ(ξ, s′w) to be the state ξ′ that results from the
composition of consecutive non-world actions α1 mandated
by an execution of p in s′w ∪ sq . Despite non-determinism in
the executions, the state ξ′ = ρ(ξ, s′w) is well-defined.

The BAA translation for LTL-FOND is sound and com-
plete. Throughout the paper, the soundness property guaran-
tees that FSCs obtained from solutions to the compiled prob-
lem P ′ are solutions to the LTL-FOND problem P , whereas
the completeness property guarantees that a solution to P ′
exists if one exists for P .
Theorem 1. The BAA translation for Infinite LTL-FOND
planning is sound, complete, and linear in the size of the
goal formula.

A complete proof is not included but we present some
of the intuitions our proof builds on. Consider a policy p′
for P ′. p′ yields three types of executions: (1) finite execu-
tions that end in a state where goal is true, (2) infinite ex-
ecutions in which the continue action is executed infinitely
often and (3) infinite, unfair executions. We do not need to
consider (3) because of Definition 2. Because the precondi-
tion of continue does not admit token fluents, if continue
executes infinitely often we can guarantee that any state that
was not a BAA accepting state turns into an accepting state.
This in turn means that every branch of the run contains an
infinite repetition of final states. The plan for P , p, is ob-
tained by removing all synchronization actions from p′, and
the FSC that is solution to P is obtained as described above.
In the other direction, a plan p′ for P ′ can be built from a
plan p for P by adding synchronization actions. Theorem
1 follows from the argument given above and reuses most
of the argument that TB15 uses to show their translation is
correct.

3.1.2 An NBA-based Compilation This compilation re-
lies on the construction of a non-determinisitic Büchi au-
tomaton (NBA) for the goal formula, and builds on trans-
lation techniques for finite LTL planning with determinis-
tic actions developed by Baier and McIlraith (2006) (hence-
forth, BM06). Given a deterministic planning problem P
with LTL goal ϕ, the BM06 translation runs in two phases:
first, ϕ is transformed into a non-deterministic finite-state
automata (NFA), Aϕ, such that it accepts a finite sequence
of states σ if and only if σ |= ϕ. In the second phase, it
builds an output problem P ′ that contains the same fluents
as in P plus additional fluents of the form Fq , for each state
q of Aϕ. Problem P ′ contains the same actions as in P but
each action may contain additional effects which model the
dynamics of the Fq fluents. The goal of P ′ is defined as the

72

disjunction of all fluents of the form Ff , where f is an ac-
cepting state of Aϕ. The initial state of P ′ contains Fq iff
q is a state that Aϕ would reach after processing the initial
state of P . The most important property of BM06 is the fol-
lowing: let σ = s0s1 . . . sn+1 be a state trace induced by
some sequence of actions a0a1 . . . an in P ′, then Fq is satis-
fied by sn+1 iff there exists a run of Aϕ over σ that ends in
q. This means that a single sequence of planning states en-
codes all runs of the NFA Aϕ. The important consequence
of this property is that the angelic semantics ofAϕ is imme-
diately reflected in the planning states and does not need to
be handled by the planner (unlike TB15).

For LTL-FOND problem P = 〈F , I, ϕ,A〉, our NBA-
based compilation constructs a FOND problem P ′ =
〈F ′, I ′,G′,A′〉 via the following three phases: (i) construct
an NBA,Aϕ for the NNF LTL goal formula ϕ, (ii) apply the
modified BM06 translation to the determinization of P (see
Section 2.1) , and (iii) construct the final FOND problem P ′
by undoing the determinization, i.e., reconstruct the original
non-deterministic actions from their determinized counter-
parts. More precisely, the translation of a non-deterministic
action a in P is a non-deterministic action a′ in P ′ that is
constructed by first determinizing a into a set of actions, ai
that correspond to each of the non-deterministic outcomes
of a, applying the BM06-based translation to each ai to
produce a′i, and then reassembling the a′is back into a non-
deterministic action, a′. In so doing, Eff a′ is the set of out-
comes in each of the deterministic actions a′i, and Prea′ is
similarly the precondition of any of these a′i.

The modification of the BM06 translation used in the
second phase leverages ideas present in PLG13 and our
BAA-based compilations to capture infinite runs via induced
non-determinism. In particular, it includes a continue ac-
tion whose precondition is the accepting configuration of
the NBA (a disjunction of the fluents representing accepting
states). Unlike our BAA-based compilation, the tokeniza-
tion is not required because accepting runs are those that
achieve accepting states infinitely often, no matter which
ones. As before, one non-deterministic effect of continue
is to achieve goal, while the other is to force the planner
to perform at least one action. This is ensured by adding
an extra precondition to continue , can continue, which
is true in the initial state, it is made true by every action but
continue , and is deleted by continue .

In order to construct a solution Π to P from a strong-
cyclic solution p to P ′ = 〈F ′, I ′,G′,A′〉, it is useful to rep-
resent states ξ in P ′ as the disjoint union of s = ξ ∩ F and
q = ξ ∩ (F ′ \F). Intuitively, s represents the planning state
in P , and q represents the automaton state. The controller
Π = 〈C, c0,Γ,Λ, ρ,Ω〉 is defined as follows. c0 = I ′ is the
initial controller state; Γ = 2F ; Λ = A; ρ(ξ, s′) = s′ ∪ q′,
where q′ is the automaton state that results from applying ac-
tion p(ξ) in ξ; Ω(ξ) = p(ξ); and C ⊆ 2F

′
is the domain of

p. Actions in P ′ are non-deterministic and have conditional
effects, but the automaton state q′ that results from applying
action p(ξ) in state ξ = s ∪ q is deterministic, and thus ρ is
well-defined.

Theorem 2. The NBA translation for Infinite LTL-FOND

planning is sound, complete, and worst-case exponential in
the size of the LTL formula.

Theorem 2 follows from soundness, completeness, and
the complexity of the BM06 translation, this time using a
NBA automaton, and an argument similar to that of The-
orem 1. This time, if continue executes infinitely often we
can guarantee accepting NBA states are reached infinitely
often.

3.2 From Finite LTL-FOND to FOND

Our approach to finite LTL-FOND extends the BM06 and
TB15 translations, originally intended for finite LTL plan-
ning with deterministic actions, to the non-deterministic ac-
tion setting. Both the original BM06 and TB15 translations
share two general steps. In step one, the LTL goal formula is
translated to an automaton/automata – in the case of BM06
an NFA, in the case of TB15, an AA. In step two, a planning
problem P ′ is constructed by augmenting P with additional
fluents and action effects to account for the integration of
the automaton. In the case of BM06 these capture the state
of the automaton and how domain actions cause the state of
the automaton to be updated. In the case of the TB15 trans-
lation, P must also be augmented with synchronization ac-
tions. Finally, in both cases the original problem goals must
be modified to capture the accepting states of automata.

When BM06 and TB15 are exploited for LTL-FOND, the
non-deterministic nature of the actions must be taken into
account. This is done in much the same as with the NBA-
and BAA-based compilations described in the previous sec-
tion. In particular, non-deterministic actions in the LTL-
FOND problem are determinized, the BM06 (resp. TB15)
translation is applied to these determinized actions, and then
the non-deterministic actions reconstructed from their trans-
lated determinized counterparts (as done in the NBA-based
compilation) to produce FOND problem, P ′. A FSC so-
lution, Π, to the LTL-FOND problem P , can be obtained
from a solution to P ′. When the NFA-based translations
are used, the FSC, Π, is obtained from policy p following
the approach described for NBA-based translations. When
the AA-based translations are used, the FSC, Π, is obtained
from p following the approach described for BAA-based
translations.

Theorem 3. The NFA (resp. AA) translation for Finite LTL-
FOND is sound, complete, and exponential (resp. linear) in
the size of the LTL formula.

Soundness and completeness in Theorem 3 follows from
soundness and completeness of the BM06 and TB15 trans-
lations. Fair executions of Π yield finite plans for P ′, and
therefore state traces (excluding intermediate synchroniza-
tion states) satisfy ϕ. Conversely, our approach is complete
as for every plan in P , one can construct a plan in P ′. Fi-
nally, the run-time complexity and size of the translations is
that of the original BM06 and TB15 translations – worst case
exponential in time and space for the NFA-based approach
and linear in time and space for the AA approach.

73

10-2 10-1 100 101 102 103

NFA run time (s)

10-2

10-1

100

101

102

103
A

A
 r

u
n
 t

im
e
 (

s)

(a) Translation run times.

100 101 102

#New Fluents (NFA)

100

101

102

#
N

e
w

 F
lu

e
n
ts

 (
A

A
)

(b) Number of new fluents.

10-3 10-2 10-1 100 101 102 103

PRP run time (s) with NFA

10-3

10-2

10-1

100

101

102

103

P
R

P
 r

u
n
 t

im
e
 (

s)
 w

it
h
 A

A

(c) PRP run times.

100 101 102 103

PRP policy size (NFA)

100

101

102

103

P
R

P
 p

o
lic

y
 s

iz
e
 (

A
A

)

(d) PRP Policy Size.

100 101 102

world plan length (NFA)

100

101

102

w
o
rl

d
 p

la
n
 l
e
n
g
th

 (
A

A
)

(e) Preferred world Plan Length.

Blocksworld

Logistics

Logistics Simple

Robot Coffee

Blocksworld 2

Rovers

Openstacks

Zeno

Zeno Simple

FOND Blocksworld

FOND Robot Coffee

FOND Waldo

FOND Rovers

Figure 2: Performance of our planning system using AA-
and NFA-based translations in different problems with deter-
ministic and non-deterministic actions and finite LTL goals.

4 Experiments
We evaluate our framework on a selection of benchmark
domains with LTL goals from (Baier and McIlraith 2006;
Patrizi, Lipovetzky, and Geffner 2013; Torres and Baier
2015), modified to include non-deterministic actions. Ex-
periments were conducted on an Intel Xeon E5-2430 CPU
@2.2GHz Linux server, using a 4GB memory and a 30-
minute time limit.

LTL-FOND Planning over Finite Traces: We evaluated
the performance of our BM06 (NFA) and TB15 (AA) trans-
lators, with respect to a collection of problems with deter-
ministic and non-determinisitic actions and LTL goals, inter-
preted on finite traces. We used the state-of-the-art FOND
planner, PRP (Muise, McIlraith, and Beck 2012), to solve
the translated problems. NFA-based translation times in-
creased when the LTL formula had a large number of con-
junctions and nested modal operators, whereas AA-based
translation times remain negligible. However, the AA trans-
lation included a number of new fluents that were, in some
cases, up to one order of magnitude larger than with the NFA
(Figures 2a and 2b). This seems to translate into more com-
plex problems, as PRP run times become almost consistently
greater in problems translated with AA (Figure 2c). The size
of the policies obtained from the AA compilations were con-
siderably greater than those obtained with NFA compila-

0 5 10 15 20 25 30 35 40
0
5

10
15
20
25
30
35
40
45

BAA

PLG13par

PLG13seq

(a) Run-time in Waldo problems.

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10
BAA

PLG13par

PLG13seq

(b) Run-time in Lift problems.

0 2 4 6 8 10 12 14
0

20

40

60

80

100

120
BAA

PLG13par

PLG13seq

(c) Run-time in Clerk problems.

100 101 102 103 104 105

BAA

100

101

102

103

104

105

P
LG

1
3
p
a
r

Waldo

Clerk

Lift Orig

(d) Policy Size (world actions).

Figure 3: Performance of our planning system using BAA-
based translations in different LTL-FOND domains. We re-
port PRP run-times (in seconds) and policy sizes, excluding
synchronization actions.

tions (Figure 3d). This is expected, as AA translations in-
troduce a number of synchronization actions, whereas the
number of actions in NFA translations remains unchanged.
To assess the quality of the plans obtained from each transla-
tion, we compared the number of world actions (i.e., exclud-
ing automaton-state synchronization actions) in the shortest
plans of the policies obtained (Figure 2e). This is a crude es-
timator of the quality of plans, since these plans are not nec-
essarily the ones that minimize the number of world actions,
as they also contain synchronization actions. The number
of world actions that we obtained in both compilations was
very similar.

Interestingly, whereas the size of the AA translations is
linear in the size of the original LTL formula and NFA
translations are worst-case exponential, in practice we ob-
served the size of the NFA-based translated problems is
smaller. Furthermore, PRP performs better when problems
are compiled using NFAs, generating similar quality poli-
cies in lower search run-times.

We didn’t experience any untoward decrease in perfor-
mance in deterministic problems that were extended with
non-deterministic actions, suggesting that AA- and NFA-
based translations remain competitive in LTL-FOND.

LTL-FOND Planning over Infinite Traces: The rela-
tive performance observed between NBA- and BAA-based
translations for LTL-FOND planning, interpreted over in-
finite traces, is reflective of the finite case. NBA trans-
lation run times are greater, but result in lower plan-
ner run times and smaller policy sizes. For reference, we
compared BAA translations with the so-called sequential
and parallel translations developed by Patrizi, Lipovetzky,
and Geffner (2013), subsequently referrd to as PLG13seq
and PLG13par, respectively. The former alternates between
world and sync actions (that update the automaton state),

74

whereas the latter parallelizes this process in a single action.
The current implementation of PLG13 translations forced us
to perform such comparisons only in the three domains that
appear in (Patrizi, Lipovetzky, and Geffner 2013). Namely,
the Waldo, Lift, and Clerk domains. All problems have LTL
goals that can be compiled into deterministic Büchi au-
tomata. Unfortunately, we could not include a fair compari-
son with NBA translations in the Lift and Clerk domains, due
to a specific encoding that forced transitions to synchroniza-
tion phases (existing in PLG13 and BAA translations, but
not in NBA). In the Waldo problems, however, NBA trans-
lations generated smaller solutions (by a half) with roughly
half the run time required by BAA. On the other hand, NBA
translation times timed out after the twelfth instance (possi-
bly due to an unoptimized implementation of the translator).

The Waldo problems require construction of a controller
for a robot that moves around n rooms and finds Waldo
infinitely often. Waldo may or may not appear in the n-
th and n/2-th rooms when these are visited. The dynam-
ics of the problem preclude visiting a room twice before
visiting the remaining ones, in which case the predicate
search again becomes true. The LTL goal of the prob-
lem is search again ∨Waldo. The Lift problems re-
quires construction of a controller for an n-floor building
that serves all requests. The dynamics of the problem re-
quire alternation between move and push fi actions, i =
1, . . . , n. Fluents ati and reqi model, respectively, whether
the lift is at the i-th floor, and whether a request from the
i-th floor has been issued and not served. The lift can only
move up if some request is issued. The push fi actions non-
deterministically request the lift to service the i-th floor. Ini-
tially, the lift is at floor 1, and no request is issued. The LTL
goal of the problem is ϕ =

∧n
i=1 (reqi → ati). Finally,

the Clerk problems require construction of a controller that
serves all clients in a store. Clients can order one of n pack-
ages pi . If the package is not available, the clerk has to buy
it from a supplier, pick it up, and store it in its correct lo-
cation. In order to serve the client, the clerk has to find the
package, pick it up, and sell it. The LTL goal of the problem
is (active request →(item served ∨ item stored)).

The results of experiments are summarized in Figure
3. In Waldo problems, the planner run times using BAA-
based translations are situated between the run times with
PLG13seq and PLG13par. In Lift problems, the BAA trans-
lations demonstrate significantly greater scalability. The Lift
problems contain a (increasing) large number of conjunc-
tive LTL goals. We conjecture that the poor scalability with
PLG13seq (runs out of time) and PLG13par (runs out of
memory) translations is due to the bad handling of conjunc-
tive goals, that results in a exponentially large number of
different state transitions. On the other hand, the PRP han-
dles conjunctive goals much better in the BAA translations
thanks to the AA progression of the LTL formula. In the
Clerk problems, PRP scales slightly worse with the BAA
translation than with the PLG13seq and PLG13par transla-
tions, which can solve 1 and 2 more problems respectively.
The run times with all translations seem to show the same
exponential trend, and differ in a small offset that corre-
sponds to the increase in problem complexity.

Figure 3d compares the size of the policies found by PRP
to problems compiled with BAA and PLG13par translations.
PLG13seq translations resulted in slightly larger policies,
due to separate world and sync action phases. We account
only for world actions, excluding synchronization actions
from the count. Policy sizes with BAA-based translations are
similar, but consistently smaller than those from PLG13par
translations, except in the Lift problems where the former re-
sults in considerably smaller policies. Finally, we evaluated
the validity of our system with LTL goals that could not be
handled by PLG13. In particular, we solved Waldo problems
with goals of the form α.

Overall, our system proves very competitive with (as good
as or better than) the previous state-of-the-art LTL-FOND
planning methods, while supporting a much broader spec-
trum (the full spectrum) of LTL formulae.

5 Summary and Discussion
We have proposed four compilation-based approaches to
fully observable non-deterministic planning with LTL goals
that are interpreted over either finite or infinite traces. These
compilations support the full expressivity of LTL, in contrast
to much existing work. In doing so, we address a number of
open problems in planning with LTL with non-deterministic
actions, as noted in Table 1. Our LTL planning techniques
are directly applicable to a number of real-world planning
problems that are not captured by existing systems. Further-
more they are useful in a diversity of applications beyond
standard planning, including but not limited to genomic re-
arrangement (Uras and Erdem 2010), program test genera-
tion (Razavi, Farzan, and McIlraith 2014), story generation
(Haslum 2012), automated diagnosis (Grastien et al. 2007;
Sohrabi, Baier, and McIlraith 2010), business process man-
agement (De Giacomo et al. 2014) and verification (Al-
barghouthi, Baier, and McIlraith 2009; Patrizi et al. 2011).

We evaluated the effectiveness of our FOND compilations
using the state-of-the-art FOND planner, PRP. An interest-
ing observation is that our worst-case exponential NFA-
based translations run faster and return smaller policies than
the AA-based linear translations. This seems to be due to
the larger number of fluents (and actions) required in the
AA-based translations. Compared to the existing approach
of (Patrizi, Lipovetzky, and Geffner 2013), experiments in-
dicate that our approaches scale up better.

Finally, we observe that LTL-FOND is related to the prob-
lem of LTL synthesis (Pnueli and Rosner 1989). Informally,
it is the problem of computing a policy that satisfies an
LTL formula, assuming that an adversary (which we can as-
sociate to the non-deterministic environment) may change
some fluents after the execution of each action. Recently
De Giacomo and Vardi (2015) showed how to map a fi-
nite LTL-FOND problem into a synthesis problem. Sardiña
and D’Ippolito (2015) go further, showing how FOND plans
can be synthesized using LTL synthesis algorithms. An open
question is whether any existing planning technology can be
used for LTL synthesis as well. LTL synthesis is not an in-
stance of strong cyclic FOND planning since synthesis ad-
versaries are not fair.

75

Acknowledgements: The authors gratefully acknowledge
funding from the Natural Sciences and Engineering Re-
search Council of Canada (NSERC) and from Fondecyt
grant number 1150328.

References
Albarghouthi, A.; Baier, J. A.; and McIlraith, S. A. 2009. On
the use of planning technology for verification. In Proceedings of
the Validation and Verification of Planning and Scheduling Systems
Workshop (VVPS).

Bacchus, F., and Kabanza, F. 2000. Using temporal logics to ex-
press search control knowledge for planning. AI Magazine 16:123–
191.

Baier, J. A., and McIlraith, S. A. 2006. Planning with first-order
temporally extended goals using heuristic search. In Proceedings
of the 21st National Conference on Artificial Intelligence (AAAI),
788–795.

Cresswell, S., and Coddington, A. M. 2004. Compilation of LTL
goal formulas into PDDL. In Proceedings of the 16th European
Conference on Artificial Intelligence (ECAI), 985–986.

De Giacomo, G., and Vardi, M. Y. 2013. Linear temporal logic and
linear dynamic logic on finite traces. In Proceedings of the 23rd
International Joint Conference on Artificial Intelligence (IJCAI),
854–860.

De Giacomo, G., and Vardi, M. Y. 2015. Synthesis for LTL and
LDL on finite traces. In Proceedings of the 24th International Joint
Conference on Artificial Intelligence (IJCAI), 1558–1564.

De Giacomo, G.; Masellis, R. D.; Grasso, M.; Maggi, F. M.; and
Montali, M. 2014. Monitoring business metaconstraints based on
LTL and LDL for finite traces. In Proceedings of the 12th Interna-
tional Conference on Business Process Management (BPM), vol-
ume 8659 of Lecture notes in Computer Science, 1–17. Springer.

De Giacomo, G.; Masellis, R. D.; and Montali, M. 2014. Reasoning
on LTL on finite traces: Insensitivity to infiniteness. In Proceed-
ings of the 28th AAAI Conference on Artificial Intelligence (AAAI),
1027–1033.

Doherty, P., and Kvarnström, J. 2001. TALplanner: A temporal
logic-based planner. AI Magazine 22(3):95–102.

Edelkamp, S. 2006. Optimal symbolic PDDL3 planning with
MIPS-BDD. In 5th International Planning Competition Booklet
(IPC-2006), 31–33.

Geffner, H., and Bonet, B. 2013. A Concise Introduction to Mod-
els and Methods for Automated Planning. Synthesis Lectures on
Artificial Intelligence and Machine Learning. Morgan & Claypool
Publishers.

Gerevini, A., and Long, D. 2005. Plan constraints and preferences
for PDDL3. Technical Report 2005-08-07, Department of Elec-
tronics for Automation, University of Brescia, Brescia, Italy.

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated planning:
theory & practice. Elsevier.

Grastien, A.; Anbulagan; Rintanen, J.; and Kelareva, E. 2007. Di-
agnosis of discrete-event systems using satisfiability algorithms. In
Proceedings of the 22nd AAAI Conference on Artificial Intelligence
(AAAI), 305–310.

Haslum, P. 2012. Narrative planning: Compilations to classical
planning. Journal of Artificial Intelligence Research 44:383–395.

Kabanza, F.; Barbeau, M.; and St.-Denis, R. 1997. Planning control
rules for reactive agents. Artificial Intelligence 95(1):67–11.

Muise, C.; McIlraith, S. A.; and Beck, J. C. 2012. Improved Non-
deterministic Planning by Exploiting State Relevance. In Proceed-
ings of the 22th International Conference on Automated Planning
and Scheduling (ICAPS), 172–180.
Patrizi, F.; Lipovetzky, N.; De Giacomo, G.; and Geffner, H. 2011.
Computing infinite plans for LTL goals using a classical planner.
In Proceedings of the 22nd International Joint Conference on Arti-
ficial Intelligence (IJCAI), 2003–2008.
Patrizi, F.; Lipovetzky, N.; and Geffner, H. 2013. Fair LTL synthe-
sis for non-deterministic systems using strong cyclic planners. In
Proceedings of the 23rd International Joint Conference on Artifi-
cial Intelligence (IJCAI), 2343–2349.
Pistore, M., and Traverso, P. 2001. Planning as model checking
for extended goals in non-deterministic domains. In Proceedings
of the 17th International Joint Conference on Artificial Intelligence
(IJCAI), 479–484.
Pnueli, A., and Rosner, R. 1989. On the synthesis of a reactive
module. In Proceedings of the 16th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, 179–190.
Pnueli, A. 1977. The temporal logic of programs. In Proceedings
of the 18th IEEE Symposium on Foundations of Computer Science
(FOCS), 46–57.
Razavi, N.; Farzan, A.; and McIlraith, S. A. 2014. Generating
effective tests for concurrent programs via AI automated planning
techniques. International Journal on Software Tools for Technol-
ogy Transfer 16(1):49–65.
Rintanen, J. 2000. Incorporation of temporal logic control into
plan operators. In Proceedings of the 14th European Conference
on Artificial Intelligence (ECAI), 526–530.
Sardiña, S., and D’Ippolito, N. 2015. Towards fully observable
non-deterministic planning as assumption-based automatic synthe-
sis. In Proceedings of the 24th International Joint Conference on
Artificial Intelligence (IJCAI), 3200–3206.
Sohrabi, S.; Baier, J. A.; and McIlraith, S. A. 2010. Diagnosis as
planning revisited. In Proceedings of the 12th International Con-
ference on the Principles of Knowledge Representation and Rea-
soning (KR), 26–36.
Torres, J., and Baier, J. A. 2015. Polynomial-time reformulations
of LTL temporally extended goals into final-state goals. In Pro-
ceedings of the 24th International Joint Conference on Artificial
Intelligence (IJCAI), 1696–1703.
Uras, T., and Erdem, E. 2010. Genome rearrangement: A planning
approach. In Proceedings of the 24th AAAI Conference on Artificial
Intelligence (AAAI).
Vardi, M. Y., and Wolper, P. 1994. Reasoning about infinite com-
putations. Information and Computation 115(1):1–37.
Vardi, M. Y. 1995. An automata-theoretic approach to linear tem-
poral logic. In Banff Higher Order Workshop, volume 1043 of Lec-
ture notes in Computer Science, 238–266. Springer.

76

Abstraction Heuristics for Symbolic Bidirectional Search

Álvaro Torralba
Saarland University

Saarbrücken, Germany
torralba@cs.uni-saarland.de

Carlos Linares López and Daniel Borrajo
Universidad Carlos III de Madrid

Madrid, Spain
{carlos.linares,daniel.borrajo}@uc3m.es

Abstract

Symbolic bidirectional uniform-cost search is a prominent
technique for cost-optimal planning. Thus, the question
whether it can be further improved by making use of heuris-
tic functions raises naturally. However, the use of heuristics
in bidirectional search does not always improve its perfor-
mance. We propose a novel way to use abstraction heuris-
tics in symbolic bidirectional search in which the search only
resorts to heuristics when it becomes unfeasible. We adapt
the definition of partial and perimeter abstractions to bidirec-
tional search, where A∗ is used to traverse the abstract state
spaces and/or generate the perimeter. The results show that
abstraction heuristics can further improve symbolic bidirec-
tional search in some domains. In fact, the resulting planner,
SymBA∗, was the winner of the optimal-track of the last IPC.

Introduction
Most cost-optimal planners are based on A∗ guided with an
admissible heuristic. Bidirectional search has not been ex-
plored so extensively, due to the inherent difficulties of re-
gression in planning and the computational cost of detecting
collisions between both frontiers (Alcázar, Fernández, and
Borrajo 2014). Symbolic search (McMillan 1993) reasons
over sets of states, substantially reducing the cost of detect-
ing the collision of frontiers. Besides, recent advances have
alleviated the problem of spurious states in symbolic regres-
sion (Torralba and Alcázar 2013). Thus, symbolic bidirec-
tional uniform-cost search (SB) is among the best algorithms
for cost-optimal planning, outperforming not only A∗-based
planners but also BDDA∗, the symbolic search variant of
A∗.

These observations lead to the question of whether heuris-
tics can further improve SB. Bidirectional heuristic search
(BHS) has a long history (Pohl 1969; de Champeaux 1983),
but it has never convincingly outperformed A∗ across a sig-
nificant number of domains. There have been various at-
tempts to explain the main reasons behind the limitations
of front-to-end BHS, from the search frontiers passing each
other without intersecting (Nilsson 1982) to the hardness
of proving optimality (Kaindl and Kainz 1997). A recent
study conjectures that the quality of heuristics is a ma-
jor factor for explaining the disappointing empirical results
of BHS (Barker and Korf 2015) and motivating new ap-
proaches (Holte et al. 2016).

Perimeter search is a variant of BHS that creates a perime-
ter around the goal, and uses heuristics that estimate the
distance to the perimeter instead of to the goal (Dillenburg
and Nelson 1994). Abstraction heuristics are a good fit be-
cause they precompute the heuristic, avoiding a large over-
head during the search (Eyerich and Helmert 2013). More-
over, symbolic perimeter abstraction heuristics are state-of-
the-art for cost-optimal planning (Torralba, Linares López,
and Borrajo 2013).

We present a new planner, SymBA∗, that combines sym-
bolic bidirectional search with perimeter abstraction heuris-
tics, exploiting their synergy to benefit from the advantages
of BHS and overcome its limitations. SymBA∗ performs
bidirectional searches over different state spaces. It starts in
the original search space and, when the search becomes too
hard, it derives a perimeter abstraction heuristic. The plan-
ner decides at any point whether to advance the search in
the original state space, enlarging the perimeter, or in an ab-
stract space to improve the heuristic. To that end, we intro-
duce a new type of abstraction heuristics that uses bidirec-
tional search combined with perimeter and partial abstrac-
tions. This is the first time bidirectional search is used to ex-
plore abstract state spaces to the best of the authors’ knowl-
edge. Even though the theory behind partial and perimeter
abstractions has been well studied, they have to be adapted
for their combination with bidirectional search. In particu-
lar, we study how partial abstractions can be used when A∗

search is used to traverse the abstract state space and how
the initialization of perimeter abstractions can be improved
in the bidirectional setting.

Preliminaries
A planning task is a 4-tuple Π = 〈V,A, I,G〉. V is a finite
set of variables v, each v ∈ V being associated with a finite
domainDv . A partial state over V is a function s on a subset
V (s) of V , so that s(v) ∈ Dv for all v ∈ V (s); s is a state
if V (s) = V . The initial state I is a state. The goal G is a
partial state. A is a finite set of actions, each a ∈ A being a
pair (prea, eff a) of partial states, called its precondition and
effect. Each a ∈ A has a non-negative cost, c(a) ∈ R+

0 .
The state space of a planning task Π is a labeled transition

system ΘΠ = (S,L, T, s0, SG) where: S is the set of all
states; s0 is the initial state I of Π; s ∈ SG iff G ⊆ s;
the labels L correspond to the actions A, and s a−→ t is a

77

transition in T if s complies with prea, and t(v) = eff a(v)
for v ∈ V (eff a) while t(v) = s(v) for v ∈ V \ V (eff a).
A plan for s is a path from s to any sG ∈ SG. The cost
of a plan is defined as c(π) =

∑
ai∈π c(ai). The cost of

a cheapest plan for s is denoted h∗(s) and the cost of the
cheapest path from s0 to s is denoted g∗(s). A plan for s0 is
a plan for Π, and is optimal iff its cost equals h∗(s0).

Most cost-optimal planners use heuristic search with A∗.
A heuristic is a function h : S → R+

0 ∪ {∞} which esti-
mates the remaining cost to reach the goal. A heuristic is
perfect if it coincides with h∗, and it is admissible if it never
overestimates the optimal cost, that is, ∀s : h(s) ≤ h∗(s).
A heuristic is consistent if for every transition s

a−→ t,
h(s) ≤ h(t) + c(a). A∗ expands the nodes with lowest
f(s) = g(s) + h(s) first so that no node with f(s) > h∗(I)
is ever expanded. If the heuristic is admissible A∗ is guaran-
teed to return an optimal solution. Moreover, if the heuristic
is consistent, A∗ always closes states with their optimal g-
value, g∗(s), so it does not re-expand any node.

Bidirectional Search
A bidirectional search, T is composed of a forward, Tfw , and
a backward, Tbw , unidirectional search. We use Tu to denote
a unidirectional search in an unspecified direction and T¬u
for the search in the opposite direction. Each search Tu con-
sists of an open, open(Tu), and a closed list, closed(Tu). We
denote by g(Tu) and f(Tu) the minimum g and f -values of
any state in open(Tu), respectively.

Nipping is an optimization that avoids expanding any
state if it has already been expanded in the opposite di-
rection (Kwa 1989). We apply nipping at generation time
in order to avoid unnecessary evaluations. We rely on
states always being closed with their optimal g-value, g∗,
so that g∗(s) is known for all s ∈ closed(Tu) and those
s ∈ open(Tu) with g∗(s) ≤ g(Tu) + mina∈A c(a). Thus,
whenever a state s is generated or is going to be expanded
in Tu, if g∗(s) is known for T¬u, we discard s (without in-
troducing it in closed(Tu)) and store the plan through that
state if it is the best plan found so far. The algorithm ter-
minates when the best solution found so far, π, has been
proven optimal, i. e., c(π) ≤ max(f(Tfw), f(Tbw)). Both
frontiers use each other as a heuristic, assigning an ad-
missible value of g(T¬u) + mina∈A c(a) to all states in
open(Tu). As all states in open(Tu) have the same heuristic
value, this does not affect to the expansion order of uniform-
cost search, but allows to terminate the algorithm whenever
c(π) ≤ g(Tbw) + g(Tfw) + mina∈A c(a).

Abstraction Heuristics
An abstraction is a mapping α : S → Sα from states to
abstract states. The abstract state space is a tuple Θα =
〈Sα, L, Tα, Iα,Sα? 〉 where Sα is the set of abstract states,
L is the set of labels, Tα = {(α(s)

a−→ α(t)) | s a−→ t},
Iα = α(s0) and Sα? = {sα | ∃s ∈ S?, sα = α(s)}. T α de-
notes a bidirectional search in Θα, in contrast to the search
in the original state space, T Π. Abstraction heuristics use
the optimal solution cost in Θα, hα, as an admissible esti-
mation. Similarly, gα(s) is the optimal solution cost from

Iα to α(s).
There are different types of abstraction heuristics de-

pending on the mapping definition, α. Pattern Databases
(PDBs) (Culberson and Schaeffer 1998; Edelkamp 2001)
are projections of Π onto a subset of variables (called pat-
tern), so that two states are equivalent iff they agree on the
value of variables in the pattern. Merge-and-shrink (M&S)
abstractions generalize PDBs, allowing abstractions that
use all variables (Helmert, Haslum, and Hoffmann 2007;
Helmert et al. 2014).

The optimal solution cost from every abstract state,
hα(sα), is precomputed and stored in a lookup table prior
to the search by performing a backward uniform-cost search
from the abstract goal, T αbw . Partial abstractions do not
search the entire abstract state space completely (Anderson,
Holte, and Schaeffer 2007; Edelkamp and Kissmann 2008b).
Thus, hα is only known for states that were expanded dur-
ing the precomputation phase or were left in open with g-
value lower or equal than g(T α) + mina∈A c(a). For every
other abstract state, the heuristic returns the minimum cost
with which a state could be generated g(T α)+mina∈A c(a).
Partial abstractions are admissible and consistent.

Perimeter abstractions construct a perimeter around the
goal in the original state space and use it to seed the
search in the abstract state space (Felner and Ofek 2007;
Eyerich and Helmert 2013). The perimeter is constructed by
a backward search, T Π

bw , which computes the perfect heuris-
tic for all states in closed(T Π

bw). For every state outside
the perimeter, an abstract search, T αbw computes the mini-
mum distance from each abstract state to the closest abstract
state in the perimeter. Formally, T αbw is initialized with:
open(T αbw)[g] = {sα | ∃s∈S,α(s)=sα s ∈ open(T Π

bw)[g]}
and closed(T αbw) = {sα | ∀s∈S,sα=α(s) s ∈ closed(T Π

bw)}.

Symbolic Search
Symbolic search algorithms use succinct data-structures like
Binary Decision Diagrams (Bryant 1986) to efficiently rep-
resent and manipulate sets of states. BDDs offer a compact
representation of sets of states that sometimes can get an
exponential advantage in memory with respect to their ex-
plicit enumeration (Edelkamp and Kissmann 2008a). Fur-
thermore, BDD operations can be used to compute the union
or intersection of two sets of states. Using these operations,
it is possible to define symbolic versions of different search
algorithms like uniform-cost search or A∗.

BDDA∗ is the symbolic version of A∗. As usual, it ex-
pands states in ascending order of their f -value, but expand-
ing at the same time all the states sharing the same f and g
values. A difference with typical explicit implementations
of A∗ is that it uses the opposite tie-breaking. In BDDA∗

states with lower g-value are preferred in order to generate
all the states with the same f and g value before expanding
any of them.

Symbolic search is not limited to the original state space.
Symbolic PDBs take advantage of symbolic search in order
to traverse the abstract state space. This allows for the use of
larger patterns, since the state space is not explicitly enumer-
ated (Kissmann 2012). The combination of symbolic search

78

and perimeter abstractions is a state-of-the-art heuristic (Tor-
ralba, Linares López, and Borrajo 2013), which we extend
to the bidirectional case.

SymBA∗: Symbolic Bidirectional A∗

SymBA∗ performs several symbolic bidirectional A∗

searches on different state spaces. First, SymBA∗ starts a
bidirectional search in the original state space, T Π. At each
iteration, the algorithm performs a step in a selected direc-
tion, i. e., expands the set of states with minimum f -value
in the frontier. Since no abstraction heuristic has been de-
rived yet, it behaves like symbolic bidirectional uniform-
cost search. This search continues until the next layer in
both directions is deemed as unfeasible, because SymBA∗

estimates that it will take either too much time or memory.
Only then, a new bidirectional search is started in an ab-
stract state space, T α initialized with the current frontiers of
T Π. The abstract searches provide heuristic estimations, in-
creasing the f -value of states in the original search frontiers.
Eventually, the search in the original state space will be sim-
plified (as the number of states with minimum f -value will
be smaller)1 and SymBA∗ will continue the search in the
original state space.

One important feature of the algorithm is the lazy evalua-
tion of the heuristics. The search in abstract state spaces is
delayed until strictly needed to simplify the original search,
allowing SymBA∗ to use multiple abstraction heuristics
without a large overhead. We model this by considering
a pool of active searches and letting the algorithm decide
which search should be advanced at any step, as shown in
Alg. 1. The pool of searches is initialized with a bidirec-
tional search in the original state space. At each iteration,
the algorithm filters the searches that are valid candidates
from the pool and selects the most promising one. The al-
gorithm depends on this search selection strategy, further
explained in Section .

Once a search has been selected, the procedure
ExpandFrontier expands the set of states that have a
minimum g-value among those that have a minimum f -
value, as usual in BDDA∗. If we progress the original
search, a new plan with a lower cost than the incumbent so-
lution may be found. If an abstract search is selected, we
update the heuristic value of states in searches in the oppo-
site direction in the pool, both in the abstract and original
state spaces. If several abstraction heuristics are generated,
SymBA∗ will use their maximum value, so that the heuris-
tic value of states can only be increased. If there are no
valid search candidates (line 10), a new bidirectional search
is added to the pool (which amounts to two new searches).
The abstraction strategy relaxes the current frontiers of the
original search, until the frontier size is small enough to con-
tinue the search.

One of the main characteristics of SymBA∗ is that the
heuristics change dynamically during the search. Not only
may the algorithm decide to initialize a new abstract search

1Having fewer states does not necessarily imply that the BDD
is smaller, but in most cases there is a positive correlation.

Algorithm 1: SymBA∗

Input: Planning problem: Π = 〈V,A, I,G〉
Output: Cost-optimal plan or “no plan”

1 SearchPool ← {T Π
fw , T Π

bw}
2 π ← “noplan′′

3 while max(f(T Π
fw), f(T Π

bw)) < cost(π) do
4 if ∃T Xu ∈ SearchPool s.t. Is-Candidate(T Xu)

then
5 T Xu ← Select-Search(SearchPool)
6 π′ ← Expand-frontier(T Xu)
7 if X = Π ∧ π′ 6= ∅ ∧ cost(π′) < cost(π) then
8 π ← π′

9 Notify-h(T X¬u, T Π
¬u)

10 else
11 α←Select-abstraction(Π, T Π

fw , T Π
bw)

12
〈
T αfw , T αbw

〉
←Apply(α, T Π

fw , T Π
bw)

13 SearchPool ← SearchPool ∪ {T αfw , T αbw}

14 return π

at any point, but also every time that an abstract search per-
forms a step, the heuristic value of states in the original
search may increase. Re-evaluating the entire search fron-
tier repeatedly may be too costly if done naı̈vely, becom-
ing a bottleneck and making the entire algorithm unfeasi-
ble. We avoid this problem using the lazy implementation of
BDDA∗ (Edelkamp, Kissmann, and Torralba 2012), which
keeps the states organized by g-value and defers the heuris-
tic evaluation. Thus, whenever the heuristic changes in the
middle of the search only the set of states currently selected
for expansion must be re-evaluated, without any additional
computation in the open list.

The next sections describe the abstraction heuristics that
we use. Summarizing, (i) bidirectional search can be used
in the abstract state space allowing two searches, in oppo-
site directions, to exchange information and avoid redun-
dant work; (ii) partial abstractions allow SymBA∗ to traverse
larger abstract state spaces with less effort, since explor-
ing them completely is unnecessarily expensive; and (iii)
perimeter abstractions take advantage of the searches in the
original state space in order to obtain better estimates, over-
coming the limitations of front-to-end BHS. Perimeter and
partial abstraction heuristics are not new and the conditions
for consistency and admissibility are well-known for them.
However, the use of bidirectional abstract searches and, in
particular, the use of A∗ searches for exploring the abstract
state space and constructing the perimeter, requires us to re-
consider partial and perimeter abstractions. Our aim is to
obtain heuristic estimations as informed as possible while
preserving the optimality of the algorithm. Inconsistency of
heuristics is not necessarily a problem (Felner et al. 2011),
but states must be closed with their optimal g∗-value to en-
sure that perimeter abstractions are admissible.

79

Bidirectional Abstractions
To perform bidirectional search in abstract state spaces, a
distinction must be made between the searches used in the
original and abstract state spaces. T Π aims to find a plan.
So, whenever the two frontiers meet, a plan is retrieved and
nipping avoids the expansion of the state to eliminate re-
dundant work between T Π

fw and T Π
bw . On the other hand,

searches on abstract state spaces are used to derive heuristic
estimates for the original search. Therefore, nipping must be
disabled in order for the estimations to be admissible.

Thus, the interaction between both searches is reduced
to use each other as a (perfect) heuristic. But, otherwise,
they do not directly interact to detect the collision of their
frontiers. Hence, bidirectional searches in the abstract state
space are two A∗ searches using each other as a heuristic.
They must redundantly expand states that have already been
expanded in the other direction in order to provide admis-
sible estimations to the original search. In the worst case,
if both abstract searches traverse the entire abstract state
space, the search effort is doubled plus an overhead for us-
ing heuristics. Here it is where partial abstractions come in
handy to avoid the exploration of the entire abstract state
space.

Partial Abstractions with Heuristic Search
SymBA∗ uses partial abstractions to traverse large abstract
state spaces that could not be entirely explored otherwise.
In order to compute the heuristic value of every state, we
will likely need to expand most parts of the abstract state
space. For example, if one single state is a dead-end both
in the original and the abstract state space, the abstract state
space must be completely traversed before continuing the
search. Most parts of that computation are irrelevant, since
the termination criterion of A∗ is that, for every state s not
expanded yet, f∗(s) ≥ c(π). In other words, the heuristic
value of a state does not matter provided it is large enough
to guarantee that its f -value is not the minimum among the
current f -value of other states in the search. To simplify the
notation, we assume wlog (the same arguments hold for op-
posite directions) that a backward abstract A∗ search, T αbw
guided with an admissible estimation of gα is used to com-
pute hα in order to inform a forward search in the original
state space, T Π

fw .
In partial abstractions, abstract states can be classified

depending on whether hα(s) is known or not. hα(s) is
known for those abstract states that have already been ex-
panded and those that remain in open with a g-value lower
or equal than g(T αbw) + mina∈A c(a). The question is which
heuristic value do we assign to states for which hα(s) is not
known. The usual answer is to use the minimum g-value
with which they could be generated, g(T αbw)+mina∈A c(a).
Usually, this is a satisfactory lower bound because the ab-
stract state space is explored with a uniform-cost search
so g(T αbw) is constantly increasing. However, in SymBA∗

the abstract state space is explored with an A∗ search be-
cause it uses the other frontier as (perfect) heuristic. Thus,
a bound only based on g(T αbw) is no longer useful, because
it may remain constant as the search progresses. Therefore,

Iα Gα
α(s)

α(t)

g(T αbw) Iα Gα

α(t)

g(T αbw)

α(s)

hα(s)
gα(s)

Figure 1: T αbw with uniform-cost search (left) and A∗ (right).

states, we set a bound for the f -value of the states, based
on the following inequality: f(T αbw) ≤ fα(s) ≤ f∗(s).
As f(s) = g(s) + h(s), we can translate the bound for
f(s) to a heuristic value that depends on the g-value of s:
h(s) = f(T αbw)− g(s).

Proposition 1. Let T αbw be a search in Θα and s ∈ S be a
state s.t. α(s) 6∈ closed(T αbw). Then f(T αbw)−g(s) ≤ h∗(s).

Proof. By definition g(s) ≥ g∗(s). Also, f(T αbw) ≤
fα(s) ≤ f∗(s) = g∗(s) + h∗(s). Thus, the inequal-
ity holds: h∗(s) = f∗(s) − g∗(s) ≥ f∗(s) − g(s) ≥
f(T αbw)− g(s).

The problem is that such heuristic may be inconsistent, as
illustrated by Figure 1. Consistency requires that for every
s

a−→ t, h(s) ≤ h(t) + c(a). However, if α(s) has been
expanded by the abstract search and α(t) not, the bound for
α(t), f(T αbw)− g(t) might be a lot weaker than hα(s), gen-
erating an inconsistency. This may cause t to be expanded
before swith a suboptimal g-value. In order to avoid closing
any state with a suboptimal g-value, one must ensure that
the lower-bound hα(s) is only used when f(T αbw) is large
enough to satisfy hα(s) ≤ f(T αbw) − g(t). So, the abstract
search cannot be stopped at any point, it must continue until
f(T Π

fw) ≤ f(T αbw). We model this by computing the mini-
mum between hα and our f -based bound.

Definition 1 (Partial abstraction heuristic). Let T αbw be an A∗

search over Θα informed with an admissible and consistent
heuristic. We define the bound for unexplored states B, as
B(s, T αbw) := max{f(T αbw)−g(s), g(T αbw)+mina∈A c(a)}.
We define the partial abstraction heuristic as:

hT α(s) =

{
min(hα(s), B(s, T α

bw)) if hα(s) is known in T α
bw

B(s, T α
bw) otherwise

hT α is still an inconsistent heuristic because if neither
hα(s) nor hα(t) are known, B(s, T αbw) = f(T αbw) − g(s)
and B(t, T αbw) = f(T αbw)− g(t) then h(s) = f(T αbw)− g(s)
and h(t) = f(T αbw)− g(t). This is clearly inconsistent since
it may be that g(s) � g(t), since g∗(t) ≤ g∗(s) + c(a) but
s has not been expanded yet so g∗(t) � g(t) is possible.
However, then f(s) = f(t), and the one with lower g-value
is selected for expansion. Theorem 2 proves this in general.

Theorem 2. Let T Π
fw be an A∗ search that breaks ties in

favor of states with lower g-value2 and is informed with a
hT α . Then, for any s ∈ closed(T Π

fw), g(s) = g∗(s).

2The tie-breaking condition is not needed if f(T α
bw) > f(T Π

fw).

80

Proof. Suppose that g(s) > g∗(s). By Lemma 1 in
(Hart, Nilsson, and Raphael 1968), there exists a state r ∈
open(T Π

fw), r 6= s, which is in the optimal path from I to
s such that g(r) = g∗(r). Since r lies on the optimal path
from I, g∗(r) = g(r) ≤ g∗(s) < g(s). On the other hand,
since s was selected for expansion by T Π

fw , f(s) < f(r). We
prove that this leads to contradiction for the possible heuris-
tic values of r and s.

1. hT α(s) = hα(s).
By the definition of hT α , hT α(r) ≤ hα(r). This is
straightforward if hα(r) is known. If hα(r) is not known,
then g(T αbw) + mina∈A c(a) ≤ hα(r) because this is
the minimum cost with which any state can be gener-
ated in T αbw . Moreover, α(r) has not been expanded
by T αbw so f(T αbw) ≤ fα(r) ≤ g∗(r) + hα(r). Then,
hT α(r) = f(T αbw)− g∗(r) ≤ hα(r).
This leads to contradiction with consistency of hα:

g∗(s) = g∗(r) + c(r, s) < g(s)

g∗(r) + c(r, s) + hα(s) < g(s) + hα(s) = f(s)

f(s) < f(r)

g∗(r) + c(r, s) + hα(s) < f(r) ≤ g∗(r) + hα(r)

2. hT α(s) = f(T αbw)− g(s). Then, f(s) = f(T αbw) < f(r).
We have two cases depending on the value of B(r, T αbw):

(a) B(r, T αbw) = f(T αbw) − g(r). Since hT α(r) ≤
B(r, T αbw) = f(T αbw) − g(r), f(r) ≤ f(T αbw) reach-
ing a contradiction.

(b) B(r, T αbw) = g(T αbw)+mina∈A c(a) > f(T αbw)−g(r).
hT α(s) = f(T αbw)− g(s) ≥ g(T αbw) + mina∈A c(a) >
f(T αbw)−g(r). Therefore, g(s) < g(r) = g∗(r), which
is not possible since r is in the optimal path to s.

3. hT α(s) = g(T αbw) + mina∈A c(a).
We have two cases depending on the value of B(r, T αbw):

(a) B(r, T αbw) = g(T αbw) + mina∈A c(a).
Since hT α(r) ≤ B(r, T αbw) = h(s), f(r) < f(s)
reaching a contradiction.

(b) B(r, T αbw) = f(T αbw)−g(r) > g(T αbw)+mina∈A c(a).
f(T αbw)− g(r) > g(T αbw) + mina∈A c(a) ≥ f(T αbw)−
g(s). Therefore, g(s) < g(r) = g∗(r), which is not
possible since r is in the optimal path to s.

Finally, we prove that tie-breaking is not needed when
f(T αbw) > f(T). Note that B(s, T αbw) ≥ f(T αbw) − g(s) so
if f(T αbw) > f(T Π

fw) in that case hT α(s) = hα(s). Note that
the proof of case 1 does not rely on f(s) < f(r) and the
inequalities are also true if we assume f(s) ≤ f(r) instead.

Perimeter Bidirectional Abstractions
Perimeter abstractions must also be redefined to handle
bidirectional and heuristic searches appropriately. First,
in bidirectional search we have forward and backward
perimeters. This can be leveraged in the initializa-
tion of the abstract searches by ignoring states in both

closed lists. The abstract bidirectional search T α is ini-
tialized with the perimeter of T Π as: open(T α

u)[g] ={
sαj | ∃s∈S α(s) = sαj ∧ s ∈ open(T Π

u)[g]
}

and closed(T α
u) ={

sαj | ∀s∈S α(s) = sαj =⇒ s ∈ closed(T Π
fw) ∪ closed(T Π

bw)
}

.
Second, the perimeter search is carried out with A∗ in-

stead of uniform-cost search. Hence, the perimeter is not
uniform, i. e., it has not only expanded all states up to a
fixed radius. The resulting heuristic is still admissible as
long as every state in the perimeter is closed with its op-
timal value, g∗(s) in T Π

fw and h∗(s) in T Π
bw . However,

non-uniform perimeters may cause the heuristic to be in-
consistent. For example, consider two states s, t such that
s
a−→ t, s ∈ closed(T Π

bw) and t 6∈ closed(T Π
bw). In this case,

h(s) = h∗(s) and h(t) = hα(t), so consistency may be
violated: h(s) 6≤ h(t) + c(a). However, this poses no prob-
lem if nipping is used to eliminate all states in the opposite
perimeter because the heuristic will never be evaluated on
those states anyway. Theorem 3 proves that the perimeter
abstraction heuristic is still admissible and consistent for all
relevant states, i. e., those that are not pruned by nipping.

Theorem 3. Let T αu be a perimeter abstraction in Θα ini-
tialized with the perimeters of T Π. Then, h is admissible
and consistent for any state s 6∈ closed(T Π

fw)∪ closed(T Π
bw).

Proof. A heuristic h is consistent if and only if h(s) ≤
h(t) + c(a) ∀s a−→ t. In our case, we only contemplate
states s, t 6∈ closed(T Π

fw) ∪ closed(T Π
bw), so α(s) and α(t)

will not be introduced in closed(T αu) when initializing the
abstract search. α(t) may be generated by T αu or not. If
not, h(t) = ∞ and consistency follows. If α(t) is ex-
panded by T αu , α(s) will be inserted in open(T αu) and later
expanded. Hence, by consistency of hα, it follows that
h(s) ≤ h(t) + c(a).

Therefore, bidirectional A∗ guided with perimeter ab-
straction heuristics returns the optimal solution since the
heuristic is consistent for every state outside the perimeter
and nipping prevents its evaluation in states in the perimeter.

Search Selection Strategy
The core of SymBA∗, as outlined in Algorithm 1, is how
to decide which search should be pushed forward at each
iteration. A search is a valid candidate if and only if it is
both feasible and useful. A search is feasible if the estimated
time and number of nodes needed to perform the next step
does not surpass any of the bounds imposed as parameters.
The search in the original search space is always useful. A
search in an abstract search space is useful if and only if
it can further inform the next layer in the original search
space, i.e., it has the potential of simplifying the search in
the original state space by changing which states are selected
for expansion.

Definition 2 (Useful abstract search). Let T Π
u be an A∗

search over ΘΠ and let T α¬u be an abstract search over Θα in
the opposite direction. Let Sf be the set of states currently
selected for expansion in T Π

u , i. e., a subset of those with

81

minimal f -value according to any given tie-breaking crite-
ria. We say that T α¬u is useful for T Π

u if f(T α¬u) ≤ f(T Π
u)

and ∃s∈Sfhα(s) is not known or B(s, T α¬u) < hα(s).

Theorem 4. Let T Π
u be an A∗ search informed with a heuris-

tic generated by an abstract search T α¬u. If T α¬u is not useful
for Tu, continuing the abstract search cannot alter the set of
states selected for expansion, Sf .

Proof. Continuing the abstract search can only increase the
h-value of the states. To show that, consider the definition
of hT (s). On one hand, f(T α¬u) and g(T α¬u) monotonically
increase as the search is performed, so does B(s, T α). On
the other hand, if hα is known, its value is fixed so the only
point where hT α could decrease is when α(s) is expanded.

However, just before the expansion ofα(s), f(T α¬u)−g(s)
cannot be greater than hα(s):

f(T α¬u)− g(s) > g∗bw (α(s))

g∗bw (α(s)) + hbw (α(s))− g(s) > g∗bw (α(s))

g∗(s) ≤ g(s) < hbw (α(s)) ≤ h∗bw (α(s)) ≤ g∗(s)
Reaching a contradiction.

The only way to alter Sf is to increase the heuristic value
of some s ∈ Sf . Since hα(s) ≤ B(s, T α¬u), h(s) can only
be increased if h(s) < hα(s), which cannot be true if the
search is not useful:

• If f(Tu) = f(s) < f(T α¬u) then hT α¬u(s) < B(s, T α)
and h(s) = hα(s).

• If hα(s) is known and hα(s) ≤ B(s, Tα) then h(s) =
hα(s)

The search in the original state space is preferred when-
ever it is feasible. Otherwise, among all the abstract searches
that are valid candidates, we prefer those that have a greater
minimum f -value, just because they are closer to proving
that the current solution is optimal. In case of a tie, the
search whose next step is expected to take less time is se-
lected.

In summary, in order to prove optimality, it is enough to
expand abstract searches until f(T α) ≥ h∗(I). All the
states whose abstract counterparts have not been expanded
in any of the abstract searches do not need to be explored
because their f -value is guaranteed to be non-optimal.

Experiments
SymBA∗ is implemented on top of Fast Downward (Helmert
2006) and uses h2 in a precomputation step to remove irrel-
evant actions and obtain mutex constraints for pruning the
symbolic search (Alcázar and Torralba 2015). For our exper-
iments we used the version of SymBA∗ that was submitted
to IPC’14 after fixing some bugs. We run experiments on
the optimal-track STRIPS planning instances from IPC’98
until IPC’14. All experiments were conducted on a cluster
of Intel E5-2660 machines running at 2.20 GHz, with time
(memory) cut-offs of 30 minutes (4 GB).

We consider a search feasible if the frontier has less than
10 million BDD nodes and each step takes less than 45 sec-
onds, which are adequate values for the memory and time

SB SymBA∗ Metis
PDB ipc1 ipc2 ∅

cgl rev lev rnd gcl cgr ¬P ¬B
Airport(50) 27 27 27 27 27 27 27 27 27 27 27 27 29
Barman(34) 18 17 17 17 17 17 17 17 17 17 17 18 11
Blocks(35) 31 31 31 31 31 32 32 31 31 30 31 30 28

Childsnk(20) 4 4 4 4 4 4 4 4 4 4 4 4 6
Depot(22) 7 7 7 7 7 7 7 7 7 7 7 7 9

Driverlog(20) 12 14 13 13 14 13 14 14 14 14 14 12 14
Elevators(50) 44 44 44 44 44 44 44 43 43 44 44 43 40
Floortile(40) 34 34 34 34 34 34 34 34 34 34 34 34 16
FreeCell(80) 23 22 21 23 23 26 25 25 23 21 25 21 15

GED(20) 20 19 19 19 19 19 19 19 19 19 20 19 15
Grid(5) 3 3 3 3 3 3 3 3 3 3 3 2 2

Hiking(20) 15 15 15 15 19 18 18 20 20 18 20 15 14
Logistics(63) 23 25 25 25 25 25 24 25 25 25 25 23 27
Miconic(150) 112 107 108 108 109 108 108 108 108 108 108 108 144

Mprime(35) 24 23 25 24 25 25 25 25 24 25 24 23 24
Mystery(30) 15 15 15 15 15 15 15 15 15 15 15 15 18

NoMyste(20) 14 14 14 17 14 16 14 15 15 14 17 14 17
Openstk(100) 90 90 90 90 90 90 90 90 89 90 89 89 53
ParcPrint(50) 37 37 37 37 37 37 37 37 37 37 37 37 50

Parking(40) 6 4 4 4 4 4 4 3 2 1 3 1 8
PegSol(50) 48 48 48 48 50 48 49 48 48 48 50 48 48

PipesNT(50) 15 15 15 15 15 15 15 15 15 15 15 15 21
PipesT(50) 17 16 16 16 16 16 16 16 16 16 16 16 17
Rovers(40) 14 14 13 14 14 14 13 14 13 14 14 12 10

Satellite(36) 9 10 9 9 10 9 9 9 9 9 10 9 16
Scanlz(50) 21 21 21 21 21 21 21 21 21 21 21 21 31

Sokoban(50) 48 48 48 48 48 48 48 48 48 48 48 48 50
Tetris(17) 10 10 10 10 10 10 10 10 10 9 10 9 8

Tidybot(40) 25 20 20 20 20 20 20 17 27 27 27 17 23
TPP(30) 9 8 9 9 8 9 8 8 8 8 8 8 8

Transport(70) 33 31 31 31 31 31 31 31 31 31 31 33 24
VisitAll(40) 18 18 18 18 18 18 19 19 19 18 18 18 18

Woodwrk(50) 45 45 45 45 45 45 44 43 43 43 43 43 48
Zenotrvl(20) 10 11 12 11 11 12 12 12 12 12 11 10 13
Total(1607) 968 954 955 959 965 967 963 960 964 959 973 936 962

Score(40) 20.93 20.78 20.81 20.93 21.09 21.17 21.06 21.11 21.24 21.00 21.44 20.04 19.99

Table 1: Coverage of SymBA∗ with different abstraction
strategies, compared with SB and Metis.

limits of our experiments. SymBA∗ can use any abstraction
function that can be efficiently represented as BDDs such
as PDBs and M&S with linear merge strategies (Edelkamp,
Kissmann, and Torralba 2012; Helmert, Röger, and Siev-
ers 2015). In our evaluation we focus on the simpler vari-
ant, PDBs. To select the “pattern” of the PDBs we follow
a strategy previously used for symbolic perimeter abstrac-
tions (Torralba, Linares López, and Borrajo 2013), which
selects a variable ordering and relax variables one by one
until the search can be continued. We use six different vari-
able orderings. lev and rev use the variable ordering of the
BDD and its reverse, respectively. rnd is a completely ran-
dom ordering. cgl and cgr preserve variables interconnected
in the causal graph giving preference to goal variables and
breaking ties by lev or rnd, respectively. Finally, gcl pre-
serves goal variables preferring those that are interconnected
in the causal graph and breaking ties by lev. We also include
the two configurations of SymBA∗ used in IPC’14, which
use a combination of abstraction strategies in a round-robin
schema. ipc1 uses cgr, gcl and rev. ipc2 uses the same
PDB strategies plus a M&S strategy based on bisimulation
with a limit of 10 000 abstract states. Finally, ∅ is a strat-
egy that stops the algorithm instead of using any abstrac-
tion, to understand in which cases abstractions are being
used. As an ablation study, we run all configurations dis-
abling the perimeter abstractions (¬P) and substituting the
bidirectional search in the abstract state spaces for a standard
backward search (¬B).

Table 1 compares SymBA∗ with different abstrac-

82

tion strategies against the current state-of-the-art plan-
ner in symbolic search, bidirectional uniform-cost search
(SB), and one state-of-the-art explicit-state search planner,
METIS (Alkhazraji et al. 2014). Domains in which all plan-
ners got the same coverage are excluded from the table. We
report total coverage and a final score that gives the same
weight to every domain (versions of the same domain in dif-
ferent competitions are considered the same domain), nor-
malizing the coverage of every planner by the number of
problems in that domain. The results show that the use of ab-
stractions can improve the results of our baseline, SB, in 25
problems from 14 different domains. However, generating
abstractions implies a non-negligible overhead that affects
negatively the coverage in 35 problems from 20 different
domains. The conclusion is that using abstraction heuristics
is beneficial in domains where the “right” abstraction is se-
lected. Since the performance of all the strategies is close
to a random selection of variables (rnd), all configurations
are nearly tied in total coverage. The best strategy is ipc2,
which won the optimal-track of IPC’14. With it, the stan-
dard configuration of SymBA∗ gets a score of 21.24; more
than the baseline and METIS.

In the 936 problems solved by ∅, all the configurations
behave in the same way. In the rest of the problems, abstrac-
tions are used in around 500 cases. This reflects that, by
limiting the frontier size to 10 million BDD nodes, SymBA∗

is able to identify in which cases the blind search is going
to fail and resort to abstractions. If this parameter is set to
1 million nodes, most configurations improve in domains
where they are better than the baseline (e.g., ipc1/2 solve
18 problems in NoMystery except for ¬B and ipc2 with
¬B solves 11 instances in Satellite.) but their total cover-
age slightly decreases: ∅ solves 898 instances, ipc2 961 and
ipc2 with ¬B , 962.

The ablation study shows that using perimeter abstrac-
tions is usually helpful. Regarding bidirectional search in
abstract state spaces, however, the results are less clear.
When a single PDB is used, both versions are closely tied
though sometimes working best in different domains. How-
ever, when combining several strategies, as in the ipc con-
figurations, the version disabling bidirectional search in ab-
stract state spaces obtains better results. Our best configura-
tion is ipc2 with backward search in the abstract state spaces,
improving the previous state-of-the-art techniques both in
coverage and score.

Related Work
A connection can be made with hierarchical heuristic search
(HHS) algorithms (Holte, Grajkowski, and Tanner 2005).
Like SymBA∗, they do not precompute the abstract distance
before starting the search, but do so on-demand, i.e., the ab-
stract distance for a given abstract state is computed lazily.
This allows HHS algorithms to use more informed abstrac-
tions since they do not need to traverse the entire abstract
state space. The difference among the HHS algorithms lies
in how the abstract distances are computed when needed.
The algorithms that are closer to SymBA∗ in this regard are
Switchback (Larsen et al. 2010) and its improved version

Short-Circuit (Leighton, Ruml, and Holte 2011). They com-
pute the abstract distances in the usual way, performing an
abstract search in the opposite direction to the search that
they want to inform. However, they stop the search as soon
as the heuristic value for every state in the open list is known,
avoiding the exploration of the entire abstract state space.

Despite the similarities between our work and these algo-
rithms, there are noticeable differences. First of all, unlike
HHS algorithms, SymBA∗ uses bidirectional search so it can
be considered as a bidirectional hierarchical algorithm. Fur-
thermore, we consider the inclusion of partial and perimeter
abstractions which are, as discussed in the paper, needed in
order to apply these ideas to planning domains. For exam-
ple, Switchback and Short-Circuit do not use partial abstrac-
tions so the abstract search must continue until the heuristic
value of every state in the open list is known. Therefore,
in the presence of recognized dead-end states the algorithm
will traverse the entire abstract state space, losing all the ad-
vantages of the algorithm. The theory presented in this paper
could help to develop a version of these algorithms that can
be used in planning domains with dead-end states.

Conclusions
This paper addresses the question of whether heuristics can
be used to further improve the results of symbolic bidirec-
tional uniform-cost search (SB). This is a hard task, given
that multiple BHS algorithms have been proposed in the
past failing to outperform A∗ search and SB. We have in-
troduced a new algorithm, SymBA∗, that uses bidirectional
A∗ with abstraction heuristics. SymBA∗ leverages the per-
formance of SB by deferring the use of heuristics until a
blind search seems unfeasible. In order to generate heuris-
tics for both search frontiers, a bidirectional search is car-
ried out in an abstract state space, initialized with the cur-
rent frontier as a perimeter abstraction. To this end, we ex-
tended the definition of partial and perimeter abstractions
to the bidirectional case. These extensions are not limited to
SymBA∗ and they can be applied to other algorithms that use
A∗ to explore abstract state spaces such as the hierarchical
heuristic search algorithm Switchback (Larsen et al. 2010;
Leighton, Ruml, and Holte 2011).

Our experimental results show that abstractions can fur-
ther improve the current state-of-the-art in symbolic bidi-
rectional search, helping SymBA∗ to win the optimal track
of the last IPC. However, finding the right abstractions in a
domain-independent way is not a trivial task and there is still
room for improvement in future work.

Acknowledgments
We’d like to thank Rosa Moreno Morales for her advice and
support. This work was partially supported by MICINN
projects TIN2014-55637-C2-1-R and TIN2011-27652-C03-
02.

References
Alcázar, V., and Torralba, Á. 2015. A reminder about the
importance of computing and exploiting invariants in plan-

83

ning. In Proc. of the International Conference on Automated
Planning and Scheduling (ICAPS).
Alcázar, V.; Fernández, S.; and Borrajo, D. 2014. Analyzing
the impact of partial states on duplicate detection and colli-
sion of frontiers. In Proc. of the International Conference
on Automated Planning and Scheduling (ICAPS), 350–354.
Alkhazraji, Y.; Katz, M.; Matmüller, R.; Pommerening, F.;
Shleyfman, A.; and Wehrle, M. 2014. Metis: Arming fast
downward with pruning and incremental computation. In
International Planning Competition (IPC), 88–92.
Anderson, K.; Holte, R.; and Schaeffer, J. 2007. Partial
pattern databases. In Proc. of the Symposium on Abstraction,
Reformulation and Approximation (SARA), 20–34.
Barker, J. K., and Korf, R. E. 2015. Limitations of front-
to-end bidirectional heuristic search. In Proc. of the AAAI
Conference on Artificial Intelligence (AAAI), 1086–1092.
Bryant, R. E. 1986. Graph-based algorithms for Boolean
function manipulation. IEEE Transactions on Computers
35(8):677–691.
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318–334.
de Champeaux, D. 1983. Bidirectional heuristic search
again. Journal of the ACM 30(1):22–32.
Dillenburg, J. F., and Nelson, P. C. 1994. Perimeter search.
Artificial Intelligence Journal 65(1):165–178.
Edelkamp, S., and Kissmann, P. 2008a. Limits and possi-
bilities of BDDs in state space search. In Proc. of the AAAI
Conference on Artificial Intelligence (AAAI), 1452–1453.
Edelkamp, S., and Kissmann, P. 2008b. Partial symbolic pat-
tern databases for optimal sequential planning. In Proc. of
the German Conference on Artificial Intelligence (KI), 193–
200.
Edelkamp, S.; Kissmann, P.; and Torralba, Á. 2012. Sym-
bolic A∗ search with pattern databases and the merge-and-
shrink abstraction. In Proc. of the European Conference on
Artificial Intelligence (ECAI), 306–311.
Edelkamp, S. 2001. Planning with pattern databases. In
Proc. of the European Conference on Planning (ECP), 13–
34.
Eyerich, P., and Helmert, M. 2013. Stronger abstraction
heuristics through perimeter search. In Proc. of the Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 303–307.
Felner, A., and Ofek, N. 2007. Combining perimeter search
and pattern database abstractions. In Proc. of the Symposium
on Abstraction, Reformulation and Approximation (SARA),
155–168.
Felner, A.; Zahavi, U.; Holte, R.; Schaeffer, J.; Sturtevant,
N. R.; and Zhang, Z. 2011. Inconsistent heuristics in
theory and practice. Artificial Intelligence Journal 175(9-
10):1570–1603.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2):100–107.

Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge-and-shrink abstraction: A method for gener-
ating lower bounds in factored state spaces. Journal of the
ACM 61(3):16:1–16:63.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
Proc. of the International Conference on Automated Plan-
ning and Scheduling (ICAPS), 176–183.
Helmert, M.; Röger, G.; and Sievers, S. 2015. On the expres-
sive power of non-linear merge-and-shrink representations.
In Proc. of the International Conference on Automated Plan-
ning and Scheduling (ICAPS).
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research (JAIR) 26:191–
246.
Holte, R. C.; Felner, A.; Sharon, G.; and Sturtevant, N. R.
2016. Bidirectional search that is guaranteed to meet in the
middle. In Proc. of the AAAI Conference on Artificial Intel-
ligence (AAAI).
Holte, R. C.; Grajkowski, J.; and Tanner, B. 2005. Hierar-
chical heuristic search revisited. In Proc. of the Symposium
on Abstraction, Reformulation and Approximation (SARA),
121–133.
Kaindl, H., and Kainz, G. 1997. Bidirectional heuristic
search reconsidered. Journal of Artificial Intelligence Re-
search (JAIR) 7:283–317.
Kissmann, P. 2012. Symbolic Search in Planning and Gen-
eral Game Playing. Ph.D. Dissertation, Universität Bremen.
Kwa, J. B. H. 1989. BS*: An admissible bidirectional staged
heuristic search algorithm. Artificial Intelligence Journal
38(1):95–109.
Larsen, B. J.; Burns, E.; Ruml, W.; and Holte, R. 2010.
Searching without a heuristic: Efficient use of abstraction.
In Proc. of the AAAI Conference on Artificial Intelligence
(AAAI), 114–120.
Leighton, M. J.; Ruml, W.; and Holte, R. C. 2011. Faster
optimal and suboptimal hierarchical search. In Proc. of the
Symposium on Combinatorial Search (SoCS), 92–99.
McMillan, K. L. 1993. Symbolic model checking. Kluwer
Academic publishers.
Nilsson, N. J. 1982. Principles of Artificial Intelligence.
Springer.
Pohl, I. 1969. Bi-directional and heuristic search in path
problems. Ph.D. Dissertation, Department of Computer Sci-
ence, Stanford University.
Torralba, Á., and Alcázar, V. 2013. Constrained symbolic
search: On mutexes, BDD minimization and more. In Proc.
of the Symposium on Combinatorial Search (SoCS), 175–
183.
Torralba, Á.; Linares López, C.; and Borrajo, D. 2013. Sym-
bolic merge-and-shrink for cost-optimal planning. In Proc.
of the International Joint Conference on Artificial Intelli-
gence (IJCAI), 2394–2400.

84

Blind Search for Atari-like Online Planning Revisited

Alexander Shleyfman and Alexander Tuisov and Carmel Domshlak
Faculty of Industrial Eng. and Management

Technion, Israel
{alesh@tx, squel@campus, dcarmel@ie}.technion.ac.il

Abstract
Similarly to the classical AI planning, the Atari 2600 games
supported in the Arcade Learning Environment all feature a
fully observable (RAM) state and actions that have determin-
istic effect. At the same time, the problems in ALE are given
only implicitly, via a simulator, a priori precluding exploiting
most of the modern classical planning techniques. Despite
that, Lipovetzky et al. (2015) recently showed how online
planning for Atari-like problems can be effectively addressed
using IW(i), a blind state-space search algorithm that em-
ploys a certain form of structural similarity-based pruning.
We show that the effectiveness of the blind state-space search
for Atari-like online planning can be pushed even further by
focusing the search using both structural state similarity and
the relative myopic value of the states. We also show that the
planning effectiveness can be further improved by consider-
ing online planning for the Atari games as a multiarmed ban-
dit style competition between the various actions available at
the state planned for, and not purely as a classical planning
style action sequence optimization problem.

Introduction
Since its introduction in 2013, the Arcade Learning Environ-
ment (ALE) draws a growing interest as a testbed for gen-
eral, domain-independent planners and learners through a
convenient interface to numerous Atari 2600 games (Belle-
mare et al. 2013). These games all feature a fully observable
state and actions that have deterministic effect. At the same
time, both the action dynamics and the reward structure of
the games are given only implicitly, via a simulator, bringing
the ALE setup closer to the challenges of real-world appli-
cations.

ALE supports two settings of action selection problem: an
online planning setting where each action selection is based
on a relatively short, simulated lookahead, and a learning
setting that must produce reactive controllers for mapping
states into actions after a single long session of interactions
with the simulator. In this work we consider the online plan-
ning setting.

The implicit, simulator-based problem representation in
ALE precludes automatic derivation of heuristic functions
and other inferences developed in the scope of classical
planning (Ghallab et al. 2004; Geffner and Bonet 2013).
This state of affairs restricts the algorithmic choices to blind
(aka not future estimating) search algorithms, such as blind

best-first search and Monte-Carlo tree search algorithms.
The first results on domain-independent online planning in
ALE have been reported by Bellemare et al. (2013), where
the search algorithm of choice was the popular Monte-Carlo
tree search algorithm UCT (Kocsis and Szepesvári 2006). In
particular, UCT was shown there to substantially outperform
breadth-first search (BrFS). The latter result probably came
at no surprise since blind best-first search methods such as
BrFS are inherently ineffective over large state spaces. Re-
cently, however, Lipovetzky et al. (2015) showed that this is
not the end of the story for breadth-first search. In particu-
lar, they showed that IW(i), a pruning-enhanced successor
of BrFS originated in work in classical planning (Lipovet-
zky and Geffner 2012), favorably competes with UCT on
the Atari games.

In this work we show that the effectiveness of blind state-
space search for deterministic online planning in Atari-like
problems can be pushed even further by focusing the search
using both structural state similarity and the relative my-
opic value of the states. We introduce and evaluate pri-
oritized IW(i), a simple extension of IW(i) that approxi-
mates breadth-first search with duplicate detection and state
reopening, and show that it very favorably competes with
IW(i) on the Atari games. We then revisit the basic objec-
tive underlying deterministic online planning. We argue that
the effectiveness of online planning for the Atari games and
related problems can be further improved by considering this
problem as a multiarmed bandit style competition between
the actions available at the state planned for (and not purely
as a classical planning style action sequence optimization
problem). Following this lead, we introduce a simple modi-
fication of prioritized IW(i) that fits the modified objective,
and empirically demonstrate the prospects of this direction.

Background
The Atari 2600 games exposed by ALE represent a broad
range of problems that are characterized by means of a finite
set of states, with each state being represented by a complete
assignment to some n finite domain variables X1, . . . , Xn,
an initial state s0, a finite set of actions, a transition func-
tion s′ = f(a, s) where s′ is the state resulting from ap-
plying action a in state s, and real-valued rewards r(a, s)
that result from applying a in s. The transition function and
rewards in ALE are implemented by a game simulator and

85

thus are not known to the planner a priori. At the same
time, the environment is fully observable: when applying ac-
tion a is simulated in state s, the resulting new state f(a, s)
and the collected reward r(a, s) are revealed to the planner.
The state of the game is simply captured by the content of
Atari’s RAM of 128 bytes. Different choices of factoring
this RAM into a set of state variables are possible, and, as
it is typically the case with feature generation in learning,
this choice of factoring may have a substantial impact on the
planner’s performance. This aspect of the problem is tan-
gential to our focus here; for ease of comparability, we adopt
the previous work’s factoring along 128 variables, each rep-
resenting the value of the respective memory byte, and thus
having the domain of 256 values (Bellemare et al. 2013;
Lipovetzky et al. 2015).

IW(i), an algorithm that has recently been shown by
Lipovetzky et al. (2015) to exhibit state-of-the-art perfor-
mance on the Atari games, is a regular breadth-first search
with the following modification: When a state s is generated,
it is assigned a novelty penalty, and is pruned if the penalty is
higher than i. The novelty penalty of a newly generated state
s is 1 if s is the first state generated in the search that makes
true some atom X = x, else it is 2 if s is the first state that
makes a pair of atomsX = x∧Y = y true, and so on. If the
problem state is represented by n atoms, then IW(n) simply
corresponds to breadth-first search with duplicate detection,
while values of i lower than n induce breadth-first searches
with respectively more aggressive state pruning.

In classical planning, the primary termination condition
for the search process is the achievement of the goal. In
problems with a more general and/or unknown reward struc-
ture, such as the Atari games, the termination is determined
by a search resource budget, such as a time window or a limit
on the number of generated nodes. The accumulated reward
R(s) of a generated state s is R(s) = R(s′)+ r(a, s) where
s′ is the unique parent state of s. The best path is then a
state-space path from the initial state to a state that maxi-
mizes the accumulated reward. In online planning, the first
action along this path is then executed, the system transitions
to a new state, and the search process starts over from that
new initial state. In what follows, the state that is planned
for at the current iteration is denoted by s0.

Prioritized Pruning
While the experiments of Lipovetzky et al. (2015) showed
that IW(1) performs on the Atari games at the level of UCT,
a closer look at the results suggests that the strength of these
two algorithms is somewhat complementary: Out of the 54
games used in the experiments, IW(1) scored more than
150% of the UCT’s score in 17 games, while UCT scored
more than 150% of the IW(1)’s score in 13 games. The
two algorithms are too different to easily characterize the
problems on which each has an a priori advantage, and yet
one key difference between them immediately suggests it-
self as a natural explanation of the complementarity of the
two: While the exploration of UCT is biased towards the re-
gions of the state-space that already appear rewarding, the
exploration of IW(1) has no such a bias whatsoever.

As a variant of blind search that aims at combining both
strengths, Lipovetzky et al. (2015) evaluated 2BFS, a best-
first search algorithm with two queues: one queue ordered in
increasing order of the novelty penalty, and a second queue
ordered in a decreasing order of the accumulated reward.
In one iteration, the best first search picks up the best node
from one queue, and in the second iteration it picks up the
best node from the other queue, with all the generated nodes
being added to both queues. This way, while IW(i) pro-
gresses in a breadth-first manner while pruning states based
on their novelty, 2BFS progresses (in its first queue) in the
best-first manner while only prioritizing the states based on
their novelty.

In that respect, an important property of most of the Atari
games is that the state of the game changes not only due to
the actions of the player but also due to the change of the
environment—the cars keep moving, the rocks keep falling,
etc.—while the changes that the player can make to the state
are rather limited.1 As a result, a state reachable in k steps
from the initial state is likely to be novel with respect to
the states reachable in less than k states. Thus, if the best-
first search selects the state to expand based on its relative
novelty, then at least some of its children are also likely to
exhibit relatively high novelty, ending up high in the queue.
Such a chain effect makes the search much more depth-first,
and, since the state-space is typically much larger than what
the search can explore within a reasonable search budget,
the explored region of the state-space is likely to have a nar-
row focus. In turn, this biases action selection at s0 towards
action sequences that collect rewards far from s0 while pos-
sibly missing alternatives that bring the rewards earlier as
well. Interestingly, the second queue of 2BFS, prioritized by
the states’ reward-so-far, does not necessarily balance this
phenomenon: Since the first rewarding state is more likely
to be found within the tunnel created by the depth-first-like
progress of the first queue, the second queue is likely to join
expanding that tunnel, possibly making it wider, but still,
abandoning the exploration of the state-space under the my-
opically less appealing alternatives.

At first view, the breadth-first searching IW(1) is expected
to behave differently. However, in our experiments we con-
sistently observed IW(1) exhibiting a very similar “single
tunnel” phenomenon. This seems to happen precisely be-
cause of the aforementioned structure of the Atari games due
to which the likelihood of the states of the same shallowness
to survive the novelty pruning decays very rapidly with the
position of the states in the queue. Indeed, in the experi-
ments of Lipovetzky et al. (2015), neither 2BFS exhibited a
substantial advantage over IW(1) nor the other way around,
leaving open the quest for an effective interplay between the
novelty and the reward-so-far promise.

We now show that plugging a bias towards the reward-so-

1This is very different from the typical structure of the bench-
marks used in the classical planning research where the set of ac-
tions controlled by the planner is rather rich, but at the same time,
these actions are responsible for most, if not all, the changes made
to the state. At least in part, the latter can be attributed to the fact
that encoding environment changes in the PDDL language is not
an easy task.

86

far into the actual state pruning mechanism offers a promis-
ing direction for addressing this quest: Even if done in a
rather simple manner as in the prioritized IW(i) procedure
described below, this approach results in an algorithm that
strongly outperforms IW(1) and UCT. Prioritized IW(i), or
p-IW(i), for short, deviates from IW(i) twofold:

1. While preserving the breadth-first dynamics of IW(i), the
ties in the queue are broken to favor states with higher
accumulated reward.

2. Every i-set of atoms x is schematically pre-assigned a “re-
ward” of r̂(x) = −∞. Given that, a generated state s is
considered novel if, for some i-set of atoms x in s, we
have R(s) > r̂(x). If that holds, then (and only then) s is
not pruned, and, for each i-set of atoms x in s, we update
its reward to r̂(x) := max {R(s), r̂(x)}.
The two modifications of p-IW(i) with respect to IW(i)

bring the reasoning about the reward accumulated by the
states directly into the mechanism of state pruning, address-
ing two complementary questions—what states should lead
the pruning, and what states should be pruned—as follows.

First, the regular breadth-first search is driven by two
principles: always expand one of the shallowest states in
the queue and never put a state into the queue twice. The
later duplicate pruning makes BrFS a graph search rather
than a tree search, leading to up to exponential savings in
the search effort while preserving completeness. In that
respect, IW(i) is BrFS in which state duplication is over-
approximated by state (non-)novelty: If a search node gen-
erated by BrFS is pruned due to its duplication, then, for
any i, that search node would be pruned by IW(i), but not
necessarily vice versa (unless i = n). In classical plan-
ning, this “non-novel as duplicate” over-approximation has a
strong semantics via a notion of “problem width” (Lipovet-
zky and Geffner 2012). In the settings of ALE, however, this
over-approximation is motivated only informally, by a sim-
ilarity to the novelty-based search methods developed inde-
pendently in the context of genetic algorithms (Lehman and
Stanley 2011). In the latter methods, individuals in the pop-
ulation are not ranked according to the optimization function
but in terms of how much they are different from the rest of
the population, thus encouraging global exploration rather
than (greedy) search for local improvements.

Though better exploration is indeed what online planning
effectiveness boils down to (Bubeck et al. 2011), the direct
linkage to the diversity-driven genetic algorithms has an im-
portant weakness. Suppose that the two shallowest states in
the search queue of IW(i) are s1 and s2, and suppose further
that the children of s1 make the children of s2 non-novel and
vice versa. In other words, expanding any of these two states
blocks the search under the other state. In IW(i), the choice
between s1 and s2 remains arbitrary. However, if the accu-
mulated reward of s1 is higher than s2, then, ceteris paribus,
it is only reasonable to assume that the best extension of s1
is more rewarding than the best extension of s2, and thus
s1 should better be expanded before s2. This example em-
phasizes the difference between the evolutionary search in
genetic algorithms and state-space forward search: While
the former typically examines fully specified candidates to

the problem solution, the latter gradually expands partial
solutions in the form of path prefixes. Under the additive
structure of the accumulated reward, the quality of partial so-
lutions lower bounds the quality of their extensions, making
total ignorance of the accumulated reward of the states in the
queue rather questionable. The first modification of p-IW(i)
with respect to IW(i) approaches precisely this issue under
the conservative, ceteris paribus semantics, preserving the
breadth-first search dynamics of the search.

Suppose now that IW(i) generates a state s such that
R(s) > R(s′) for all the previously generated states s′. De-
spite the fact that the extensions of the respective path to
s are now the most promising candidates for the best solu-
tion that IW(i) can possibly compute from now on, if s is
evaluated as non-novel, then it is pruned, independently of
its accumulated reward. The second deviation of prioritized
IW(i) from IW(i) takes the accumulated reward of the gen-
erated state s into account in the actual decision whether s
should be pruned or not. Specifically, a newly generated
state s in prioritized IW(i) is pruned if, for every i-set of
atoms x in s, there was a previously generated state s′ that
contains x and has R(s′) ≥ R(s).

Similarly to the way the state pruning in IW(i) can be
understood as an over-approximation of the standard dupli-
cate pruning, the state pruning in p-IW(i) can be understood
as an over-approximation of duplicate pruning with state
reopening. In BrFS, if the solution optimality is of inter-
est, then, if a previously generated state s is rediscovered
through a different path with a higher accumulated reward,
then s is “reopened”, either by re-starting the search from s
onwards, or by propagating the new accumulated reward of s
to its descendants in the queue. In that respect, if a state gen-
erated by BrFS with node reopening is pruned, then, for any
i, that search node would be pruned by p-IW(i), but not nec-
essarily vice versa. In particular, this modification allows for
a substantial alleviation of the “single tunnel” phenomenon
exhibited by IW(i), keeping the search wider but only when
the extended search breadth is justified by the accumulated
reward of the respective states.

Experiments – Plane
We tested p-IW(1) and IW(1) on 53 of the 55 different
games considered by Bellemare et al. (2013): The SKIING
game was already left out in the experiments of Lipovetzky
et al. (2015) due to certain issues with the reward structure
of this game. We decided to also leave out BOXING because,
in the single player setting of ALE, scoring in this game
boils down to striking in arbitrary directions since the sec-
ond player is doing nothing, and therefore every algorithm
will trivially score the possible maximum.

We used the implementation of IW(1) by Lipovetzky et
al. (2015), and have implemented p-IW(1) on top of it.
To focus the comparison on the effectiveness of individ-
ual online decisions, both algorithms have been evaluated
in a memory-less setting. This is in contrast to the exper-
iments of Lipovetzky et al. (2015) in which IW(1) reused
the frames in the sub-tree of the previous lookahead that
is rooted in the selected child, to allow for a direct com-
parison with the results reported for UCT by Bellemare et

87

150K 10K
Game p-IW(1) IW(1) p-IW(1) IW(1)

ALIEN 4939 4705 1638 1473
AMIDAR 1186 938 67 78
ASSAULT 1700 591 423 373
ASTERIX 172413 30780 5985 6683
ASTEROIDS 63520 29884 2192 2224
ATLANTIS 151720 52453 144850 126703
BANK HEIST 296 296 67 63
BATTLE ZONE 7767 5000 2900 2133
BEAM RIDER 4487 3398 2445 2730
BERZERK 854 639 208 200
BOWLING 27 27 28 27
BREAKOUT 291 224 400 344
CARNIVAL 2773 2509 2141 1832
CENTIPEDE 163917 59913 140171 134542
CHOPPER COMMAND 5653 2040 2230 2157
CRAZY CLIMBER 107673 37350 114157 37013
DEMON ATTACK 24153 12448 4845 6098
DOUBLE DUNK -6 -6 -14 -18
ELEVATOR ACTION 8910 4217 2597 2057
ENDURO 420 432 0 0
FISHING DERBY -8 -9 -82 -83
FREEWAY 30 30 23 23
FROSTBITE 353 199 257 259
GOPHER 9756 11852 9546 15019
GRAVITAR 2943 2270 343 315
HERO 4969 5483 2159 2170
ICE HOCKEY 43 41 -7 -7
JAMESBOND 173 152 32 32
JOURNEY ESCAPE 7973 8560 440 1293
KANGAROO 1057 1130 587 753
KRULL 10293 4332 4464 3475
KUNG FU MASTER 67163 33903 26610 26250
MONTEZUMA REVENGE 0 0 0 0
MS PACMAN 11451 8219 3511 3835
NAME THIS GAME 11302 6087 12445 11004
PONG 14 13 -20 -20
POOYAN 2252 1312 1945 2271
PRIVATE EYE 72 0 93 20
QBERT 1640 1249 1441 1527
RIVERRAID 8707 4055 3303 3095
ROAD RUNNER 80900 39133 0 0
ROBOTANK 59 57 3 2
SEAQUEST 19007 2747 245 260
SPACE INVADERS 2037 1151 227 211
STAR GUNNER 14193 2783 1097 1190
TENNIS 10 9 -24 -24
TIME PILOT 31767 5903 18797 15140
TUTANKHAM 136 140 182 147
UP N DOWN 93305 75088 2717 2576
VENTURE 240 150 0 0
VIDEO PINBALL 413976 223772 286921 237078
WIZARD OF WOR 111487 88953 6373 4270
ZAXXON 15247 9200 0 0

times best (53 games) 47 11 38 24
times 10K better than 150K 6 13

Table 1: Performance of p-IW(1) and IW(1) in 53 Atari
2600 games. The algorithms are evaluated over 30 runs
for each game. The maximum episode duration is 18000
frames, with the lookahead per decision being limited to
150000 simulated frames in columns 2-3 and to 10000 sim-
ulated frames in columns 4-5. Per lookahead budget, the av-
erage scores in bold show best performer and the summary
of the performance is given at the bottom of the table.

al. (2013) under a similar setting. Following Lipovetzky et
al. (2015), each action selection decision was given a looka-
head budget of 150000 simulated frames (or, equivalently,
30000 search nodes), the lookahead depth was limited to
1500 frames, and the accumulated rewards were discounted
asR(s′) = R(s)+γd(s)+1r(s, a) where s is the unique par-
ent of s′, a is the respective action, d is the distance from the
root node, and the discount factor2 was set to γ = 0.995. To
reduce the variance, each game was played 30 times, with
the reported results being averaged across these runs.

Columns 2-3 in Table 1 shows that p-IW(1) rather con-
sistently outperforms IW(1). Out of the 53 games, p-IW(1)
achieved higher average scores in 42 games, 5 games ended
up with a draw, and IW(1) achieved higher average scores
in 6 games. Of the latter, the highest achievement of IW(1)
was the 22% score difference in GOPHER, while p-IW(1)
outscored IW(1) by more than 50% on 25 games. In fact,
comparing our results with the results reported by Lipovet-
zky et al. (2015) for IW(1) with memory, p-IW(1) with-
out memory scored higher than IW(1) with memory on 14
games.

In general, we have noticed that both p-IW(1) and IW(1)
typically did not use the entire budget of 150000 simulated
frames per decision. To examine the score improvement as
a function of budget, we have also tested them under a bud-
get of only 10000 simulated frames per decision, all else
being equal. The results are shown in columns 4-5 of Ta-
ble 1. As one would expect, the scores here are typically
lower than these achieved under the 150000 frames bud-
get, and, since p-IW(1) brings an approximation of state re-
opening, typically it benefits of the budget increase much
more than IW(1). More interestingly, while the higher
budget “misled” p-IW(1) on 6 games, in none of these
cases the score loss was substantial. In contrast, IW(1)
did worse with 150000 frames budget than with 10000
frames budget on 13 games, with the loss being substan-
tial on 6 games, namely ATLANTIS, CENTIPEDE, GOPHER,
NAME THIS GAME, POOYAN, and TIME PILOT.

Experiments – Frame Reuse
Another evaluation step we used was the testing of p-IW(1)
in the setting described in in Lipovetzky et al. (2015). As
reported in those two works, all of the algorithms reuse
the frames in the sub-tree of the previous lookahead that is
rooted in the selected child, deleting its siblings and their
descendants. More precisely, no calls to the emulator are
done for transitions that are cached in that sub-tree, and such
reused frames are not discounted from the budget that is thus
a bound on the number of new frames per lookahead. In ad-
dition, in IW(1) and p-IW(1), the states that are reused from
the previous searches are ignored in the computation of the
novelty of new states so that more states can escape pruning.

As in the previous subsection we evaluated the perfor-
mance over the 53 Atari 2600 games. The algorithms, 2BFS,

2The discount factor results in a preference for rewards that can
be reached earlier, which is a reasonable heuristic given the budget
limits of the lookahead search. At the same time, choosing the right
discount factor is a matter of tuning.

88

UCT, and BrFS was evaluated over 10 runs (episodes) for
each game, the algorithms, IW(1), p-IW(1) was evaluated
over 30 runs (episodes) for each game. This was done
to reduce the standard deviation values for the two algo-
rithms in question. As before the maximum episode du-
ration was 18000 frames and every algorithm was limited
to a lookahead budget of 150,000 simulated frames. Fig-
ures for UCT, and BrFS taken from Bellemare et al. (2013),
whether the figures for 2BFS are taken form Lipovetzky
et al. (2015). Numbers in bold show best performer in
terms of average score. The IPPC-like score in Table 2
was calculated with the BrFS algorithm serving as a base-
line, using the following formula for an algorithm ψ ∈
{IW(1), p-IW(1), 2BFS,UCT}:

score(ψ)− score(BrFS)
maxx∈{IW(1),p-IW(1),2BFS,UCT}score(x)− score(BrFS)

if score(ψ) > score(BrFS), and 0 otherwise.
Table 2 shows that p-IW(1) rather consistently outper-

forms all other evaluated algorithms. Out of the 53 games,
p-IW(1) achieved higher average scores in 34 games, and ty-
ing up on BOWLING with IW(1), on TENNIS with IW(1) and
2BFS, and finally on PONG with all algorithms except BrFS.
On the other hand, IW(1) was best in 4 games, and 2BFS
and UCT in 6. In the terms of IPPC-like score, p-IW(1)
achieves 144% of the cumulative score of IW(1), 144% of
the 2BFS score, and 172% of this of UCT.

IW(1) and p-IW(1) with memory mostly outperform
IW(1) and p-IW(1) without it, with a couple of exceptions
being PRIVATE EYE and STAR GUNNER. This may happen
due to the inheritance of the search tree without updating the
novelty table. Both IW(1) and p-IW(1) with memory get
”broad” tree from the previous step, and the expansion of all
leaves in these trees limits the further advancement of the
search. Spending most of the budget on the ”breadth” nodes
and thus, reducing the depth of the search tree. Another ex-
ception is the CRAZY CLIMBER game, where IW(1) with
memory mostly outperform IW(1) without it. Here the case
is slightly different, since IW(1) without memory and a bud-
get of 10000 frames outperforms the same algorithm with a
budget of 150000 frames. We assume this happens because
of the density of the rewards in the game. Since the IW(1) is
guided only by the novelty measure, and not by the reward
at hand, the recommendation results in a choice not of the
”best“ action, but of the action with the longest rollout.

Racing Blind Search
Approximating state duplication by state non-novelty allows
IW(i) to search deeper in the state-space, possibly reaching
rewarding states that lie far from the initial state. At the same
time, this specific approximation often results in a highly
unbalanced exploration of the state space. p-IW(i) partly al-
leviates the latter phenomenon, but the extent to which this
is achieved depends on the reward structure of the specific
game. Recall that the original objective pursued by the, both
heuristically guided and blind, best-first forward search pro-
cedures is to compute a sequence of actions from the initial
state to a state that maximizes the accumulated reward, even

Game IW(1) p-IW(1) 2BFS UCT BrFS

ALIEN 28238 38951 12252 7785 784
AMIDAR 1775 3122 1090 180 5
ASSAULT 896 1970 827 1512 414
ASTERIX 145067 319667 77200 290700 2136
ASTEROIDS 52170 68345 22168 4661 3127
ATLANTIS 150327 198510 154180 193858 30460
BANK HEIST 601 1171 362 498 22
BATTLE ZONE 7667 9433 330880 70333 6313
BEAM RIDER 9851 12243 9298 6625 694
BERZERK 1915 1212 802 554 195
BOWLING 69 69 50 25 26
BREAKOUT 401 477 772 364 1
CARNIVAL 5898 6251 5516 5132 950
CENTIPEDE 98922 193799 94236 110422 125123
CHOPPER COMMAND 12310 34097 27220 34019 1827
CRAZY CLIMBER 36010 141840 36940 98172 37110
DEMON ATTACK 20177 34405 16025 28159 443
DOUBLE DUNK 0 8 21 24 -19
ELEVATOR ACTION 13097 16687 10820 18100 730
ENDURO 499 497 359 286 1
FISHING DERBY 22 42 6 38 -92
FREEWAY 31 32 23 0 0
FROSTBITE 2040 6427 2672 271 137
GOPHER 18175 26297 15808 20560 1019
GRAVITAR 4517 6520 5980 2850 395
HERO 12769 15280 11524 1860 1324
ICE HOCKEY 55 62 49 39 -9
JAMESBOND 20668 15822 10080 330 25
JOURNEY ESCAPE 42263 65100 40600 12860 1327
KANGAROO 8243 5507 5320 1990 90
KRULL 6357 15788 4884 5037 3089
KUNG FU MASTER 63570 86290 42180 48855 12127
MONTEZUMA REVENGE 13 27 500 0 0
MS PACMAN 22869 30785 18927 22336 1709
NAME THIS GAME 9244 14118 8304 15410 5699
PONG 21 21 21 21 -21
POOYAN 10460 15832 10760 17763 910
PRIVATE EYE -60 21 2544 100 58
QBERT 5139 44876 11680 17343 133
RIVERRAID 6865 14437 8304 15410 2179
ROAD RUNNER 85677 120923 68500 3875 245
ROBOTANK 67 75 52 50 2
SEAQUEST 13972 35009 6138 5132 288
SPACE INVADERS 2812 3076 3974 2718 112
STAR GUNNER 1603 1753 4660 1207 1345
TENNIS 24 24 24 3 -24
TIME PILOT 35810 65213 36180 63855 4064
TUTANKHAM 167 158 204 226 64
UP N DOWN 104847 120200 54820 74474 746
VENTURE 1107 1167 980 0 0
VIDEO PINBALL 288394 471859 62075 254748 55567
WIZARD OF WOR 122020 161640 81500 105500 3309
ZAXXON 33840 39687 15680 22610 0

times best (53 games) 7 37 8 7 0
IPPC-like score 32.17 46.37 31.83 26.83 0

Table 2: Performance of p-IW(1) vs. IW(1), 2BFS, UCT,
and BrFS. The experimental setup is similar to this in
Lipovetzky et al. (2015), with the lookahead budget of
150000 frames.

89

if not in absolute terms but only best effort. In the context
of this objective, it is actually hard to argue whether a more
balanced exploration of the state space is more rational than
a less balanced exploration, and if so, what kind of balance
we should strive for here. In fact, in the absence of any ex-
tra knowledge about the problem, expanding an already re-
warding sequence of actions is arguably more rational than
searching elsewhere.

In the context of online planning, however, computing an
as rewarding as possible sequence of actions is not the actual
objective of the planner. Let A(s0) = {a1, . . . , ak} be the
actions applicable at the current state s0 and, for 1 ≤ l ≤ k,
let πl be the most rewarding action sequence applicable in
s0 that starts with al. The actual objective in online plan-
ning is not to find the most rewarding action sequence πl∗
among π1, . . . , πk but only to find the index l∗ of that se-
quence, that is, to find the identity of the first action along
πl∗ . At least in theory, the latter objective is less ambitious
than the former since computing πl∗ implies finding l∗ but
obviously not the other way around. In practice, this differ-
ence in objectives suggests that various adaptations can be
found beneficial when transferring the techniques from the
classical, open-loop AI planning to the closed-loop online
planning.

To exemplify the prospects of such adaptation, consider
the following example. Whether we apply prioritized or reg-
ular IW(i) (or, for that matter, any other blind forward search
procedure), suppose that, at a certain stage of the search pro-
cess, the states in the queue all happen to be descendants of
the same action al applicable at the planned state s0. If one
of these states has the maximum accumulated reward among
all the states generated so far, then the search can be termi-
nated right away: No matter how much further we will con-
tinue searching, al will remain the action of our choice at s0,
that is, l will remain our estimate for the desired action in-
dex l∗. Furthermore, letQ1, . . . , Qk be a cover of the search
queue Q of either prioritized or regular IW(i), such that, for
1 ≤ l ≤ k, s ∈ Ql if one of the most rewarding action se-
quences generated so far from s0 to s starts with al. Given
that, the candidates for al∗ can be restricted to a subset A of
A(s0) if {Ql | al ∈ A} induces a set cover of Q.

In sum, the search procedures in the context of online
planning should aim at the competition between the actions
in A(s0). UCT and BrFS actually appear to be more faith-
ful with this objective than both IW(i) and p-IW(i) yet not
without caveats:
• The UCT algorithm is grounded in the UCB (upper-

confidence bound) Monte-Carlo procedure for opti-
mizing online action selection in multiarmed bandits
(MABs) (Auer et al. 2002). However, UCT has at least
two substantial shortcomings in the settings of online
planning for the Atari games: First, while the UCB pro-
cedure is optimized for the learning-while-acting settings
of MAB, the simple uniform and round-robin sampling
of the actions provide much better formal and empirical
guarantees when it comes to online action selection with
MAB simulators (Bubeck et al. 2011). Thus, within the
scope of the Monte-Carlo tree search algorithms, the more
balanced sampling algorithms such as BRUE (Feldman

and Domshlak 2014) are a priori more appropriate. Sec-
ond, the usage of the upper-confidence bounds and of the
very averaging Monte-Carlo updates in UCT aims at esti-
mating the mean value of the policies under stochasticity
of the action outcomes. Since all the actions in the Atari
games are deterministic, neither of these tools is semanti-
cally meaningful here and actually harm the convergence
of the decision process.

• In contrast, BrFS is built for deterministic actions and by
definition runs a fair competition between the actions in
A(s0) in terms of the search horizon. The absence of se-
lectiveness, however, makes BrFS uncompetitive in prob-
lems with large search width such as the Atari games
where all the actions are applicable in every state.
Combining the selectiveness of p-IW(i) with a uniformly

balanced exploration of the actions, we have evaluated the
following simple modification of p-IW(1), referred to in
what follows as racing p-IW(1):

1. Expand the initial state s0. For every subset of actions
A ⊆ A(s0) that result in the same successor of s0, elimi-
nate from A(s0) all but one action a ∈ A that maximizes
r(s0, a).

2. Let the (pre-pruned as above) action set A(s0) be
{a1, . . . , ak}. At iteration m, restrict the selection from
the search queue only to successors of f(s0, am%k).

3. At every stage of the search, if the search queue contains
only successors of f(s0, a) for some action a ∈ A(s0)
and a state in the queue corresponds to the most reward-
ing path generated so far, terminate the search and recom-
mend (aka execute) a.

Note that nothing in the above modification is specific to
p-IW(1), and thus one can adapt any forward state-space
search algorithm to the action selection objective of online
planning in exactly the same manner.

Table 3 compares the performance of racing p-IW(1) with
that of p-IW(1) and IW(1). The experimental setup remains
as before, with the lookahead budget of 150000 frames.
While p-IW(1) was still the leader with best performance in
34 games, racing p-IW(1) achieved the best average scores
in 16 games, including some very substantial leads such as
in BATTLE ZONE, GOPHER, POOYAN, and QBERT. While
racing p-IW(1) was the only algorithm to score in the very
challenging game MONTEZUMA REVENGE, at the moment
we have no evidence that this should be attributed to any-
thing but pure chance. At the same time, the seemingly
small advantage of racing p-IW(1) over p-IW(1) and IW(1)
in FREEWAY is actually substantial since the maximum score
in this game is 38, and this canonical Atari game posed
a challenge to both BrFS and UCT, with IW(1) being the
first algorithm to score in this game at all (Lipovetzky et al.
2015).

Summary and Future Work
Online planning with simulators provide a challenging
testbed for action planning since most of the sophisticated
techniques for scaling up planning systems rely upon infer-
ence over propositional encodings of actions and goals that

90

are “hidden” by the simulator. Previous work showed that
a blind forward search algorithm IW(1) achieves state-of-
the-art performance in such planning problems around the
Atari video games, with the key to success being struc-
tural, similarity-based approximation of duplicate prun-
ing (Lipovetzky et al. 2015).

We have shown that the effectiveness of blind state-space
search on deterministic online planning like in the Atari
games can be further improved by (a) combining approxi-
mated duplicate pruning with an approximate state reopen-
ing, and (b) reshaping the dynamics of the forward search
algorithms to better fit the objective of selecting and execut-
ing only a single action at a time. Our experiments show
that modifying IW(i) along these two lines results in algo-
rithms, p-IW(1) and racing p-IW(1), that both substantially
outperform IW(1) on the Atari games.

The simple concept of the racing search algorithms for
deterministic online planning suggests numerous directions
for future investigation. First, while the state pruning in our
racing p-IW(i) was done based on a global view on state
novelty, whether/when this globality is friend or foe is yet
to be investigated: On the one hand, it is not hard to verify
that the globally reasoned duplicate pruning will always im-
prove the efficiency of the racing search at least as much as
any locally reasoned duplicate pruning. On the other hand,
pruning a state in one branch based on its similarity (but not
equivalence!) to a state in another branch is not necessar-
ily the best thing to do. As another issue, if the number of
actions examined for the current state does not decrease for
a substantial chunk of the lookahead budget, then it seems
natural to consider a mechanism for gradual “candidate re-
jection”, possibly in the spirit of algorithms for budgeted
pure exploration in stochastic multiarmed bandit problems
like Sequential Halving (Karnin et al. 2013).

References
P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time anal-
ysis of the multiarmed bandit problem. Machine Learning,
47(2-3):235–256, 2002.
M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling.
The Arcade Learning Environment: An evaluation platform
for general agents. JAIR, 47:253–279, 2013.
S. Bubeck, R. Munos, and G. Stoltz. Pure exploration in
finitely-armed and continuous-armed bandits. Theor. Comp.
Sci., 412(19):1832–1852, 2011.
Z. Feldman and C. Domshlak. Simple regret optimization
in online planning for Markov decision processes. JAIR,
51:165–205, 2014.
H. Geffner and B. Bonet. A Concise Introduction to Models
and Methods for Automated Planning. Morgan & Claypool,
2013.
M. Ghallab, D. Nau, and P. Traverso. Automated Planning.
Morgan Kaufmann, 2004.
Z. S. Karnin, T. Koren, and O. Somekh. Almost opti-
mal exploration in multi-armed bandits. In ICML, pages
1238–1246, 2013.

Game p-IW(1) IW(1) R. p-IW(1)

ALIEN 4939 4705 4995
AMIDAR 1186 938 911
ASSAULT 1700 591 572
ASTERIX 172413 30780 83983
ASTEROIDS 63520 29884 7780
ATLANTIS 151720 52453 133943
BANK HEIST 296 296 303
BATTLE ZONE 7767 5000 11600
BEAM RIDER 4487 3398 4127
BERZERK 854 639 496
BOWLING 27 27 36
BREAKOUT 291 224 455
CARNIVAL 2773 2509 4270
CENTIPEDE 163917 59913 72441
CHOPPER COMMAND 5653 2040 3433
CRAZY CLIMBER 107673 37350 57693
DEMON ATTACK 24153 12448 13927
DOUBLE DUNK -6 -6 -5
ELEVATOR ACTION 8910 4217 7010
ENDURO 420 432 218
FISHING DERBY -8 -9 0
FREEWAY 30 30 32
FROSTBITE 353 199 238
GOPHER 9756 11852 16707
GRAVITAR 2943 2270 1423
HERO 4969 5483 2922
ICE HOCKEY 43 41 17
JAMESBOND 173 152 183
JOURNEY ESCAPE 7973 8560 3303
KANGAROO 1057 1130 3323
KRULL 10293 4332 5692
KUNG FU MASTER 67163 33903 31050
MONTEZUMA REVENGE 0 0 17
MS PACMAN 11451 8219 8861
NAME THIS GAME 11302 6087 7957
PONG 14 13 12
POOYAN 2252 1312 11116
PRIVATE EYE 72 0 -1
QBERT 1640 1249 8838
RIVERRAID 8707 4055 3880
ROAD RUNNER 80900 39133 40547
ROBOTANK 59 57 26
SEAQUEST 19007 2747 1112
SPACE INVADERS 2037 1151 1365
STAR GUNNER 14193 2783 1293
TENNIS 10 9 10
TIME PILOT 31767 5903 6643
TUTANKHAM 136 140 144
UP N DOWN 93305 75088 34605
VENTURE 240 150 53
VIDEO PINBALL 413976 223772 202279
WIZARD OF WOR 111487 88953 70257
ZAXXON 15247 9200 2607

times best (53 games) 34 3 16
times better than IW(1) w/memory 14 4 7

Table 3: Performance of racing p-IW(1) vs. p-IW(1) and
IW(1). The experimental setup is similar to this in Table 1,
with the lookahead budget of 150000 frames.

91

L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo
planning. In ECML, pages 282–293, 2006.
J. Lehman and K. O. Stanley. Abandoning objectives: Evo-
lution through the search for novelty alone. Evol. Comp.,
19(2):189–223, 2011.
N. Lipovetzky and H. Geffner. Width and serialization of
classical planning problems. pages 540–545, 2012.
N. Lipovetzky, M. Ramı́rez, and H. Geffner. Classical plan-
ning with simulators: Results on the Atari video games. In
IJCAI, pages 1610–1616, 2015.

92

Delete-free Reachability Analysis for Temporal and Hierarchical Planning

Arthur Bit-Monnot
LAAS-CNRS, Université de Toulouse

Toulouse, France
arthur.bit-monnot@laas.fr

David E. Smith and Minh Do
NASA Ames Research Center

Moffet Field, CA, USA
{david.smith, minh.do}@nasa.gov

Abstract

Reachability analysis is a crucial part of the heuristic com-
putation for many state of the art classical and temporal plan-
ners. In this paper, we study the difficulty that arises in assess-
ing the reachability of actions in planning problems contain-
ing sets of interdependent actions, notably including prob-
lems with required concurrency as well as hierarchical plan-
ning problems. In temporal planners, this complication has
been addressed by augmenting a delete-free relaxation with
additional relaxations, but this can result in weak pruning of
the search space. To overcome this problem, we describe a
more sophisticated method for reachability analysis that uses
Dijkstra’s algorithm for propagation of times through a reach-
ability graph, combined with a pruning mechanism that rec-
ognizes unachievable cycles.
We also extend our approach to handle hierarchical planning
problems, in which an action and its subactions are naturally
interdependent. Evaluations were conducted on a diverse set
of temporal domains using FAPE, a constraint-based tempo-
ral and hierarchical planner.

1 Introduction
Reachability analysis is crucial in computing heuristics
guiding many classical and temporal planners. This is typi-
cally done by relaxing the action delete lists and construct-
ing the reachability graph. This graph is then used as a basis
to extract a relaxed plan, which serves as a non-admissible
heuristic estimate of the actual plan reaching the goals from
the current state. Due to the relaxation, the reachability anal-
ysis is optimistic and can also provide a lower-bound on the
actual “cost” of reaching the goals.

Temporal planning poses some additional challenges for
reachability analysis due to the temporal objective function
of minimizing the plan’s makespan. This objective func-
tion leads to the requirements on the heuristic guidance to
not only estimate the total cost but also the earliest time at
which goals can be achieved. This can be accomplished on
the reachability graph by labeling: (1) propositions by the
minimum time of the effects that can achieve them; and (2)
actions by the maximum time of the propositions they re-
quire as conditions. Since the reachability graph construc-
tion process progresses as time increases, when all start con-
ditions are reachable, a given action a is eligible to be added
to the graph. However, there is the additional problem that

A
y

x

B
y

x

Figure 1: Two actions: A with a start effect y and an end condition
x, and B with a start condition y and an end effect x.

a’s end conditions must also be reachable, although they do
not need to be reachable until the end time of a. To see why
this is a problem for the conventional way of building the
reachability graph, consider the two actions in Figure 1: ac-
tion B achieves the end condition for action A, but requires
a start effect of A before it can start. Thus, B cannot start
before A, but A cannot end until after B has ended. This
means that A is not fully reachable until B is reachable, but
B is not reachable unless A is reachable. Whether this turns
out to be possible depends on whether B fits inside of A.
In this example, the reasoning is simple enough, but more
generally, B might be a complex chain of actions.

Planners such as COLIN (Coles et al. 2012) and
POPF (Coles et al. 2010) address this problem by splitting
durative actions into instantaneous start and end events, and
forcing a time delay between the start and end events. In our
example, the start of A would be reachable, leading to the
start of B being reachable, which leads to the end of B be-
ing reachable, and finally the end ofA being reachable. This
approach therefore concludes that A is reachable. Unfortu-
nately, the same conclusion is reached in COLIN or POPF
even when B does not fit inside of A, because this “action-
splitting” approach allows A to “stretch” beyond its actual
duration. While this is a satisfactory relaxation for problems
with few interdependencies, it does not provide very good
heuristic guidance for problems that involve a lot of action
nesting, such as hierarchical style container actions that ex-
pand into subactions.

In this paper, we first present an approach to reachabil-
ity analysis for durative actions that addresses the nesting
problem described above. We use Dijkstra’s algorithm for
propagation of times through a reachability graph, together
with a pruning mechanism that recognizes unachievable cy-
cles. In the second part, we study some of the difficulties

93

that arise when performing reachability analysis in hierar-
chical planning and show that those challenges are similar
to the ones encountered in temporal planning. We devise a
compilation procedure that exposes the hierarchical features
as additional conditions and effects in durative actions. The
compiled problem is used as an input for reachability analy-
sis of hierarchical planning problems.

2 Preliminaries
We first describe the temporal action model and other basic
elements used throughout the rest of the paper.

2.1 Temporal Planning Model
In PDDL 2.2, a planning problem P is represented by a tuple
P =̇ 〈V, I, T,G,A〉 where:

• V is a set of propositions.

• I is the initial state: a complete set of assignments of
value T or F to all propositions in V .

• T is a set of timed-initial-literals, which are tuples
〈[t] f := v〉 with f ∈ V and t ∈ R+ is the wall-clock
time at which f will be assigned the Boolean value v.

• G ⊆ V is a goal state: a set of propositions that need to
be true when the plan finishes executing.

• A is a set of durative actions, each of the form
a =̇ 〈Da, Ca, Ea〉 where:

– Da is a set of constraints on the duration of the action.
The actual duration of an action is referred to as da and
takes a value in R+ that is consistent with Da.

– Ca is the set of conditions. Each p ∈ Ca is of the form
〈(stp, etp) f = T〉 where stp and etp indicate the start
and end time of the condition p relative to the action’s
start time. When stp = etp = 0 or stp = etp = da
then p is an instantaneous at-start or at-end condition.
When stp = 0 and etp = da then p is an overall dura-
tive condition. f ∈ V is a proposition that must be true
over the specified time period.

– Ea is a set of instantaneous effects, each e ∈ Ea is
of the form 〈[te] f := v〉 where te =̇ 0 or te =̇ da is
the relative time at which the at-start or at-end effect e
occurs.

A plan π of P is a set of tuples 〈ta, a, da〉, in which an
action a ∈ A is associated to a wall-clock start time ta and
a duration da that satisfies the constraints in Da. π is valid
if it is executable in I and achieves all goals in G.

Beyond PDDL 2.2: We extend the temporal action model in
PDDL2.2 to allow conditions expressed over sub-intervals
of actions, and effects at arbitrary time points during an
action. These features turn out to be particularly useful for
encoding many temporal planning applications. We do this
by allowing the times stp and etp of a condition p or te of
an effect e to take an arbitrary value in [0, da].

Discrete time model: Unlike PDDL 2.2, which assumes the
continuous time model, we assume the discrete time model

in which time changes in discrete steps. This is not essential
to our approach, but simplifies the presentation. We there-
fore represent the durative conditions 〈(stp, etp) f = T〉 in
PDDL 2.2 as a sequence of consecutive instantaneous con-
ditions 〈[t] f = T〉 with stp ≤ t ≤ etp. For the rest of
this paper, we will assume that all action conditions and ef-
fects occur at discrete time-steps t specified as either t = δ
(at a constant duration δ after the start time of action a) or
t = da − δ (at a constant duration δ before the end time of
action a).

2.2 Delete-free Elementary Actions

To estimate when each fact can be achieved, our reachabil-
ity analysis utilizes elementary actions, which are artificial
actions created from the original temporal actions defined
in the domain description. Elementary actions contain: (1)
only a single ‘add’ effect and (2) the minimal set of con-
ditions required to achieve that effect. Specifically, given
a temporal action a, the set of elementary actions for a is
created by:

1. Removing all ‘delete’ effects of a.

2. For each ‘add’ effect e = 〈[te] f := T〉, creating a new
elementary action ae with e as the only effect of ae.

3. Adding each condition p ∈ Ca to ae with an optimistic
timing constraint on when p is needed. By optimistic, we
mean requiring each p ∈ Ca as late as possible with re-
spect to the time at which e is achieved. Let lbda and ubda
be the lower and upper bounds on the duration da of a and
dae be the duration of ae, then this maximum lateness can
be achieved by fixing the value of dae :

• If te = δ, then set dae = ubda

• If te = da − δ′, then set dae = lbda

Figure 2 shows an example of a move action for a rover
and its two elementary actions: a1 = moveFree(r, l, l′)
represents the start effect e1 = 〈[1] free(l) := T〉 and a2 =
moveAt(r, l, l′) represents the end effect e2 = 〈[d]at(l′) :=
T〉. Since te1 = 1, we fix the duration of moveFree(r, l, l′)
to be the upper-bound value of the duration d of the original
action move(r, l, l′) and thus da1 = 50. On the other hand,
da2 is set to be the lower-bound value 40 of d.

For easier illustration, an elementary action a is repre-
sented graphically by an action node a with (1) an outgoing
effect edge a X−→ f representing its effect 〈[X] f := v〉; and
(2) one incoming condition edge f −Y−−→ a for each condition
〈[Y] f = T〉 ∈ Ca. The reachability graph is a pair 〈N,E〉
with N a set of action and fluent nodes and E a set of con-
dition and effect edges for all elementary actions. The edges
from fluents to actions encode the necessary delay between
the conditions of an action and the action. The semantics
is different for edges from actions to fluents, as each edge
a

X−→ f represents one possible action choice a for achiev-
ing the fluent f .

94

move(r,l,l’)
conditions: [0] at(r, l)

[d−1] free(l′)
effects: [1] free(l)

[1] ¬at(r, l)
[d] ¬free(l′)
[d] at(r, l′)

duration constraints: 40 ≤ d ≤ 50

(a) Original action model

moveFree(r,l,l’)
conditions: [0] at(r, l)

[49] free(l′)

effects: [1] free(l)

(b) Elementary action for the add ef-
fect 〈[1] free(l)〉

moveAt(r,l,l’)
conditions: [0] at(r, l)

[39] free(l′)

effects: [40] at(r, l′)

(c) Elementary action for the add ef-
fect 〈[d] at(r, l′)〉

Figure 2: Action to move a rover r from location l to l′ and its two elementary actions. The rover frees its original location one
time unit after departing and requires its target location to be free one time unit before arriving.

3 Reachability Analysis
3.1 Definitions
An elementary action a is applicable once all of its pre-
conditions are met. An action with an effect f is called an
achiever of f . A fluent f becomes achievable after one of
its achievers a becomes applicable, with the achievable time
depending on the starting time of a and the time constraint
on the effect of a that enables f . As a consequence of using
the delete-free elementary actions, once a fluent is achiev-
able at time t or an action is applicable at time t, it stays
achievable/applicable at all subsequent time points.

Action a is applicable at time t (denoted by
applicable(a, t)) if for all conditions p = 〈[X]f = T〉 ∈ Ca,
p is achievable at time tp = t + X (denoted by
achievable(p, tp)). Similarly, a fact f is achievable at
time t (i.e., achievable(f, t)) if there exist one achiever a
of f such that a has an effect e = 〈[X] f := v〉 and a is
applicable at time ta = t−X (i.e., applicable(a, ta)).

We define as the earliest appearance of action a (denoted
by ea(a)), the smallest t for which applicable(a, t) = T.
Similarly, the earliest appearance of a fluent f is the small-
est t for which achievable(f, t) = T. The computation of
ea(a) and ea(f) has traditionally been done by following
the dynamic programming update rules below:

Initialization: ∀f ∈ I : ea(f) = 0
∀f /∈ I : ea(f) = ∞
∀a ∈ A : ea(a) = ∞

Updating: ∀a ∈ A : ea(a) = max
〈[X] f=T〉∈Ca

ea(f)−X

∀f ∈ V : ea(f) = min
〈[X] f :=T〉∈Ea

ea(a) +X

When the updating rules above are properly applied re-
peatedly, the collective values of ea(f) and ea(a) will reach
a fix-point. We use ea∗(f) and ea∗(a) to denote the final
values of ea(f) and ea(a) for all fluents f and actions a. If
ea∗(f) < ∞ or ea∗(a) < ∞, we say that f or a is reach-
able, denoted by reachable(f) = T and reachable(a) = T.

Intuitively, if an action or a fluent is not reachable by ap-
plying elementary actions, then it can not be achieved using
the original action model. Therefore, a fluent cannot be true
at a time earlier than ea∗(f) and a reachable action A can
never be executed at a time earlier than ea∗(A).

3.2 Causal Loops in Temporal Planning

A∅

B∅
x∅ y∅

1

12

-10

0

(a)

A0

B1

x9 y1

1

8

-10

0

(b)

Figure 3: Two reachability graphs built from the actions of
Figure 1. A is an action with a duration of 10 time units,
an end condition 〈[10] x = T〉 and a start effect 〈[1] y :=
T〉. B has the start condition 〈[0] y = T〉 and the end effect
〈[dB] x := T〉. The duration of B, dB , is respectively set to
12 and 8 in graphs (a) and (b). Each node is annotated in red
with its earliest appearance time or ∅ if it is not reachable.

Let us consider what would happen when applying the
dynamic programming rules to the reachability graphs of
Figure 3. In Figure 3a, where B does not ‘fit’ into A, it
would behave as expected: the positive cycle would main-
tain all the nodes with an infinite earliest start (i.e. unreach-
able). On the other hand, Figure 3b depicts a self-supporting
causal loop where the effect y of A allows B to produce x
early enough to achieve the end condition of A. Such self-
supporting causal loops can be identified as cycles of neg-
ative or zero length in the reachability graph. If the cycle
is of negative length, as in Figure 3b, the earliest appear-
ances would be infinitely updated towards −∞. In the case
of a zero length cycle, the dynamic programming rules fail
to detect that an update is needed to mark the node as reach-
able.

Temporal planning problems with such causal loops
are identified by Cooper, Maris, and Régnier (2013) as
temporally-cyclic problems and are characterized by sets
of interdependent actions. The difficulty in handling them
has been avoided in state of the art temporal planners by
ignoring any condition that might be achieved through a
self-supporting causal loop. In POPF (Coles et al. 2010),
the reachability model is built by splitting durative actions
into an instantaneous start-action and an instantaneous end-
action, with the start-action using only the ‘at-start’ con-
ditions. Applied to our example in Figure 2, this would

95

roughly result in ignoring the 〈[49] free(l′) = T〉 condition
of moveFree(r, l, l′). This additional relaxation leads to
reachability models that disregard any condition that could
lead to a self-supporting causal loop.

Self supporting causal loops always contain an after-
condition : a condition in Ca that appears at the same time
or later than the effect of an elementary action a (Cooper,
Maris, and Régnier 2013). To make the identification of
after-conditions easier, we assume that a condition 〈[X]f =
T〉 is an after-condition iff X > 0. This restriction means
that any negative edge in the reachability graph represents
an after-condition. If necessary, this can be enforced by ar-
tificially shifting the start of all elementary actions to be one
time unit before their effect.

3.3 Reachability Analysis with Causal Loops
To handle after-conditions during reachability analysis, as
detailed in Algorithm 1, we alternate two steps: (1) a first
step propagates achievement times while ignoring all after-
conditions, performed by a Dijkstra pass on the graph lim-
ited to positive edges; then (2) a second step that enforces
all after-conditions, represented by negative edges, that were
ignored in the first step. Those two steps are complemented
with a pruning mechanism that repeatedly detects nodes in
positive cycles.

Algorithm 1 begins by selecting a set of assumed reach-
able nodes from which to start the propagation process (lines
2-10). The obvious candidates are fluents appearing in the
initial state I and in timed initial literals T . We also opti-
mistically select all actions that have no before-conditions,
i.e., actions where every condition is an after-condition. As-
sumed reachable nodes are inserted into a priority queue Q
of 〈n, t〉 pairs where n is a node of the reachability graph
and t is a candidate time for its earliest appearance.

We then iteratively extend the initial set of assumed reach-
able nodes with all fluents that have an assumed reachable
achiever and all actions whose every before-condition is as-
sumed reachable. This is done by a Dijkstra-like propaga-
tion (line 13), that extracts the nodes in Q in the order of in-
creasing appearance time. Those extracted nodes are marked
as reachable and their successors are inserted intoQ. The al-
gorithm slightly differs from Dijkstra’s as it ensures that an
action node is enqueued only if all of its before-conditions
have been already marked reachable (lines 36-38).

As a second step, we revise our optimistic assumptions by
incorporating the ignored after-conditions:

• Line 16 removes from the graph any action a with an
after-condition on an unreachable fluent f . More specif-
ically, the RECURSIVELYREMOVE procedure marks its
parameter as unreachable and removes it from the graph.
This removal process is recursive: if a removed action a is
the only achiever for a fluent f then f is removed as well
(and as a consequence all actions depending on f will also
be removed). Furthermore, if the first achiever of a fluent
is removed from the graph and there is at least one other
achiever for it, then the fluent is added back to Q with an
updated earliest appearance.

• Line 18 takes an after-condition of an action a on a reach-

Algorithm 1 Algorithm for identifying reachable nodes in a
reachability graph and computing their earliest appearance.

1: 〈N,E〉 ← Reachability Graph
2: Q← ∅ . Priority queue of 〈node, time〉 ordered by

increasing time
3: for all n ∈ N do
4: reachable(n)← F
5: if n is an action with no before-conditions then
6: Q← Q ∪ {〈n, 0〉}
7: for all 〈[t] f := T〉 ∈ T do . timed initial literals
8: Q← Q ∪ {〈f, t〉}
9: for all f := T ∈ I do . initial state

10: Q← Q ∪ {〈f, 0〉}
11:
12: while Q non empty do
13: DIJKSTRAPASS

14: for all f δ−→ a ∈ after-condition edges do
15: if ¬reachable(f) then
16: 〈N,E〉 ← RECURSIVELYREMOVE(a)
17: else if ea(a) < ea(f) + δ then
18: Q← Q ∪ {〈a, ea(f) + δ〉}
19: for n ∈ N do
20: if n is late then
21: 〈N,E〉 ← RECURSIVELYREMOVE(n)

22:
23: procedure DIJKSTRAPASS
24: while Q non empty do
25: 〈n, t〉 ← pop(Q)
26: if n already expanded in this pass then
27: continue
28: if reachable(n) ∧ ea(n) ≥ t then
29: continue
30: reachable(n)← T
31: ea(n)← t

32: if n is an action with an effect edge n δ−→ f then
33: Q← {〈f, t+ δ〉}
34: else
35: for all a conditioned on n do
36: if all before cond. of a are reach. then
37: t′ ← max

f
δ−→a∈E

ea(f) + δ

38: Q← Q ∪ {〈a, t′〉}

able fluent f and enforces the minimal delay δ between
ea(f) and ea(a). If the current delay is not sufficient, a is
added to Q and will be reconsidered upon the next Dijk-
stra pass.
Finally, late nodes are marked unreachable and removed

from the graph (line 21). We say that a node n is late if for
any non-late node n′, ea(n′)+dmax < ea(n) where dmax
is the highest delay on any edge of the graph. In practice, this
means that nodes are partitioned into non-late nodes and late
nodes, these two sets being separated by a temporal gap of
at least dmax. The intuition, as demonstrated in the next
section, is that the earliest appearance of a late node is being
pushed back due to unachievable cycles.

96

The two-step process is repeated to take into account the
newly updated reachability information. In the subsequent
runs, the Dijkstra algorithm will start propagating the up-
dated nodes from the previous run, with lines 28-29 mak-
ing sure that the earliest appearance values ea(n) are never
decreased to an overly optimistic value. The algorithm de-
tects a fix-point and exits if the queue is empty, meaning that
after-conditions did not trigger any change.

3.4 Analysis and Related Models
We now explore some of the characteristics of Algorithm 1.
The first Dijkstra pass acts as an optimistic initialization: it
identifies a set of possibly reachable nodes and assigns them
earliest appearance times. All operations after this first pass
will only (i) shrink the set of reachable nodes; and (ii) in-
crease the earliest appearance times.

Proposition 3.1. If a node n is reachable, then ea(n) con-
verges towards ea∗(n). If a node n′ is not reachable then
ea(n′) either remains at∞ or diverges towards∞ until it is
removed from the graph.

Proof (sketch). A node n is reachable if there is either a path
from initial facts to n or n is part of a self-supporting causal
loop (i.e. cycle of negative or zero length). Consequently re-
peated propagations will eventually converge. On the other
hand, an unreachable node either depends on an unreachable
node or is involved only in causal cycles of strictly positive
length (such as the one depicted in Figure 3a). If the node
was ever assumed reachable, its earliest appearance will thus
be increased until it is removed from the graph.

Proposition 3.2. If a node is late, then it is not reachable.

Proof (Sketch). The intuition is that the gap between non-
late and late nodes appeared because late nodes are delay-
ing each other due to positive causal cycles. We first show
that any late node delayed to its current time is due to a de-
pendency on another late node: because the temporal gap
is bigger than all edges in the graph, a non-late node could
not have influenced a late node. It follows that any late node
depends on at least one other late node. Furthermore a late
node necessarily participates in a positive cycle or depends
on a late node that does. From there, one can show that at
least one node n in this group is involved only in positive
cycles. Any other possibility (path from timed initial literals
or negative cycle) would have resulted in n being less than
dmax away from a non-late node.

It follows from propositions 3.1 and 3.2 that Algorithm 1
produces a reachability model R∞ that contains a node n
and its earliest appearance ea∗(n) iff n is reachable in the
relaxed problem. In the worst case, computing this model
has a pseudo-polynomial complexity since there may be as
many as dmax iterations of the algorithm (dmax being the
highest delay in the graph). The cost of each iteration is
dominated by the Dijkstra pass of O(|N |× log(|N |)+ |E|).

Discussion: One might consider computing various approx-
imations of R∞ by limiting the number of iterations to a
fixed number K, making the algorithm strongly polynomial

and producing a reachability model RK . In the special case
where K = 1, this is equivalent to performing a single Dijk-
stra pass and removing all actions with an unreachable after-
condition. Increasing K would allow us to better estimate
the earliest appearances and detect additional late nodes.

Another simplification is to ignore all negative edges of
the reachability graph, which can be done by stopping Algo-
rithm 1 after the first Dijkstra pass. In practice, this model
simply ignores after-conditions and it has all the characteris-
tics of the temporal planning graph of POPF: (1) the separa-
tion of durative actions into at-start and at-end instantaneous
actions is done by the transformation into elementary ac-
tions; (2) the minimal delay between matching at-start and
at-end actions is enforced by the presence of start conditions
in the elementary actions representing the end effects; and
(3) any end condition appearing in the elementary action of
a start effect would be ignored because it would be an after-
condition. Since it is a direct adaptation of the techniques
used in POPF to our more complex action representation, we
call this model Rpopf.

It is interesting to note that Rpopf and R∞ are equivalent
on all problems with no after-conditions. Classical planning
obviously falls in this category as well as any PDDL model
with no at-start effect or no at-end condition. In fact, on
such problems Rpopf and R∞ are equivalent to building a
temporal planning graph, with no significant computational
overhead.

4 Extending to Hierarchical Models
While hierarchical planning is a dominant approach for
modeling and solving real-world planning applications, it
still mostly requires manual work to model and control its
search space. In planners such as SHOP2 (Nau et al. 2003),
this is done by manually annotating methods with additional
preconditions that are checked before introducing a method
into the plan. This approach allows for early dead-end de-
tection and has proven to be extremely efficient for solv-
ing complex problems. Nonetheless, it does have important
drawbacks. First, manual annotation requires significant do-
main modeling efforts and can easily lead to modeling errors
and incomplete domain descriptions. Second, conditions
on methods can only be efficiently tested on fully defined
states. For that reason, HTN planners usually restrict them-
selves to finding totally-ordered plans, which do not work
for planning problems with required concurrency. Reach-
ability analysis thus constitutes a critical step to improve
the performance of partially-ordered hierarchical planners,
which can find plans with required concurrency, and also re-
duce the laborious domain engineering effort for HTN plan-
ners that only find totally-ordered plans.

The main difficulty of automated reachability analysis for
hierarchical problems lies in the interactions between causal
and hierarchical constraints. HTN planning has three main
characteristics: (1) a method must eventually have all its
subtasks achieved; (2) a method or operator can only ap-
pear in a plan if it is refining an existing task of the plan; and
(3) all conditions of operators and methods must be causally
supported by earlier effects. While there are known tech-

97

niques to check (3), integrating (1) and (2) causes interde-
pendent actions and remains a difficult issue.

In this section, we propose a transformation of operators
and methods to expose those hierarchical constraints as ad-
ditional conditions and effects. This allows us to perform
the reachability analysis proposed in the previous section on
models integrating hierarchical and causal information.

4.1 Hierarchical Model
We extend the temporal planning model from Section 2.1 to
support the definition of hierarchical problems. A temporal
planning problem P is extended to contain:

• a set T of task symbols

• a set of goal tasks GT . A goal task gτ ∈ GT is of the
form 〈[stτ , etτ] τ〉 where stτ and etτ are timepoints tak-
ing value inR+ and τ ∈ T is a task symbol. The goal task
gτ states that the plan should contain an action achieving
the task τ and spanning the temporal interval [stτ , etτ].

Each action a ∈ A is associated to a task symbol τa ∈ T ,
representing the task achieved by a and a set of subtasks
Sa. A subtask is denoted by 〈[stτ , etτ] τ〉 where τ is a task
symbol and stτ and etτ are timepoints. The intuition is that
for each subtask 〈[stτ , etτ] τ〉 ∈ Sa, a requires an action
achieving τ and executing over the interval [stτ , etτ]. This
model does not make any distinction between methods and
operators as it is usually done in HTN planning. To make
this distinction, one could simply partition A into actions
with no effects (i.e. methods) and actions with no subtasks
(i.e. operators).

In addition to the requirements of Section 2.1, we con-
sider the following conditions for a plan π to be valid:

• for any task gτ = 〈[stτ , etτ] τ〉 appearing in GT or as a
subtask of an action in π, there is an action in π achieving
gτ . An action 〈ta, a, da〉 ∈ π is said to achieve gτ if
τ = τa, stτ = ta and etτ = ta + da.

• for any action 〈ta, a, da〉 ∈ π, there is a task gτ appear-
ing in GT or as a subtasks of an action in π such that a
achieves gτ .

The latter condition is a consequence of the search mech-
anism of HTN planners in which every action is introduced
to fulfill a given pending task. When combined with the
former, it results in interdependencies as a method both re-
quires the presence of actions fulfilling its subtasks and en-
ables their presence.

4.2 Flattening Transformation
We now propose a compilation of a hierarchical problem
into the temporal model of Section 2.1. This flattening pro-
cedure is meant to allow a reachability analysis on causal
models that retain the hierarchical constraints from the orig-
inal problem.

For each task τ ∈ T from the hierarchical model, the set
of propositions V is extended with three new propositions
started(τ), ended(τ) and required(τ). They respectively
represent that an action achieving τ starts, finishes or is re-
quired to fulfill a pending task τ .

put-on-table-from-stack(x)
task: put-on-table(x)

conditions: ∅
effects: ∅

subtasks: [d1, d2] unstack(x)
[d3, d4] put-down(x)

constraints: 0 < d1 < d2 < d3 < d4 < d

(a) A high level action (or method) to move a block x from the
top of a stack to the table.

put-on-table-from-stack(x) (flattened model)
conditions: [0] required(put-on-table(x))

[d1] started(unstack(x))
[d2] ended(unstack(x))
[d3] started(put-down(x))
[d4] ended(put-down(x))

effects: [0] started(put-on-table(x))
[d1] required(unstack(x))
[d3] required(put-down(x))
[d] ended(put-on-table(x))

constraints: 0 < d1 < d2 < d3 < d4 < d

(b) The flattened action after compiling away its hierarchical
properties.

Figure 4

A hierarchical action a ∈ A is transformed into a ‘flat’
action aflat with:

• all conditions, effects and constraints of a

• one additional condition 〈[0] required(τa) = T〉
• one additional at-start effect 〈[0] started(τa) := T〉 and

one additional at-end effect 〈[da] ended(τa) := T〉
• for each subtask 〈[stτ , etτ] τ〉 of a:

– two additional conditions 〈[stτ] started(τ) = T〉 and
〈[etτ] ended(τ) = T〉

– one additional effect 〈[stτ] required(τ) := T〉
For each goal task 〈[stτ , etτ] τ〉 ∈ GT , a timed initial

literal 〈[stτ] required(τ) := T〉 is added to T and a goal
ended(τ) is added to G.

It is important to note that the resulting ‘flat’ problem is
a relaxation of the original one. Indeed, a given subtask
〈[stτ , etτ] τ〉 yields two conditions 〈[stτ] started(τ) = T〉
and 〈[etτ] ended(τ) = T〉. Those two conditions can be ful-
filled by distinct actions, thus ignoring temporal constraints
on the unique action that should have achieved the subtask
in the original model. This relaxed transformation is sim-
ply meant to expose hierarchical features of the problem to
reachability analysis. Actions resulting from this compila-
tion step can be split into elementary actions and added to a
reachability graph (Section 3).

An example of this transformation is given in Figure 4b.
The problem has interdependencies as the presence of the
put-on-table-from-stack method both requires and allows

98

the presence of its unstack and put-down subactions. In-
deed, an unstack(x) action would have a start condition
〈[0] required(unstack(x)) = T〉 which is achieved by the
method put-on-table-from-stack. Concurrently, this method
has the condition 〈[d1] started(unstack(x)) = T〉 which
would be achieved as a start effect of the unstack(x) action.

5 Empirical Evaluation
We implemented our reachability analysis technique within
FAPE, a partial-order temporal planner (Dvorak et al.
2014a). FAPE takes problems modeled in ANML (Smith,
Frank, and Cushing 2008). ANML natively supports: (1)
conditions and effects at arbitrary time points and over ar-
bitrary intervals within an action; and (2) hierarchical struc-
tures. FAPE supports most of the features of ANML and is
capable of both hierarchical and generative planning.

Like other partial-order planners, FAPE searches for a
plan by fixing flaws in partial plans until no flaws remain.
Every time a partial plan p is extracted from the open queue,
reachability analysis is performed and provides an updated
set of impossible actions and fluents. If it can be verified
that from p: (1) all goals are reachable, and (2) all unrefined
tasks have a possible refinement, then we expand p by fixing
one of its flaws. If this is not the case, p is a dead-end and
is discarded. Reachability results are also used to filter out
flaw resolvers involving impossible actions or fluents.

We evaluate our reachability analysis technique on several
temporal domains with and without hierarchical decomposi-
tion, the former involving many instances of required con-
currency and interdependent actions. The satellite, rovers,
tms, logisitcs and hiking domains are direct translations of
the eponymous domains from the International Planning
Competition (IPC) into ANML. The domain files were man-
ually translated while the translation of problem instances
was automated. The handover domain is a robotics prob-
lem presented in (Dvorak et al. 2014b) and the docks do-
main is the dock worker domain from (Ghallab, Nau, and
Traverso 2004). Hierarchical versions of the domains have
their names appended with ‘-hier’. All experiments were
conducted on an Intel Xeon E3 with 3GB of memory and a
30 minutes timeout.

Table 1 and Figure 5 present the number of problems
solved using different reachability models. R∞ outper-
forms the other configurations: solving the highest number
of problems on all but one domain. R5 and R1 are respec-
tively second and third best performers while Rpopf does not
provide significant pruning of the search space; the compu-
tational overhead makes it perform slightly worse than no
reachability checks (denoted by ∅). As expected, on tempo-
rally simple problems (non-hierarchical domains in our test
set), all configurations show similar performance.

Table 2 presents the percentage of actions detected as un-
reachable by different configurations. As expected,R∞,R5,
R1 andRpopf perform identically on temporally simple prob-
lems. However, Rpopf is largely outperformed on all but one
hierarchical domains.The good performance of R1 with re-
spect to Rpopf shows that a single iteration is often sufficient
to capture most of the problematic after-conditions. How-
ever, on more complex problems such as hiking-hier and

R∞ R5 R1 Rpopf ∅
satellite (20) 14 14 14 14 15
satellite-hier (20) 17 17 17 17 16
rovers (40) 25 25 25 25 25
rovers-hier (40) 22 22 22 22 22
tms-hier (20) 7 7 7 7 7
logistics (28) 8 8 8 8 8
logistics-hier (28) 28 28 28 6 9
hiking-hier (20) 20 17 16 15 17
handover-hier (20) 16 16 16 7 7
docks-hier (18) 17 13 12 7 7
Total (254) 174 167 165 128 133

Table 1: Number of solved tasks for various domains with a
30 minutes timeout. The best result is shown in bold. The
number of problem instances is given in parenthesis.

0

20

40

60

80

100

120

140

160

180

1 10 100 1000

S
o
lv
ed

T
a
sk
s

Search Time (s)

R∞
R5

R1

Rpopf

∅

Figure 5: Number of solved tasks by each configuration
within a given time amount.

R∞ R5 R1 Rpopf ∅
satellite 0.0 0.0 0.0 0.0 0.0
satellite-hier 14.1 14.1 14.1 14.1 0.0
rovers 43.5 43.5 43.5 43.5 0.0
rovers-hier 72.6 72.6 72.6 27.1 0.0
tms-hier 87.9 87.9 87.9 0.0 0.0
logistics 34.5 34.5 34.5 34.5 0.0
logistics-hier 94.6 94.6 94.6 15.5 0.0
hiking-hier 38.1 36.5 36.5 0.0 0.0
handover-hier 99.2 99.2 99.2 3.5 0.0
docks-hier 85.2 52.6 52.6 0.0 0.0

Table 2: Percentage of ground actions detected as unreach-
able from the initial state. For each problem instance, the
percentage is obtained by comparing the number of ground
actions detected as unreachable from the initial state with the
original number of ground actions. Those values are then
averaged over all instances of a domain.

docks-hier, more iterations are beneficial both in terms of
detected unreachable actions and solved problems.

99

R∞ R5 R1 Rpopf ∅
satellite 100 (1) 100 100 100 –
satellite-hier 100 (2) 100 100 100 –
rovers 100 (1) 100 100 100 –
rovers-hier 100 (4) 99.2 56.7 54.2 –
tms-hier 100 (6) 69.3 14.2 14.2 –
logistics 100 (1) 100 100 100 –
logistics-hier 100 (2) 100 2.8 2.8 –
hiking-hier 100 (9) 100 71.7 71.7 –
handover-hier 100 (43) 98.2 5.7 5.7 –
docks-hier 100 (37) 73.0 29.8 29.8 –

Table 3: Average admissible makespans for different reach-
ability models. Those are computed by taking the earliest
appearance of the latest satisfied goal from the initial state,
and normalizing on the value computed for R∞. For R∞,
we also indicate the average number of iterations needed to
converge on the first propagation of each instance (in paren-
thesis).

Table 3 presents the value that would have been taken
by the admissible hmax heuristic with different reachabil-
ity models. On all but one hierarchical model, both R1 and
Rpopf largely underestimate the makespan of a solution. In-
deed, not propagating after-conditions makes them miss im-
portant causal aspect of the problems. Those can take as
much as 43 iterations to be initially propagated by R∞. The
subsequent propagations are typically faster because they
are made incrementally. As expected, a single iteration was
needed to converge on all temporally simple problems.

Note that the current usage of our approach in FAPE is
limited to restricting the search space. While it proves ex-
tremely useful on a wide variety of problems, one could
contemplate using the available data structures to extract a
heuristic value. The extraction of a relaxed plan has proven
to be an effective heuristic in many planners. Earliest possi-
ble times ea∗(a) and ea∗(f) could also be used as admis-
sible estimates when considering makespan optimization.
However, FAPE’s constraint-based algorithm, with POCL
and lifted representation, is not yet suitable for this.

6 Related Work
The problem of required concurrency in temporal planning
has been analyzed by Cushing et al. (2007). The authors
distinguish temporally expressive problems that feature re-
quired concurrency from temporally simple problems that
do not. Temporally expressive problems are further stud-
ied by Cooper, Maris, and Régnier (2013) who identify
temporally-cyclic problems in which sets of actions can be
interdependent. While the 7th and 8th International Plan-
ning Competitions (IPC) included problems with required
concurrency, none of those had interdependent actions. In
fact, even top performers in the temporal track of the IPC,
including Temporal Fast Downward (Eyerich, Mattmüller,
and Röger 2012) and YAHSP3 (Vidal 2014), cannot solve
problems with interdependent actions.

In classical planners such as FF (Hoffmann and Nebel

2001), the most widely used reachability analysis involves
building a Relaxed Planning Graph (RPG) from delete-free
actions. CRIKEY3 (Coles et al. 2008), extended this tech-
nique to support temporal problems with interdependencies
by splitting durative actions into at-start and at-end snap ac-
tions. The resulting Temporal RPG is used by CRIKEY3 and
its successors POPF (Coles et al. 2010), COLIN (Coles et al.
2012) and OPTIC (Benton, Coles, and Coles 2012) both for
reachability analysis and heuristic computation.

Cooper, Maris, and Régnier (2014) discuss another relax-
ation of temporal planning problems into monotone prob-
lems that can be solved in polynomial time. This relaxation
is orthogonal to the delete-free relaxation and could also be
used for reachability analysis. A key part of this relaxation is
the removal of any condition that might be achieved by more
than one action; this is likely to lead to poor performance on
HTN planning problems where the difficulty is precisely to
choose which action to support a given task.

HTN planning systems in the line of SHOP2 (Nau et al.
2003), avoid the need for reachability analysis by (1) man-
ually annotating methods with conditions of applicability;
and (2) requiring a total order between all operators, to en-
sure a method’s conditions can be tested on fully defined
states. While this technique has proven to be extremely use-
ful on many practical problems, it increases the required
domain-engineering effort as well as the risk of introduc-
ing modeling errors. Even temporal HTN planners such as
SIADEX (Castillo et al. 2006) only partially remove the need
for total-order between operators and cannot solve problems
with required concurrency.

The recent development of hybrid hierarchical and gen-
erative planners such as PANDA (Schattenberg 2009) and
FAPE (Dvorak et al. 2014a) has motivated the need for au-
tomated search guidance for hierarchical problems. Along
these lines, Bercher, Keen, and Biundo (2014) and Elkawk-
agy et al. (2012) proposed techniques for evaluating the re-
maining search effort in hierarchical problems by exploiting
landmarks and task decomposition graphs. However, hier-
archical and causal constraints are still mainly considered
independently, resulting in limited heuristic guidance.

Our work shares some conceptual similarities with An-
gelic Hierarchical Planning (Marthi, Russell, and Wolfe
2007), which performs automated analysis of sequential hi-
erarchical problems in order to infer upper and lower bounds
of the set of reachable states. Those sets are used in a hierar-
chical planner to detect when a task network is always refin-
able to a solution plan or when it is a dead-end. Those tech-
niques are however only applicable to sequential hierarchi-
cal planning. While our technique only focuses on dead-end
detection, we consider more general hierarchical problems,
featuring concurrency and partial-ordering.

A translation of some hierarchical features of ANML into
PDDL was proposed by Smith, Frank, and Cushing (2008)
and a complete translation of a restricted class of HTN prob-
lems into PDDL was proposed by Alford, Kuter, and Nau
(2009). Unlike the exact translations described in those
works, we introduce a relaxed translation applicable to any
HTN problem for the purpose of reachability analysis. This
simpler transformation allows us to avoid the discovery by

100

Alford et al. (2014) that heuristics based on delete-free re-
laxation require further relaxation to allow tractability when
dealing with hierarchical problems.

7 Conclusion
In this paper, we developed a technique to perform more ac-
curate reachability analysis for temporal planning problems
involving interdependent actions. This technique allows us
to do a better job of recognizing impossible actions and es-
timating the earliest start times for actions and fluents. We
also showed how interdependencies naturally arise in hierar-
chical planning problems and introduced a simple relaxation
of those problems into temporal planning to enable reacha-
bility analysis on hierarchical planning problems.

Our method has been implemented in FAPE, a constraint-
based temporal planner for the ANML language. We evalu-
ated the effectiveness of the technique for pruning the search
space in both hierarchical and generative planning prob-
lems. When compared to state of the art techniques, we
showed that our algorithm provides notable improvements
on temporally complex problems while having no computa-
tional overhead on temporally simple ones. This character-
istic makes our method suitable for reachability analysis in
a wide range of temporal as well as hierarchical problems.

Acknowledgements. We would like to thank Malik Ghal-
lab and Félix Ingrand for their valuable comments on early
versions of this paper. This work was supported in part by
the EDSYS Doctoral School of the University of Toulouse,
Stinger Ghaffarian Technologies (SGT) Incorporated, the
EU MUMMER project funded by the H2020 program under
grant agreement No 688147, the NASA Safe Autonomous
Systems Operations (SASO) project, and the NASA Au-
tonomous Systems and Operations Project.

References
Alford, R.; Shivashankar, V.; Kuter, U.; and Nau, D. S. 2014.
On the Feasibility of Planning Graph Style Heuristics for
HTN Planning. In Proc. of the 24th Int. Conf. on Automated
Planning and Scheduling (ICAPS).
Alford, R.; Kuter, U.; and Nau, D. S. 2009. Translating
HTNs to PDDL: A Small Amount of Domain Knowledge
Can Go a Long Way. In Proc. of the 21st Int. Joint Conf. on
Artificial Intelligence (IJCAI).
Benton, J.; Coles, A.; and Coles, A. 2012. Temporal
Planning with Preferences and Time-Dependent Continuous
Costs. Proc. of the 22th Int. Conf. on Automated Planning
and Scheduling (ICAPS).
Bercher, P.; Keen, S.; and Biundo, S. 2014. Hybrid Planning
Heuristics Based on Task Decomposition Graphs. In Proc. of
the Seventh Annual Symp. on Combinatorial Search (SOCS).

Castillo, L. A.; Fernández-Olivares, J.; Garcı́a-Pérez, Ó.;
and Palao, F. 2006. Efficiently Handling Temporal Knowl-
edge in an HTN Planner. In Proc. of the 16th Int. Conf. on
Automated Planning and Scheduling (ICAPS), 63–72.

Coles, A.; Fox, M.; Long, D.; and Smith, A. 2008. Planning
with Problems Requiring Temporal Coordination. Proc. of
the 22th AAAI Conf. on Artificial Intelligence.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2010.
Forward-Chaining Partial-Order Planning. In Proc. of the
20th Int. Conf. on Automated Planning and Scheduling
(ICAPS), 42–49.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2012.
COLIN: Planning with Continuous Linear Numeric Change.
Journal of Artificial Intelligence Research (JAIR) 44:1–96.
Cooper, M.; Maris, F.; and Régnier, P. 2013. Managing
Temporal Cycles in Planning Problems Requiring Concur-
rency. Computational Intelligence 29(1):111–128.
Cooper, M.; Maris, F.; and Régnier, P. 2014. Monotone
temporal planning: Tractability, extensions and applications.
Journal of Artificial Intelligence Research 50:447–485.
Cushing, W.; Kambhampati, S.; Weld, D. S.; et al. 2007.
When is temporal planning really temporal? In Proc. of the
20th Int. Joint Conf. on Artifical Intelligence, 1852–1859.
Dvorak, F.; Barták, R.; Bit-Monnot, A.; Ingrand, F.; and
Ghallab, M. 2014a. Planning and Acting with Temporal and
Hierarchical Decomposition Models. In Proc. of the 26th
IEEE Int. Conf. on Tools with Artificial Intelligence, ICTAI,
115–121.
Dvorak, F.; Bit-Monnot, A.; Ingrand, F.; and Ghallab, M.
2014b. A Flexible ANML Actor and Planner in Robotics.
In Planning and Robotics (PlanRob) Workshop (ICAPS).
Elkawkagy, M.; Bercher, P.; Schattenberg, B.; and Biundo,
S. 2012. Improving Hierarchical Planning Performance by
the Use of Landmarks. In Proc. of the 26th AAAI Conf. on
Artificial Intelligence.
Eyerich, P.; Mattmüller, R.; and Röger, G. 2012. Using
the context-enhanced additive heuristic for temporal and nu-
meric planning. Springer Tracts in Advanced Robotics.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory & Practice. Elsevier.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research (JAIR) 253–302.
Marthi, B.; Russell, S.; and Wolfe, J. 2007. Angelic Seman-
tics for High-Level Actions. In Proc. of the 17th Int. Conf.
on Automated Planning and Scheduling (ICAPS).
Nau, D.; Au, T.-c.; Ilghami, O.; Kuter, U.; Murdock, J. W.;
Wu, D.; and Yaman, F. 2003. SHOP2: An HTN Planning
System. Journal of Artificial Intelligence Research (JAIR)
20:379–404.
Schattenberg, B. 2009. Hybrid planning & scheduling.
Ph.D. Dissertation, University of Ulm.
Smith, D. E.; Frank, J.; and Cushing, W. 2008. The ANML
language. In The ICAPS Workshop on Knowledge Engineer-
ing for Planning and Scheduling (KEPS).
Vidal, V. 2014. YAHSP3 and YAHSP3-MT in the 8th Inter-
national Planning Competition. In 8th International Plan-
ning Competition (IPC-2014).

101

Cost-Optimal Algorithms for Hierarchical Goal Network Planning:
A Preliminary Report

Vikas Shivashankar1
vikas.shivashankar@knexusresearch.com

Ron Alford2

ralford@mitre.org
Mark Roberts3

mark.roberts.ctr@nrl.navy.mil
David W. Aha4

david.aha@nrl.navy.mil

1Knexus Research Corporation, National Harbor, MD
2MITRE, McLean, VA

3NRC Postdoctoral Fellow, Naval Research Laboratory, Code 5514, Washington DC
4Naval Research Laboratory, Code 5514, Washington DC

Abstract

There is an impressive body of work in developing search
heuristics and other reasoning algorithms to guide domain-
independent planning algorithms towards (near-) optimal so-
lutions. However, very little effort has been expended in
developing analogous techniques to guide search towards
high-quality solutions in domain-configurable planning for-
malisms, such as HTN planning. In lieu of such techniques,
the domain-specific knowledge often needs to provide the
necessary search guidance to the planning algorithm; this not
only imposes a significant burden on the domain author, but
can also result in brittle or error-prone domain models.
This work attempts to address this gap by extending re-
cent work on a new hierarchical planning formalism called
Hierarchical Goal Network (HGN) Planning to develop
the Hierarchically-Optimal Goal Decomposition Planner
(HOpGDP), a HGN planning algorithm that computes
hierarchically-optimal plans. HOpGDP is guided by hHL, a
new HGN planning heuristic that extends existing admissible
landmark-based heuristics from Classical Planning in order to
compute admissible cost estimates for HGN planning prob-
lems. Preliminary experimental results show that our planner
compares favorably to the current state-of-the-art.

1 Motivation and Background
A primary research focus in AI planning is developing ef-
ficient search heuristics and auxiliary reasoning techniques
that can help the planner find high-quality plans efficiently.
Formalisms for automated planning developed in the lit-
erature to represent and solve planning problems broadly
fall into either domain-independent planning or domain-
configurable planning. Domain-independent planning for-
malisms, such as classical planning requires that the users
only provide models of the base actions executable in the do-
main. In contrast, domain-configurable planning formalisms
such as Hierarchical Task Network (HTN) Planning al-
low users to supplement the action models with additional
domain-specific knowledge structures that increases the ex-
pressivity and scalability of the planning systems.

An impressive body of work exploring search heuris-
tics that has helped scale up search for high-quality so-
lutions in classical planning. Concretely, search heuristics
such as the relaxed planning graph heuristic (Hoffmann and
Nebel 2001), landmark generation algorithms (Hoffmann,
Porteous, and Sebastia 2004; Richter and Westphal 2010),

and landmark-based heuristics (Richter and Westphal 2010;
Karpas and Domshlak 2009) dramatically improved optimal
and anytime planning algorithms by guiding search towards
(near-) optimal solutions to planning problems.

Yet, relatively little effort has been devoted to develop
analogous techniques to guide search towards high-quality
solutions in domain-configurable planning systems. In lieu
of such search heuristics, domain-configurable planners of-
ten require additional domain-specific knowledge to pro-
vide the necessary search guidance. This requirement not
only imposes a significant burden on the user, but also
sometimes leads to brittle or error-prone domain models.
To address this gap, this paper leverages recent work on
a new hierarchical planning formalism called Hierarchical
Goal Network (HGN) Planning (Shivashankar et al. 2012;
2013), which combines the hierarchical structure of HTN
planning with the goal-based nature of classical planning.

In this paper, we develop the Hierarchically-Optimal
Goal Decomposition Planner (HOpGDP), a HGN planning
algorithm that uses admissible heuristic estimates to gener-
ate hierarchically-optimal plans, i.e plans that are both valid
and optimal with respect to the given hierarchical knowl-
edge. In particular, our contributions are as follows:

• Admissible Heuristic: We present hHL(HGN Landmark
heuristic), a HGN planning heuristic that extends
landmark-based admissible heuristics from classical plan-
ning to derive admissible cost estimates for HGN plan-
ning problems. To the best of our knowledge, hHL is the
first admissible heuristic for hierarchical planning1.

• Optimal Planning Algorithm: We describe HOpGDP,
an A∗ search algorithm that uses hHL to generate
hierarchically-optimal plans.

• Preliminary Experimental Results: We provide prelim-
inary experimental evidence showing that HOpGDP out-
performs optimal classical planners due to its ability to
exploit hierarchical knowledge. We also see that hHL pro-
vides useful search guidance by showing that it compares
favorably both in terms of runtime and nodes explored
to HOpGDPblind, the variant of HOpGDP that uses the
trivial heuristic h = 0, despite a significant computation
overhead.

1We are of course not counting the trivial heuristic of h = 0.

102

2 Preliminaries
In this section we detail the classical planning model, review
how landmarks are constructed for classical planning and an
admissible landmark-based heuristic hL, and describe goal
network planning using examples from assembly planning.

2.1 Classical Planning
We define a classical planning domain Dclassical as
a finite-state transition system in which each state s
is a finite set of ground atoms of a first-order lan-
guage L, and each action a is a ground instance of
a planning operator o. A planning operator is a 4-
tuple o = (head(o), precond(o), effects(o), cost(o)), where
precond(o) and effects(o) are conjuncts of literals called o’s
preconditions and effects, and head(o) includes o’s name
and argument list (a list of the variables in precond(o) and
effects(o)). cost(o) represents the non-negative cost of ap-
plying operator o.

Actions. An action a is executable in a state s if s |=
precond(a), in which case the resulting state is γ(a) =
(s − effects−(a)) ∪ effects+(a), where effects+(a) and
effects−(a) are the atoms and negated atoms, respectively,
in effects(a). A plan π = 〈a1, . . . , an〉 is executable in s if
each ai is executable in the state produced by ai−1; and in
this case γ(s, π) is the state produced by executing the entire
plan. If π and π′ are plans or actions, then their concatena-
tion is π ◦ π′.

We define the cost of π = 〈a1, . . . , an〉 as the sum of the
costs of the actions in the plan, i.e. cost(π) =

∑
i∈{1...n} ai.

2.2 Generating Landmarks for Classical
Planning

There are several landmark generation algorithms suggested
in the literature, such as (Hoffmann, Porteous, and Sebastia
2004) and LAMA (Richter and Westphal 2010). The gen-
eral approach used in generating sound landmarks is to re-
lax the planning problem, generate sound landmarks for the
relaxed version, and then use those for the original planning
problem. In this paper, we use LAMA’s landmark generation
algorithm, which uses relaxed planning graphs and domain-
transition graphs in tandem to generate landmarks.

2.3 hL: an Admissible Landmark-based Heuristic
We provide some background on hL, the landmark-based
admissible heuristic for classical planning problems pro-
posed by Karpas and Domshlak (Karpas and Domshlak
2009) that we will be using in our heuristic.

Consider a classical planning problem P = (D, s0, g)
and a landmark graph LG = (L,Ord) computed us-
ing any off-the-shelf landmark generation algorithms (e.g.,
LAMA (Richter and Westphal 2010)). Then, we can define
Unreached(L, s, π) ⊆ L to be the set of landmarks that
need to be achieved from s onwards, assuming we got to
s using the plan π. Note that Unreached(L, s, π) is path-
dependent: it can vary for the same state when reached by

different paths. It can be computed as follows:

Unreached(L, s, π) = L\
(Accepted(L, s, π) \ ReqAgain(L, s, π))

where Accepted(L, s, π) ⊆ L is the set of landmarks that
were true at some point along π. ReqAgain(L, s, π) ⊆ L
is the set of landmarks that were accepted but are required
again; an accepted landmark l is required again if (1) it does
not hold true in s, and (2) it is greedy-necessarily ordered
before another landmark l′ in L that is not accepted.

Karpas and Domshlak show that it is possible to parti-
tion the costs of the actions A in D over the landmarks in
Unreached(L, s, π) to derive an admissible cost estimate for
the state s as follows: let cost(φ) be the cost assigned to
the landmark φ, and cost(a, φ) be the portion of a’s cost as-
signed to φ. Furthermore, let us suppose these costs satisfy
the following set of inequations:

∀a ∈ A :
∑

φ∈Unreached(a|L,s,π)
cost(a, φ) ≤cost(a)

∀φ ∈ Unreached(L, s, π) : cost(φ) ≤ min
a∈ach(φ|s,π)

cost(a, φ)

(1)

where ach(φ|s, π) ⊆ A is the set of possible achievers
of φ along any suffix of π, and ach(a|L, s, π) = {φ ∈
Unreached(L, s, π)|a ∈ ach(φ|s, π)}.

Informally, what these equations are encoding is a scheme
to partition the cost of each action across all the landmarks
it could possibly achieve, and assigns to each landmark φ a
cost no more than the minimum cost assigned to φ by all its
achievers. Given this, they prove the following useful claim:
Lemma 1. Given a set of action-to-landmark and
landmark-to-action costs satisfying Eqn. 1, hL(L, s, π) =
cost(Unreached(L, s, π)) =

∑
φ∈Unreached(L,s,π) cost(φ) is

an admissible estimate of the optimal plan cost from s.
Note that the choice of exactly how to do the cost-

partitioning is left open. One of the schemes Karpas and
Domshlak propose is an optimal cost-partitioning scheme
that uses an LP solver to solve the constraints in Eqn. 1 with
the objective function max

∑
φ∈L(s,π) cost(φ). This has the

useful property that given two sets of landmarks L and L′,
if L ⊆ L′, then hL(L, s, π) ≤ hL(L′, s, π). In other words,
the more landmarks you provide to hL, the more informed
the heuristic estimate.

2.4 Goal Networks and HGN Methods
We extend the definitions of (Shivashankar et al. 2012) of
HGN planning to work with partially-ordered sets of goals,
which we call a goal network.

A goal network is a way to represent the objective of sat-
isfying a partially ordered multiset of goals. Formally, it is a
pair gn = (T,≺) such that:
• T is a finite nonempty set of nodes;
• each node t ∈ T contains a goal gt that is a DNF (dis-

junctive normal form) formula over ground literals;
• ≺ is a partial order over T .

103

Figure 1: Three generic goal networks we use for examples
of the various relationships within a goal network.

We will provide examples of both generic and con-
crete goal networks. Figure 1 shows three generic goal
networks. Each subfigure is itself a goal network denoted
gna, gnb, gnc. Directed arcs indicate a subgoal pair (e.g.,
(gk, gj) from gnb) such that the first goal must be satisfied
before the second goal. Consider the network gnb where gk
is a subgoal of gj , then gnb = ({gj , gk}, (gk ≺ gj)). Net-
work gnc shows a partial ordering, where ({gm, gn} ≺ gl).
Similarly, ({go, gp} ≺ gn) and this implies both must occur
before gl. Consider a network gnx that is composed of gna
and gnb. Then gnx = ({gi, gj , gk}, gk ≺ gj). Note that gnx
is a partially ordered forest of goal networks.

Figure 2 shows a concrete goal network for an automated
manufacturing domain. joined(x, y) denotes the goal of as-
sembling the parts x and y together, while at(x, loc) rep-
resents the goal of getting x to location loc. In this goal
network, the two goals joined(p2, p1) and joined(p3, p1)
are unordered with respect to one another. Furthermore,
joined(p2, p1) has three subgoals that need to be achieved
before achieving it, i.e the goals of getting the parts p1, p2
and the tool to the assembly table. These subgoals are also
unordered with respect to one another, indicating that the
goals can be accomplished in any order.

HGN Methods An HGN method m is a 4-tuple
(head(m), goal(m), precond(m), network(m)) where the
head head(m) and preconditions precond(m) are similar to
those of a planning operator. goal(m) is a conjunct of lit-
erals representing the goal m decomposes. network(m) is
the goal network that m decomposes into. By convention,
network(m) has a last node tg containing the goal goal(m)
to ensure that m accomplishes its own goal.

Figure 3 describes the goal network that the deliver-
obj method decomposes a goal into. This method
is relevant to at(x, loc) goals (since that’s the last
node), and its preconditions are precond(deliver-obj) =
{¬reserved(agent), can-carry(agent, p) . . .}.

Whether a node has predecessors impacts the kinds of op-
erations we allow. We refer to any node in a goal network
gn having no predecessors as an unconstrained node of gn,
otherwise the node is constrained. The constrained nodes
of Figure 1 include gj , gl, gn and the remaining are uncon-

Figure 2: Sample Goal Network for an Automated Manufac-
turing domain

Figure 3: Subgoal network of deliver-obj(p, loc, agent), a
HGN method to deliver the part p to loc using agent.

strained. The unconstrained nodes in Figure 2 include all the
at nodes as well as the joined(p3, p1) node.

We define the following operations over any goal network
gn = (T,≺):

1. Goal Release: Let t ∈ T be an unconstrained node. Then
the removal of t from gn, denoted by gn− t, results in the
goal network gn′ = (T ′,≺′) where T ′ = T \ {t} and ≺′
is the restriction of ≺ to T ′.

2. Method Application: Let t ∈ T be an uncon-
strained node. Also, let m be a method applied to
t with network(m) = (Tm,≺m). Finally, recall that
network(m) always contains a ’last’ node that contains
goal(m); let tg be this node. Then the application of m to
gn via t, denoted by gn ◦t m, results in the goal network
gn′ = (T ′,≺′) where T ′ = T ∪ Tm and ≺′=≺ ∪ ≺m
∪{(tg, t)}. Informally, this operation adds the elements
of network(m) to gn, preserving the order specified by
subgoals(m) and setting goal(m) as a predecessor of t.

2.5 HGN Domains, Problems and Solutions
A HGN domain is a pair D = (Dclassical,M) where
Dclassical is a classical planning domain and M is a set of
HGN methods.

A HGN planning problem is a triple P = (D, s0, gn0),
where D is a HGN domain, s0 is the initial state, and gn0 =
(T,≺) is the initial goal network.

Definition 2 (Solutions to HGN Planning Problems). The
set of solutions for P is defined as follows:

Base Case. If T is empty, the empty plan is a solution for
P .

In the following cases, let t ∈ T be an unconstrained node.

Unconstrained Goal Satisfaction. If s0 |= gt, then any so-
lution for P ′ = (D, s0, gn0 − t) is also a solution for
P .

104

Action Application. If action a is applicable in s0 and
a is relevant to gt, and π is a solution for P ′ =
(D, γ(s0, a), gn0), then a ◦ π is a solution for P .

Method Decomposition. If m is a method applicable in
s and relevant to gt, then any solution to P ′ =
(D, s0, gn0 ◦t m) is also a solution to P .

Note that HGN planning allows an action to be applied
only if it is relevant to an unconstrained node in gn; this
prevents action chaining as done in classical planning and
allows for tigher control of solutions as in HTN planning. In
fact, prior work (Shivashankar et al. 2012) showed that HGN
planning is as expressive as HTN planning when both are re-
stricted to totally-ordered methods, i.e. the subtask/subgoal
networks are totally ordered.

Let us denote S(P) as the set of solutions to a HGN plan-
ning problem P as allowed by Definition 2. Then we can
define what it means for a solution π to be hierarchically
optimal with respect to P as follows:

Definition 3 (Hierarchically Optimal Solutions). A solution
πh,∗ is hierarchically optimal with respect to P if πh,∗ =
argminπ∈S(P)cost(π).

3 hHL: An Admissible Heuristic for HGN
Planning

At a high level, we will proceed to construct hHL as follows:

1. We define a relaxation of HGN planning that ignores the
provided methods and allows unrestricted action chaining
as in classical planning, which expands the set of allowed
solutions,

2. We will extend landmark generation algorithms for classi-
cal planning problems to compute sound landmark graphs
for the relaxed HGN planning problems, which in turn are
sound with respect to the original HGN planning prob-
lems as well, and finally

3. We will use admissible classical planning heuristics like
hL on these landmark graphs to compute admissible cost
estimates for HGN planning problems.

3.1 Relaxed HGN Planning
Definition 4 (Relaxed HGN Planning). A relaxed HGN
planning problem is a triple P = (Dclassical, s0, gn0)
where D is a classical planning domain, s0 is the initial
state, and gn0 is the initial goal network. Any sequence of
actions π that is executable in state s0 and achieves the
goals in gn0 in an order consistent with the constraints in
gn0 is a valid solution to P .

Relaxed HGN planning can thus be viewed as an exten-
sion of classical planning to solve for goal networks, where
there are no HGN methods and the objective is to generate
sequences of actions that satisfy the goals in gn0 in an order
consistent with gn0. In fact, it is easy to show that relaxed
HGN planning, in contrast to HGN planning, is no more ex-
pressive than classical planning, and relaxed HGN planning
problems can be compiled into classical planning problems
quite easily.

Next, we will show how to leverage landmark genera-
tion algorithms for classical planning to generate landmark
graphs for relaxed HGN planning.

3.2 Generating Landmarks for Relaxed HGN
Planning

This section describes a landmark discovery technique that
can use any landmark discovery technique for classical plan-
ning (referred to as LMGENC here) such as (Richter and
Westphal 2010) to compute landmarks for relaxed HGN
planning problems. The main difference here is that while
classical planning problems are (state, goal) pairs, relaxed
HGN planning problems are (state, goal-network) pairs;
every goal in the goal network can be thought of as a land-
mark. Therefore, there is now a partially ordered set of goals
to compute landmarks from, as opposed to a single goal in
classical planning.

Algorithm 1 Procedure for computing landmarks for re-
laxed HGN planning problems.

1: function computeHGNLandmarks(s, gn)
2: queueSeeds← gn
3: queue← ∅
4: while queueSeeds is not empty do
5: choose a g w/o successors from queueSeeds,

and remove it along with all associated orderings
6: addLM(g), add g to queue
7: add any orderings g shares with other goals from
gn already added to LG

8: while queue is not empty do
9: pop landmark ψ from queue and use

LMGENC to generate the new set of landmarks Φ
10: for φ ∈ Φ do ADDLM(φ, φ→gn ψ)

11: return LG
12:
13: function addLM(φ)
14: if φ is a fact and ∃φ′ ∈ LG : φ′ 6= φ∧φ |= φ′ then
15: remove φ′ from LG and all orderings it is part of
16: if ∃φ′ ∈ LG : φ′ |= φ then return φ′

17: if φ /∈ LG then add φ to queue and return φ
18:
19: function addLMandOrdering(φ, φ→x ψ)
20: η ← addLM(φ)
21: add ordering η →x ψ to LG

We therefore need to generalize classical planning land-
mark generation techniques to work for relaxed HGN
planning problems. The computeHGNLandmarks algorithm
(Algorithm 1) describes one such generalization. At a
high level, computeHGNLandmarks proceeds by comput-
ing landmark graphs for each goal g in gn (which in fact is
a classical planning problem) and merging them all together
to create the final landmark graph LG.
computeHGNLandmarks takes as input a relaxed HGN

planning problem (s, gn) and generatesLG, a graph of land-
marks. First, queueSeeds is initialized with a copy of gn
(Line 2). This is because unlike in classical planning where

105

we have a single goal to generate landmarks from, in HGN
planning we have a partially ordered set of goals to seed the
landmark generation; queueSeeds stores these seeds. We
also initialize queue, the openlist of landmarks, to ∅.

While there is a goal g from gn that we have not yet com-
puted landmarks for (Line 4), we do the following: we re-
move it from queueSeeds along with all induced order-
ings and add it to queue (Lines 5–6). We also add g to
LG using addLM; we also add any ordering constraints it
might have with other elements of gn that have already been
added to LG. This queue is then used as a starting point
by LMGENC to begin landmark generation. We iteratively
use LMGENC to pop landmarks off the queue and gener-
ate new landmarks by backchaining until we can no longer
generate any more landmarks (Lines 8–10). Each new land-
mark is added to LG by the addLMandOrdering procedure.
Once all goals in gn have been handled, the landmark gen-
eration process is completed and the algorithm returns LG.

The addLM procedure takes as input a computed land-
mark φ, adds it to LG and returns a landmark η. There are
three cases to consider:
• φ subsumes another landmark φ′ in LG, implying we can

remove φ′ and replace it with φ (since φ is a stronger ver-
sion of φ′), and return φ (Lines 14–15)

• φ is subsumed by another landmark φ′ in LG, implying
we can ignore φ (Lines 16). In this case, we don’t add any
new landmark to LG and simply return φ′

• φ is a new landmark, in which case we can simply add it
to LG and return φ (Lines 17)
The addLMandOrdering procedure takes as input a land-

mark φ and an ordering constraint φ →x ψ and adds them
to LG. More precisely, it adds φ to LG using addLM, which
returns the added landmark η. It then adds the ordering con-
straint between η and ψ in LG.

(a) (b)

Figure 4: (a) LM graph on goal network containing a sin-
gle goal at(p1, table). (b) LM graph after decomposing
at(p1, table) with deliver-obj(p1, table, A1). The double-
circled landmarks represent new landmarks inferred after the
method decomposition, while the landmarks colored gray
are new landmarks that subsumed an existing one in (a).

LM graph computation example. Figure 4 illustrates
the working of computeHGNLandmarks. Let us assume the
goal network gn contains only one goal g = at(p1, table).

Figure 4a illustrates the output of computeHGNLandmarks
on g. This is identical to what LMGENC would generate,
since gn contains only one goal, making the relaxed HGN
problem equivalent to a classical planning problem.

Now, let us assume that we decompose gn using the
m = deliver-obj(p1, table, A1), and get the new goal
network gn′, which essentially looks like an instanti-
ated version of the network in Figure 3. Now if we run
computeHGNLandmarks on gn′, we end up generating the
landmark graph in Figure 4b, which is a more focused ver-
sion of the first landmark graph. This is because the goals
in gn′ are landmarks that must be accomplished, which con-
strains the set of valid solutions that can be generated. For
instance, since we’ve committed to agent A1, every solution
we can generate from gn′ will involve the use ofA1. We can,
as a result, generate more focused landmarks than we other-
wise could have from just the top-level goal g. This includes
fact landmarks that replace disjunctive landmarks (the ones
in gray in Fig. 4b) as well as completely new landmarks that
arise as a result of the method; e.g. reserved(A1) is not a
valid landmark for gn, but is one for gn′.

An important point to note at this point is that the subgoals
in gn′ are not true landmarks for g; they are landmarks once
we commit to applying method m. However, this actually
ends up being useful to us, since it allows us to generate dif-
ferent landmark graphs for different methods; for instance, if
we had committed to A2, we would have obtained a differ-
ent set of landmarks specific to A2. Now, landmark-based
heuristics when applied to these two graphs would get us
different heuristic estimates, thus allowing to differentiate
between these two methods by using the specific subgoals
each method introduces.

It is easy to show that computeHGNLandmarks generates
sound landmark graphs for relaxed HGN planning problems:
Claim 5. Given a relaxed HGN planning
problem P = (Dclassical, s0, gn0), LG =
computeHGNLandmarks(s0, gn0) is a sound landmark
graph for P .

Let P = ((Dclassical,M), s0, gn0) be a HGN planning
problem, and let P ′ = (Dclassical, s0, gn0) be the corre-
sponding relaxed version. Then by definition, any solution
to P is a solution to P ′. Therefore, it is easy to see that a
landmark of P ′ is also a sound landmark of P . More gener-
ally, a landmark graph generated for P ′ is going to be sound
with respect to P as well:
Claim 6. Given a HGN planning problem P , then LG =
computeHGNLandmarks(s0, gn0) is a sound landmark
graph for P .

3.3 Computing hHL

The main insight behind hHL is the following: since the
computeHGNLandmarks algorithm generates sound land-
marks and orderings for relaxed (and therefore regu-
lar) HGN planning problems, we can use any admissible
landmark-based heuristic from classical planning to derive
an admissible cost estimate for HGN planning problems.

In particular, hHL uses hL as follows: given an HGN
search node (s, gn), the landmark graph is given by

106

LGHGN = computeHGNLandmarks(s, gn). Then

hHL(s, gn, π) = hL(LGHGN , s, π) (2)

where π is the plan generated to get to (s, gn).

3.4 Admissibility of hHL

Claim 6 shows that given a HGN problemP = (D, s0, gn0),
LG = computeHGNLandmarks(s0, gn0) is a sound land-
mark graph with respect to P . Furthermore, Lemma 1 shows
that hL(LG, s0, 〈〉) provides an admissible cost estimate of
the optimal plan starting from s0 that achieves all the land-
marks in LG. Since every solution to P has to achieve all the
landmarks in LG in a consistent order, hL(LG, s0, 〈〉) pro-
vides an admissible estimate of the optimal cost to P as well.
However, from Eq. 2, hL(LG, s0, 〈〉) = hHL(s0, gn0, 〈〉).
Therefore, we have the following theorem:

Theorem 7 (Admissibility of hHL). Given a HGN planning
domain D, a search node (s, gn, π) and its cost-optimal so-
lution π∗,HGNs,gn , hHL(s, gn, π) ≤ π∗,HGNs,gn .

4 The HOpGDP Algorithm
Algorithm 2 describes HOpGDP. It takes as input a HGN
domain D = (D′,M), the initial state s0 and the initial goal
network gn0. It returns a plan if it finds one, or failure if the
problem is unsolvable.

Initialization. It starts off by initializing open (Line 2),
which is a priority queue that sorts the HGN search nodes
yet to be expanded by their f -value, where f((s, gn, π)) =
cost(π) + hHL(s, gn). open initially contains the initial
search node (s0, gn0, 〈〉). It also initializes searchSpace
(Line 3), the set of all nodes seen during the search pro-
cess. This data structure keeps track of the best known path
currently known for each state,goal-network pair, and is thus
helpful to detect when we find a cheaper path to a previously
seen HGN search node.

Search. HOpGDP now proceeds to do an A∗ search in the
space of HGN search nodes starting from the initial node.
While open is not empty, it does the following (Lines 4–14):
it removes the HGN search node N = (s, gn, π) with the
best f -value from open (Line 5) and first checks if gn is
empty (Line 6). If this is true, this means that all the goals
in gn0 have been solved, and π is the optimal solution to the
HGN planning problem.

If gn is not empty, then the algorithm proceeds by us-
ing the getSuccessors subroutine to compute N ’s successor
nodes (Line 7). For each successor node (s′, gn′, π′), it pro-
ceeds to do the following: it checks to see if another path η
to (s′, gn′) exists in searchSpace (Line 9). If this is the case
and if η is costlier than π′ (Line 10), it updates searchSpace
with the new path; and reopens the search node (Line 14); if
η is cheaper than the new plan π′, it simply skips this suc-
cessor (Line 12).

If (s′, gn′) has not been seen before, it adds N ′ =
(s′, gn′, π′) to searchSpace to track the currently best-
known plan π′ to (s′, gn′) (Line 13). It also evaluates the
f -value of N ′ and adds it to open (Line 14).

If there are no more nodes left in open, this implies that
it has exhausted the search space without finding a solution,
and therefore returns failure (Line 15).

Computing Successors. The procedure getSuccessors
computes the successors of a given HGN search node
(s, gn, π) in accordance with Definition 2. First, we check
to see if there are any unconstrained goals g in gn that are
satisfied in the current state s. We then proceed to create
new HGN search nodes by removing all such goals from gn
(Line 19–20). Next, we compute all actions applicable in s
and relevant to an unconstrained goal in gn (Line 21) and
create new search nodes by progressing s using these ac-
tions (Line 22–23). We compute all pairs (m, g) such thatm
is a HGN method applicable in s and relevant to an uncon-
strained goal g in gn (Line 24) and create new search nodes
by decomposing g in gn using m (Line 25–26). Finally, we
return the set of generated successor nodes (Line 27).

Algorithm 2 Pseudocode of HOpGDP. It takes as argu-
ments the domain description D = (Dclassical,M), the ini-
tial state s0, and the initial goal network gn0. It either returns
a plan if it finds one, or failure if it doesn’t.

1: function HOpGDP(D, s0, gn0)
2: open← (s0, gn0, 〈〉)
3: searchSpace← (s0, gn0, 〈〉)
4: while open is not empty do
5: rem. (s, gn, π) with lowest f -value from open
6: if gn is empty then return π
7: successors← getSuccessors(D, s, gn, π)
8: for (s′, gn′, π′) ∈ successors do
9: if ∃(s′, gn′, η) ∈ searchSpace then

10: if cost(π′) < cost(η) then
11: replace (s′, gn′, η) with (s′, gn′, π′)

in searchSpace
12: else continue
13: else add (s′, gn′, π′) to searchSpace

14: eval. f -value of (s′, gn′, π′) and add to open

15: return failure
16:
17: function getSuccessors(D, s, gn, π)
18: successors← ∅
19: for unconstrained g ∈ gn satisfied in s do
20: add the node (s, gn− {g}, π) to successors
21: A ← actions in D applicable in s and relevant to an

unconstrained goal in gn
22: for a ∈ A do
23: add the node (γ(s, a), gn, π ◦ a) to successors
24: M ← {(m, g) s.t. m ∈ M is applicable in s and

relevant to an unconstrained goal g in gn}
25: for (m, g) ∈M do
26: add the node (s, gn ◦g m,π) to successors
27: return successors

107

●●

●

●

●

●

●

●

●

●
●●

●
●

●●●
●

●
●

●

●

●
●

●
●●
●
●

●
●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●
●●● ●●●
●●

●

●●●●●●●

●

●●●●●
●
●●●●

●

●

●

●

●

●

●●●●●●

●●●

●

●●

●

●

●
●

●

●

●

●

●

●

A*−hL CPU (s)

H
O

pG
D

P
 C

P
U

 (
s)

0.
1

1
10

10
0

10
00

0.1 1 10 100 1000

●●

●

●

●

●

●

●

●

●
●●

●
●

● ●●
●

●
●

●

●

●
●

●
● ●

●
●

●
●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●
●● ●●●

●

●●●●●●●

●

●●● ●●
●

●● ●●

●

●

●

●

●

●

●●●●●●

●●●

●

●●

●

●

●
●

●

●

●

●

●

●

HOpGDPblind CPU (s)
0.1 1 10 100 1000

Figure 5: Log-scale scatter plot comparing HOpGDP planning time vs. A*-hL (left) and HOpGDPblind (right) planning time on
Blocksworld and Logistics problems.

Count A*-hL HOpGDPblind HOpGDP

bw 114 60 102 110
log 28 11 22 22
Total 142 71 124 132

A*-hL HOpGDPblind HOpGDP
s̄ σ s̄ σ s̄ σ

bw 42.7 157.2 8.0 30.9 1.8 2.6
log 3.1 2.8 1.2 0.2 1.4 0.5

A*-hL HOpGDPblind HOpGDP
x̄ σ x̄ σ x̄ σ

bw 1097840 3805838 22047 96523 1194 3806
log 106281 133890 769 775 569 608

Table 1: The coverage (top) and the mean CPU seconds
(middle) and mean number of node expansions (bottom) for
A*-hLusing hL, HOpGDPblind, and HOpGDPusing hHL.
For runtime and nodes, we include the sample mean (x̄) and
standard deviation (σ). Other than coverage, all statistics are
over the subset of problems solved by all three variants.

5 Preliminary Experiments
Our evaluation of HOpGDP focuses on two questions: Is
the heuristic informative in guiding search, and is its guid-
ance sufficient to overcome its computation time. We chose
the well-known Blocksworld and Logistics domains for our
preliminary study, using the HGN methods described in the
GoDeL evaluation. For logistics, we limited truck capacity
to one package to ensure that the optimal solutions were the
same between the HGN and non-HGN planners.

We implemented HOpGDP in the GoDeL framework
(Shivashankar et al. 2013), which is derived from the Fast-
Downward (Helmert 2009) code base. We chose three vari-
ants of HOpGDP to compare: A*-hL, which ignores all
methods and corresponds to A* with the classical hL heuris-
tic; HOpGDPblind, which corresponds to Algorithm 2 with
h = 0, so that the f -value is always g, the distance from the
start; and the full HOpGDP algorithm with the hHL heuris-
tic. Both A*-hL and HOpGDP break ties on lower h values.
We ran all problems on a Xeon E5-2639 with a per problem
limit of 4 GB of RAM and 20 minutes of planning time.

Table 1 (top) shows the coverage for the three algorithms.
HOpGDP and HOpGDPblind have nearly twice the coverage
of A*-hL, which confirms the power of pruning in search,
even when comparing blind and heuristic search. The dif-
ference between HOpGDP and HOpGDPblind is more sub-
tle, with HOpGDP covering all of HOpGDPblind’s problems
plus eight more.

Figure 5 gives a scatter plot of run times of HOpGDP vs.
A*-hL and HOpGDPblind. Table 1 (middle) summarizes the
runtimes for the set of problems solved by all three variants.
The results roughly match the coverage trends, but we make

108

no statistical claims.
Note that the runtime for HOpGDP on logistics is higher

than HOpGDPblind. The bottom section of Table 1 gives
some context to the results. A*-hL has an order of magni-
tude faster node-expansion rate than HOpGDPblind, which in
turn has a four times higher expansion rate than HOpGDP.
Part of the reason for this is architecture. HGN methods, as
with HTN methods, tend to have high numbers of free vari-
ables. Grounding these methods bloated the domain beyond
use in sample runs, and so methods are unified against a
state by calling out to SHOP2’s unifier over local sockets.
Part of the difference between A*-hL and HOpGDP is in-
herent, though, since hL calculates one landmark graph per
problem and hHL must calculate a new landmark graph for
every goal network it encounters.

While these trends are generally positive, the results are
hardly conclusive. We plan on expanding the set of problems
and more closely analyze the results in future work.

6 Related Work
HTN planners solve planning problems in one of two ways,
either (1) by forward state-space search, such as in the
SHOP (Nau et al. 1999) and SHOP2 (Nau et al. 2003)
HTN planners, or (2) by partial-order causal-link planning
(POCL) techniques, such as in UMCP (Erol, Hendler, and
Nau 1994) and in the hybrid planning literature (Elkawkagy
et al. 2012; Bercher, Keen, and Biundo 2014).

Due to very little work in the way of search heuristics
for forward-search HTN planning, planners often end up
providing other domain-specific mechanisms for users to
encode search strategies. For example, SHOP2 allows the
domain-specific knowledge, known as HTN methods, to be
specified in a ’good’ order according to the user, and tries
them out in the same order. SHOP2 also provides sup-
port for external function calls (Nau et al. 2003) that can
call arbitrary code to do the heavy lifting in the problem,
thus minimizing the choices that need to be made dur-
ing search. For example, in the 2002 Planning Competition
for hand-tailored planners, the authors of SHOP2 imple-
mented a shortest-path algorithm in the DriverLog domain
that SHOP2 could call externally to generate optimal paths.2

Waisbrot et al (Waisbrot, Kuter, and Konik 2008) devel-
opedH2O, a HTN planner that augments SHOP2 with clas-
sical planning heuristics to make local decisions on which
method to apply next by estimating how close the method’s
goal is to the current state.H2O, however, retains the depth-
first search structure of SHOP2, making it to difficult to gen-
erate high-quality plans.

Marthi et al (Marthi, Russell, and Wolfe 2007; 2008)
propose an HTN-like formalism called angelic hierarchical
planning which allows users to annotate abstract tasks with
additional domain-specific information in the form of lower
and upper bounds on the costs of the possible plans they
decompose to. They then use this information to compute
hierarchically-optimal plans. In contrast, we require only
costs of the primitive actions and use domain-independent
search heuristics to compute hierarchically-optimal plans.

2personal communication with Ugur Kuter.

There has been recent work on developing search heuris-
tics for POCL HTN planners (Elkawkagy et al. 2012;
Bercher, Keen, and Biundo 2014). However, these heuristics
typically provide estimates on how many more plan refine-
ment steps need to be taken from a search node in order to
get to a solution, as opposed to plan quality estimates, which
is what we are focused on in this paper.

Hierarchical Goal Network (HGN) Planning combines
the hierarchical structure of HTN planning with the goal-
based nature of classical planning. It therefore allows for
easier infusion of techniques from classical planning into
hierarchical planning, such as adapting the FF heuristic
to do method ordering in the GDP planner (Shivashankar
et al. 2012), and using landmark-based techniques to plan
with partial amounts of domain knowledge in GoDeL (Shiv-
ashankar et al. 2013). Both planners, however, use depth-
first search and inadmissible heuristics, so they cannot pro-
vide any guarantees of plan quality.

Another domain-configurable planning formalism is
Planning with Control Rules (Bacchus and Kabanza 2000),
where domain-specific knowledge is encoded in the form of
linear-temporal logic (LTL) formulas. TLPlan, one of the
earliest planners developed under this formalism, used con-
trol rules written in LTL to prune away trajectories deemed
suboptimal by the user. There have also been attempts to de-
velop heuristic search planners that can plan with LTLf , a
simplified version of LTL that works with finite traces. This
has been used to incorporate search heuristics to solve for
temporally extended goals written in LTLf (Baier and McIl-
raith 2006) as well as to express landmark-based heuristics
that guide classical planners (Simon and Roger 2015).

7 Conclusion
Despite the popularity of hierarchical planning techniques
both in theory and practice, very little effort has been de-
voted to developing domain-independent search heuristics
that can provide useful search guidance towards high-quality
solutions. As a result, end-users need to encode domain-
specific heuristics into the domain models, which can make
the domain-modeling process tedious and error-prone.

To address this issue, this paper leverages recent work
on HGN planning, which allows tighter integration of
hierarchical planning and classical planning, to develop
(1) hHL, an admissible HGN planning heuristic, and (2)
HOpGDP, an A∗ search algorithm guided by hHL to com-
pute hierarchically-optimal plans.

There are several avenues for future work, such as:

• Theoretical Analysis: We show that hHL returns admis-
sible cost estimates for HGN planning problems. How-
ever, we believe that it has other interesting theoretical
properties as well. In particular, we conjecture that it dom-
inates hL, since it can, in general, compute more focused
landmarks, which can translate to more informed heuris-
tic estimates, a property of optimal cost partitioning with
hL. On a related note, we believe that hHL has the nice
property that despite some of the steps being zero-cost
(i.e. method applications, which don’t change the state),
it can help us avoid f -value plateaus since the method ap-

109

plication can result in a more informative heuristic value.
We plan on doing a more detailed theoretical analysis to
verify these conjectures.

• Extension to Anytime Planning: While we believe it is
theoretically interesting that hHL can help us find opti-
mal solutions, it would be of practical interest to design
anytime HGN planning algorithms.

Acknowledgment This work is sponsored in part by OSD
ASD (R&E). The information in this paper does not nec-
essarily reflect the position or policy of the sponsors, and
no official endorsement should be inferred. Ron Alford per-
formed part of this work under an ASEE postdoctoral fel-
lowship at NRL.

References
Bacchus, F., and Kabanza, F. 2000. Using temporal logics to
express search control knowledge for planning. Artif. Intell.
116:123–191.
Baier, J. A., and McIlraith, S. A. 2006. Planning with first-
order temporally extended goals using heuristic search. In
AAAI Conference on Artificial Intelligence.
Bercher, P.; Keen, S.; and Biundo, S. 2014. Hybrid plan-
ning heuristics based on task decomposition graphs. In Proc.
of the Seventh Annual Symposium on Combinatorial Search
(SoCS), 35–43. AAAI Press.
Elkawkagy, M.; Bercher, P.; Schattenberg, B.; and Biundo,
S. 2012. Improving hierarchical planning performance by
the use of landmarks. In AAAI Conference on Artificial In-
telligence, 1763–1769.
Erol, K.; Hendler, J.; and Nau, D. S. 1994. UMCP: A sound
and complete procedure for hierarchical task-network plan-
ning. 249–254. ICAPS 2009 influential paper honorable
mention.
Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. Artificial Intelligence 173(5):503–
535.
Hoffmann, J., and Nebel, B. 2001. The FF planning system.
Journal of Artificial Intelligence Research 14:253–302.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. Journal of Artificial Intelligence Re-
search 22:215–278.
Karpas, E., and Domshlak, C. 2009. Cost-optimal planning
with landmarks. In Boutilier, C., ed., IJCAI 2009, Proceed-
ings of the 21st International Joint Conference on Artificial
Intelligence, Pasadena, California, USA, July 11-17, 2009,
1728–1733.
Marthi, B.; Russell, S.; and Wolfe, J. 2007. Angelic seman-
tics for high-level actions. In International Conference on
Automated Planning and Scheduling.
Marthi, B.; Russell, S.; and Wolfe, J. 2008. Angelic hierar-
chical planning: Optimal and online algorithms. In Interna-
tional Conference on Automated Planning and Scheduling,
222–231.

Nau, D. S.; Cao, Y.; Lotem, A.; and Muñoz-Avila, H. 1999.
SHOP: Simple hierarchical ordered planner. In Dean, T.,
ed., International Joint Conference on Artificial Intelligence,
968–973.
Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock,
J. W.; Wu, D.; and Yaman, F. 2003. SHOP2: An HTN
planning system. Journal of Artificial Intelligence Research
20:379–404.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. J. Ar-
tif. Intell. Res. (JAIR) 39:127–177.
Shivashankar, V.; Kuter, U.; Nau, D.; and Alford, R. 2012. A
hierarchical goal-based formalism and algorithm for single-
agent planning. In Proc. of the 11th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS), vol-
ume 2, 981–988. Int. Foundation for Autonomous Agents
and Multiagent Systems.
Shivashankar, V.; Alford, R.; Kuter, U.; and Nau, D. 2013.
The GoDeL planning system: a more perfect union of
domain-independent and hierarchical planning. In Proc. of
the 23rd Int. Joint Conf. on Artificial Intelligence (IJCAI),
2380–2386. AAAI Press.
Simon, S., and Roger, G. 2015. Finding and exploiting ltl
trajectory constraints in heuristic search. In Symposium on
Combinatorial Search.
Waisbrot, N.; Kuter, U.; and Konik, T. 2008. Combin-
ing heuristic search with hierarchical task-network planning:
A preliminary report. In International Conference of the
Florida Artificial Intelligence Research Society.

110

Monte Carlo Tree Search as a Hyper-heuristic
Framework for Classical Planning

Otakar Trunda
Department of Theoretical Computer Science and Mathematical Logic

Faculty of Mathematics and Physics, Charles University in Prague
Malostranské nám. 25, 118 00 Praha 1, Czech Republic

Abstract

Hyper-heuristics have become popular for solving combi-
natorial optimization problems, especially in the field of
scheduling. The idea of hyper-heuristics is based on an auto-
matic composition of the search algorithm from given build-
ing blocks, such that the search algorithm is tailor-made for
each problem instance. In planning, this idea has not yet been
seriously investigated and it might represent a viable alterna-
tive to planning portfolios.
We present a hyper-heuristic planner that can automatically
adapt the search strategy to given problem instance. The plan-
ner works with a set of simple search algorithms used as
building blocks and combines them during the search in or-
der to adapt to the problem instance. We use Monte Carlo
Tree Search to manage the combination process of building
blocks.
Preliminary experiments show that the price/performance ra-
tio of our technique is advantageous as the proposed hyper-
heuristic outperforms each single building-block-algorithm
when used individualy.

Introduction
Planning deals with problems of selection and causally or-
dering of actions to achieve a given goal from a known ini-
tial situation. Planning algorithms assume a description of
possible actions and attributes of the world states in some
modeling language such as Planning Domain Description
Language (PDDL) as its input. Currently, the most efficient
approach to solve planning problems is heuristic forward
search.

Many planning algorithms have been developed so far,
none of them outperforms each other on all domains. It is
therefore important to select the right algorithm for the task
at hand. A similar problem occurs in other fields like com-
binatorial search and machine learning where it is addressed
by so called autonomous methods. Among those methods,
hyper-heuristics are especially preferred for combinatorial
optimization problems. In planning, autonomous methods
in their true form have not yet been used and the problem
of planning algorithm selection is currently only addressed
by portfolio planners. Since hyper-heuristics proved to be ef-
ficient in fields closely related to planning (like scheduling
and combinatorial search (Burke et al. 2013)), it is worth
trying to use them for planning as well.

Instead of searching the solution space directly, hyper-
heuristics search the algorithm space. They try to build an
algorithm well suited for the problem instance. To evaluate
the candidate algorithms, they use the quality of solution that
the algorithm finds. There is always a metaheuristic that han-
dles the search for algorithms. From the planning perspec-
tive, the Monte Carlo Tree Search algorithm (MCTS) has a
distinct advantage over other metaheuristics for being able
to implicitly work with sequences of variable length.

Monte Carlo Tree Search algorithm is a stochastic method
originally proposed for computer games. MCTS was mod-
ified for a single-player games and it is also applicable to
optimization problems. However, there are still difficulties
when applying to planning problems, namely existence of
infinite sequences of actions and dead ends. In this paper,
we identify these difficulties and we discuss possible ways
to overcome them with a connection to the hyper-heuristic
design.

The paper is organized as follows. We will first give
a short background on planning, hyper-heuristics and Monte
Carlo Tree Search techniques and we will highlight possible
problems when applying MCTS in planning including a dis-
cussion how to resolve these problems. We will then present
the design of our hyper-heuristic planner. The paper will be
concluded by preliminary experiments.

Background
Planning

In this paper, we deal with classical planning problems, that
is, with finding a sequence of actions transferring the world
from a given initial state to a state satisfying a certain goal
condition (Ghallab, Nau, and Traverso 2004). World states
are represented as sets of predicates that are true in the state
(all other predicates are false in the state). Actions describe
how the world state can be changed. Each action a is de-
fined by a set of predicates prec(a) as its precondition and
two disjoint sets of predicates eff+(a) and eff−(a) as its
positive and negative effects. Action a is applicable to state
s if prec(a) ⊆ s holds. If action a is applicable to state s
then a new state γ(a, s) defines the state after application of
a as

γ(a, s) = (s ∪ eff+(a)) \ eff−(a)

111

Otherwise, the state γ(a, s) is undefined. The goal g is usu-
ally defined as a set of predicates that must be true in the
goal state. Hence the state s is a goal state if and only if
g ⊆ s.

The satisficing planning task is formulated as follows:
given a description of the initial state s0, a set A of avail-
able actions, and a goal condition g, is there a sequence
of actions (a1, . . . , an), called a solution plan, such that
ai ∈ A, a1 is applicable to state s0, each ai s.t. i >
1 is applicable to state γ(ai−1, . . . γ(a1, s0)), and g ⊆
γ(an, γ(an−1, . . . γ(a1, s0)))?

Assume that each action a has some cost c(a). An opti-
mization planning task is about finding a solution plan such
that the sum of costs of actions in the plan is minimized. For-
mally, the task is to find a sequence of actions (a1, . . . , an),

minimizing
n∑
i=1

c(ai) under the condition

g ⊆ γ(an, γ(an−1, . . . γ(a1, s0))).
Our planning system uses a finite-domain representation

of the planning task encoded in the SAS+ formalism in-
stead of the predicate representation described here. For the
purposes of this paper, it is sufficient to define the planning
problem simply as a state-transition system with transition
costs so the internal representation is not that important at
this point.

Monte Carlo Tree Search
Monte Carlo Tree Search (MCTS) is a stochastic optimiza-
tion algorithm that combines classical tree search with ran-
dom sampling of the search space. The algorithm was orig-
inally used in the field of game playing where it became
very popular, especially for games Go and Hex. A single
player variant has been developed by Schadd et al. (Schadd
et al. 2008) which is designed specifically for single-player
games and can also be applied to optimization problems.
The MCTS algorithm successively builds an asymmetric
tree to represent the search space by repeatedly performing
the following four steps:

1. Selection – The tree built so far is traversed from the root
to a leaf using some criterion (called tree policy) to select
the most urgent leaf.

2. Expansion – All applicable actions for the selected leaf
node are applied and the resulting states are added to the
tree as successors of the selected node (sometimes differ-
ent strategies are used).

3. Simulation – a pseudo-random simulation is run from the
selected node until some final state is reached (a state that
has no successors). During the simulation, the actions are
selected by a simulation policy,

4. Update/Back-propagation – The result of the simulation
is propagated back in the tree from the selected node to
the root and statistics of the nodes on this path are updated
according to the result.

The core schema of MCTS is shown at Figure 1 from
(Chaslot et al. 2008).

One of the most important parts of the algorithm is the
node selection criterion (a tree policy). It determines which

Figure 1: Basic schema of MCTS (Chaslot et al. 2008)

node will be expanded and therefore it affects the shape of
the search tree. The purpose of the tree policy is to solve the
exploration vs. exploitation dilemma.

Commonly used policies are based on a so called
bandit problem and Upper Confidence Bounds for Trees
(UCT) (Auer, Cesa-Bianchi, and Fischer 2002; Kocsis and
Szepesvári 2006) which provide a theoretical background to
measure quality of policies. We will present here the tree
policy for the single-player variant of MCTS (SP-MCTS)
due to Schadd et al. (Schadd et al. 2008) that is appropri-
ate for planning problems (planning can be seen as a single-
player game where moves correspond to action selection).

Let t(N) be the number of simulations/samples passing
the node N , vi(N) be the value of i-th simulation passing
the nodeN , and v̄(N) be the average value of all simulations
passing the node N :

v̄(N) =

t(N)∑
i=1

vi(N)

t(N)

The SP-MCTS tree policy suggests to select the children
node Nj of node N maximizing the following function
(called urgency):

v̄(Nj)+C·
√

2 ln (t(N))

t(Nj)
+

√√√√√√
t(Nj)∑
i=1

vi(Nj)2 − t(Nj) · v̄(Nj)2

t(Nj)

The first component of the above formula is a so called
Expectation and it describes an expected value of the path
going through a given node. This supports exploitation of
accumulated knowledge about quality of paths. The second
component is a Bias. The Bias component of a node Nj
slowly increases every time the sibling of Nj is selected
(that is every time the node enters the competition for be-
ing selected but it is defeated by another node) and rapidly
decreases every time the node Nj is selected, that is the pol-
icy prefers nodes that have not been selected for a long time.
This supports exploration of unknown parts of the search
tree. Bias is weighted by a constant C that determines the
exploration vs. exploitation ratio. Its value depends on the
domain and on other modifications to the algorithm. For ex-
ample in computer Go the usual value is about 0.2. When

112

solving optimization problems, the range of values for the
Expectation component is unknown opposite to computer
games, where Expectation is between 0 (loss) and 1 (win).
Nevertheless it is possible to use an adaptive technique for
adjusting the parameter C in order to keep the components
in the formula (Expectation and Bias) of the same magni-
tude (Baudiš 2011). The last component of the evaluation
formula is a standard deviation and it was added by Schadd
et al. (Schadd et al. 2008) to improve efficiency for single-
player games (puzzles).

Another important part of the algorithm is the simulation
phase. Simulations are used to sample the search space and
their accumulated results play the role of an evaluation func-
tion for non-goal states. To work efficiently, the algorithm
needs a large number of simulations to be performed every
second so it is crucial that simulations are fast and easy to
carry out.

The Figure 2 shows an example of the MCTS tree when
minimizing a pseudo-random one-dimensional function. In
the yellow field, there is the fitness landscape of a func-
tion to be minimized and above it there is a tree that MCTS
builds. The algorithm correctly identifies promising areas of
the search space and focuses the search on those areas.

Figure 2: Simple example of a MCTS tree

Autonomous search
The field of autonomous search studies techniques that
can automatically decide how to approach a given prob-
lem, i.e. what search algorithm to use and how to con-
figure it (Hamadi, Monfroy, and Saubion 2012). Au-
tonomous search unites areas like algorithm selection,
hyper-heuristics, parameter tuning and parameter control.
They can be divided into two categories: configuration and
control. Configuration techniques determine the proper al-
gorithm and its parameters before the search starts and then
uses such algorithm during the search. Control techniques,
on the other hand, continuously monitor the ongoing results
and adjust the search strategy accordingly.

The need for algorithm selection techniques is apparent in
many fields as the efficiency of algorithms greatly depends
on the type of problem they are solving. It is clear that there

is no ”one correct” algorithm for all problems, but instead
different problems require different search techniques. The
same holds in the field of planning as demonstrated by recent
successes of portfolio-based planners (Borrajo and Linares
López 2012).

Algorithm selection techniques work with a set of algo-
rithms and try to select the most suited algorithm for a given
task. They often use machine learning approaches trying to
classify tasks into categories based on their similarity and
then assigning each category the most suitable algorithm.
This approach is especially popular for search-algorithm
selection (Kumar, Singh, and Kumar 2015) and machine-
learning algorithm selection (Kazı́k et al. 2011).

Automated parameter tuning techniques aim on find
a combination of parameters of an algorithm that leads to
best performance. They are often used to tune parameters of
metaheuristics and machine-learning algorithms (Thornton
et al. 2013) where they can significantly increase the perfor-
mance.

Hyper-heuristics try to build an algorithm suited for given
task by combining so called low-level algorithms during the
search. A pool of simple algorithms is given and the hyper-
heuristic combines them into a more complex unit. The com-
bination procedure is often based on some kind of evolution-
ary computation and the quality of resulting units is mea-
sured by how well can they solve the original task. The
approach was especially successful in the area of schedul-
ing and it is now applied to many different kinds of prob-
lems (Burke et al. 2013). Our method falls into this category
as it automatically combines low-level planners into a more
complex unit tailor-made for the input problem.

Instead of searching the solution space directly, hyper-
heuristics search the algorithm space. The approach is based
on an assumption that similar algorithms will find solutions
of similar quality which implies that the algorithm space has
some favourable properties: high locality (elements close to
each other have similar evaluation) and low number of lo-
cal extrema. On spaces with those properties, optimization
metaheuristics can find good solutions quickly. Of course,
those improvements come for a price: evaluating an element
from the algorithm space takes much more time because it
involves searching for solution in the solution space.

In the field of planning, the idea of autonomous search
is most eminent in portfolio-planners. There is also an in-
creasing trend of categorizing planning tasks based on a set
of features and using such classification for algorithm selec-
tion (Fawcett et al. 2014; Vallati, Chrpa, and Kitchin 2014;
Cenamor, de la Rosa, and Fernandez 2013). To our best
knowledge, no hyper-heuristic approach has been used in the
field of classical planning so far.

MCTS for Planning
MCTS is a robust optimization metaheuristic suitable for
solving various optimization problems. It is implicitly ca-
pable of working with sequences which makes it more suit-
able for optimization planning than other metaheuristics like
evolutionary algorithms for example. Most metaheuristics

113

handle candidate solutions as points in some d-dimensional
space. This way, we can easily represent a set of fixed-length
sequences, but variable-length sequences might prove diffi-
cult. Moreover designing search operators (like cross-over
or mutation) that transform valid plans into different but still
valid plans is difficult. For example, replacing some action
in a plan will most likely make it invalid since the latter ac-
tions might become inapplicable. MCTS on the other hand
represents the search-space as a tree and traverses it in a for-
ward manner, like most forward planners do.

The planning task can be seen as the problem of finding
a shortest path in an implicitly given state space, where tran-
sitions/moves between the states are defined by the actions.
From this point of view, planning is very close to single-
player games though there are some notable differences.

Cycles in the state-space
MCTS uses simulations to evaluate the states. Hence, from
the planning perspective, we need to generate solution plans
– valid sequences of actions leading to a goal state. Unlike
Hex and other game applications of MCTS, planning prob-
lems allow infinite paths in the state-space (even though the
state-space is finite) and this is quite usual in practice since
the planning actions are typically reversible.

This is a serious problem for the MCTS algorithm since
it causes the expected length of the simulations to be very
large (exponential in the distance to the nearest goal state)
and therefore only very few simulations can be carried out
within a given time limit.

Dead ends and dead components
The other problem is existence of plans that do not lead to
a goal state. We use the term dead end to denote a state such
that no action is applicable to this state and the state is not
a goal state. Note that dead ends do not occur in any game
domain since in games any state that does not have succes-
sors is considered a goal state and has a corresponding evalu-
ation assigned to it (like Win, Loss, or Draw in case of Chess
or Hex, or a numerical value in case of SameGame for exam-
ple). In planning, however, the evaluation function is defined
only for the solution plans leading to goal states. A plan that
cannot be extended doesn’t necessarily have to be a solution
plan and it is not clear how to evaluate the simulation that
reached a dead end.

A dead component is a combination of both previous
problems – it is a strongly connected component in the state-
space that does not contain any goal state. This is similar
to the dead ends problem except that we can easily detect
a dead end (since there are no applicable actions there) but
it is much more difficult to detect a dead component.

Possible solutions
There are several ways to deal with these problems.

1. Modifying the state-space so that it does not contain infi-
nite paths nor dead ends and dead components.

2. Using a simulation policy which would guarantee that the
simulations reach a goal state quickly, avoiding dead ends.

3. Setting an upper bound on the length of simulations.
4. Finding a way to evaluate the dead end states and other

non-goal states.

Number (1) would be the most efficient way, it is how-
ever difficult to find such modifications in general as it
involves solving the underlying satisficing planning prob-
lem. For some types of domains, such modification is pos-
sible using meta-actions as presented in (Trunda 2013;
Trunda and Barták 2013).

In this paper, we choose a different way. We develop
means to lead the simulations to goal states. As such tech-
niques can’t be efficient in all situations, we combine them
with setting a limit on the length of the simulations and de-
velop a way to evaluate simulations that reached the limit or
ended in a dead end.

Designing a hyper-heuristic based planner
We address the issues with simulations by using a standard
planning algorithm in the simulation phase of MCTS. The
algorithm should lead the simulations towards goal states
and it should do so very fast. Quality of solutions is not
an issue here. The simulations should be random samples,
they should end in some random goal state reachable from
the selected MCTS tree node. The search algorithm used as
the simulation policy should have following properties:

• lead the simulation from given initial state towards some
goal state, avoid dead ends and cycles

• be very fast
• may find (even vastly) suboptimal solutions
• be able to solve any type of planning problem quickly

There is a question of which planning algorithm to use in
the simulation phase. The choice is not clear since there are
many options and specific algorithms are usually only suited
for specific types of domains. We decided to approach the
situation as an opportunity to modify MCTS into a hyper-
heuristic algorithm. Instead of just one, we use a portfo-
lio of different search algorithms and let MCTS to choose
from them on its own. We use the standard MCTS selec-
tion process for selecting not only promising parts of the
search space but also promising search algorithms. Our de-
sign looks as follows:

We will use MCTS in a standard way for planning as
in (Trunda 2013; Trunda and Barták 2013), that is:
• tree covers an initial part of the problem state-space
• root of the tree represents the initial state
• edges from the node correspond to applicable actions
• successors correspond to states after applying the action
• each node represents a sequence of actions given by labels

of edges on the path from root to the node
In the figure 3, there is an example of MCTS tree early

during the search. s0 is the initial state, s1 is the selected
leaf, a1 to a3 are actions. In the figure 4, there is the tree
after expansion. New states that are reachable from s1 are
added.

114

The algorithm works as described in previous section. It
selects the most urgent leaf, expands it by adding its suc-
cessors to the tree and then runs a simulation from this leaf.
Simulations corresponds to finding some path from a state
that the leaf represents to some goal state.

Figure 3: Example of a classic MCTS tree before expansion.

Figure 4: Example of a classic MCTS tree after expansion.

The tree is the only data structure used by the algorithm
and it plays a central role during the search. When compared
to A*, leaves of the tree roughly correspond to the open list
and inner nodes to the closed list. Evaluation is done by
averaging results of simulations instead of using a heuris-
tic estimator. Similarly to A*, MCTS also extends promis-
ing paths by expanding appropriate nodes. Node selection
process, however, works sequentially and it’s quite different
than that used by A*.

In the next section we explain an enhanced MCTS which
uses simple planning algorithms in the simulation phase. It is
important to note that it is the MCTS algorithm that actually
searches for good solutions. The low-level planners are just
a tool it uses to speed-up the convergence. In other words,
the (Enhanced) MCTS does much more than just combine
low-level planners.

Enhanced MCTS
We enhance the MCTS tree in a following manner: to every
leaf node, we add new successors - one for each low-level
planner in the portfolio. We will call them virtual leaves.
The selection phase will work exactly the same way and se-
lect the most urgent virtual leaf - which means that it selects
the (real) leaf and then an algorithm to use. During the simu-
lation phase, the selected algorithm will be used as a simula-
tion policy. After the expansion, however, the virtual leaves
will not remain in the tree as inner nodes, but will move to
the new leaves instead.

In the figure 5, there is an example of an enhanced MCTS
tree. s0 is the initial state, s1 to s3 are other states. a1 to a3
are actions and Alg1 to Alg3 are virtual leaves, Alg2 of s2
is the selected leaf. Now the algorithm Alg2 will run trying
to find a plan with s2 as its initial state. After reaching the
goal state, the cost of the plan found is used in the back-
propagation phase to update statistics of the nodes. In the
figure 6, there is the tree after expansion. New states that are
reachable from s2 are added, but virtual leaves are not kept
as inner nodes in the tree. The are copied to the successors
together with all statistical information they were holding.

Information stored in the nodes involves number of sim-
ulations, sum of all previous simulation results and sum of
squares of results (which is sufficient to compute the urgency
of the node during the selection phase). Virtual leaves are
copied to each of the newly added successors and still stores
all the information. Therefore low-level planners that proved
to by efficient before the expansion will still be preferred in
the new leaves.

Figure 5: Example of an enhanced MCTS tree before expan-
sion.

Figure 6: Example of an enhanced MCTS tree after expan-
sion.

This way, only the real nodes remain in the tree (therefore
saving space), but the algorithm is still able to use different
search techniques in different parts of the tree. Inner nodes
will accumulate all the simulation results no matter of the
low-level algorithm that was used. This behavior is desired,
since the simulation should be random and the results of any
of the low-level algorithms could theoretically by generated
by a random walk so it makes sense to accumulate the re-
sults.

This design allows us to overcome the problems with sim-
ulations when using MCTS for planning by using standard

115

planning algorithms in the simulation phase. It also creates
a new hyper-heuristic framework for planning. The algo-
rithm combines the search for solutions with the search for
search strategy and it is continuously learning from its pre-
vious attempts.

From another point of view, the algorithm may be seen as
a portfolio planner which uses MCTS to manage allocation
of CPU time to individual low-level planners. The problem
of allocating resources to individual algorithms in the port-
folio is intensively studied and several approaches have been
developed (Borrajo and Linares López 2012). Using MCTS
for this task has certain advantages as the MCTS selection
is proved to be optimal in a sense that the regret from not
using the best algorithm all the time is asymptotically min-
imal (Auer, Cesa-Bianchi, and Fischer 2002). These attrac-
tive theoretical properties of MCTS selection make it a good
choice for managing low-level planners.

There is an issue of redundant work when applying low-
level planners to the selected leaf nodes. Planners might be
solving very similar planning tasks over and over again, be-
cause states before an expansion and after it doesn’t differ
much. When using fast and simple planners, this should not
be a problem. Moreover, we need more than one solution for
each node in order to compute averages and other statistics
that MCTS uses. In general, the MCTS approach is suitable
for planning problems with large number of sub-optimal so-
lutions that are relatively easy to find.

There might be difficulties when more sophisticated low-
level planners are required due to the difficulty of the prob-
lem. Some redundant work can be eliminated by the use
AMAF strategy (Helmbold and Parker-Wood 2009), but for
hard problems where there is only very few goal states (or
just one) the MCTS approach doesn’t seem to be a good
choice.

Beyond algorithm selection
Our design goes beyond simple algorithm selection as it al-
lows different algorithms to be used in different parts of the
search space. Consider the following example: the task is to
solve a TSP with a slight modification: before the driver can
start the tour, he has to unlock the car by solving a Rubik’s
cube. It is a standard planning problem that can be solved by
any classical planner. To solve it, one would have to solve
the Rubik’s cube and then the TSP. Since these two prob-
lems are quite different, we might argue that they would be
best solved by different algorithms.

An algorithm selection approach, as well as many port-
folio planners would determine the best algorithm in this
situation and then use it to solve the problem. No matter
of the procedure to select the algorithm, the whole problem
would in this case be solved by a single algorithm. Our ap-
proach on the contrary allows different algorithms to be used
for the two parts of the problem. Initially, algorithms suited
for Rubik’s cube would be preferred during the simulation
phase and the tree would grow towards good solutions for
Rubik’s cube. Once the tree grows enough to encompass the
whole path to the solution of Rubik’s cube, different algo-
rithms would be preferred in the simulation phase, namely
those well suited for the TSP problem.

To encourage such behavior, we slightly modify the up-
date process for virtual leaves. After each expansion, when
the virtual leaves are copied to successors, we multiply their
current statistics by a number slightly less than 1. This
makes recent simulations more important than the old ones,
allowing the algorithm to adapt faster.

Although the mentioned example is quite artificial, there
might be realistic domains that are composed of several dif-
ferent types of problems. On such domains, our approach
would have a distinct advantage of being able to adapt itself
to different aspects of the problem.

Algorithms for the simulation phase
In the simulation phase, we prefer speed over quality. To
guarantee that simulations will be very fast, we set a limit
on the length of the simulation. We propose the following
search algorithms to be used in the simulation phase:

random walk - an ordinary random walk in the search
space with a limit on its length. The search may end either
by reaching a goal state or reaching the limit on length.

greedy hill-climbing with a heuristic - a standard hill-
climbing, starts in the initial state and proceeds to the best
successor according to the heuristic. The search ends when
a goal state is reached or no successor is better than current
state. Whenever there are more successors with best evalua-
tion, one of them is chosen randomly.

f-limited A* - an A* with a limit F such that only nodes
with f-value less or equal to F are added to the open list.
The search ends when a goal state is reached or the open list
empties. If the search fails to find a goal, the last expanded
node is considered to be the result of the simulation.

beam search with narrow width - an A* where only a
fixed number of best successors of selected node is added
to the open list. To keep the process fast, we use the beam
width of 2, meaning that only two best successors will be
added each time. If there are more successors of the same
best value, two of them will be chosen randomly. Again, the
search ends when a goal state is reached or the open list emp-
ties and if the search fails to find a goal, the last expanded
node is considered to be the result of the simulation.

planners from the Agile track of IPC - the Agile track fo-
cuses on finding suboptimal plans quickly which is exactly
what we need. We believe some of the planners from this
track could be used here, possibly with some modifications,
but we have not been able to test this assumption experimen-
tally yet.

Heuristic estimators So far, we have only tried the
FFheuristic, weighted FFheuristic, heuristic counting the
number of not accomplished goals and blind heuristic but we
believe it is important to add more and especially to diversify
better. There should be more types of heuristics in the pool
to cover both symbolic and numerical types of problems.

There is also an issue of randomness in the simulations.
The simulation phase is the only source of randomness in the

116

algorithm as all the other phases are completely determinis-
tic. If we used only deterministic algorithms in the simula-
tion phase, the whole system would be deterministic which
might have its pros and cons. We decided to keep random-
ness in the design by using randomized search algorithms.

Evaluating simulations
In the simulation phase, we use fast and simple algorithms
which may cause that many simulations will not be able to
reach a goal state. We have developed a way to evaluate such
simulations so that the algorithm may still gain some infor-
mation from them. The evaluation criteria should meet the
following requirements:

• simulations reaching a goal should be evaluated according
to the cost of the plan

• simulations reaching dead end or dead component should
be penalized for leading to unpromising parts of the space

• simulations ending due to the cut-off limit should be pe-
nalized for not reaching the goal

• simulations reaching a state close to goal should have bet-
ter evaluation than those ending up far from any goal state

These seem very close to the A* selection criterion so that
was our first choice. To evaluate the simulation that ended
in a non-goal state, we used the A* criterion f = g + h,
where f is the value of the simulation, g is the length of the
path that the simulation took (i.e. sum of costs of actions
used) and h would be a heuristic estimate of its final state.
This criterion, however, doesn’t work well. It prefers shal-
low non-recognized dead ends where by shallow we mean
close to the initial state. Reasons for such behavior can be
easily explained: by reaching a dead end, the simulation
ends immediately so it is short (especially if the dead end
is shallow) and has low g value. If the heuristic doesn’t rec-
ognize the dead end, it assigns it some value less than in-
finity so it might get a reasonable h value. In that case, the
sum f = g + h is low and the search is drawn towards such
unpromising states.

To overcome this problem, we slightly adjusted the eval-
uation criterion. For simulations that reach a goal state, we
use simply the g-value (sum of costs of actions, h would
in this case be zero anyway). For others that ended ei-
ther by reaching a dead end or due to the limit, we use
f = g + h + (g − w)2, where g and h are the same as
before and w is an estimate of the optimal plan length. This
penalizes non-goal simulations by h value and furthermore,
simulations that are too short or too long are penalized for
being far from the correct length. This prefers states that
are close to optimal goals and thanks to h, it should lead
the search toward goal states. Although this works relatively
well in our experiments, it might not be the best approach
in general. The (g−w)2 component is much larger than the
other two which might be a problem on some domains. This
issue still needs to be properly resolved in the future.

This approach eliminates shallow dead ends, but it re-
quires the value w to be set. The value doesn’t have to be
precise - any reasonable overestimate will do. In most cases,

we can easily come up with some rough estimate. In the ex-
periments, we used w = 200 which worked fine for those
problems. For domain-independent planning, however, the
estimate should be done automatically. There are several
ways to do that which we will explore in the future. One
of them is to use a heuristic estimate of the initial state, pos-
sibly weighted by a constant between 1 and 10 to get an
overestimate. Another option is to start with a small value of
w and successively increase it until some goal states can are
found.

In our experiments, we used the value w also as the limit
on the length of simulations.

Design summary
Our design combines several simple search algorithms to
find a close-to-optimal solution to an optimization planning
task. It is capable of automatically selecting the best com-
bination of search algorithms based on quality of solutions
they found so far. The system is based on a hyper-heuristic
principle and is able to adapt itself to different types of prob-
lem instances and even to different sub-problems within a
single problem instance.

The search is guided by modified MCTS algorithm that
searches for promising areas of the search space as well
as for promising search algorithms. The selection process
of MCTS guarantees asymptotically optimal distribution of
computational effort between different areas of search-space
and between different algorithms.

The hyper-algorithm itself is deterministic, the only
source of randomness is through the low-level algorithms
used during the simulation phase. We use stochastic algo-
rithms, but deterministic simulation policies are also possi-
ble.

The overall algorithm is asymptotically complete and op-
timal in a sense that the probability of finding an optimal
solution converges to 1 as the number of steps goes to infin-
ity. This follows directly from the fact that the tree is ever-
growing and the selection process guarantees that no branch
will be skipped infinitely many times in a row. This is just a
theoretical property though, and it tells us nothing about the
speed of convergence.

The presented hyper-algorithm is independent of the low-
level algorithms used in the simulation phase. That allows
us to make use of any planning technique (both heuristic
estimators and search algorithms) that has been developed
so far or will be developed in the future.

Experiments
Our work is still in the beginning. So far, we have only per-
formed a few small scale experiments to determine whether
our design is usable at all. Larger-scale experiments with
more domains comparing our system with others are nec-
essary to properly asses the design. So far, we have con-
ducted experiments to asses the price/performance ratio of
the hyper-heuristic i.e. to discover whether the combination
of simple algorithms is more powerful than the simple algo-
rithms themselves. Results of the experiments suggest that
the hyper-heuristic even with its overhead is worth using.

117

We performed experiments on two domains - NoMys-
tery and ZenoTravel. We took several smaller problems
from each domain and run planners for 5 minutes on each
problem. We measured the quality of solution found. As
the planners to be tested, we used greedy hill-climbing
(HC), f-limited A* (A*), random walks with a length limit
(RW), beam-search with beam width of 2 (BS) and a hyper-
heuristic that uses the previous as its low-level algorithms
(H-H). All informed algorithms use the FFHeuristic. The
Table 1 shows the results. The numbers show quality of the
plan found, N/A means that no plan has been found within
the time limit. We add the length of the optimal plan (OPT)
for comparison.

Table 1: Results of experiments with hyper-heuristic
Problem A* HC RW BS OPT H-H
mystery1 19 N/A N/A N/A 18 18
mystery2 24 N/A N/A N/A 19 22
mystery3 N/A N/A N/A N/A 24 28
zeno2 6 6 6 6 6 6
zeno3 10 9 8 10 6 6
zeno4 11 10 13 10 8 9
zeno5 12 11 16 11 11 11
zeno6 15 14 26 14 11 12
zeno7 16 N/A 20 18 15 15
zeno8 16 16 32 N/A 11 13
zeno9 27 29 92 N/A 21 24

Conclusions and future work
We presented a hyper-heuristic domain-independent planner
based on the MCTS algorithm. We described its properties,
strengths and weaknesses and showed results of some pre-
liminary experiments. Our main contributions can be sum-
marized as follows:

• exploring the use of hyper-heuristic principle in classical
planning

• using MCTS as a hyper-heuristic framework

• developing a new way of combining different search al-
gorithms and heuristic estimators

Our approach is well suited for numerical planning do-
mains where the number of goal states is high and they are
easy to find and optimization is the real issue (e.g. trans-
portation domains derived from TSP) as shown in the ex-
periments. We believe that by using appropriate low-level
search algorithms and heuristics, the system will be able to
solve any planning task efficiently, including symbolic do-
mains with very few goal states.

There are many aspects of the design that need to be ex-
plored further, especially deeper experimental analysis of
behavior of the algorithm on various types of domains (what
low-level algorithms does it use, what is the quality of solu-
tions they find, how often are different low-level algorithms
used in different parts of the search space and so on). There
is also a lot of minor details that remain to be explored.
For example: low-level algorithms use heuristics to guide

the simulations and the MCTS then uses another heuristic
to evaluate the results of those simulations. The question is
whether we should use the same heuristic in both situations
or two different heuristics will perform better and why.

It should also be interesting to study whether the algo-
rithm space landscape really shows better properties (with
respect to locality and ruggedness) then the solution space
as it should, and what effect does such transformation have
on different domains.

We believe that the hyper-heuristic principle has a great
potential to be used in classical planning and that the idea
should be explored further.

Acknowledgement
The research is supported by the Grant Agency of Charles
University under contract no. 390214 and it is also supported
by SVV project number 260 104.

We would like to thank the anonymous reviewers for their
useful comments and suggestions.

References
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time analysis of the multiarmed bandit problem. Machine
Learning 47(2-3):235–256.
Baudiš, P. 2011. Balancing mcts by dynamically adjusting
komi value. ICGA Journal 34:131–139.
Borrajo, D., and Linares López, C. 2012. Performance anal-
ysis of planning portfolios. In Proceedings of the 5th An-
nual Symposium on Combinatorial Search (SOCS12). AAAI
Press.
Burke, E. K.; Gendreau, M.; Hyde, M.; Kendall, G.; Ochoa,
G.; Ozcan, E.; and Qu, R. 2013. Hyper-heuristics: a survey
of the state of the art. Journal of the Operational Research
Society 64(12):1695–1724.
Cenamor, I.; de la Rosa, T.; and Fernandez, F. 2013. Learn-
ing predictive models to configure planning portfolios. In
Proceedings of the 4th workshop on Planning and Learning
(ICAPS-PAL 2013), 14–22.
Chaslot, G.; Bakkes, S.; Szita, I.; and Spronck, P. 2008.
Monte-carlo tree search: A new framework for game ai. In
Proceedings of the 4th Artificial Intelligence for Interactive
Digital Entertainment conference (AIIDE), 216–217. AAAI
Press.
Fawcett, C.; Vallati, M.; Hutter, F.; Hoffmann, J.; Hoos,
H. H.; and Leyton-Brown, K. 2014. Improved features
for runtime prediction of domain-independent planners. In
24th International Conference on Automated Planning and
Scheduling.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Amsterdam: Morgan Kauf-
mann Publishers.
Hamadi, Y.; Monfroy, E.; and Saubion, F. 2012. Autonomous
search. Springer-Verlag.
Helmbold, D. P., and Parker-Wood, A. 2009. All-moves-as-
first heuristics in monte-carlo go. In Proceedings of the 2009

118

International Conference on Artificial Intelligence (ICAI09),
605–610.
Kazı́k, O.; Pešková, K.; Pilát, M.; and Neruda, R. 2011.
Meta learning in multi-agent systems for data mining.
In Proceedings of the 2011 IEEE/WIC/ACM International
Conferences on Web Intelligence and Intelligent Agent Tech-
nology - Volume 02, WI-IAT ’11, 433–434. Washington, DC,
USA: IEEE Computer Society.
Kocsis, L., and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In Proceedings of the 15th European Con-
ference on Machine Learning (ECML), 283–293. Springer
Verlag.
Kumar, R.; Singh, S. K.; and Kumar, V. 2015. A heuristic
approach for search engine selection in meta-search engine.
In Computing, Communication Automation (ICCCA), 2015
International Conference on, 865–869.
Schadd, M. P. D.; Winands, M. H. M.; van den Herik, H. J.;
Chaslot, G. M. J.-B.; and Uiterwijk, J. W. H. M. 2008.
Single-player monte-carlo tree search. In Proceedings of the
6th international conference on Computers and Games (CG
’08), volume 5131 of LNCS, 1–12. Springer Verlag.
Thornton, C.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K.
2013. Auto-weka: Combined selection and hyperparameter
optimization of classification algorithms. In Proceedings of
the 19th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’13, 847–855. New
York, NY, USA: ACM.
Trunda, O., and Barták, R. 2013. Using monte carlo
tree search to solve planning problems in transportation do-
mains. In Castro, F.; Gelbukh, A. F.; and Gonzlez, M., eds.,
MICAI (2), volume 8266 of Lecture Notes in Computer Sci-
ence, 435–449. Springer.
Trunda, O. 2013. Monte carlo techniques in planning. Mas-
ter’s thesis, Faculty of Mathematics and Physics, Charles
University in Prague.
Vallati, M.; Chrpa, L.; and Kitchin, D. E. 2014. Asap: An
automatic algorithm selection approach for planning. Inter-
national Journal on Artificial Intelligence Tools 23(6).

119

