
The 26th International Conference on Automated

Planning and Scheduling

Proceedings of the 4th Workshop on

Distributed and Multi-Agent Planning

(DMAP-16)

Edited by:

Antonín Komenda, Guy Shani

London, UK, 13-14/06/2016

Organising Committee

Antonín Komenda

Czech Technical University in Prague, Czech Republic

Guy Shani

Ben Gurion University, Israel

Roni Stern

Ben Gurion University, Israel

Dániel Laszlo Kovacs

Budapest University of Technology and Economics, Hungary

Christopher Amato

University of New Hampshire, USA

Program Committee

Christopher Amato (University of New Hampshire, USA)

Antonín Komenda (Czech Technical University in Prague, Czech Republic)

Dániel Laszlo Kovacs (Budapest University of Technology and Economics, Hungary)

Shlomi Maliah (Ben Gurion University, Israel)

Eva Onaindia (Universidad Politecnica de Valencia, Spain)

Guy Shani (Ben Gurion University, Israel)

Guni Sharon (Ben Gurion University, Israel)

Matthijs Spaan (Delft University of Technology, Netherlands)

Roni Stern (Ben Gurion University, Israel)

Table of Contents

Privacy Preserving LAMA 1
Shlomi Maliah, Guy Shani and Roni Stern

Factored Monte-Carlo Tree Search for Coordinating UAVs in Disaster Response 6
Chris A. B. Baker, Sarvapali Ramchurn, W. T. Luke Teacy and Nicholas R. Jennings

A Distributed Online Multi-Agent Planning System 15
Rafael C. Cardoso and Rafael H. Bordini

Multi-Agent Route Planning Using Delegate MAS 24
Hoang Tung Dinh, Rinde R. S. van Lon and Tom Holvoet

A Game Theoretical Formulation of a Decentralized 33

Cooperative Multi-Agent Surveillance Mission
Paulo Eduardo Ubaldino de Souza, Caroline Ponzoni Carvalho Chanel and Sidney Givigi

Better Eager Than Lazy? 42

How Agent Types Impact the Successfulness of Implicit Coordination
Thomas Bolander, Thorsten Engesser, Robert Mattmuller and Bernhard Nebel

Trial-based Heuristic Tree-search for Distributed Multi-Agent Planning 50
Tim Schulte and Bernhard Nebel

Hierarchical Planning with Traffic Zones 57

for a Team of Industrial Transport Robots
Stefan Imlauer, Clemens Mühlbacher, Gerald Steinbauer Michael Reip and Stephan Gspandl

Efficient SAT Approach to Multi-Agent Path Finding 66

under the Sum of Costs Objective
Pavel Surynek, Ariel Felner, Roni Stern and Eli Boyarski

Automated Verification of Social Law Robustness in STRIPS 73
Erez Karpas, Alexander Shleyfman and Moshe Tennenholtz

Quantifying Privacy Leakage in Multi-Agent Planning 80
Michal Štolba, Jan Tožička and Antonín Komenda

Computing Multi-Agent Heuristics Additively 89
Michal Štolba and Antonín Komenda

Generating Collaborative Behaviour through Plan Recognition and Planning 98
Christopher Geib, Bart Craenen and Ronald P. A. Petrick

Increased Privacy with Reduced Communication and Computation 106

in Multi-Agent Planning
Shlomi Maliah, Ronen I. Brafman and Guy Shani

Privacy Preserving LAMA

Shlomi Maliah and Guy Shani and Roni Stern

Ben Gurion University of the Negev, Israel

Abstract

In collaborative privacy preserving planning (CPPP),
multiple agents collaborate to achieve a goal while
keeping certain facts about the world private. A promi-
nent approach in the development of CPPP algorithms
is to use components from single agent planners and
adapt them to preserve privacy. In this short paper, we
show how the components of LAMA, arguably one of
the most successful single-agent planners, can be used
in a privacy preserving manner. These components in-
clude alternating between a landmark heuristic and an
FF heuristic, preferred operators and deferred heuris-
tic evaluation. We integrate the components into the
Greedy Privacy Preserving Planner, a state-of-the-art
CPPP algorithm. The resulting algorithm performs bet-
ter than other CPPP algorithms from the recent Compe-
tition of Distributed and Multiagent Planners.

1 Introduction
Collaborative privacy preserving planning (CPPP) is a re-
cently introduced setting in which multiple agents cooper-
ate to achieve joint goals while concealing certain facts. As
a motivating scenario, consider an army organization out-
sourcing its food supply to external caterers. Caterers un-
loads packaged food in logistics center and army trucks de-
liver the packages to the various bases. The army and the
caterer must plan together to deliver appropriate amounts of
food to the army bases, but the army may not wish to dis-
closer to the caterers the location of its bases or the number
of soldiers in each base.

Brafman and Domshlak (2013) proposed an attractive
framework for such planning problems called multi-agent
STRIPS (MA-STRIPS), which has attracted much attention
in recent years (Tozicka, Jakubuv, and Komenda, 2015; Tor-
reno, Sapena, and Onaindia, 2015; Štolba and Komenda,
2014; Maliah, Shani, and Stern, 2014). The first Competition
of Distributed and Multiagent Planners (CoDMAP), held
last year, already featured many planners from 10 differ-
ent groups Štolba, Komenda, and Kovacs (2015). Many suc-
cessful CPPP algorithms borrow or adapt algorithmic com-
ponents from the single-agent planning literature. For ex-
ample, privacy preserving versions have been proposed for
popular single-agent heuristics such as landmarks (Maliah,
Shani, and Stern, 2014; Torreno, Sapena, and Onaindia,

2015; Štolba, Fišer, and Komenda, 2015), FF (Štolba and
Komenda, 2014), and pattern databases (Maliah, Shani, and
Stern, 2015). In this short paper we propose a CPPP algo-
rithm that successfully adapts and uses key components of
LAMA (Richter and Westphal, 2010), a renowned single-
agent planner.

LAMA is perhaps one of the most successful single-agent
planners. It uses a forward heuristic search algorithm em-
ploying both a landmark-based heuristic (Richter, Helmert,
and Westphal, 2008) and the FF delete-relaxation heuris-
tic (Hoffmann, 2001), and alternates between them (Röger
and Helmert, 2010). In addition, LAMA introduced pre-
ferred operators and deferred heuristic evaluation (Richter
and Helmert, 2009), which are both common components in
state-of-the-art single-agent planning algorithms.

The main contribution of this work is in the integration
of these components into the Greedy Privacy Preserving
Planner (GPPP) (Maliah, Shani, and Stern, 2014), a state-
of-the-art CPPP algorithm. Experiments with the CoDMAP
benchmarks show that the resulting algorithm, which we
call PP-LAMA, outperforms all previous CPPP algorithms.
Some LAMA components were already adapted to preserve
privacy by prior work. Štolba and Komenda (2014) and
Maliah, Shani, and Stern (2014) proposed a privacy preserv-
ing versions of the FF and landmark heuristics, and Torreno,
Sapena, and Onaindia (2015) proposed alternating multiple
heuristics. We explain how the other components of PP-
LAMA operate in a way that preserves privacy. In particular,
we highlight the importance of deferred heuristic evaluation,
which is especially useful for reducing the collaborative ef-
fort in computing privacy preserving heuristics. Moreover,
we improve on the landmark detection algorithm used by
Maliah, Shani, and Stern (2014), showing a simple modifi-
cation that allows finding substantially more landmarks.

2 Background
We now briefly describe the privacy preserving planning set-
ting, the heuristics used by LAMA, and the GPPP algorithm.

2.1 Privacy Preserving Planning
An MA-STRIPS problem (Brafman and Domshlak, 2013)
is represented by a tuple 〈P, {Ai}ki=1, I, G〉 where k is the
number of agents, P is a finite set of facts (can be true

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

1

Figure 1: A logistics example.

of false), Ai is the set of actions agent i can perform, I
is the start state, and G is the goal condition. Each action
a = 〈pre(a), eff(a)〉 is defined by its preconditions (pre(a)),
and effects (eff(a)). Preconditions and effects are logical for-
mulas over P . A state is a conjunction of facts in P (true or
false). The goal G is also a conjunction of facts. A solution
is a plan that achieves G, i.e., a sequence of actions trans-
forming the initial state (I) to a state that satisfies G.

Privacy-preserving MA-STRIPS extends MA-STRIPS by
defining sets of variables and actions as private, known
only to a single agent. Formally, a privacy-preserving MA-
STRIPS problem defines a set of facts as public, de-
noted public(P), and a set of actions as public, where
publici(A) ⊂ Ai are the public actions of agent i. It is
assumed that when a public action is executed, all agents
are aware of the execution, and view the public effects of
the action. A privacy-preserving MA-STRIPS problem also
defines for each agent i a set of facts and actions as pri-
vate, denoted by privatei(P) and privatei(A), respectively.
The identity of the private facts and actions must not be re-
vealed to the other agent during planning and during execu-
tion. The public and private facts of each agent are disjoint,
i.e., privatei(P) ∩ public(P)∅, and the union of the public
facts and all private facts form the entire set of facts in the
underlying MA-STRIPS problem, i.e.,

⋃k
i=1 privatei(P) ∪

public(P) = P .
For ease of exposition we assume that all goals are public.

A solution to a privacy-preserving MA-STRIPS problem, is
a sequence of public and private actions. We say that the
sequence of public actions in such a solution is a high-level,
or public, plan that must be extended to a full plan using
private actions of various agents. A high-level plan is said to
be valid if each agent can plan independently to achieve the
private preconditions on the public actions it executes in the
high level plan Maliah, Shani, and Stern (2014).

Figure 2.1 illustrates a simple logistic example in which
the agents are trucks tasked with delivering packages. The
set of facts P represents the location of the two packages and
six trucks. Each truck has three actions: move, load, and un-
load, corresponding to moving the truck between locations,
loading a package and unloading it. Each truck is owned by
a different company and may have different areas of oper-
ation, and no company wants to share its location and cov-
erage (which locations it can reach) with other companies.
Thus, all the facts representing the location of trucks are pri-
vate, while the facts representing whether a package is at a
logistic center are public. Only the load/unload actions at the

logistic centers are public, while the move actions are private
for each agent, as well as loading and unloading packages at
private locations.

2.2 Landmark Heuristics
Landmarks, as used in LAMA, are propositional formulas
that must be hold at some point during the execution of ev-
ery successful plan (Richter, Helmert, and Westphal, 2008).
A landmark heuristic function evaluates a state by consider-
ing the number of landmarks that still needs to be achieved.
A popular method for identifying landmarks searches back-
wards from the goal. At each phase, one landmark is selected
for development. All actions that can satisfy this landmark
are identified, and a new landmark is constructed from their
preconditions. When all these actions share a single fact, that
fact is identified as a new landmark. Otherwise, a disjunctive
formula is created from some facts that appear in the actions
preconditions. When developing a landmark, all actions that
take facts in this landmark as preconditions are ignored, in
order to avoid circular reasoning.

2.3 The Fast Forward (FF) Heuristic
The FF heuristic begins by computing the relaxed planning
graph, where facts are organized into layers, and all edges
are between consecutive layers (Hoffmann, 2001). The first
layer contains all the facts that hold at the current search
state. To construct the next layer the FF heuristic considers
the actions that can be executed at the current state, i.e., the
actions whose preconditions are satisfied by the facts in the
current layer. The next layer in the relaxed planning graph
consists all the facts in the previous layer and all the facts
that are effects of these set of actions. Importantly, delete
effects, i.e., effects that remove facts from the state, are ig-
nored. A result of ignoring delete effects is that once an ac-
tion has participated in the construction of a layer, there is
no need to consider it in the construction of future layers.
For each fact p, the FF heuristic maintains the action ap that
has achieved it for the first time. Then, it constructs an edge
between the preconditions of ap on the previous level and
p. After the graph construction, FF computes a plan over the
relaxed graph, starting from the goal and moving backwards:
first considering the goal facts and adding all the actions that
achieved them to the plan. Then considering the precondi-
tions of these actions, and so forth, ignoring repeated facts.

2.4 GPPP
The GPPP algorithm (Maliah, Shani, and Stern, 2016) is a
CPPP algorithm based on heuristic forward search. The first
phase in GPPP is the high-level planning phase, in which
the agents collaboratively perform a best-first search on a
relaxed version of the CPPP problem in which only public
actions are used. To maintain privacy, states in this search
are represented by the set of public facts that hold for that
state, and a set of private state identifiers, one for each agent.
Every agent can map its private identifiers to a set of pri-
vate facts. When a state s is expanded, each agent generates
new states by applying the public actions it can execute in s.
In addition to the effects of the executed public action, the

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

2

generated state also includes all private facts that the corre-
sponding agent can achieve by applying private actions and
using delete relaxation (Hoffmann, 2001). The high-level
planning phase ends when a high-level public plan has been
found that enables achieving all goals. Then, all agents com-
pute private plans to achieve the preconditions of the public
actions in the high level public plan. If some agent cannot
achieve the preconditions of one of its actions in the high-
level plan then this second phase fails then the high level
planning phase resumes.

Maliah, Shani, and Stern (2014) show that GPPP’s effi-
ciency depends on the heuristic function used to guide the
high-level search and that effective heuristics can be com-
puted by a collaborative effort of the agents. For exam-
ple, collaboratively computing a landmark heuristic requires
each agent to reports the number of landmarks satisfied in
a state. Using such heuristic allowed GPPP to show impres-
sive performance, but the need to collaborate for evaluating
the heuristic of each expanded state slows down the search
process considerably. This is especially problematic for the
FF heuristic, which requires agents to collaboratively find a
relaxed plan. Our PP-LAMA algorithm builds upon GPPP
and is especially suited to address this limitation by borrow-
ing from LAMA the preferred operators and deferred heuris-
tic evaluation techniques (Section 3.3).

3 Privacy Preserving LAMA

Algorithm 1: The PP-LAMA algorithm
1 PP-LAMA()
2 Init all open lists to hold the initial state
3 cLM ← 0; cFF ← 0; cpLM ← 0; cpFF ← 0;
4 while some open list is not empty do
5 active-list← ChooseList(cLM ,cFF ,cPLM ,cpFF)
6 s← best state in active-list
7 Remove s from all open lists
8 if s |= G then
9 Ppub ← the public plan to achieve s

10 Pfull ← private extensions for Ppub

11 if Pfull is valid then
12 return Pfull

13 Find achievable private facts in s
14 Compute all heuristic values for s
15 if s was generated by a PO and h(s) is the lowest

so far for either FF or LM then
16 cpLM←cpLM + 1000; cpFF←cpFF + 1000

17 else
18 cLM ← cLM + 1; cFF ← cFF + 1

19 foreach public action apub applicable in s do
20 s′ ← apply(s, apub)
21 if apub is a preferred operator for s then
22 Add s′ into all open lists w. h(s)

23 else
24 Add s′ into FF and LM open lists w. h(s)

Next, we present PP-LAMA, starting by describing its

different components.

3.1 Privacy Preserving Landmark Detection
We use the landmark identification process of Maliah, Shani,
and Stern (2014), where agents collaborate in identifying
landmarks, and augment it with an improved detection of
private landmarks. The process begins by adding each fact
(or disjunction of facts) in the goal as a landmarks. Then,
the agents agree on a landmark and develop it, potentially
adding more landmarks. This process continues until there
are no more landmarks to develop. Developing a landmark
φ means checking which actions can achieve φ, and then
considering the preconditions of these actions as additional
landmarks. To identify which actions achieve φ, the agents
first check which facts they can achieve without requiring
any facts in φ. This is done effectively by ignoring the delete
effects of agents’ actions (i.e., using a delete-relaxation), ap-
plying them iteratively (starting from the initial state) and
sharing the achieved public facts between the agents. Then,
each agent considers which actions it can perform to achieve
facts in φ given this set of achieved facts. The preconditions
of these actions form a new landmark.

A landmark φ can be a disjunction of public and pri-
vate facts: φ = public(φ) ∨ φ1, . . . , φk, where public(φ)
is the public facts in φ and φi are the private facts of
agent i ∈ [1, . . . , k] in φ. Each agent develops its private
facts in φ and all agents develop together the public facts.
Formally, if d(φ) denoted developing a landmark φ then,
d(φ) = d(public(φ)) ∨ d(φ1) ∨ . . . d(φk). To preserve pri-
vacy, only the public facts are published to the other agents.
For private facts, all agents agree on a unique ID for this
landmark, and each agent maintains a mapping from this ID
to its own set of private facts that participate in this land-
mark. Our landmark identification process improves on that
of Maliah, Shani, and Stern (2014) in that it allows detecting
and developing landmarks that contain private facts of multi-
ple agents. Experimentally, this improvement allows finding
more than twice as many landmarks in some domains from
the CoDMAP centralized planning track Štolba, Komenda,
and Kovacs (2015).

The detected landmarks are used to evaluate a state dur-
ing planning. Each agent publishes which landmarks it iden-
tified as satisfied in the state. The number of landmarks that
at least one agent can satisfy is used as the landmarks heuris-
tic estimate for that state. We refer to this heuristic as LM.

3.2 Privacy Preserving FF
We use the privacy preserving FF heuristic computation sug-
gested by Štolba, Fišer, and Komenda (2015). The method
constructs the relaxed planning graph jointly, with each
agent maintaining a part of the graph. In every level of the
relaxed planning graph, each agent computes its own set of
achievable facts. Then, the public facts in that level are pub-
lished to the other agents which then inserts these facts into
their local current layer. As in regular FF, when a public fact
p is achieved for the first time we maintain the action ap
that achieved it, and draw an edge between the precondi-
tions of ap on the previous layer and p. If a public fact has

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

3

Domain GPPP MAPR PMR MAPlan/ PSM- PP-
-p FF+DTG VRD LAMA

blocksworld 12 20 20 20 20 20
depot 11 0 0 13 17 18
driverlog 14 20 19 17 20 20
elevators 20 19 19 11 12 20
logistics 20 19 0 18 18 20
rovers 19 19 20 20 12 20
satellites 18 20 19 20 18 20
sokoban 9 0 6 18 18 12
taxi 20 0 19 20 0 20
wireless 3 2 7 4 0 4
woodworking 18 0 0 16 19 19
zenotravel 20 20 18 20 13 20
total 184 139 147 197 167 213

FF LM FF+PO+DH FF+LM PP-LAMA
Domain C T C T C T C T C T
blocksworld 18 49.5 12 35.5 18 19.2 20 49.4 20 12
depot 3 25 11 18.6 9 16.6 10 22.5 18 0.6
driverlog 14 155 14 203.4 20 2.8 17 26.8 20 2.7
elevators 20 148 20 25 20 4.4 20 149 20 4.2
logistics 20 7.8 20 2.5 20 0.8 20 7.9 20 0.8
rovers 14 217.2 19 156.7 20 0.8 19 222.9 20 0.8
satellites 16 266.2 18 89.5 20 2.5 17 260.1 20 2.3
sokoban 9 23.3 9 82.5 10 76 11 24.9 12 27
taxi 20 3.4 20 4.4 20 1.1 20 3.1 20 1
wireless 2 0.7 3 0.4 2 0.4 3 0.7 4 0.4
woodworking 5 2.3 18 0.5 16 1.2 15 1.3 19 0.4
zenotravel 20 165.8 20 65.5 20 4.1 20 164.8 20 2.1
total 161 184 195 192 213

Table 1: (left) coverage results over the CoDMAP instances. (right) Impact of the various PP-LAMA components.

been achieved for the first time by several agents at the same
level, one agent is considered to be responsible for achieving
it, and the fact is labeled by the public action that this agent
has used to achieve the fact.

The construction of the relaxed plan is also done collabo-
ratively, where each agent computes the part of the plan that
contains its own actions, starting from the goal and moving
backwards. If an action in the plan requires a precondition
fact that was generated by another agent then that agent is
notified to continue constructing the plan to achieve that pre-
condition. When the plan construction phase has terminated,
all agents report the number of actions in their portion of the
relaxed plan. The sum of these counts is the FF heuristic
estimate for that state.

3.3 Preferred Operators
A preferred operator (PO) is an action that is deemed to be
valuable at a given state. These are computed differently for
the FF heuristic and for the LM heuristic. For FF, the POs are
actions that achieve at least one precondition of an action in
the relaxed plan. For LM, the POs are actions that appear
prior to the first landmark that the relaxed plan achieves.

LAMA emphasizes POs in domains where they are use-
ful as follows. When a state is generated by a PO, it is added
to the regular open list and to an additional open list that
contains only states generated by POs. We will refer to the
latter open list as the preferred list. The search alternates be-
tween the regular open list and the preferred list, thus giving
priority to states in the preferred list. Moreover, the priority
of the preferred lists is boosted whenever a state generated
by a PO has the best heuristic value so far when it is ex-
panded. This boosting is embodied by having the next 1000
states to be expanded only from the preferred lists. If several
heuristics are used then each heuristic has an open list and
a preferred list. Thus, in LAMA as well as our PP-LAMA,
we used four priority queues, two for FF and two for LM. In
PP-LAMA, we followed this exact use of POs, except that
only public actions are considered: a PO for FF is a public
action that achieves a precondition of a public action in the
relaxed plan, and similarly a PO for LM is any public action
that is on the relaxed plan for achieving the first landmark.

The PP-LAMA algorithm is listed in Algorithm 1. The
best-first search chooses which open list to use at each
step according to their priorities (given by the counters

cLM ,cFF ,cpLM , and cpFF), alternating between open lists
with equal priority (line 4). As in LAMA, boosting the pre-
ferred lists is done whenever a state generated by a PO has a
heuristic value that is the lowest seen so far (line 16). As in
GPPP, when a public plan to the goal is found all agents try
to extend it to a full plan 10.

Deferred State Evaluation. An important aspect of
LAMA that is incorporated in PP-LAMA, and for the first
time in a CPPP algorithm, is the deferred heuristic evalua-
tion technique. When a state s′ is inserted into the open lists,
its associated heuristic value is that of its parent (lines 22
and 24). Computing the heuristic functions for s′ is deferred
until it is expanded (line 14). This deferred heuristic evalua-
tion technique takes advantage of the prioritization obtain by
the preferred lists, designed to reduce the number of costly
heuristic computation. This is especially useful for improv-
ing GPPP, where the heuristic computation requires costly
collaboration. Another process that is time consuming dur-
ing state generation in GPPP is the computation of all achie-
veable private facts, which is done via delete relaxation. To
resolve this, we also defer this process to the time when the
state is expanded (line 13).

4 Empirical Evaluation
We evaluate the performance of PP-LAMA over all bench-
marks, comparing PP-LAMA to all relevant algorithms from
the centralized track of the CoDMAP competition Štolba,
Komenda, and Kovacs (2015). All experiments were run on
a 2.67 GHz machine with 32GB of memory. Table 1(left)
shows how many problem instances each algorithm solved
under a 30 minutes timeout (AKA “coverage”). In every do-
main the best performing algorithm is marked in bold. PP-
LAMA solves 16 problems more than its best competitor
and in all but two domains it is the best performing planner.

Next, we analyzed the impact of PP-LAMA’s differ-
ent components on planning performance. Table 1(right)
presents coverage and runtime results (over problems solved
by all variants) when using only the FF, only LM, FF with
POs and deferred heuristics (denoted FF+PO+DH), both
the FF and the landmark heuristics using alternating lists
without deferred heuristics (FF+LM), and the complete PP-
LAMA. The computation of the POs for LM requires the FF
relaxed planning graph, and was hence not evaluated sepa-

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

4

rately. Without POs, FF produces the poorest results, signif-
icantly worse than LM. This is because landmarks are faster
to compute, as they are identified only once, and then the
agents only need to evaluate which landmarks are satisfied in
the current state, while FF needs to compute a relaxed plan
in every state. The combination of both landmarks and FF
is somewhat better than each heuristic alone, but the largest
gain comes from applying PO and deferred heuristic evalua-
tion. PP-LAMA (FF+LM+PO+DH) is very fast even though
it uses the FF heuristic, because the heuristics are computed
only for states that are removed from the open list, and not
for all generated states.

5 Conclusion
We propose an adaptation of the renowned LAMA classi-
cal planner to CPPP. The resulting algorithm, called PP-
LAMA, is built on GPPP and includes privacy preserving
versions of the FF heuristic, landmark heuristic, preferred
operators and deferred heuristic evaluation. PP-LAMA out-
performs all relevant planners from the CoDMAP competi-
tion. In the future, we would extend our approach with addi-
tional heuristics, as was done for the classical LAMA.
Acknowledgments: We thank the reviewers for their useful
comments. This work was supported by ISF Grant 933/13,
by the Helmsley Charitable Trust through the Agricultural,
Biological and Cognitive Robotics Center of Ben-Gurion
University of the Negev.

References
Brafman, R. I., and Domshlak, C. 2013. On the complexity

of planning for agent teams and its implications for single
agent planning. Artificial Intelligence 198:52–71.

Hoffmann, J. 2001. FF: The fast-forward planning system.
AI magazine 22(3):57.

Maliah, S.; Shani, G.; and Stern, R. 2014. Privacy preserv-
ing landmark detection. In the European Conference on
Artificial Intelligence (ECAI), 597–602.

Maliah, S.; Shani, G.; and Stern, R. 2015. Privacy preserving
pattern databases. In ICAPS workshop on Distributed and
Multi-Agent Planning (DMAP).

Maliah, S.; Shani, G.; and Stern, R. 2016. Collaborative
privacy preserving multi-agent planning. Autonomous
Agents and Multi-Agent Systems 1–38.

Richter, S., and Helmert, M. 2009. Preferred operators
and deferred evaluation in satisficing planning. In ICAPS,
273–280.

Richter, S., and Westphal, M. 2010. The LAMA plan-
ner: Guiding cost-based anytime planning with land-
marks. Journal of Artificial Intelligence Research (JAIR)
39(1):127–177.

Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In AAAI, volume 8, 975–982.

Röger, G., and Helmert, M. 2010. The more, the merrier:
Combining heuristic estimators for satisficing planning.
In ICAPS, 246–249.

Štolba, M., and Komenda, A. 2014. Relaxation heuristics
for multiagent planning. In International Conference on
Automated Planning and Scheduling (ICAPS).

Štolba, M.; Fišer, D.; and Komenda, A. 2015. Admissible
landmark heuristic for multi-agent planning. In Interna-
tional Conference on Automated Planning and Schedul-
ing (ICAPS).

Štolba, M.; Komenda, A.; and Kovacs, D. L. 2015. Com-
petition of distributed and multiagent planners (codmap).
The International Planning Competition (WIPC-15) 24.

Torreno, A.; Sapena, O.; and Onaindia, E. 2015. Global
heuristics for distributed cooperative multi-agent plan-
ning. In International Conference on Automated Planning
and Scheduling (ICAPS).

Tozicka, J.; Jakubuv, J.; and Komenda, A. 2015. On inter-
nally dependent public actions in multiagent planning. In
ICAPS workshop on Distributed and Multi-Agent Plan-
ning (DMAP).

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

5

Factored Monte-Carlo Tree Search for Coordinating UAVs in Disaster Response

Chris A. B. Baker, Sarvapali Ramchurn, W. T. Luke Teacy, Nicholas R. Jennings
Agents Interactions and Complexity Group, University of Southampton

Southampton SO17 1BJ, United Kingdom
{cabb1g08, sdr1, wtlt}@soton.ac.uk, n.jennings@imperial.ac.uk

Abstract
The coordination of multiple Unmanned Aerial Vehicles
(UAVs) to carry out surveys is a major challenge for emer-
gency responders. In particular, UAVs have to fly over
kilometre-scale areas while trying to discover casualties as
quickly as possible. However, an increase in the availabil-
ity of real-time data about a disaster from sources such as
crowd reports or satellites presents a valuable source of infor-
mation to drive the planning of UAV flight paths over a space
in order to discover people who are in danger. Nevertheless
challenges remain when planning over the very large action
spaces that result. To this end, we introduce the survivor dis-
covery problem and present as our solution, the first example
of a factored coordinated Monte Carlo tree search algorithm
to perform decentralised path planning for multiple coordi-
nated UAVs. Our evaluation against standard benchmarks
show that our algorithm, Co-MCTS, is able to find more ca-
sualties faster than standard approaches by 10% or more on
simulations with real-world data from the 2010 Haiti earth-
quake.

Introduction
The increased prevalence of low-cost, robust, commercially
available Unmanned Aerial Vehicles (UAVs) has led to con-
certed efforts to utilise these platforms in disaster response.
Specifically, UAVs have seen widespread use in recent
disasters—such as the 2010 Haiti earthquake and the 2015
Nepal earthquake—aiding first responders with collecting
imagery and other sensory data without putting human lives
at risk (Adams and Friedland 2012; Goda et al. 2015;
Meier 2015). In particular, an important body of work
has focused on developing UAVs that act as autonomous
systems to minimise the involvement of overstretched first
responders: both to conserve valuable manpower and to
ensure their safety (Crisis Mappers 2013; Murphy 2012;
United Nations Foundation 2011). Key to this work, is
the idea of enabling coordinated UAVs to explore a disaster
space to discover the spatial location of casualties: a difficult
task given the extent and large number of possible locations
to visit.

To enable this exploration, advances in data collection—
and specifically crowd-sourcing (Morrow et al. 2011; Good-
child and Glennon 2010)—have created new sources of
information about disaster scenarios that contribute to in-
creased awareness of the situation on the ground during a

disaster. Such information is vital given the size and scale of
the effects of natural disasters (Fowler 2016). For instance,
during 2010 a magnitude 7.3 earthquake struck Haiti near
the capital, Port-Au-Prince, which caused widespread de-
struction over thirty kilometres from the epicentre and re-
sulted in the destruction or damage of over three hundred
thousand homes; the death or injury of over five hundred and
twenty thousand people; and around one point three million
displaced persons needing temporary shelter (Government
of the Republic of Haiti 2014). A natural extension of the
use of UAVs in these events is to fully exploit prior data on
the extent and nature of the disaster (whether crowd-sourced
or otherwise) in order to maximise the likelihood of rescuing
or discovering casualties quickly. However, at present there
is no specific work that seeks to use spatial information on
the distribution of people and the expected danger—for in-
stance the likely rate of fatalities due to structural damage
to buildings or from the spread of radiation—to inform the
paths of UAVs through a disaster space, in order to maximise
the number of observations made of possible casualties.

Currently, the state of the art for UAV path planning al-
gorithms focuses on three main areas, the first of which is
target tracking for surveillance (Bernardini, Fox, and Long
2014; Hu et al. 2014; Kolling and Kleiner 2013). Now, al-
though these techniques are related to the exploration of a
disaster space, they are designed to find a known number of
targets that are in motion, rather than an unknown number
of survivors distributed over an area. Other developments
in path planning focus on trying to reach a set goal location
(or state) (Chen et al. 2014; Durkota and Komenda 2013;
He 2007; Kothari, Postlethwaite, and Gu 2009) or work-
ing with single autonomous UAVs (Cashmore et al. 2014;
Kothari and Postlethwaite 2012); neither of which fulfil the
need for algorithms that coordinate multiple vehicles in an
explorative traversal of the disaster space, rather than aim-
ing for a particular final location. Specific challenges exist
in coordinating multiple vehicles. For example, there is of-
ten no benefit to multiple UAVs providing imagery of the
same location: there must be coordination between the vehi-
cles to allow them to find survivors in a disaster, without all
attending the same locations.

In line with the terminology used in this field (Bry and
Roy (2011), Gan and Sukkarieh (2011), Waharte, Trigoni,
and Julier (2009) and others) we henceforth refer to data

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

6

distributed over a spatial representation of a disaster area
as a belief map. This belief map can come from different
sources, including crowd-sourcing, but we assume it has the
characteristics of mapping spatial locations onto some func-
tion that represents numerical data: for instance number of
people or radiation levels.

Our work seeks to address these challenges with the fol-
lowing three contributions:

1. We introduce a formulation of the survivor discovery
problem, informed by several datasets collected follow-
ing natural disasters;

2. We develop a decentralised algorithm that allows multi-
ple UAVs to coordinate the exploration of a large disaster
space with many states;

3. We test and evaluate our approach on real-world data sim-
ulating a very large action space, showing consistent gains
in survivor discovery of over 10% compared to bench-
marks.

The rest of the paper is organised as follows. First we dis-
cuss the background of using UAVs in disaster response and
the types of problems that existing research has focussed
on; next we describe the specifics of the problem we seek
to solve by formulating the survivor discovery problem; we
then detail our use of a coordinated Monte-Carlo tree-search
algorithm (including examples); before showing the benefits
of our implementation with three experimental scenarios us-
ing real-world datasets; and finally summarising our work
and proposing an extension of the algorithm and a removal
of some assumptions.

Background
In order to best use UAVs to aid responders in disasters
they must be able to plan paths autonomously, as a group.
Furthermore, as we have already indicated, it is benefi-
cial to use prior information about the area to inform the
flight paths of UAVs in order to maximise the likelihood
of discovering survivors. Currently, work on path plan-
ning in robotics focusses primarily on reaching goal loca-
tions and frequently formulates path planning as a control
problem (Goerzen, Kong, and Mettler 2009). Conversely,
in a disaster scenario there need not be any final end-point
to a UAV’s path planning; rather the length of the explo-
ration may be constrained by—for example—battery life,
and the number of people to be discovered must be max-
imised over the length of the path. Alternatively, much work
has also been done to enable the use of vision algorithms
and belief data to track mobile targets or map an area (Liu
and Dai 2010). However, this area of research often fo-
cusses on locating a known number of targets, or covering
a bounded space for the purposes of mapping. In contrast,
the task of searching for casualties in disaster response can
be summarised as the localisation of an unknown number of
people as quickly as possible (Fawcett and Oliveira 2000;
Chiu et al. 2002), in order to ensure quick rescue or atten-
tion by emergency services and thus the greatest chance of
survival (Macintyre, Barbera, and Petinaux 2011). Conse-
quently techniques for known numbers of targets or for map-
ping environments are not useful.

Against this background, we find closer similarities
with work on solving Markov Decision Processes (MDPs);
specifically where locality of UAVs can be used to reduce
calculation overheads. In particular, the generality of the
MDP formulation lends itself well to the construction of a
simulation environment given numerical data used for a be-
lief map, as well as having a number of well-established so-
lutions. Specifically, work by Amato and Oliehoek (2015)
utilises factored tree-searches for partially observable MDP
solutions, and demonstrates performance benefits over state
of the art un-factored solver POMCP (Silver and Veness
2010). This performance advantage is obtained by exploit-
ing problem structure to allow factorisation in a way reflec-
tive of local state spaces and interactions. In a similar way,
we use factored trees in this paper to represent the avail-
able actions of UAVs in a disaster environment, factoring the
value of locating people between UAVs within spatial prox-
imity of each other. Notably—because of the dimensions of
the physical area we consider—we deal with a very large
state-space, which must be particularly carefully sampled
since complete searches are computationally intractable. We
also include—for the first time—real data from a disaster
scenario to validate our model.

We next introduce the specific formulation of the problem
we tackle, and explain the origin of the large state-space.

The Survivor Discovery Problem
In this section to formulate the problem of finding a num-
ber of survivors in a disaster-area, with a team of coopera-
tive UAVs planning their actions and coordinating with each
other if required, in order to maximise the number of peo-
ple discovered. All of this is to be done in the presence of
a model of the danger to the casualties expressed as an es-
timated fatality rate mapped to spatial locations. As such
the problem is one of prioritising visits to areas of high ex-
pected numbers of people, while also attending areas with
high expected fatality rates as quickly as possible. We now
describe; in turn; the environment model, the behaviour of
UAVs in the simulation, and the specific problem of discov-
ering survivors. Following this we introduce the Bellman
equation (used to characterise MDPs) for our scenario.

Environment Model
We begin by discretising the search-space to allow for fast
plan creation. Specifically, we formulate the survivor dis-
covery problem as exploring a uniform x × y sized grid
world—C—formed of cells,1 cij ∈ C. Each cell cij con-
tains an unknown number of people, pij ∈ Z∗, and a scalar
value

dij ∈ [0, 1] (1)
denoting the danger in the cell as the probability of any per-
son in the cell dying during the next time step. Time steps
are denoted by an integer value t ∈ Z∗, with subsequent
steps referred to by adding integer values; for example t+1.
If a value depends on time, this is denoted in parentheses;
i.e. pij (t).
1Cells are indexed for their horizontal and vertical position respec-
tively by ij.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

7

UAV Behaviour Formulation
The area C is explored by the set of UAVs U =
{u1, . . . , um} that traverse C from cell to cell once per
timestep. Each UAV is equipped with sensors capable of
accurately detecting people inside one cell at any given
timestep: i.e. they return the value of pij deterministically
(this is a simplifying assumption we will address in fur-
ther work). Each UAV, uk, must select its own trajectory
Tk ⊆ C with contiguous borders, through the area, form-
ing the set of all UAV trajectories T = {T1, . . . , Tm}. To
address double-counting the values in each cell,2 we in-
troduce the union of all the trajectories in the set T as
T (T) =

⋃
Tk∈T Tk. Additionally, we impose constraints

on the length of each UAV’s planned trajectory to account
for limits on battery life. If the maximum number of cells
that can be traversed due to the battery limitations of a UAV
uk is denoted bk ∈ Z+, then the maximum trajectory length
is simply | Tk |≤ bk∀k ∈ {1, . . . ,m}; which we denote f .

The action vectors enabling the UAVs to transition from
cell to cell are defined as ak = (←,→, ↑, ↓) for each UAV
uk, (each arrow representing the direction of motion: we
do not consider the UAVs remaining stationary as accord-
ing to our model this can never result in more reward than
moving). We impose the constraint that the available ac-
tions are restricted to UAVs at the edge of the grid world
(i.e. explicitly where the UAV occupies a cell cij where
i = 0 or x, or j = 0 or y) so that they do not have the ac-
tion available to cross out of the grid area. At any given
time, the vector denoting all possible UAV actions is given
by a = (a1, . . . , am), and represents all possible combi-
nations of movement available to all UAVs. The set of all
actions available to all UAVs at any arbitrary time forms
the total action space A, which we now incorporate into the
standard Bellman equation.

Exploration Problem Formulation
Having described the environment and UAV behaviour, we
formulate the multi-UAV exploration problem as a Markov
Decision Process (MDP), comprising a tuple 〈S,A,R, P 〉 of
states S, actions A, rewards R, and transition probabilities
P , which we define below. Since the UAVs are not aware
in advance of the ground-truth values of pij and dij in each
cell, computations are instead made using prior belief-data
about the expected number of people p̄ij ∈ R∗ and the ex-
pectation value of the probability of death d̄ij ∈ [0, 1] of
each person in a cell in a given time step. We also consider
a binary variable vij ∈ {0, 1} denoting the visibility of the
cell: i.e. whether it has been observed by a UAV. This allows
us to construct the tuple sij to denote the state of a cell cij :

sij = 〈p̄ij , d̄ij , vij,〉

The set of these for all cells in C forms the global state
variable s = {s00, . . . , sxy}. With this constructed, we next
formulate an update procedure for the expected value of the
2Specifically, we seek to avoid repeated observation of the same
high-value cells by different UAVs. Thus, by taking the union of
trajectories, we ensure only unique observations contribute to the
utility function.

number of people in a given cell after a time step t by com-
puting the product of the current expected number of people
and the probability of survival:

p̄ij(t+ 1) = p̄ij(t)(1− d̄ij) (2)

Here, d̄ij for the next time step is dependent on whether
a cell has been observed. If so, we consider the danger to
reduce to zero, since first responders are now be aware of
the need to rescue the people occupying that cell:

d̄ij(t+ 1) =

{
0 if vij (t) = 1

d̄ij (t) otherwise

This assumption need not hold in general. However, it is a
convenient way of indicating that no further utility can be
derived from revisiting a cell once it has been observed. In
a scenario with trapped survivors it is reasonable to assume
there will be no large-scale movement of population during
the search. Indeed, in many cases victims are often recov-
ered after being trapped in the same location for days at a
time (Macintyre, Barbera, and Petinaux 2011).

We note the logical extension of equation 2 to times at
an arbitrary point in the future t′, as required for planning
future actions:

p̄ij (t′) = p̄ij (t)
(
1− d̄ij

)t′−t
(3)

We record the set of positions of each UAV uk ∈ U at
time t as gk (t) ∈ C, which we denote as members of the
vector of all UAV positions:

g(t) = (g1(t), . . . , gm(t))

where the indices on each g correspond to the indices of
the UAV at that location. Additionally, we record the set of
unique UAV locations as the union of the elements of g as:

G (t) =

m⋃
k=1

{gk (t)}

Thus, the state of the map at a time t is a tuple comprising
the state of each cell, and the position of each UAV: s̃ (t) =
〈s (t) , g (t)〉.

As a result, we formulate the immediate reward to all
UAVs at timestep t as a function of the expected number
of people saved due to UAV observation. Specifically, this is
the product of the expected number of people in a cell mul-
tiplied by the death rate in that cell, summed over all unique
cells where a UAV is present (i.e. all members of the set G):

R (t) =
∑
G(t)

p̄ij(t)× d̄ij

Over an infinite time horizon, we consider the sum of ex-
pected rewards for each time step:

∞∑
t=0

R (t) =

∞∑
t=0

∑
cij∈G(t)

p̄ij(t)× d̄ij

Since G is itself dependent on the trajectory of each UAV
(i.e. the cell each UAV occupies at any time t) this can be
said to be equivalent to:

∞∑
t=0

R (t) =
∑

cij(t)∈T (T)

p̄ij(t)× d̄ij

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

8

Thus, R must be maximised over the trajectory of all
UAVs in order to observe (and subsequently ‘save’) the max-
imum number of people. The key challenge is to allow the
path planning to be coordinated between UAVs to maximise
global, rather than local, reward (shown explicitly by the in-
clusion of G in Equation). We briefly discuss the implica-
tions of the UAVs detecting pij with certainty, and justify
this assumption, at the end of this section.

Bellman Equation
Having formulated the environment, the UAVs, and the dis-
covery problem; we finally formulate the standard MDP
Bellman optimality equation, where we denote R’s depen-
dence on the actions and state space (which themselves de-
pend on t):

Q(a, s) = R (a, s) +
∑
s′

P (s′ | a, s) max
a′

Q (a′, s′)

In our case, we do not require the diminishing-returns term
γ to ensure Q (a, s) is finite, since the diminishing value
of examining a cell further in the future is expressed in the
reduction of the expected number of people as a result of the
death-rate term (see Equation 2); which is incorporated in
the reward function. In other words, Q (a, s) cannot exceed
the number of people alive in the space, given s.

We also do not require the explicit sum over various states
since the transition probability P between states given a
fixed action is (as discussed below) deterministic. While this
simplifies the form of the action value function, we still re-
quire the result be optimal according to:

Q(a, s) = R (a, s) + max
a′

Q′ (a′, s′) (4)

from which we obtain the optimal action: a = arg maxaQ
to maximise current and future reward. While ostensibly a
simplification of a typical MDP formulation, the problem is
far from trivial as the joint action space a at any time step
grows as an exponent of the number m of UAVs in the sys-
tem, namely: ‖a‖ ∝ amk , while the possible combinations of
G grow proportional to:

| C |! = (x× y)! (5)

i.e. a combinatorial function of the dimensions of the envi-
ronment. The result is a state space S of extremely large
size (we give a specific example in our Results section be-
low) even before accounting for the permutations of p, d,
and v.

We now briefly discuss the implications of the discoveries
in the environment happening deterministically and how this
does not affect our planning.

Determinism in our Model
With regards to the rewards obtained in our formulation,
we note here the implications of determinism of detection
of people in our model. Whilst the construction above
relies on expected values of reward for exploration of a
cell—since we cannot in advance know the true conditions
on the ground (implied above in the unknown quantities pij

and dij)—we can still consider our MDP model determinis-
tic, with the following justification. All planning in our de-
cision making processes can only rely on the expected value
of cell reward. Once a cell has been visited, and the true re-
ward discovered, further exploration of the cell in our model
yields no further reward (see below). Furthermore, at this
stage we do not consider correlation between adjacent cells.
This is because we ensure the decomposition results in cells
encompassing entire buildings that in Haiti—and in Port au
Prince in particular—are often built sporadically and have
little relation to the structures in their surroundings (Govern-
ment of the Republic of Haiti 2014). As a result, planning
is not affected upon discovery of the true reward of visit-
ing a cell, and we can therefore consider the prediction of
future expected reward deterministic. Having clarified this
point, we now introduce our solution to the survivor discov-
ery problem in the environment model just described.

The Coordinated Monte Carlo Tree-Search
Algorithm

Our decision to base our algorithm on Monte-Carlo tree
search (MCTS) methods is due to their ability to sample very
quickly from large state spaces (traditionally used in solving
games), and the flexibility with which they can be applied
to general problems (including MDPs) (Browne et al. 2012;
Amato and Oliehoek 2015). This former point is partic-
ularly vital in our scenario as we have already noted the
extremely large number of configurations possible in the
environment (Equation 5). The principal purpose of our
algorithm is to allow UAVs to use MCTS algorithms to
calculate coordinated paths without incurring the cost de-
scribed in Equation 5. To do this we exploit locality be-
tween UAVs to factor the search space into local joint-
action trees. Furthermore, we allow trees to coordinate
over shared factors (that is, shared UAVs). To this end
we use the max-sum algorithm (Ramchurn et al. 2010;
Rogers et al. 2011) as we note its ability to guarantee neigh-
bourhood maximal rewards, and can do so in relatively few
iterations (Farinelli, Rogers, and Jennings 2014).

Specifically, we introduce an additional step to the stan-
dard MCTS process of tree growth. This growth is typically
summarised: node selection, expansion, rollout or simula-
tion, and backpropagation (Browne et al. 2012; Kocsis and
Szepesvari 2006). However, in our case we need to allow
the UAVs to search their future actions whilst also account-
ing for the actions of other UAVs and the impact they will
have on the reward obtained (that is, on the survivors discov-
ered). Most significantly, we modify the selection process to
determine which node to expand by coordinating in parallel
between trees via max-sum: resulting in an exploration al-
gorithm factored between multiple subsets of UAVs. This
represents the first time a factored tree-search has been ap-
plied to a UAV search simulation. We detail our approach in
the following subsections.

Tree Construction
At each timestep in the simulation, the coordinated MCTS
(Co-MCTS) algorithm begins by calculating which UAVs

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

9

require coordination with their neighbours, leading to the
form of the UAV-based factor graph constructed in the joint-
action creation function J (Line 3). This is performed to es-
tablish whether coordination is needed in a given UAV’s lo-
cality. In cases where a UAV is spatially isolated from neigh-
bouring UAVs, a local tree is grown. The resulting groups
of UAVs will form the basis of the factor graph used in the
max-sum calculation (Line 14 in Algorithm 1). The result of
J is represented formally by a set N = {n1, . . . , nf} that
represents the domain of the factor nodes to be coordinated.
Specifically, each member ofN contains a set of actions cor-
responding to a group of UAVs that require coordination.

In more detail, for some set of neighbouring UAVs—for
example {u1, u2, . . . , uk}—the possibility exists of
g1 (t+ 1) = g2 (t+ 1) = . . . = gk (t+ 1) at the next time
step t + 1 of a simulation.3 In this case, the corresponding
element inN—say ni—would be the set of actions available
to these UAVs: ni = {a1, a2, . . . , ak}. Notice that since a
UAV may interact (that is, potentially occupy the same cell
at a future timestep, and thus form a joint tree) with more
than one neighbour, the condition

⋃
nk∈N nk = G must

hold, whereas
⋂
nk∈N nk = ∅ will, in general, not. Trees

are grown for each ni in N , each of which in turn represents
the factors in the max-sum graph connected to the variables
representing the available actions of the UAVs. Individual
nodes in the tree ni will be indicated as n(k)

i or from any
arbitrary tree by n(k).

Having described the construction of the trees, we now
detail how each tree is grown in order to sample from the
action space.

Tree Growth
Algorithm 1 begins with the creation of the root nodes rep-
resentative of each factor seen in Line 6, which are recorded
in the set Nr (Line 4). Following this, the creation and
growth of branches is performed ∆ times inside the loop
beginning at Line 9. This begins by exploring down each
tree, starting from the root node, to determine which node
to branch on next. Similarly to standard upper confidence
bound MCTS (Kocsis and Szepesvari 2006), this begins
by selecting nodes which have hitherto not been fully ex-
panded: that is, there remain neighbouring action states that
have not yet been branched to previously. The total number
of neighbouring actions ν from a given action node is of or-
der ν =

∏
aβ∈nα | aβ | for a tree corresponding to factor

node nα, simplifying to ν =| aβ ||nα| when all UAVs in the
set have the same number of available actions.4 Thus, the
operation of the function in Line 18:

fullexp(n(k)) =

{
True if e = ν

False otherwise
where e is the number of previous expansions of that node.
Line 10 introduces the current set of nodes (across all trees)
3We note here a slight abuse of notation, since these nodes serve as
functions within a factor graph rather than simply a set of actions.
Since we factor locally, the functions depend only on the actions
in each n and so we omit the function notation for clarity.

4We use | x | on any set x to denote cardinality.

to be expanded next, Nnext, and Line 11 creates the set of
previously expanded nodes Nprev . At Line 14 the max-
sum algorithm is used to maximise the value of the ac-
tions over each ni, returning a vector of favourable actions
a∗ = (a∗1, a

∗
2, . . . , a

∗
m | a∗k ∈ ak). Since each ni depends

on a subset of actions, the function select(n(k), a∗) serves to
return only the actions corresponding to a given n(k). This
is then used as the argument to create the new expansion to
a node in Nnext in Line 17.

Algorithm 1 Coordinated MCTS
CoMCTS (G,C, t = 0)

1. for each in [1, . . . , f]

2. //Creation of factor graphs//
3. N ← J (G)

4. Nr ← ∅
5. for ni inN
6. append(Nr)← n

(0)
i

7. endfor
8. //Loop for each iteration of tree growth//
9. for δ in [1, . . . ,∆]

10. Nnext ← Nr

11. Nprev ← ∅
12. whileNnext 6= ∅
13. //Coordination between trees for production of optimal actions//
14. a∗ ← maxsum (N,Nnext)

15. for n(k) inNnext
16. //Chooses action relevant to the tree//
17. n(k)

new ← expand
(
n(k), select

(
n(k), a∗

))
18. if fullexp

(
n(k)

)
= True

19. remove
(
n(k), Nnext

)
20. append

(
n(k), Nprev

)
21. endif
22. endfor
23. endwhile
24. for n(k) inNprev
25. //Rollout and backpropagation of values//
26. rollout(n(k)

new)

27. backpropagate(n(k)
new)

28. endfor
29. endfor
30. t← t+ 1

31. endfor
32. for ni inN
33. Return (bestactions (ni))

34. endfor

An example factor graph and trees are shown in Figure
1, for four interacting UAVs. Their actions are shared be-
tween two factor graph utility nodes, hence the two joint ac-
tion trees n1 and n2. Four expansions of the root are shown
where the action of the shared UAV—u3—has been coordi-
nated between the trees each time, thus ensuring contradic-
tory actions are not chosen for the same UAV in two dif-
ferent trees. A second depth of growth is shown in Figure
2, where coordination has resulted in a newly created node
with common action for a3 of ↑.

Rollout
The rollout portion of the MCTS is traditionally a coarse es-
timate of the affect of future actions as the result of explor-

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

10

Figure 1: Example factor graph and the first iteration of tree
growth for four interacting UAVs. Here u3 can interact with any of
the other UAVs, and is thus common to the two joint-action trees,
which coordinate in order to maximise the reward from its actions
in conjunction with the other UAVs. Factor and utility nodes are
synonymous with variable and function nodes as outlined in (Ram-
churn et al. 2010).

Figure 2: New nodes created at lower depth in the tree, where the
actions of u3 have again been coordinated to be ↑ in both cases.

ing a particular node in the action space. In this example, we
base the rollout on a random-walk through the action space
starting at the node just expanded, biased in the direction of
the last action taken. This method has the benefit of showing
not just the contribution of any random series of actions, but
of taking more actions similar to the one represented by the
frontier node (for each UAV). Intuitively, a random rollout
from one node in a joint action tree will be insignificantly
different from a rollout from any similar node because of
their spatial proximity. Conversely, our rollout policy con-
tributes to the exploration value of a node by indicating pos-
sible future reward through continued tree expansion with a
preference for repetitions of the action itself.

Results
To verify the performance of our algorithm on data rele-
vant to real-world disaster scenarios, we used data from
the Ushahidi project (Morrow et al. 2011) produced from
crowd-sourced information during the 2010 Haiti earth-
quake.5 Specifically, we extracted the level of damage and
coordinates of buildings in a 2km square centred on the cap-
ital, Port-au-Prince. Damage was rated based on crowd re-
ports on a scale from 1 to 5, with 5 being the most severe.

We then constructed a decomposed grid world of size

5Available from http://www.ushahidi.com/

200×200 of 10m cells, with UAVs traversing from the cen-
tre of one cell to the centre of an adjoining cell above, below,
or to either side at each time step. This is convenient since
assuming a UAV speed—typical of quad rotor vehicles—of
10ms−1 amounts to the traversal of one cell in one timestep
of one second.

Damaged buildings represent an estimate of the damage
in an area and thus, the danger to the victims on the ground:
buildings that have suffered more severe damage will likely
lead to more severe casualties and a higher rate of death.
We formed a belief map of danger to the populace by sum-
ming the total number of buildings above a threshold level
(set to a crowd report of damage 3 and above) in each cell,
before multiplying by a common factor to convert the data
into a map representative of expected fatalities (noting the
constraint in Equation 1). The environment is displayed in
Figure 3 with a scale showing the value of d in each location.

Figure 3: Danger as a function of position, created from Ushahidi
dataset centred over Port-au-Prince

The number of unique sets of UAV positions G (that is,
the cardinality of the state space) in this environment for
(for example) five UAVs, is of the order 8.5 × 1020 (refer-
ring to Equation 5); even without the variation in the ex-
pected number of people with time.6 Using this environ-
ment, we measure performance by evaluating the number
of survivors averaged over each UAV over each timestep.
That is: 1

f ·m
∑f
t=0

∑
cij∈G(t) p̄ij(t) where f denotes the fi-

nal time step (a stopping time introduced simply as a limit
of the simulation), and we recall that m is the total number
of UAVS, and G(t) is the unique positions of the UAVs at
time step t.

Figure 4 shows our results for an initial test of the coor-
dinated Monte Carlo tree search using randomised starting
locations for four simulated UAVs. We compare against,
a simple “lawnmower” sweep search—a typical strategy
employed in search and rescue situations (Goodrich et al.

6Calculated using standard multichoose combinatorics (Feller
1968).

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

11

2007)—as well as a typical MCTS algorithm (as per the
work of Chaslot et al. (2008)) without the factored coordi-
nation we introduce. We also demonstrate explicitly the for-
ward planning required in the survivor discovery problem,
by benchmarking against Co-MCTS without a rollout pol-
icy, and a greedy (but locally coordinated via max-sum) pol-
icy. Results demonstrate a minimum performance increase
of 10% over MCTS, and higher gains over the other bench-
marks. Errors are taken as standard error of the mean over
1000 repeats of each experiment. The poor performance of
a greedy one-step lookahead shows that even with coordina-
tion, the ability to forward-plan to account for survivor death
rates is essential to discovering casualties in our scenario.
Indeed, simple un-planned lawnmower-style sweep searches
are more successful, but still fall short of the MCTS’s ability
to plan exploration paths to target (for instance) high-danger
areas before casualty rates become too high.

Figure 4: Comparison of performance between: coordinated
MCTS, un-coordinated MCTS, simple lawnmower sweep search,
Co-MCTS with no rollout policy, greedy policy with max-sum co-
ordination. Start locations were uniformly randomised, m = 4,
f = 1000.

Additionally, we explicitly demonstrate the benefit of the
consistency afforded by our coordination in a simulation.
We do this by varying the number of UAVs present and com-
paring to the closest benchmark to Co-MCTS’s performance
from our initial simulation. Good coordination should ben-
efit the overall reward gained by the algorithm (in our case
the number of people rescued) with low diminishing returns
compared to uncoordinated approaches. Specifically, any
additional UAVs should still find close-to the same number
of casualties as other UAVs in the system, if they coordinate
the exploration task effectively as a group. If they do not,
one would expect additional UAVs would explore the same
regions of the disaster space as those already present: which,
as discussed previously, offers no benefit to the global re-
ward function. This is demonstrated in Figure 5 for varying
m, where we note performance improvements of 12% with
the inclusion of 6 UAVs (and an average of 6% across the
experiment). This is notable after 3 UAVs are introduced,
since before this point interaction (and therefore required
coordination between the UAVs) was at a minimum since
the search space was large enough to accommodate multiple

non-intersecting explorative paths. For more UAVs, coordi-
nation is more commonplace and with the successful imple-
mentation of Co-MCTS there is higher value in the inclusion
of further UAVs into the scenario, compared to a situation
without coordination.

Figure 5: Comparison of coordinated and un-coordinated MCTS
in locating survivors with additional UAVs; demonstrating a con-
sistent performance per-UAV in Co-MCTS. Initial UAV starting
locations fixed at c0,0 = [0, 0]; f = 1000.

Figure 6: Comparison of coordinated and un-coordinated MCTS
in locating survivors over varying densities of population, showing
Co-MCTS’s consistency in different forms of belief data. Here
c0,0 = [0, 0]; f = 1000; and m = 5.

Finally, we demonstrate how Co-MCTS performs con-
sistently in varying environments. For the algorithm to be
viable, it should show performance benefits in a variety of
situations with a variety of distributions of casualties to be
discovered. We achieve this by varying the relative popula-
tion over the belief-space from 1 (as above), down to 0.25 by
uniformly sampling from the Ushahidi dataset to the popu-
lation portion of the belief map. This has the effect of main-
taining our standard of using real data with a large action
space, while still allowing us to experiment over different
state spaces (S). The results presented in Figure 6 demon-
strate this consistency with an average 14% improvement
over the un-coordinated MCTS benchmark: even at low den-
sities of people; where the coordination requirements would

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

12

be intuitively less valuable. We thus provide evidence that
the performance gains of Co-MCTS are not simply a by-
product of the test environment selected.

Conclusions
Motivated by the recent increased availability of belief-data
about disaster environments, we have introduced an imple-
mentation of a decentralised, factored, coordinated Monte
Carlo tree search algorithm for the purpose of discovering
survivors in a simulated UAV path planning scenario. Tests
were carried out on real-world data from the 2010 Haiti
earthquake via the Ushahidi platform; an environment with
a very large (of order 8.5 × 1020) action space. We demon-
strated the capability of our Co-MCTS algorithm in sam-
pling this space and planning paths, and demonstrated con-
sistent performance gains in the number of survivors dis-
covered of > 10%. Future work will seek to extend these
solutions to time-varying belief maps to cope with the situ-
ation in which data is collected and updated during explo-
ration, and removing the assumption of a cellular disaster
area to tackle the issue of discretising (and therefore poten-
tially oversimplifying) the data collected.

References
Adams, S. M., and Friedland, C. J. 2012. A Survey of Un-
manned Aerial Vehicle (UAV) Usage for Imagery Collec-
tion in Disaster Research and Management. In Proceedings
of the Ninth International Workshop on Remote Sensing for
Disaster Response, volume 9.
Amato, C., and Oliehoek, F. A. 2015. Scalable Planning and
Learning for Multiagent POMDPs. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence,
1995–2002. Austin, Texas: AAAI.
Bernardini, S.; Fox, M.; and Long, D. 2014. Planning the
Behaviour of Low-Cost Quadcopters for Surveillance Mis-
sions. In Proc. of 24th Int. Conference on Automated Plan-
ning and Scheduling, 445–453. Portsmouth, NH: AAAI.
Browne, C. B.; Powley, E. J.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A Survey of Monte
Carlo Tree Search Methods. Transactions on Computational
Intelligence and AI in Games 4(1):1–43.
Bry, A., and Roy, N. 2011. Rapidly-Exploring Random
Belief Trees for Motion Planning Under Uncertainty. In
2011 IEEE International Conference on Robotics and Au-
tomation, volume 21, 723–730. Shanghai: Massachusetts
Institute of Technology, Cambridge, USA.
Cashmore, M.; Fox, M.; Larkworthy, T.; Long, D.; and
Magazzeni, D. 2014. AUV Mission Control via Tempo-
ral Planning. In 2014 IEEE International Conference on
Robotics and Automation, 6535–6541. Hong Kong, China:
IEEE.
Chaslot, G. M. J.-B.; Uiterwijk, J. W. H. M.; Herik, H. J.
V. D.; Winands, M. H. M.; and Bouzy, B. 2008. Progressive
Strategies for Monte-Carlo Tree Search. New Mathematics
and Natural Computation 04(03):343–357.

Chen, Y.-b.; Luo, G.-c.; Mei, Y.-s.; Yu, J.-q.; and Su, X.-
l. 2014. UAV path planning using artificial potential field
method updated by optimal control theory. International
Journal of Systems Science (October):1–14.
Chiu, W.-t.; Arnold, J.; Shih, Y.-T.; Hsiung, K.-H.; Chi, H.-
Y.; Chiu, C.-H.; Tsai, W.-C.; and Huang, W. C. 2002. A
Survey of International Urban Search-and-rescue Teams fol-
lowing the Ji Ji Earthquake. Disasters 26(1):85–94.
Crisis Mappers. 2013. Crisis Mappers - The Humanitarian
Technology Network.
Durkota, K., and Komenda, A. 2013. Deterministic Multia-
gent Planning Techniques: Experimental Comparison (Short
paper). In Proceedings of DMAP Workshop of ICAPS’13,
43–47. Rome, Italy: AAAI.
Farinelli, A.; Rogers, A.; and Jennings, N. R. 2014. Agent-
based decentralised coordination for sensor networks using
the max-sum algorithm. In Autonomous Agents and Multi-
Agent Systems, volume 28, 337–380.
Fawcett, W., and Oliveira, C. S. 2000. Casualty Treatment
after Earthquake Disasters: Development of a Regional Sim-
ulation Model. Disasters 24(3):271–287.
Feller, W. 1968. An Introduction to Probability Theory and
Its Applications. Volume I. Wiley, 3rd edition.
Fowler, J. 2016. Data curbs earthquake risk in Armenia.
Technical report, United Nations Office for Disaster Risk
Reduction.
Gan, S. K., and Sukkarieh, S. 2011. Multi-UAV Target
Search using Explicit Decentralized Gradient-Based Nego-
tiation. In 2011 IEEE International Conference on Robotics
and Automation, 751–756. Shanghai: Ieee.
Goda, K.; Kiyota, T.; Pokhrel, R. M.; Chiaro, G.; Katagiri,
T.; Sharma, K.; and Wilkinson, S. 2015. The 2015 Gorkha
Nepal Earthquake: Insights from Earthquake Damage Sur-
vey. Frontiers in Built Environment 1(April):1–15.
Goerzen, C.; Kong, Z.; and Mettler, B. 2009. A Sur-
vey of Motion Planning Algorithms from the Perspective
of Autonomous UAV Guidance. Journal of Intelligent and
Robotic Systems 57(1-4):65–100.
Goodchild, M. F., and Glennon, J. A. 2010. Crowdsourc-
ing geographic information for disaster response: a research
frontier. International Journal of Digital Earth 3(3):231–
241.
Goodrich, M. A.; Cooper, J. L.; Adams, J. A.; Humphrey,
C.; Zeeman, R.; and Buss, B. G. 2007. Using a Mini-
UAV to Support Wilderness Search and Rescue: Practices
for Human-Robot Teaming. In IEEE International Work-
shop on Safety, Security and Rescue Robotics (SSRR), 1–6.
Rome, Italy: IEEE.
Government of the Republic of Haiti. 2014. Haiti Earth-
quake PDNA: Assessment of damage, losses, general and
sectoral needs. Technical report.
He, R. 2007. Planning in information space for a quadrotor
helicopter in a GPS-denied environment. Ph.D. Dissertation,
MIT.
Hu, J.; Xie, L.; Xu, J.; and Xu, Z. 2014. Multi-agent cooper-
ative target search. Sensors (Switzerland) 14(6):9408–9428.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

13

Kocsis, L., and Szepesvari, C. 2006. Bandit based Monte-
Carlo Planning. Machine Learning: ECML 2006 4212:282–
293.
Kolling, A., and Kleiner, A. 2013. Multi-UAV Motion Plan-
ning for Guaranteed Search. In Autonomous Agents and
Multiagent Systems, 79–86.
Kothari, M., and Postlethwaite, I. 2012. A Probabilistically
Robust Path Planning Algorithm for UAVs Using Rapidly-
Exploring Random Trees. Journal of Intelligent and Robotic
Systems 71(2):231–253.
Kothari, M.; Postlethwaite, I.; and Gu, D.-W. 2009. Multi-
UAV path planning in obstacle rich environments using
Rapidly-exploring Random Trees. In Proceedings of the
48th IEEE Conference on Decision and Control (CDC) held
jointly with 2009 28th Chinese Control Conference, 3069–
3074. Shanghai: IEEE.
Liu, Y. C., and Dai, Q. H. 2010. A survey of computer vision
applied in aerial robotic vehicles. In OPEE 2010 - 2010
International Conference on Optics, Photonics and Energy
Engineering, number 201, 277–280. Wuhan, China: IEEE.
Macintyre, A. G.; Barbera, J. A.; and Petinaux, B. P.
2011. Survival Interval in Earthquake Entrapments: Re-
search Findings Reinforced During the 2010 Haiti Earth-
quake Response. Disaster Medicine and Public Health Pre-
paredness 5(1):13–22.
Meier, P. 2015. Chapter 6: Uavs And Humanitarian Re-
sponse. In Drones And Aerial Observation: New Technolo-
gies For Property Rights, Human Rights, And Global De-
velopment: A Primer, number July. www.newamerica.org,
online edition. 103.
Morrow, N.; Mock, N.; Papendieck, A.; and Kocmich, N.
2011. Independent evaluation of the Ushahidi Haiti project.
Technical report, Ushahidi.
Murphy, R. R. 2012. A Decade of Rescue Robots. In
IEEE/RSJ International Conference on Intelligent Robots
and Systems, 5448–5449. Vilamoura, Portugal: IEEE.
Ramchurn, S. D.; Farinelli, A.; Macarthur, K. S.; and Jen-
nings, N. R. 2010. Decentralized Coordination in RoboCup
Rescue. The Computer Journal 53(9):1447–1461.
Rogers, A.; Farinelli, A.; Stranders, R.; and Jennings, N. R.
2011. Bounded approximate decentralised coordination via
the max-sum algorithm. Artificial Intelligence 175(2):730–
759.
Silver, D., and Veness, J. 2010. Monte-Carlo Planning in
Large POMDPs. Advances in Neural Information Process-
ing Systems 23:2164–2172.
United Nations Foundation. 2011. Disaster relief 2.0. Tech-
nical report, United Nations.
Waharte, S.; Trigoni, N.; and Julier, S. 2009. Coordinated
Search with a Swarm of UAVs. In Sensor, Mesh and Ad
Hoc Communications and Networks Workshops, 6th Annual
IEEE Communications Society Conference on, 1–3. Rome,
Italy: IEEE.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

14

A Distributed Online Multi-Agent Planning System

Rafael C. Cardoso and Rafael H. Bordini
School of Informatics – FACIN-PPGCC

Pontifical Catholic University of Rio Grande do Sul (PUCRS)
Porto Alegre – RS – Brazil

{rafael.caue@acad.pucrs.br, rafael.bordini@pucrs.br}

Abstract

Multi-agent planning is an important capability to have
in the development of multi-agent systems, which still
remains an open problem, mainly because of the gap
between planning and execution. Multi-agent systems
often have dynamic environments that require planning
to be done during run-time (i.e., online planning). In this
paper, we use a platform for the development of multi-
agent systems (JaCaMo) in both decentralised multi-
agent planning and execution stages, providing a multi-
agent system with capabilities to solve online multi-
agent planning problems. The contributions shown in
this paper are: i) the design of a Distributed Online
Multi-Agent Planning System (DOMAPS); ii) the im-
plementation of DOMAPS in JaCaMo; and iii) initial
experiments in the Floods domain, a novel planning do-
main that uses heterogeneous unmanned vehicles to re-
spond to flood disasters.

1 Introduction
Multi-Agent Systems (MAS) are often situated in dynamic
environments where new plans of actions need to be con-
stantly devised in order to successfully achieve the sys-
tem’s goals. Therefore, employing planning techniques dur-
ing run-time of a MAS can be used to improve agent’s plans
using knowledge that was not previously available, or even
to create new plans to achieve some goal for which there was
no known course of action at design time.

Research on automated planning has been mostly focused
on single-agent planning over the years. Although it is pos-
sible to adapt centralised single-agent techniques to work in
a decentralised way, such as in (Crosby, Jonsson, and Rovat-
sos 2014), distributed computation is not the only advantage
of using Multi-Agent Planning (MAP).

In MAP, by allowing agents to do their own individual
planning (i.e., planning by multiple agents), the search space
can be effectively pruned, which can potentially decrease
planning time on domains that are intrinsically distributed.
This also means that agents get to keep some (or even full)
privacy from other agents in the system, as they might have
beliefs, goals, and plans that they do not want to share with
other agents. The output of a MAP process are plans for mul-
tiple agents. Single-agent planning for multiple agents can
have no privacy, since the planner needs all the information

available, and the agents in the problem representation are
usually considered as any other object of the environment.
These differences are characterised in Table 1, based on the
descriptions found in (Durfee and Zilberstein 2013).

MAS went through a similar process of transitioning from
single to multiple agents, albeit at a faster rate. Recent re-
search, as evidenced in (Boissier et al. 2011; Singh and
Chopra 2010), shows that considering other programming
dimensions such as environments and organisations as first-
class entities along with agents allow developers to create
more complex MAS.

In this paper, we introduce the design of our Dis-
tributed Online Multi-Agent Planning System (DOMAPS).
DOMAPS is composed of: i) a formalism for the represen-
tation of domains and problems in online multi-agent plan-
ning, based on Hierarchical Task Network (HTN); ii) a con-
tract net protocol mechanism for goal allocation; iii) indi-
vidual planning with the SHOP2 planner; and iv) the use of
social laws to coordinate the agents during execution. Some
preliminary results from experiments in a novel scenario, the
Floods domain, are shown.

Although approaches to online single-agent planning usu-
ally involve some kind of interleaving planning and exe-
cution, we focus on domains that allow agents some time
to plan while the system is still in execution (i.e., anytime
planning). DOMAPS allows for the dynamic execution of
plans found during run-time, making it easy to transition
from planning into execution and vice-versa, while still per-
mitting agents to continue their execution, as long as their
actions are believed not to cause any conflict with actions
from a possible solution.

In DOMAPS current configuration, during the planning
stage the environment is assumed to be deterministic and
fully observable (although each agent has its own perspec-
tive of the environment). However, in the execution stage
we do not make these assumptions, the environment can be
non-deterministic and actions can fail, in which case it may
be necessary to replan.

The remainder of the paper is structured as follows. In
the next section a brief description of the MAS development
platform, JaCaMo, used to implement DOMAPS and run the
agents and the MAS is given. Section 3 introduces the initial
design of the Distributed Online Multi-Agent Planning Sys-
tem. Next, in Section 4, we describe the implementation of

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

15

Table 1: Comparisons between single-agent planning and multi-agent planning.

computation privacy agent
abstraction

single-agent planning
for a single agent centralised not needed not needed

single-agent planning
for multiple agents centralised none objects

multi-agent planning
for a single agent decentralised none or partial not needed

multi-agent planning
for multiple agents decentralised partial or full first-class entities

DOMAPS in JaCaMo. In Section 5, we describe the Floods
domain, and some initial experiments of using DOMAPS in
this domain. We follow with a discussion on related and fu-
ture work, and end the paper with some concluding remarks.

2 Background
DOMAPS was designed for online systems, thus, requiring
the use of planning techniques whilst the MAS is running.
Therefore, we need a MAS development platform in order
to properly implement and evaluate DOMAPS. We chose
to use the JaCaMo1 (Boissier et al. 2011) MAS develop-
ment platform, since it contains programming abstractions
that we found to be a suitable match for the implementa-
tion of DOMAPS – organisation, environment, and agent
abstractions.

JaCaMo combines three separate technologies into a plat-
form for MAS programming that makes use of multiple
levels of abstractions, enabling the development of robust
MAS. Each technology (Jason, CArtAgO, and Moise) was
developed separately for a number of years and are fairly
established on their own when dealing with their respective
abstraction level (agent, environment, and organisation).

Moise (Hübner, Sichman, and Boissier 2007) handles the
organisation level, and how to specify an organisation in a
MAS. This level adds first-class elements to the MAS such
as roles, groups, organisational goals, missions, and norms.
Agents can adopt roles in the organisation, forming groups
and sub-groups. Missions are defined to achieve the organi-
sation goals. The behaviour of the agents that adopt roles to
execute these missions is guided by norms.

Jason (Bordini, Wooldridge, and Hübner 2007) is respon-
sible for the agent level. It is an extension of the AgentSpeak
language, based on the BDI architecture. Agents in Jason re-
act to events in the system by executing actions on the en-
vironment, according to the plans available in each agent’s
plan library.

CArtAgO (Ricci et al. 2009) is based on the A&A (Agents
and Artefacts) model (Omicini, Ricci, and Viroli 2008), and
deals with the environment level. Artefacts are used to rep-
resent the environment, storing information about the envi-
ronment as observable properties and providing actions that
can be executed through operations. Agents can focus on
specific artefacts in order to obtain information contained

1http://jacamo.sourceforge.net/.

on that artefact. When an agent focuses on an artefact, it re-
ceives the observable properties as beliefs, and it is able to
execute the artefact’s operations.

Figure 1: The JaCaMo overview (Boissier et al. 2011).

An overview of how JaCaMo combines these different
levels of abstraction can be observed in Figure 1. In the
top-most level, the organisation dimension is composed of
a scheme, a set of missions, and a set of roles. These roles
are adopted by the agents that inhabit the agent dimension.
In the bottom-most dimension, the environment houses arte-
facts that represent objects and information about the en-
vironment, grouped by workspaces that agents can access.
These workspaces can be distributed across multiple net-
work nodes, providing the distribution of the MAS.

3 The Distributed Online Multi-Agent
Planning System

Our framework, the Distributed Online Multi-Agent Plan-
ning System (DOMAPS), consists of four main components:
planning formalism – a formal representation of the infor-
mation from the planning domain and problem that will be
used during planning; goal allocation – the mechanism used
to allocate goals to agents; individual planning – the plan-
ner used during each agent’s individual planning stage; and
coordination mechanism – used before or after planning to

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

16

avoid possible conflicts that can be generated during plan-
ning.

DOMAPS was made to work as a general-purpose
domain-independent system, and as such, we expect to turn
it into an open platform where many other alternatives for
main components can be added, allowing MAS developers
and researchers to pick and choose the ones that work better
to solve their online multi-agent planning problem.

The design overview of DOMAPS is shown in Figure 2.
Multiple agents (a1, a2, ..., an) interact with an environment
to obtain information and carry out their actions. These
agents are part of an organisation where they can adopt roles,
follow norms, and receive role-related missions, while pur-
suing the organisation’s goals. These aspects are what repre-
sent the MAS part of the application.

Figure 2: DOMAPS design overview.

Planning input (i.e., domain and problem representation)
and output (i.e., the solution) are regulated by a planning
formalism. The agents themselves plan individually, using
an appropriate planner for the planning problem at hand.
Coordination is used in order to achieve the organisational
goals of the system. For example, goals that depend on joint
plans involving multiple agents, or an agent’s actions that
can cause conflict with the other agents’ plans. Since we are
dealing with planning during run-time (online), new organ-
isational goals can emerge (or their conditions can change)
during the execution of the MAS. Therefore, we also use a
mechanism to allocate these organisational goals to the ap-
propriate agents, that is, allocate them to the agents that have
an estimated better chance at solving that particular goal.

During execution, the creation of new organisational
goals can start the planning process in DOMAPS, which
consists of the following steps:

1. Allocate goals: Agents gain access to the organisational
goals that will be planned for. Then, a mechanism is used
to separate and allocate goals to agents that have the most
(estimated) chance of finding a potential solution to the
goal.

2. Obtain up-to-date information needed for planning:
Environment and world information need to be collected
from the MAS in execution, and translated into a planning

formalism that can be used by the planner. Since planners
work individually, each agent passes its input to their re-
spective planner. Thus, the information that a planner has
access to is limited to the information that the agent is
allowed to access during that exact moment in the exe-
cution. Consequently, this ensures, at least, some partial
privacy in DOMAPS.

3. Agents start their individual planner: The planner
starts its search for a solution to the allocated goal, or set
of goals.

4. Coordination before or after planning: Agents coordi-
nate with each other before or after the planning process,
in order to prevent any conflicts or help solve any depen-
dencies.

5. Translate solution: Each agent translates the solution
found by their respective planners into plans that can be
added to their plan library. If we are dealing with coor-
dination after planning, then any points of conflict or de-
pendency found along the way should be sent to the co-
ordination mechanism. Otherwise, when coordination is
done before planning, the solution should already be free
of conflicts and dependencies.

Another goal that we have with DOMAPS, is to allow the
addition of new approaches to each of the four main com-
ponents more easily, that way it is possible to choose the
approach that is more suited for a particular problem. Next,
we describe the initial approach used for each component,
and discuss alternative approaches in Section 6.

3.1 Planning Formalism
We developed the Multi-Agent Hierarchical Task Network
(MA-HTN) formalism, which is an extension of the single-
agent HTN formalism used in the SHOP2 planner (Nau et
al. 2003). MA-HTN is intended for online multi-agent plan-
ning problems, since domain and problem information have
to be collected during execution. Agents use a translator
to parse their information about the world into domain and
problem specifications that is then passed to their own indi-
vidual planner. The MA-HTN grammar for the problem and
domain representation, as well as the translator’s specifica-
tion, can be found in (Cardoso and Bordini 2016).

Each agent has their own problem and domain specifi-
cation. This provides a decent level of privacy on its own,
since each planner only has access to their respective agent
problem and domain specifications. This means that, unlike
some of the other multi-agent planning formalisms, MA-
HTN does not need to have private or public blocks. Al-
though at some point it might be interesting to add the ca-
pability to include private goals, for now we are interested
only on searching solutions for organisational goals.

Actions from other agents can cause conflicts, either at
the moment that the action is executed (e.g., concurrent ac-
tions) or in the future (e.g., durative actions). Actions that
can cause conflict have to be annotated by the MAS de-
veloper, in order for the translator to identify them. Like-
wise, dependencies between actions can also exist, either as
a concurrent action that requires another agent or as actions

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

17

that depend on the actions of other agents to happen first.
These dependency relations also have to be annotated by
the MAS developer, so that the translator can add them to
the specification. Both conflicts and dependencies specifica-
tions are used by the coordination mechanism to coordinate
the agents.

3.2 Goal Allocation
A Contract Net Protocol (CNP) mechanism is used to allo-
cate goals to agents in DOMAPS. Our CNP mechanism is
based on the original CNP design of Reid G. Smith (Smith
1980), with a few modifications in order to accommodate
our needs for a goal allocation mechanism in the context of
MAP. The initiator in our case is the organisation. It is the
organisation’s role to start new auctions for organisational
goals that do not have any known plans on how to achieve
the goals, or for organisational goals that have plans, but
need to be re-planned. The bidders are agents from the or-
ganisation that also participate in the planning process.

The logic for determining an agent’s bid depends on the
rest of the mechanisms being used in DOMAPS and in the
MAS development platform, but it is fair to assume that
agents have the ability of checking their plan library for
plans that are able to decompose, at least at some level, the
goal that is being auctioned. Although domain-dependent
functions for determining the bid can, generally, provide bet-
ter results, we supply a simple domain-independent general-
purpose function that agents can use to determine their bid,
shown in Algorithm 1.

The agent checks if the announcement of the goal came
from the organisation and if it is eligible, according to the el-
igibility criteria provided in the announcement, or otherwise
decides not to bid. If the agent chooses to proceed with the
bid, then, he keeps decomposing the goal into subtasks and
incrementing the bid by 1 for each level that was success-
fully decomposed, either until it is close to the deadline, or it
arrived in an action that could achieve the goal, or it found a
dead end (in which case the bet becomes empty). The recur-
sion indicates the backtrack when there are no more levels.

The initiator allocates the goal to the agent with the low-
est (not empty) bid. We found that the lowest bid heuristic
had better results in our initial experiments, as opposed to
using the highest bid heuristic. Our logic behind using the
lowest, is that it indicates that lower bids from agents, with
different plan libraries and who were able to arrive at final
decompositions, means that they can arrive at the solution
using the lowest number of actions. However, for homoge-
neous agents with similar plan libraries and who were not
able to fully explore their plan library, the selection of the
highest bid may yield better results, since it would represent
the agent who could decompose the furthest. We assume
here that every goal can eventually be allocated, meaning
that there is at least one agent eligible (and capable) for each
organisational goal.

Regarding plan decomposition, agents do not check the
plan’s context (preconditions), nor does it uses any action
theory to simulate future states. It simply decomposes into
the first plan found in the plan library, and then, proceeds
to decompose into any first plan found in the body of the

Algorithm 1 Domain-independent algorithm for determin-
ing an agent’s bid.

function bid (bid-value, from, goal, eligibility, deadline)
if ((from 6= organisation) or (not eligible)) then

return bid-value← ∅
else

while ((close to deadline) or (no more levels available
to decompose)) do

decompose one level of one task from goal
bid-value← bid-value + 1
if deadend then

return bid-value← ∅
end if

end while
if close to deadline then

return bid-value
end if
if there are more levels available to decompose then

bid (bid-value, from, goal, eligibility, deadline)
end if
return bid-value

end if

original plan. Once there are no more levels to decompose,
the agent backtracks to the original plan and chooses another
branch, if there is one.

3.3 Individual Planner
SHOP2 (Nau et al. 2003) is a HTN planner with support
for anytime planning. No modifications were made to the
actual planning algorithm and search heuristics of SHOP2.
Instead, we use the mechanisms from the other components
to handle the multi-agent part of the planning process. By
making little to no modifications to the individual planners,
DOMAPS benefits from its multi-layered approach, making
it easier to swap components without having to modify the
planner’s code directly.

Many parameters can be used to tweak the SHOP2 plan-
ner. The most relevant to DOMAPS is the parameter that
guides which kind of search will be made:

• first: depth-first search that stops at the first plan found.

• shallowest: depth-first search for the shallowest plan, or
the first such plan if there are more than one.

• id-first: iterative-deepening search that stops at the first
plan found.

3.4 Coordination Mechanism
Social laws can coordinate agents by placing restrictions on
the activities of the agents within the system. The purpose of
these restrictions are twofold: it can be used to prevent some
destructive interaction from taking place; or it can be used
to facilitate some constructive interaction.

The design of social laws is domain-dependent, and we
require them to be supplied by the system designer offline
(i.e., they are provided before planning). We apply the social

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

18

laws for the coordination of agents after planning, during
execution.

In the original model of Shoham and Tennen-
holtz (Shoham and Tennenholtz 1995), social laws were
used to restrict the activities of agents so as to ensure that
all individual agents are able to accomplish their personal
goals. We follow a similar idea, although agents here aim
to achieve organisational goals, and thus, are naturally
compelled to follow the social laws that are present in the
system.

We formally define social laws in our model as:

Definition 1 Given a set of agents Ag, a set of actions
Ac, a set of states S, a set of preconditions P, and a set of
options Θ, a social law is a tuple (ag,ac,s,P,Θ) where ag
∈ Ag, ac ∈ Ac, and s ∈ S.

A social law sl constrains a specific action ac of agent
ag, considered to be a possible point of conflict (as estab-
lished in the operator description from the MA-HTN for-
malism). When the state s satisfies each precondition ρi ∈
P, the agent is given all possible options θi ∈ Θ. Although
not explicitly present in this model, the null action (i.e., do
nothing) can be a possible option, but in order for it to be
viable it needs to have been established as an action in the
MAS.

4 Multi-Agent System Integration
We implemented the domaps.plan internal action to start
the DOMAPS planning process – internal actions are actions
that Jason agents can execute internally, as opposed to exter-
nal actions, which are environment-related. These internal
actions are implemented as Java classes that agents can call.

To illustrate the run-time of DOMAPS when the
domaps.plan internal action is executed, consider the
overview provided in Figure 3. When an agent calls
domaps.plan, it goes through phase 1 and activates the
contract net protocol mechanism to allocate organisational
goals between the agents. Then, in phase 2, each agent
knowledge about the world is passed to a MA-HTN trans-
lator, that sends the information needed to SHOP2 for the
individual planning that takes place in phase 3. The solution
found by each agent’s planner goes back through the MA-
HTN translator again, translating the solution into AgentS-
peak Jason plans. Finally, the solution is carried out by the
agents, in accordance to the social laws (phase 5) that are
associated with the actions that can cause conflicts.

4.1 MA-HTN
Each agent uses a MA-HTN translator in order to parse the
current information obtained from the CArtAgO environ-
ment artefacts, as well as from their own personal artefact,
and the plans from its plan library. The MA-HTN transla-
tor generates a problem and domain representation for each
agent, as follows:

• Problem representation: The name of the problem and
the name of the domain are obtained dynamically. The
name of the agent is the one who started the translator.

Figure 3: DOMAPS run-time overview of the
domaps.plan internal action.

The information collected from the CArtAgO artefacts are
parsed into the agent’s facts and initial states. The goal list
is created from the organisational goals that were assigned
to this particular agent during the goal allocation phase.

• Domain representation: The name of the domain is ob-
tained dynamically. The name of the agent is the one who
started the translator. Operators are parsed from all of the
artefacts operations that the agent has access to. The pre-
conditions are obtained from any conditional tests in an
operation, the delete and add list are acquired from the
deletion and addition of observable properties, respec-
tively. The conflict and dependency lists need to be pre-
viously annotated into the operation in order for them to
be able to be parsed. The methods are parsed from all of
the plans in the agent’s plan library, with the precondi-
tions parsed from the context of the plan, and the task list
parsed from the body of the plan.

4.2 Contract Net Protocol
The contract net protocol artefacts mediate the goal alloca-
tion phase of DOMAPS. The mechanism is represented by
two artefacts: the TaskBoard artefact and the ContractNet-
Board artefact. All of the agents that will participate in the
planning stage take the roles of bidders. The bidders should
always focus on the TaskBoard, as that is the artefact in
which the organisational goals are announced. The role of
initiator is restricted to the organisation. When the initiator
announces an auction for a new organisational goal, it cre-
ates a ContractNetBoard associated with that goal.

We show the observable properties and operations of the
TaskBoard and the ContractNetBoard artefacts in Figure 4.
When a new new task is announced by the initiator, a task
observable property is created. A link interface includes the
set of operations that can be executed by other artifacts.
Thus, link operations cannot be accessed by agents, but only
by linking artifacts. Therefore, only the organisation arte-
fact, as the initiator, can announce goals in the TaskBoard.
When the auction process ends, the initiator performs the

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

19

clear operation to delete the observable property associated
with that goal. This also generates an event in Jason, a belief
deletion event, in which agents can perform clean-up and
some other necessary activities.

Figure 4: The task board and CNP board artefacts.

A ContractNetBoard is created for each goal announced
by the initiator. The bidder agents focus on these new arte-
facts as soon as they perceive that a new goal was an-
nounced. The task description contains an organisational
goal, deadline is the time (in milliseconds) that the auction
will run for, state informs if the auction is still open or not,
and winner is created by the initiator once the auction ends
with the id of the bid that won the auction.

The operation bid is executed by bidders in order to place
a bid for the goal associated with the artefact. award is a
linked operation executed by the initiator. It updates the win-
ner observable property, based on a value function. The get-
Bids is a linked operation executed by the initiator, return-
ing all bids currently placed by the bidders, to be used in the
award operation.

There are also two internal operations, checkDeadline and
checkAllBids. Both internal operations update the state ob-
servable property to closed, if the deadline is up or if all
agents have already placed a bid. Internal operations are not
available to be used by agents or other artefacts. Instead,
the artefact’s operations themselves can trigger the asyn-
chronous execution of internal operations.

4.3 SHOP2
We did not modify directly any of the SHOP2 code. We pro-
vide a startPlanner Java class that uses the default Java run-
time environment to start a new process that executes an Al-
legro CL script in order to run SHOP2. The Java class is
implemented as an internal action that is executed by Jason
agents when they enter their individual planning stage.

4.4 Social Laws
In Figure 5, we show the observable properties and opera-
tions of the SocialLaws artefact. This artifact is responsible
for coordinating the agents during the execution of a solu-
tion found during the planning process. It is created during
the system’s initialisation, one instance for each social law.

The observable properties are: social law contains the
name of the social law; action name is the name of the ac-

tion that is associated with this social law artefact; precondi-
tion list is the list of preconditions that make this social law
applicable; and action options contains the list of possible
actions that an agent may take in order to avoid a conflict, or
to solve a dependency.

Figure 5: The artefact for social laws.

We also provide operations related to the manipulation of
social laws, although there is no mechanism implemented
to make use of these operations yet. The create operation
allows the creation of another instance of SocialLaws. The
delete operation erases the current instance of SocialLaws.
And the modify operation permits to alter the values of the
observable properties in the instance of SocialLaws that the
operation was used.

Regarding the practical usage of the artefact, agents con-
sult the SocialLaws artefact associated with the action that
they are about to execute. This process is only necessary for
actions that are part of the plans adopted as a solution from
the planning stage, and only if those actions are annotated
with conflict and/or dependency flags.

5 The Floods Domain
The lack of complex multi-agent domains led us to design
a new domain, in order to best exploit the advantages of
MAP and MAS. The inspiration for this specific domain
came from a real-world scenario on using artificial intelli-
gence techniques (e.g., a team of autonomous multi-robots)
to help mitigate and prevent natural disasters. This scenario
is specifically targeted at flood disasters, often caused by in-
tense hydro-meteorological hazards, that can lead to severe
economic losses and in some extreme cases even deaths.

Our domain, the Floods domain, is based on that real-
world scenario. Another source of inspiration was the Rover
domain, which was used in several past International Plan-
ning Competitions (IPCs). In the floods domain, a team
of autonomous and heterogeneous robots are dispatched to
monitor flood activity in a region. The Centre for Disaster
Management (CDM) establishes a base of operation in the
region that is being monitored. The base is used to assign
goals to the robots, receive and interpret data, and provide
some assistance. The CDM is usually operated by humans,
but in our JaCaMo+DOMAPS implementation we simulate

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

20

them by using agents, capable of creating dynamic goals
during run-time.

Figure 6: Elements from the Floods domain.

In Figure 6, we show the elements that compose the
Floods domain. The domain takes place in a particular re-
gion, which is divided into several interconnected areas.
Movement through the region occurs from traversing these
areas. Flood events are common in the region, especially
during heavy-rain. These floods can be observed from spe-
cific areas in the region. The areas can be connected by a
water path, that can be traversed by naval units, and/or by
a ground path, that can be traversed by ground units. Water
sample can be requested to be collected from certain areas.
During flood events, victims may be detected and in need of
assistance. The CDM establishes a base of operations in one
of the areas in the region.

Finally, the naval units are composed of Unmanned Sur-
face Vehicles (USVs) that can move through areas connected
by water paths, collect water samples, and take pictures of
flood events. Meanwhile, the Unmanned Ground Vehicles
(UGVs) are ground units that are able to move through areas
connected by ground paths, take pictures of flood events, and
provide assistance to victims by transporting first-aid kits to
first responders close by. The robots can only perceive other
robots that are in the same area.

5.1 Initial Experiments
For the initial experiments presented here, we maintained
the number of agents and focused on increasing the number
of goals. It seems that there is a relation between the number
of goals and the number of agents. For most domains, hav-
ing the number of goals equal to the number of agents, and
assuming that each agent is capable of solving its associated
goal, appears to result in faster planning times. In Table 2 we
show the some initial experiments on this domain for small
problems with 4, 8, 16, and 32 goals. As the number of goals
surpasses the number of agents, the planning time approxi-
mates to that of single-agent SHOP2.

The results are shown in regards to time spent planning,
and the number of state expansions and inferences that were
made during planning. These results do not depict any of the
run-time features of DOMAPS, as we are still investigating
how to evaluate it as a whole, and considering what evalu-

ation parameters that could be used both for planning and
execution in tandem.

Table 2: Initial experiment results.
DOMAPS SHOP2usv1 usv2 ugv1

floods 4
pl. time 0.001 0.001 0.001 0.004

exp. 8 8 15 65
inf. 13 13 21 186

floods 8
pl. time 0.001 0.001 0.002 0.011

exp. 15 15 29 129
inf. 21 21 37 360

floods 16
pl. time 0.002 0.002 0.004 0.033

exp. 29 29 57 257
inf. 37 37 69 708

floods 32
pl. time 0.003 0.003 0.005 0.095

exp. 57 57 113 513
inf. 69 69 133 1404

It is natural for DOMAPS to have faster planning times
than regular SHOP2 since we assign goals to agents before
planning, while SHOP2 does so during planning, in order
to try different assignments. In future experiments we want
to test scalability and add more domains. We also hope to
compare DOMAPS with other frameworks, and provide a
full framework evaluation, as well as evaluating each of its
components separately.

These experiments show an interesting result in regards
to the number of expansions and inferences. DOMAPS re-
quires fewer state expansions and inferences, even if adding
all the agents, than SHOP2. The individual planning ap-
proach taken in DOMAPS discards many of the predicates
that are usually used to assign tasks between different ob-
jects, whilst SHOP2 needs those predicates to define the
(agent) objects. By considering agents as first-class abstrac-
tions in MA-HTN, we are free of the use of these predicates.

6 Related and Future Work
There has been several surveys over the years describing ad-
vancements in particular areas of planning. Of interest, and
related to this research, there are: in (desJardins et al. 1999),
a survey on distributed online (continual) planning is pre-
sented, with the state of the art in distributed and online
planning at the time, and a conceptual design for distributed
online planning; a survey (Meneguzzi and De Silva 2013)
that presents a collection of recent techniques used to inte-
grate single-agent planning for a single-agent in BDI-based
agent-oriented programming languages, focusing mostly on
efforts to generate new plans at run-time; and a multi-agent
planning survey (Weerdt and Clement 2009), describing sev-
eral approaches taken towards multi-agent planning over the
last few years.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

21

In (Nissim and Brafman 2014), the authors propose a for-
ward search heuristic for classical multi-agent planning that
respects the distributed structure of the system, preserving
agents privacy (Brafman 2015). According to their experi-
ments, their system showed the best performance in regards
to planning time and communication, as well as the qual-
ity of the solution (in most cases), when compared to other
offline multi-agent planning systems.

FLAP (Sapena, Onaindia, and Torreño 2015) is a hy-
brid planner that combines partial-order plans with forward
search. The planner uses a parallel search technique that di-
versifies the search. FLAP exploits delaying commitment to
the order in which actions are applicable. This is done to
achieve flexibility, reducing the need of backtracking and
minimising the length of the plans by promoting the parallel
execution of actions. These changes come at an increase in
computational cost, but it allows FLAP to solve more prob-
lems than other partial-order planner.

In (Clement, Durfee, and Barrett 2007), multi-agent plan-
ning algorithms and heuristics are proposed to exploit sum-
mary information during the coordination stage, in order to
speed up planning time. The authors claim that by associat-
ing summary information with plans’ abstract operators, it
can ensure plan correctness, even in multi-agent planning,
while still gaining efficiency and not leading to incorrect
plans. The key idea is to annotate each abstract operator
with summary information about all of its potential needs
and effects. This process often resulted in an exponential re-
duction in planning time compared to a flat representation.
Their approach depends on some specific conditions and as-
sumptions, and therefore cannot be used in all domains.

Multi-Agent Planning Language (MAPL) is proposed
in (Brenner and Nebel 2009), for modelling MAP domains
in online planning. Plans expressed in this language inter-
leave planning, acting, sensing, and communicating. Their
approach is based on sharing knowledge in order to ensure
the synchronous execution of joint plans. It is different from
our approach, where agents keep their private knowledge
and are coordinated through the organisation via social laws.
Their interleave mechanism could be used in DOMAPS to
shorten the time between planning and execution.

Kovacs proposed an extension for PDDL3.1 that enables
the description of multi-agent planning problems (Kovacs
2012) in PDDL. It copes with many of the already discussed
open problems in multi-agent planning, such as the exponen-
tial increase of the number of actions, but it also approaches
new problems such as the constructive and destructive syn-
ergies of concurrent actions. Although only the formalism is
provided (it is not yet supported by any planner), the ideas
expressed by Kovacs are enticing, making it an interesting
candidate to add to DOMAPS planning formalisms.

Markov Decision Processes (MDP) are often used when
dealing with non-deterministic worlds to coordinate agents
during planning. These methods can also be extended to deal
with partially observable environments, known as Partially
Observable Markov Decision Processes (POMDP). For ex-
ample, in (Wu, Zilberstein, and Chen 2011), the authors use
an online algorithm for planning under uncertainty in multi-
agent settings modelled as decentralised POMDPs, requir-

ing little to no communication. While in (Brafman, Shani,
and Zilberstein 2013), qualitative decentralised POMDP is
proposed as a a qualitative, propositional model for multi-
agent planning under uncertainty with partial observability.

In multi-agent POMDPs, the action and observation space
grows exponentially with the number of agents. In (Am-
ato and Oliehoek 2015), a scalable approach based on
sample-based planning and factored value functions that ex-
ploits multi-agent structure to produce a scalable method
for Monte Carlo tree search for POMDPs. They formalise
a team of agents as a multi-agent POMDP, and introduce an
online planner that uses factored statistics and factored trees
to reduce the number of joint actions and the number of joint
histories considered. Adding these approaches to DOMAPS
could allow us to consider domains with non-deterministic
actions and partially-observable environments.

Plan repair is the re-use of fragments of an old plan, and
can be used to effectively simplify the coordination stage of
planning. The authors of (Komenda, Novak, and Pechoucek
2014), argue that in decentralised systems where coordina-
tion is required to achieve joint objectives, attempts to repair
failed multi-agent plans should lead to lower communication
overhead than re-planning from scratch. They also describe
three algorithms for domain-independent multi-agent plan
repair. At the moment, the re-planning in DOMAS works by
restarting the planning process from scratch (but with up-
dated information about the world). Integrating these plan
repair algorithms could provide some important improve-
ments to re-planning in DOMAPS.

Techniques for solving multi-agent pathfinding problems
are also becoming more common. These problems relate to
finding paths from start to goal positions for all agents, while
avoiding collisions. For example, in (Sharon et al. 2015),
a new multi-agent pathfinding algorithm is presented. The
conflict based search algorithm works on two levels: at the
high level the search is performed on a conflict tree con-
taining the conflicts between individual agents; and at the
low level single-agent searches are performed to satisfy the
constraints found at the high level. This conflict tree could
be useful for mapping the conflicts for the coordination
mechanisms of DOMAPS. Combining path planning with
task planning, such as suggested by (Srivastava et al. 2014),
could also be useful in order to run real world scenarios with
multiple robots.

7 Conclusion
In this paper, we described the design of the Distributed On-
line Multi-Agent Planning System (DOMAPS). Specifying
each of its main components: i) the planning formalism –
we introduced the MA-HTN formalism, a multi-agent vari-
ation of the traditional single-agent HTN formalism; ii) the
goal allocation mechanism – by using a contract net proto-
col, the agents that participate in the planning stage can pre-
select the goals that they believe to be more appropriate to
them, this pre-planning can cut the planning time consider-
ably in domains with heterogeneous agents and varied goals;
iii) the individual planner – the SHOP2 planner is used in
each agent for individual planning, so as to make the most
of the HTN-like structure of the plan library in Jason agents;

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

22

iv) the coordination mechanism – employment of social laws
to coordinate the agents during run-time in order to avoid
possible conflicts made during planning.

Initial experiments and experience with DOMAPS has
presented enough positive incentives to pursue solutions for
the limitations and to provide improvements for the frame-
work overall, for example by adding new approaches to each
component. The performance of our coordination mecha-
nism is limited to the designer ability of detecting conflicts
and formulating suitable social laws, similarly to the way
that HTN depends on good methods.

Acknowledgments
We are grateful for the support given by CAPES and by
CNPq (grant number 308095/2012-0).

References
Amato, C., and Oliehoek, F. A. 2015. Scalable planning
and learning for multiagent pomdps. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence,
January 25-30, 2015, Austin, Texas, USA., 1995–2002.
Boissier, O.; Bordini, R. H.; Hübner, J. F.; Ricci, A.; and
Santi, A. 2011. Multi-agent oriented programming with
JaCaMo. Science of Computer Programming.
Bordini, R. H.; Wooldridge, M.; and Hübner, J. F. 2007. Pro-
gramming Multi-Agent Systems in AgentSpeak using Jason.
John Wiley & Sons.
Brafman, R. I.; Shani, G.; and Zilberstein, S. 2013. Qualita-
tive planning under partial observability in multi-agent do-
mains. In Proceedings of the Twenty-Seventh Conference on
Artificial Intelligence, 130–137.
Brafman, R. I. 2015. A privacy preserving algorithm for
multi-agent planning and search. In Proceedings of the
Twenty-Fourth International Joint Conference on Artificial
Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-
31, 2015, 1530–1536.
Brenner, M., and Nebel, B. 2009. Continual planning and
acting in dynamic multiagent environments. Autonomous
Agents and Multi-Agent Systems 19(3):297–331.
Cardoso, R. C., and Bordini, R. H. 2016. A multi-agent ex-
tension of hierarchical task network. 10th Workshop-School
on Agents, Environments, and Applications (WESAAC).
Clement, B. J.; Durfee, E. H.; and Barrett, A. C. 2007. Ab-
stract reasoning for planning and coordination. Journal of
Artificial Intelligence Research (JAIR) 28:453–515.
Crosby, M.; Jonsson, A.; and Rovatsos, M. 2014. A single-
agent approach to multiagent planning. In 21st European
Conf. on Artificial Intelligence (ECAI’14).
desJardins, M. E.; Durfee, E. H.; Ortiz, C. L.; and Wolver-
ton, M. J. 1999. A survey of research in distributed, contin-
ual planning. AI Magazine 20(4).
Durfee, E. H., and Zilberstein, S. 2013. Multiagent planning,
control, and execution. In Weiss, G., ed., Multiagent Systems
2nd Edition. MIT Press. chapter 11, 485–545.
Hübner, J. F.; Sichman, J. S.; and Boissier, O. 2007. De-
veloping organised multiagent systems using the MOISE+

model: programming issues at the system and agent levels.
Int. J. Agent-Oriented Software Engineering 1(3/4):370–
395.
Komenda, A.; Novak, P.; and Pechoucek, M. 2014. Domain-
independent multi-agent plan repair. Journal of Network and
Computer Applications 37:76 – 88.
Kovacs, D. L. 2012. A multi-agent extension of pddl3.1. In
Proceedings of the 3rd Workshop on the International Plan-
ning Competition (IPC), ICAPS-2012, 19–27.
Meneguzzi, F., and De Silva, L. 2013. Planning in BDI
agents: a survey of the integration of planning algorithms
and agent reasoning. The Knowledge Engineering Review
FirstView:1–44.
Nau, D.; Ilghami, O.; Kuter, U.; Murdock, J. W.; Wu, D.; and
Yaman, F. 2003. Shop2: An htn planning system. Journal
of Artificial Intelligence Research 20:379–404.
Nissim, R., and Brafman, R. I. 2014. Distributed heuristic
forward search for multi-agent planning. J. Artif. Intell. Res.
(JAIR) 51:293–332.
Omicini, A.; Ricci, A.; and Viroli, M. 2008. Artifacts in
the A&A meta-model for multi-agent systems. Autonomous
Agents and Multi-Agent Systems 17(3):432–456.
Ricci, A.; Piunti, M.; Viroli, M.; and Omicini, A. 2009. En-
vironment programming in CArtAgO. In Multi-Agent Pro-
gramming: Languages, Tools and Applications, Multiagent
Systems, Artificial Societies, and Simulated Organizations.
Springer. chapter 8, 259–288.
Sapena, O.; Onaindia, E.; and Torreño, A. 2015. FLAP: ap-
plying least-commitment in forward-chaining planning. AI
Commun. 28(1):5–20.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence 219:40 – 66.
Shoham, Y., and Tennenholtz, M. 1995. On social laws for
artificial agent societies: Off-line design. Artif. Intell. 73(1-
2):231–252.
Singh, M., and Chopra, A. 2010. Programming multia-
gent systems without programming agents. In Braubach, L.;
Briot, J.-P.; and Thangarajah, J., eds., Programming Multi-
Agent Systems, volume 5919 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg. 1–14.
Smith, R. G. 1980. The contract net protocol: High-level
communication and control in a distributed problem solver.
IEEE Trans. Comput. 29(12):1104–1113.
Srivastava, S.; Fang, E.; Riano, L.; Chitnis, R.; Russell, S.;
and Abbeel, P. 2014. Combined task and motion planning
through an extensible planner-independent interface layer.
In IEEE International Conference on Robotics and Automa-
tion (ICRA).
Weerdt, M. D., and Clement, B. J. 2009. Introduction
to Planning in Multiagent Systems. Multiagent Grid Syst.
5(4):345–355.
Wu, F.; Zilberstein, S.; and Chen, X. 2011. Online plan-
ning for multi-agent systems with bounded communication.
Artificial Intelligence 175(2):487–511.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

23

Multi-Agent Route Planning Using Delegate MAS

Hoang Tung Dinh, Rinde R. S. van Lon, Tom Holvoet
iMinds-DistriNet, KU Leuven, 3001 Leuven, Belgium

{hoangtung.dinh, rinde.vanlon, tom.holvoet}@cs.kuleuven.be

Abstract

Multi-agent route planning (MARP) is a problem that oc-
curs in many applications such as automated guided vehicles,
robotics, intelligent transportation networks and airplane taxi-
ing. MARP becomes especially challenging when the appli-
cation domain is dynamic, large scale and requires contin-
ual planning. Due to its decentralized nature, a multi-agent
system (MAS) is an ideal candidate for solving dynamic and
large scale MARP problems. Delegate MAS is a coordination
mechanism based on the idea of intention propagation via the
environment inspired by ant behavior. We evaluate delegate
MAS on automated guided vehicle routing under realistic
conditions. Delegate MAS is compared with context-aware
routing, a state-of-the-art centralized approach for dynamic
MARP. Two variants of MARP are considered, single-stage
where vehicles each have to visit a single destination and
multi-stage where a sequence of destinations has to be visited.
The experiment results show that delegate MAS and context-
aware routing have comparable solution quality while dele-
gate MAS is more scalable for multi-stage routing in dynamic
environments and offers higher throughput when continual
planning is required.

1 Introduction
Automated guided vehicle (AGV) systems are widely used
in many industrial areas, including manufacturing, aviation,
retail and transportation logistics (Ullrich 2015). In such sys-
tems, a fleet of autonomous vehicles coordinate in order to
efficiently transport goods throughout a plant or warehouse.
Transportation requests need to be assigned to vehicles and
each request contains information about pick-up and deliv-
ery locations. Vehicles need to go to battery charging sta-
tions several times during execution. The goal of the vehi-
cle fleet is to determine efficient routes that minimize trans-
portation time and maximize throughput. This is a challeng-
ing task (Vis 2006). Unexpected obstacles such as humans
may block a road; vehicles may temporarily fail; new vehi-
cles may become available and operating vehicles may leave
the system for maintenance. This results in unpredictable
travel time and transportation requests may change during
execution. Additionally, the infrastructure and the number
of vehicles can be large; the physical constraints of the in-
frastructure and vehicles may lead to deadlocks, preventing
some vehicles to reach their destinations.

AGV systems, along with robotics, intelligent transporta-
tion and airplane taxiing, are typical applications of multi-
agent route planning (MARP). In MARP, there is a set
of agents in a shared environment. The problem involves
planning a conflict-free route for each agent from its cur-
rent position to one or multiple destinations. Ter Mors
(2010, pp. 46–50) proves that MARP is NP-complete, or
even PSPACE-complete under additional constraints such
as maintaining a minimum distance between agents. Typi-
cal challenges of MARP are dealing with dynamism, scal-
ability, communication limitation and deadlock situations.
MARP requires a flexible and scalable solution that seam-
lessly copes with unexpected events and failures. Agents
should collaboratively plan routes to resolve conflicts be-
fore they occur. These characteristics motivate the feasibility
study of a decentralized multi-agent approach.

In this paper we implement and evaluate an online, any-
time and continual planning approach for MARP, called del-
egate MAS. Delegate MAS is an environment centric coor-
dination mechanism for coordination and control applica-
tions, inspired by food foraging behavior in ant colonies. It
was first introduced in the context of manufacturing con-
trol (Holvoet and Valckenaers 2007). Since then, delegate
MAS has been applied in different areas such as pick-up and
delivery (Hanif et al. 2011) and anticipatory vehicle rout-
ing (Weyns, Holvoet, and Helleboogh 2007; Claes, Holvoet,
and Weyns 2011). We compare delegate MAS with a state-
of-the-art centralized decoupled approach, called context-
aware routing (see Section 2). To the best of our knowledge,
context-aware routing is the only approach that solves both
single-stage (Ter Mors, Zutt, and Witteveen 2007) and multi-
stage routing (Ter Mors, Van Belle, and Witteveen 2009),
as well as routing in a dynamic environment where unex-
pected incidents occur regularly (Ter Mors and Witteveen
2009). We evaluate the performance of both approaches in
static and dynamic environments, in single as well as multi-
stage routing. In single-stage routing, an agent has exactly
one destination to go to. In multi-stage routing, an agent has
a sequence of destinations. We make abstraction of the way
agents get to know their destinations and assume that they
are informed when the destinations need to be adapted. The
experiment results show that delegate MAS and context-
aware routing have comparable solution quality while del-
egate MAS is more scalable for multi-stage routing in dy-

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

24

namic environments and offers higher throughput when con-
tinual planning is required.

The rest of this paper is organized as follows. We first dis-
cuss related work (Section 2). Then, we formulate the model
of the MARP problem (Section 3). After that, we outline
the delegate MAS approach (Section 4). We then describe
the experiment setup and analyze experiment results (Sec-
tion 5). Finally, we draw our conclusion and detail possible
future work (Section 6).

2 Related Work
There are coupled and decoupled approaches for solving
MARP.

Coupled approaches combine the configuration spaces of
all individual agents into one composite configuration space
which is then searched for a solution. Several coupled ap-
proaches (Ryan 2008; Standley and Korf 2011) can solve
MARP optimally using the A* algorithm (Hart, Nilsson,
and Raphael 1968). Such approaches do not scale well be-
cause the branching factor of search spaces grows exponen-
tially as the number of agents increases. Sharon et al. (2013;
2015) exploit the sparsity in interactions among agents to
improve the efficiency in finding the optimal solution. Their
approaches perform poorly when there is a high rate of con-
flicts among agents.

Decoupled approaches decompose the problem of search-
ing for a global solution for all agents into a sequence of
individual planning problems. Decoupled approaches offer
scalability but are sub-optimal and often incomplete. One
type of decoupled approach, called rule-based planning, de-
fines a set of specific movement rules for agents to reduce
the computational complexity and guarantee the complete-
ness at the cost of solution quality (De Wilde, Ter Mors, and
Witteveen 2013; Wang and Botea 2008). Another type of
decoupled approach, prioritized planning, assigns a unique
priority to each agent. Agents plan routes in decreasing
priority order. An agent finds a route that does not create
a conflict with the plans of higher priority agents. Silver
(2005) proposed Hierarchical Cooperative A* and its vari-
ant, Windowed Hierarchical Cooperative A*, where an agent
searches for a route in a three-dimensional space-time reser-
vation table. Wang and Goh (2011) proposed an approach
where agents search for routes in a two-dimensional map
with an adaptive priority re-assignment strategy. These ap-
proaches are not complete and their solutions may be far
from optimal. Wang and Goh (2013) then proposed the
Guided Iterative Prioritized Planning approach that can in-
crease the success rates at the cost of computational time.
Hatzack and Nebel (2014), Lee, Lee, and Choi (1998) and
Ter Mors et al. (2012) presented the Fixed-Path Schedul-
ing (FPS) approach where each agent, in a given priority,
calculates conflict-free schedules along one or multiple pre-
determined paths and takes the shortest-time schedule as its
plan. The pre-determined path(s) for each agent can be the
shortest-length path (Hatzack and Nebel 2014), k-shortest-
length paths (Lee, Lee, and Choi 1998) or k-disjoint paths
(Ter Mors et al. 2012).

Ter Mors, Zutt, and Witteveen (2007) proposed a state-of-
the-art prioritized planning approach called context-aware

routing. In context-aware routing, an agent finds its optimal
plan that does not create a conflict with existing plans of
other agents on a free time window graph using an A*-like
algorithm. A free time window on a location is the maximal
time interval that a new agent can make a reservation for
traversing the location without making any conflict with the
existing reservations of other agents. Ter Mors et al. (2007;
2012) show that context-aware routing is better in terms of
travel time than all variants of FPS.

All the work we have discussed so far only considers the
single-stage routing problem. To the best of our knowledge,
the paper by Ter Mors, Van Belle, and Witteveen (2009) is
the only work in the literature that deals with the multi-stage
routing problem. Extended from their single-stage routing
algorithm, Ter Mors, Van Belle, and Witteveen proposed the
context-aware multi-stage routing algorithm that is also a
prioritized planning approach.

To deal with incidents that delay agents, different ap-
proaches (Maza and Castagna 2005; Ter Mors and Wit-
teveen 2009; Ter Mors 2011) have been developed to inte-
grate with context-aware routing. In those approaches, after
all agents make their plans, the schedule at each location is
converted to a visiting order (or priorities) of agents. Maza
and Castagna (2005) show that if agents maintain their pri-
orities at each location, no conflict occurs even if the arrival
times of agents are not guaranteed. Hence, an approach to
avoid conflict is to let each agent respect its priority at each
location. This approach requires non-delayed agents to wait
for delayed agents. To achieve better solution, the work in
(Maza and Castagna 2005; Ter Mors and Witteveen 2009)
increases the priorities of non-delayed agents over delayed
ones. In (2011), Ter Mors proposes another approach where
agents re-plan routes every time an incident occurs. Accord-
ing to the comparisons in (Ter Mors and Witteveen 2009; Ter
Mors 2011), the increasing-priority approach of Ter Mors
and Witteveen (2009) achieves the best solution quality.

3 Problem Formulation
In this section we present the formal model used through-
out the paper. We adopt the model introduced by Ter Mors,
Van Belle, and Witteveen (2009) with several modifications
to make the model more realistic. In (2009), Ter Mors,
Van Belle, and Witteveen assume that agents have zero
length. Such assumption is unrealistic. In our model, we as-
sume that agents occupy physical space. This assumption
leads to the differences in the resource capacity constraints
and the agent plan constraints between our model and Ter
Mors’s model.

MARP consists of a set A of agents operating in an in-
frastructure. The infrastructure is a bidirectional graph G =
(V,E), where V is the set of vertices representing locations
that agents can visit such as intersections or pick up and de-
livery locations, and E is the set of edges representing lanes
connecting locations. The set of resources is R = V ∪ E.
Each resource r ∈ R has a capacity C(r). Each vertex has
unit capacity. The capacity of each edge e is:

C(e) = blength(e)/
(
(1 + ∆)× length(a)

)
c

where length(e) is the length of the edge, length(a) is the

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

25

length of an agent and ∆ is the minimum separation be-
tween two agents. We assume homogeneous agents. If mul-
tiple agents occupy an edge at the same time, they must all
travel in the same direction and must not overtake each other.
An agent cannot change its direction when it travels along
an edge. In Figure 1, agent 2 is not allowed to overtake and
cannot exit from the edge before agent 3.

1 2 3

4

6

5

Figure 1: Agents in an infrastructure graph. Dark yel-
low squares represent vertices (intersections and locations).
Light yellow rectangles represent edges (lanes).

In single-stage routing, an agent a ∈ A has one start
location s ∈ V and one destination location d ∈ V . In
multi-stage routing, an agent a has a tuple of destinations
D = {〈d1, . . . , dm〉|di ∈ V }, where m is the number of
destinations. The route plan of an agent is a sequence:

(〈r1, [t1, t′1)〉, . . . , 〈rn, [tn, t′n)〉)

of n plan steps. A plan step 〈ri, [ti, t′i)〉 consists of a resource
ri, the entry time ti and the exit time t′i of agent a on ri. In
single-stage routing, the last plan step of an agent must be in
the destination resource, that is, rn = d. In multi-stage rout-
ing, the plan of an agent must include all the destinations in
a given order and the last plan step must be in the last des-
tination resource, that is, rn = dm. Two resources ri and
ri+1 of two consecutive plan steps must be adjacent in G. In
the model of Ter Mors, Van Belle, and Witteveen (2009), be-
cause they assume that agents have zero length, each agent
only occupies one resource at the same time. Therefore, the
exit time and the entry time of two consecutive plan steps
must meet each other, that is, t′i = tt+1. In our model, be-
cause each agent has a length greater than zero, an agent can
occupy two adjacent resources simultaneously. For example,
in Figure 1, agent 4 is occupying two resources. Thus, in our
model, two intervals of two consecutive plan steps [ti, t

′
i)

and [ti+1, t
′
i+1) must overlap, that is, t′i > tt+1. The dura-

tion δi = t′i − ti must be sufficient for the agent to traverse
through the resource ri. The schedule of a resource consists
of a set of plan steps. A resource has a consistent schedule if
the load of the resource never exceeds the resource’s capac-
ity.

Unexpected incidents that delay agents may occur. We
model incidents as events that make agents temporarily inac-
tive. Each incident has a start time t and a duration δt. While
suffering an incident, an agent cannot move. Agents do not

have prior knowledge of incidents, that is, they do not know
when incidents happen nor their duration.

4 MARP Using Delegate MAS
In this section we propose the delegate MAS approach for
MARP. Delegate MAS consists of a number of autonomous
agents situated in a shared environment. Agents coordinate
in a decentralized way. The shared environment enables in-
direct communication between agents. An agent drops in-
formation of its plan to the relevant parts of the environ-
ment. Other agents can later use the information to create
their plans. Such communication somewhat resembles the
foraging behavior of ants, where an ant continuously drops
pheromones on the environment and scents pheromones of
other ants. Agents only collect directly relevant information
that is distributed throughout the environment for making
decisions. Delegate MAS self-organizes by continuously re-
moving invalid information in the environment.

4.1 Multi-Agent Based Routing
Delegate MAS consists of two types of primary agents,
resource agents and vehicle agents (Weyns, Holvoet, and
Helleboogh 2007).

Each resource agent represents a resource of the infras-
tructure. A resource agent can observe changes such as un-
expected obstacles at its resource. The main task of a re-
source agent is to manage a schedule on its resource and to
provide free time windows according to the current sched-
ule. A resource agent only allows a vehicle to enter the re-
source if it is consistent with the schedule. Also, a resource
agent only accepts reservations that are consistent with its
existing schedule. A reservation has a time-to-live. If a reser-
vation is not confirmed regularly, the resource agent removes
it. A resource agent can communicate with its neighboring
resource agents. The network of resource agents establishes
a virtual environment, that is, a software representation of
the physical infrastructure graph.

Each vehicle agent represents an operating vehicle in the
infrastructure. When a new vehicle enters the infrastructure,
a corresponding vehicle agent is created and assigned to the
vehicle. We assume that each vehicle agent knows the static
graph structure of the infrastructure, but not the schedules on
resources. A vehicle agent is responsible for planning routes
and controlling its vehicle towards destinations. A vehicle
agent continually explores alternative routes and reserves its
intended route. The behavior of a vehicle agent is described
in Algorithm 1. To explore routes, first, in line 2, a vehi-
cle agent generates a set of feasible paths1 from its current
location to its destination(s) using the static infrastructure
graph (Section 4.4). In line 3, it evaluates the quality of each
path by asking relevant resource agents about the existing
schedules (Section 4.2). Then, in line 4, it selects the most
preferable one among the assessed routes. In line 5, the vehi-
cle agent decides whether to deviate from its current plan to
the new route. After that, in line 8, the vehicle agent makes
reservations for its intended route and regularly refreshes the

1A route is a path with a schedule.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

26

reservations via resource agents (Section 4.2). When plan-
ning routes, a vehicle agent must respect the existing reser-
vations of other vehicle agents.

Algorithm 1 Behavior of a vehicle agent
Require: The infrastructure graph G = (V,E), current lo-

cation start, destination(s) dest
1: loop
2: paths← getAlternativePaths(G, start, dest)
3: routes← evaluate(paths)
4: preferredRoute← select(routes)
5: if revise(intendedRoute, preferredRoute) then
6: intendedRoute← preferredRoute
7: end if
8: if ¬makeReservation(intendedRoute) then
9: goto 2

10: end if
11: end loop

4.2 Agent Coordination
To achieve coordination, vehicle agents and resource agents
communicate indirectly through the virtual environment us-
ing lightweight agents, called “ants”. Basically, ants are
smart messages that can autonomously move in the vir-
tual environment and interact with resource agents (Holvoet,
Weyns, and Valckenaers 2009). We use two types of ants:
exploration ants and intention ants.

1) Exploration ants. Recall Algorithm 1. In line 3, a ve-
hicle agent evaluates candidate paths by sending out explo-
ration ants. Each exploration ant follows a candidate path
through the virtual environment. For each resource agent
that it travels through, the exploration ant queries for the ex-
isting schedule. After reaching the destination, based on all
relevant reservations, the exploration ant calculates the op-
timal schedule along its path using the context-aware rout-
ing algorithm proposed in (Ter Mors, Zutt, and Witteveen
2007). Note that we only use context-aware routing to search
for the optimal schedule on a given path, but not on the en-
tire infrastructure graph as in (Ter Mors, Zutt, and Witteveen
2007). The exploration ant then informs the vehicle agent of
its optimal schedule. In line 4, the vehicle agent compares
all schedules reported by exploration ants and selects the
best one. The criteria for the selection depend on concrete
objectives. In this paper, a vehicle agent selects the schedule
with the earliest arrival time at the destination.

2) Intention ants. In line 8 of Algorithm 1, a vehicle agent
informs relevant resource agents of its plan by sending out
an intention ant. The intention ant follows the intended path
in the virtual environment and makes reservation with each
resource agent along its path. Then, it reports to the vehicle
agent whether it successfully made reservations on all re-
sources. If the intention ant cannot reserve all the resources,
the vehicle agent explores again (line 9). The reservations
evaporate after a while if intention ants do not renew them.
The vehicle agent therefore sends out intention ants regu-
larly to refresh its reservations. A vehicle agent can freely
change its intention. In line 5, if it finds a better route and

decides to change the current plan, it stops sending inten-
tion ants on the current route and the incorrect reservations
will disappear after a while. This is an example of the self-
organizing property of delegate MAS. A vehicle agent re-
peats the exploration and reservation processes regularly,
thus gradually improves the quality of its plan.

Different from context-aware routing that only allows
agents to plan sequentially, delegate MAS allows agents to
plan concurrently and can resolve conflicts caused by simul-
taneous exploring and reserving. If two intention ants arrive
and request to make reservations at a resource at the same
time, the resource agent randomly selects an order to pro-
cess the requests. For example, in Figure 2, vehicle agent
1 and vehicle agent 2 explore routes at the same time. At
that moment, no vehicle agent already placed reservations.
Hence, after exploring, vehicle agent 1 selects the solid blue
route and vehicle agent 2 chooses the dashed red route. They
plan to travel with the same speed and therefore may collide
at the resource marked by a star. They then send intention
ants to make reservations. At the star resource, assuming
that intention ant 1 arrives earlier, or at the same time with
intention ant 2 but is selected by the resource agent to pro-
cess request first. The resource agent accepts the reservation
of intention ant 1 and then rejects the reservation of inten-
tion ant 2 because of schedule inconsistency. Intention ant
1 then continues making reservations while intention ant 2
stops and reports to vehicle agent 2. Vehicle agent 2 then ex-
plores new routes again. The reservations made by intention
ant 2 in other resources are not refreshed and evaporate after
a while thanks to the self-organizing effect.

1 2

Ant 2

Ant 1
12

Figure 2: Two vehicle agents explore simultaneously and try
to reserve resources for two conflicted plans. The resource
agent at the first conflicted resource processes requests se-
quentially. Thus it only allows the reservation from intention
ant 1 and rejects the reservation from intention ant 2.

4.3 Delay Propagation
If an incident occurs, the delayed vehicle agent estimates the
delay duration δ. It then updates its current plan:

(〈r1, [t1s, t1e)〉, 〈r2, [t2s, t2e)〉, . . . , 〈rn, [tns, tne)〉)

to a new plan:

(〈r1, [t1s, t1e + δ)〉, 〈r2, [t2s + δ, t2e + δ)〉, . . . ,
〈rn, [tns + δ, tne + δ)〉)

where r1 is the resource that the vehicle is occupying. Af-
ter that, the vehicle agent sends an intention ant to request
relevant resource agents to update its reservations.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

27

The updated reservations of a delayed vehicle may be in-
consistent with the existing reservations of other vehicles.
To resolve inconsistencies, a resource agent also delays the
reservations of vehicles that enter the resource after the de-
layed one (see Figure 3a). The resource agent notifies its
neighboring resource agents who apply the delay to all af-
fected and succeeding vehicles recursively (see Figure 3b).
Consequently, the changes propagate through the entire vir-
tual environment. This delay propagation process guaran-
tees that all updated plans are consistent and deadlock-free
if the initial plans are consistent and deadlock-free. A ve-
hicle agent updates its plan using the information reported
by intention ants. After the delay is propagated, some non-
delayed vehicles have to wait for the delayed one. Because
the vehicle agents send out exploration ants regularly, alter-
native routes can be found around the delayed vehicle.

Vehicle 1 Vehicle 2 Vehicle 3

Vehicle 1 Vehicle 2 Vehicle 3

Timeline

Before

After

Vehicle 4

Vehicle 4

δδδ

(a)

2

2

1 3

3

23

(b)

Figure 3: (a) The schedule of a resource agent before and
after being requested to update the reservation of vehicle 2.
The reservation of vehicle 2 and all succeeding reservations
are delayed by δ. (b) Delay propagation process. Resource
agent 1 receives a notification of delay. It recursively propa-
gates the delay to its neighbors (marked by 2 and 3).

The estimated delay duration δ does not need to be the ex-
act actual duration. However, δ should be as close to the ac-
tual delay duration as possible. Vehicle agents do not need to
know the actual duration of an incident in advance, which is
realistic in real-world applications. If the actual delay dura-
tion is shorter than δ, the vehicle agent explores new routes
after the incident is over. If the actual incident duration is
longer than δ, the vehicle agent, after estimation δ expires,
estimates a new delay duration δ′ and propagates it again.
The process repeats until the incident is over. The more ac-
curate δ is, the less disturbance in the plan of other vehicle
agents. If an intention ant is making new reservations during
the delay propagation process, the reservations may conflict
with updated resource schedules. Resource agents then re-
ject the inconsistent reservations of the intention ant. The in-
tention ant reports the reservation failure to the vehicle agent
and the vehicle agent explores again.

4.4 Alternative Path Finding
Generating possible candidate routes using the static infras-
tructure graph (line 2 of Algorithm 1) is an important step in
exploration. Poor candidate paths lead to poor plans. Find-
ing all paths between two locations is impractical. If we
only select the shortest paths as candidate paths, congestion
may occur in some central resources that have many shortest
paths passing through (Ter Mors et al. 2012). However, long
paths result in long travel time. Thus, it is necessary to have
a diverse set of candidate paths. Moreover, because a vehicle

agent explores regularly, the set of candidate paths should be
different from time to time in order to increase the chance of
finding a good plan.

In the literature, popular approaches to generate a set of
feasible paths include k-shortest paths (Yen 1971), k-disjoint
paths (Suurballe and Tarjan 1984), Pareto (Delling and Wag-
ner 2009), Plateau (Bader et al. 2011) and Penalty (Chen,
Bell, and Bogenberger 2007). For the details of these ap-
proaches, we refer readers to the review in (Bader et al.
2011). In lattice-like structures that are popular in ware-
houses or harbors, k-shortest paths are often similar. In k-
disjoint paths, the set of paths depends much on the shortest
path that is also the first path in the set. Bader et al. (2011)
show that Pareto leads to solutions of low quality while
Plateau and Penalty give comparable good results. We se-
lect the Penalty approach with some modifications because
it is simpler than the Plateau approach.

The Penalty approach iteratively calculates the shortest
path using the A* algorithm. In each iteration, it adds the
shortest path to the result set and penalizes the path by in-
creasing edge weights. The approach terminates after receiv-
ing a sufficient number of alternative paths. In (2007), Chen,
Bell, and Bogenberger, suggests increasing all edges in each
found path by a relative penalty. We adopted their suggestion
but preliminary experiments provide poor results. Therefore,
we adapt the Penalty approach by adjusting the weight using
a more probabilistic way. Algorithm 2 describes our alterna-
tive path finding algorithm.

Algorithm 2 Alternative Path Finding
Require: Infrastructure graph G = (V,E), number of al-

ternative paths N , current location start, destination(s)
dest

1: S ← ∅
2: numFails← 0
3: maxFails← 3
4: α← uniformly random value between 0 and 1
5: while sizeOf(S) < N ∧ numFails < maxFails do
6: p← getShortestPath(G, start, dest)
7: if p ∈ S then
8: numFails← overlap+ 1
9: else

10: S ← S ∪ p
11: numFails← 0
12: end if
13: for all vertex Vi ∈ p do
14: β ← uniformly random value between 0 and 1
15: if β < α then
16: for all edge Ei directly connected to Vi do
17: weight(Ei)← penalty
18: end for
19: end if
20: end for
21: end while
22: return S

In line 1, we initialize the solution set S. The variable
numFails in line 2 counts the current number of consecu-

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

28

tive times that the algorithm fails to find a new path. In line
4, we generate a uniformly random number α between 0 and
1. The while loop of line 5 iterates until we find a sufficient
number of alternative paths or the algorithm fails to find
a new path maxFails times consecutively2. First, in line
6, we calculate the shortest path p using the A* algorithm.
Then, we check whether path p is already in the solution set
S in line 7. If it is the case, we increase numFails by one.
If p is not in S yet, we add p to S and reset numFails to
zero. To penalize each found path p, the for loop in line 13
iterates over all the vertices belonged to p. For each vertex
Vi, with probability α, we set the weight of all edges directly
connected to Vi to penalty, a large value in comparison with
the initial weight. If α is large, resulting paths are different
from each other. If α is small, they tend to be similar. We
generate different α value for each exploration process.

In single-stage routing, a vehicle agent calculates the
shortest path between its current position and its only des-
tination using the A* algorithm (line 6 of Algorithm 1).
In multi-stage routing, because a vehicle agent has multi-
ple destinations d1, d2, . . . , dn, it calculates the shortest path
p by concatenating the shortest paths between each pair of
destinations. Using the A* algorithm, the vehicle agent cal-
culates n shortest paths: path p1 between the origin and d1,
path p2 between d1 and d2, . . . , path pn between dn−1 and
dn. Then, the candidate path p is the concatenation of all the
shortest paths p1, p2, . . . , pn.

5 Experiments
In this section, we compare delegate MAS with context
aware routing in single-stage and multi-stage routing sce-
narios, in static and dynamic scenarios, and in scenar-
ios where vehicles receive new destinations continually.
We implemented all algorithms in RinSim (Van Lon and
Holvoet 2012), version 4.00 (Van Lon 2015), an open-source
discrete-time simulator for logistics that supports MARP.
We conducted experiments on a machine with four Intel
Xeon X5677 3.47GHZ processors and 12GB RAM.

5.1 Experiment Setup
We evaluate the two approaches on a 30 × 30 lattice infras-
tructure with 900 vertices and 1740 edges. Each edge has
capacity of two. In total, there are 2640 resources. Each ve-
hicle has a speed of one meter per second.

In single-stage routing, we assume that at the beginning,
all vehicles did not enter the infrastructure yet. A vehicle can
decide when to enter the infrastructure at its origin. After
reaching its destination, a vehicle leaves the infrastructure.
In multi-stage routing, we assume that each vehicle has its
own parking place. A parking place is a terminal vertex con-
nected to the infrastructure and has unit capacity. A parking
place of a vehicle cannot be the destination of other vehi-
cles. Also, a vehicle cannot visit the parking places of other
vehicles. The multi-stage routing scenarios reflect the AGV
routing problem, where a vehicle cannot leave or enter the
infrastructure at every resource. A vehicle always includes

2It can be the case that the graph does not have enough alterna-
tive paths.

its parking place as the last destination in its plan. Initially,
each vehicle stays at its parking place. We assign three dif-
ferent destinations for each vehicle. After receiving destina-
tions, a vehicle starts from its parking place, visits all three
destinations in the given order and then comes back to the
parking place. Therefore, a vehicle has to plan for visiting
four destinations (the last destination is its parking place).
Figure 4 illustrates a small lattice infrastructure with four
vehicles at their parking places.

2m

6m

Figure 4: A 4 × 4 lattice graph structure with four vehicles
at their parking places.

In static scenarios, we compare delegate MAS with
context-aware single-stage routing (CA) (Ter Mors, Zutt,
and Witteveen 2007) and context-aware multi-stage routing
(CA) (Ter Mors, Van Belle, and Witteveen 2009). In such
scenarios, there is no disturbance that makes the operation of
a vehicle deviate from its plan. Hence, the traveling time of a
vehicle is always consistent with its reservations. In dynamic
scenarios, we compare delegate MAS with (1) the baseline
approach (CA-Baseline) where the priorities of vehicles on
a resource never change and with (2) the increasing-priority
approach (CA-IP) (Ter Mors and Witteveen 2009), which is
the best strategy that vehicles can employ to deal with inci-
dents according to the studies in (Ter Mors and Witteveen
2009; Ter Mors 2011) (see Section 2). We use a homoge-
neous Poisson process to generate 20 incidents per 10000
seconds for each vehicle. The duration of an incident is a
uniformly random value between one and 100 seconds. If
two incidents overlap, they form a longer incident. If a vehi-
cle suffers from an incident, it cannot move until the incident
is over.

For each setting combination (static / dynamic, single /
multi-stage), we vary the number of vehicles from 10 to 100
with steps of 10 and generate 10 problem instances per num-
ber of vehicles. A problem instance consists of a start lo-
cation, a destination (single-stage routing) or a sequence of
destinations (multi-stage routing), and a list of incidents (the
list is empty in static scenarios) for each vehicle. A vehicle
knows its destination(s) at the beginning. We stop a simula-
tion after all vehicles reached their destinations and measure
the average travel time:

τ =

∑|A|
i=1 τi
|A|

where |A| is the number of vehicles and τi is the travel time
of vehicle i. In single-stage routing, τi is the time when ve-

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

29

hicle i first reaches its destination. In multi-stage routing,
τi is the time when vehicle i arrives at its parking place af-
ter reaching all of its destinations in a given order. In the
most realistic setting, multi-stage routing in dynamic envi-
ronments, we also measure the running time of each delegate
MAS simulation and CA-IP simulation.

To evaluate our approach on an AGV routing scenario,
where vehicles receive new destinations regularly in a dy-
namic environment, we compare delegate MAS to CA-IP.
In the AGV routing problem, new transportation tasks may
appear continually during runtime. Hence, in this scenario,
at the beginning, we assign three different destinations for
each vehicle. After a vehicle reached all the destinations in a
given order and came back to its parking place, we assign it
three new destinations. A simulation stops after a specified
period (10000 seconds). We measure the throughput, that is,
the total number of reached destinations by all vehicles after
the simulation stops. In reality, the throughput represents the
number of tasks completed by the system.

In each problem instance, we execute delegate MAS with
two different settings where a vehicle agent generates 30 and
100 alternative paths each time it explores new routes. A ve-
hicle agent explores new routes and refreshes its reservations
with a period of eight seconds.

5.2 Experiment Results
Figure 5 shows the average travel time of delegate MAS and
context-aware routing. In static scenarios, delegate MAS and
CA provide comparable results. In static single-stage routing
(Figure 5a), CA and delegate MAS achieve similar average
travel time. We observed that there are only few interfer-
ence interactions among vehicles in this scenario. Therefore,
the shortest-time paths are often also the shortest-length
paths. In delegate MAS, when exploring new routes, a vehi-
cle agent always includes the shortest-length path in the set
of alternative paths. Hence, delegate MAS achieves similar
performance to context-aware routing. In static multi-stage
routing (Figure 5b) where there are more interactions among
vehicles, no approach is consistently superior to the other.
The reasons that delegate MAS and CA have comparable re-
sults while CA computes single-agent optimal route and del-
egate MAS only samples several routes in the environment
can be explained as follows. CA computes single-agent op-
timal routes sequentially leading to a global Pareto-optimal
solution and there is no guarantee about global optimality.
Delegate MAS regularly samples the environment and its
solution also gradually converges to a Pareto-optimum.

In dynamic scenarios (Figure 5c and 5d), both delegate
MAS and CA-IP achieve lower average travel time than that

150

160

170

180

190

10 20 30 40 50 60 70 80 90 100
Number of vehicles

A
ve

ra
ge

 t
ra

ve
l t

im
e

(s
ec

on
ds

)

CA DMAS100paths DMAS30paths

(a) Static single-stage routing

700

750

800

10 20 30 40 50 60 70 80 90 100
Number of vehicles

A
ve

ra
ge

 t
ra

ve
l t

im
e

(s
ec

on
ds

)

CA DMAS100paths DMAS30paths

(b) Static multi-stage routing

●
●

●

●

●

● ● ● ● ●

200

250

300

10 20 30 40 50 60 70 80 90 100
Number of vehicles

A
ve

ra
ge

 t
ra

ve
l t

im
e

(s
ec

on
ds

)

●CA−Baseline CA−IP DMAS100paths DMAS30paths

(c) Dynamic single-stage routing

● ● ●
● ●

●
●

●

●

●

800

900

1000

1100

1200

10 20 30 40 50 60 70 80 90 100
Number of vehicles

A
ve

ra
ge

 t
ra

ve
l t

im
e

(s
ec

on
ds

)

●CA−BaseLine CA−IP DMAS100paths DMAS30paths

(d) Dynamic multi-stage routing

Figure 5: Average travel time per vehicle of each approach in different scenarios. Each data point is the average of results from
10 independent simulations.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

30

of CA-Baseline. As the number of vehicles increases, the
average travel time of CA-Baseline goes up while those of
delegate MAS and CA-IP remain stable. The trend is more
obvious in multi-stage routing in comparison with single-
stage routing. It can be explained that CA-Baseline requires
non-delayed vehicles to wait for delayed vehicles. The more
incidents occur, the more delay that vehicles suffer from.
As the number of vehicles increases, more incidents happen.
Also, there are more incidents if vehicles travel in longer
routes. Delegate MAS and CA-IP have comparable results.
In single-stage routing, the plan cost of CA-IP tends to be
lower than that of delegate MAS as the number of vehicles
increases. In multi-stage routing, delegate MAS with 100
alternative paths consistently achieves lower mean than CA-
IP, except for the 10-vehicle setting. However, the difference
is not significant.

Figure 6 shows that in dynamic multi-stage routing, as
the number of vehicles increases, the running time of CA-IP
increases super-linearly while that of delegate MAS only in-
creases linearly. Moreover, delegate MAS offers a trade-off
between running time and solution quality. Decreasing the
number of alternative paths for exploration yields a faster
running time at the cost of plan quality. From these exper-
iments, we conclude that delegate MAS is more scalable
while providing comparable results with CA-IP.

● ● ● ● ●
●

●

●

●

●

0

5

10

15

10 20 30 40 50 60 70 80 90 100
Number of vehicles

R
un

ni
ng

 t
im

e
(H

ou
rs

)

● CA−IP DMAS100paths DMAS30paths

Figure 6: Simulation running time of the dynamic multi-
stage routing scenario.

In the last experiment where vehicles receive new destina-
tions continually, the result in Figure 7 shows that delegate
MAS achieves higher throughput than CA-IP. It can be ex-
plained that CA-IP only considers the priorities of vehicles
on each resource. After changing the visiting order of vehi-
cles, the existing reservations are invalid. Therefore, a vehi-
cle cannot plan a new route or a new vehicle cannot make a
plan when other vehicles are still operating. After a vehicle
finishes its tasks and comes back to its parking place, it has
to wait until all other vehicles complete their tasks and arrive
at their parking places so that all vehicles can start making
new plans together. In delegate MAS, the self-organizing ca-
pability guarantees the validity of reservations. Therefore, a
vehicle can plan a new route at any time. After being as-
signed new destinations, a vehicle can immediately make a
plan without having to wait for other vehicles. Thus, dele-
gate MAS can deal with application domains where vehicles

have to plan new routes, new vehicles enter the infrastructure
or vehicles have to change destinations during execution.

●

●

●
●

●

●

●

●

●

●

100

200

300

400

10 20 30 40 50 60 70 80 90 100
Number of vehicles

T
hr

ou
gh

pu
t

● CA−IP DMAS100paths DMAS30paths

Figure 7: Throughput in the dynamic multi-stage routing
scenario after 10000 seconds.

6 Conclusion
In this paper we present the delegate MAS approach for
MARP. Delegate MAS can solve single-stage as well as
multi-stage routing, continual routing and routing in a dy-
namic environment. In delegate MAS, the control is decen-
tralized and the system self-organizes to adapt to changes in
the environment, thus allowing concurrent activities of dif-
ferent agents. Moreover, it does not require global knowl-
edge about the environment for each agent. Therefore, del-
egate MAS can be physically deployed and operated as a
distributed software system.

Our evaluation is more realistic than previous work. In
comparison with a state-of-the-art centralized decoupled ap-
proach, delegate MAS provides comparable solution quality
while it offers better scalability in a dynamic environment.
Moreover, delegate MAS achieves higher throughput when
vehicles are required to plan new routes continually. Del-
egate MAS also offers a trade-off between computational
complexity and solution quality.

Our future work will focus on tuning parameters for
the exploration process, especially for the alternative path
finding algorithm. We also plan to incorporate negotiation
mechanisms in our approach. For example, when explor-
ing routes, a vehicle agent may negotiate with other vehicle
agents to achieve lower global cost. We will extend delegate
MAS so that it can cope with both routing and charging tasks
in the AGV transportation problem.

Acknowledgments
This research is partially funded by the Research Fund KU
Leuven. We thank Adriaan ter Mors for sharing his imple-
mentation of the context-aware routing algorithms.

References
Bader, R.; Dees, J.; Geisberger, R.; and Sanders, P. 2011.
Alternative Route Graphs in Road Networks. In Theory and
Practice of Algorithms in (Computer) Systems. 21–32.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

31

Chen, Y.; Bell, M.; and Bogenberger, K. 2007. Reliable
Pretrip Multipath Planning and Dynamic Adaptation for a
Centralized Road Navigation System. IEEE Transactions
on Intelligent Transportation Systems 8:14–20.
Claes, R.; Holvoet, T.; and Weyns, D. 2011. A Decentral-
ized Approach for Anticipatory Vehicle Routing Using Del-
egate Multiagent Systems. IEEE Transactions on Intelligent
Transportation Systems 12:364–373.
De Wilde, B.; Ter Mors, A. W.; and Witteveen, C. 2013.
Push and rotate: cooperative multi-agent path planning. In
Proceedings of the 2013 international conference on Au-
tonomous agents and multi-agent systems, 87–94.
Delling, D., and Wagner, D. 2009. Pareto paths with
SHARC. In Experimental Algorithms. 125–136.
Hanif, S.; van Lon, R. R. S.; Gui, N.; and Holvoet, T. 2011.
Delegate MAS for Large Scale and Dynamic PDP: A Case
Study. In Intelligent Distributed Computing V. 23–33.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. Systems Science and Cybernetics, IEEE Transactions
on 4:100–107.
Hatzack, W., and Nebel, B. 2014. The operational traffic
control problem: Computational complexity and solutions.
In Sixth European Conference on Planning.
Holvoet, T., and Valckenaers, P. 2007. Exploiting the En-
vironment for Coordinating Agent Intentions. In Environ-
ments for Multi-Agent Systems III. Springer Berlin Heidel-
berg. 51–66.
Holvoet, T.; Weyns, D.; and Valckenaers, P. 2009. Patterns
of delegate mas. In Self-Adaptive and Self-Organizing Sys-
tems, 2009. SASO’09. Third IEEE International Conference
on, 1–9. IEEE.
Lee, J. H.; Lee, B. H.; and Choi, M. H. 1998. A real-time
traffic control scheme of multiple AGV systems for collision
free minimum time motion: a routing table approach. Sys-
tems, Man and Cybernetics, Part A: Systems and Humans,
IEEE Transactions on 28:347–358.
Maza, S., and Castagna, P. 2005. A performance-based
structural policy for conflict-free routing of bi-directional
automated guided vehicles. Computers in Industry 56:719–
733.
Ryan, M. R. K. 2008. Exploiting subgraph structure in
multi-robot path planning. Journal of Artificial Intelligence
Research 497–542.
Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2013.
The increasing cost tree search for optimal multi-agent
pathfinding. Artificial Intelligence 195:470–495.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence 219:40–66.
Silver, D. 2005. Cooperative Pathfinding. In AIIDE, 117–
122.
Standley, T., and Korf, R. 2011. Complete Algorithms for
Cooperative Pathfinding Problems. In Proceedings of the
Twenty-Second International Joint Conference on Artificial
Intelligence.

Suurballe, J. W., and Tarjan, R. E. 1984. A quick method
for finding shortest pairs of disjoint paths. Networks 14:325–
336.
ter Mors, A., and Witteveen, C. 2009. Plan Repair in
Conflict-Free Routing. In Next-Generation Applied Intel-
ligence. 46–55.
ter Mors, A.; Witteveen, C.; Ipema, C.; de Nijs, F.; and
Tsiourakis, T. 2012. Empirical Evaluation of Multi-
Agent Routing Approaches. In 2012 IEEE/WIC/ACM In-
ternational Conferences on Web Intelligence and Intelligent
Agent Technology (WI-IAT), volume 2, 305–309.
ter Mors, A.; Van Belle, J.; and Witteveen, C. 2009. Context-
aware multi-stage routing. In Proceedings of The 8th Inter-
national Conference on Autonomous Agents and Multiagent
Systems-Volume 1, 49–56.
ter Mors, A.; Zutt, J.; and Witteveen, C. 2007. Context-
Aware Logistic Routing and Scheduling. In Proceedings of
the 17th International Conference on Automated Planning
and Scheduling (ICAPS), 328–335.
ter Mors, A. W. 2010. The world according to MARP: Multi-
Agent Route Planning. Ph.D. diss. Delft: Technische Uni-
versiteit Delft.
ter Mors, A. 2011. Conflict-free route planning in dynamic
environments. In 2011 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2166–2171.
Ullrich, G. 2015. Modern Areas of Application. In Auto-
mated Guided Vehicle Systems. 15–96.
van Lon, R. R. S., and Holvoet, T. 2012. RinSim: a simulator
for collective adaptive systems in transportation and logis-
tics. In Self-Adaptive and Self-Organizing Systems (SASO),
2012 IEEE Sixth International Conference on, 231–232.
van Lon, R. R. S. 2015. RinSim: v4.0.0.
doi:10.5281/zenodo.27360.
Vis, I. F. 2006. Survey of research in the design and control
of automated guided vehicle systems. European Journal of
Operational Research 170:677–709.
Wang, K. H. C., and Botea, A. 2008. Fast and Memory-
Efficient Multi-Agent Pathfinding. In ICAPS, 380–387.
Wang, W., and Goh, W. B. 2011. Spatio-temporal A* al-
gorithms for offline multiple mobile robot path planning. In
The 10th International Conference on Autonomous Agents
and Multiagent Systems-Volume 3, 1091–1092.
Wang, W., and Goh, W. B. 2013. Time optimized multi-
agent path planning using guided iterative prioritized plan-
ning. In Proceedings of the 2013 international conference
on Autonomous agents and multi-agent systems, 1183–1184.
Weyns, D.; Holvoet, T.; and Helleboogh, A. 2007. Antic-
ipatory Vehicle Routing using Delegate Multi-Agent Sys-
tems. In IEEE Intelligent Transportation Systems Confer-
ence, 2007. ITSC 2007, 87–93.
Yen, J. Y. 1971. Finding the K Shortest Loopless Paths in a
Network. Management Science 17:712–716.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

32

A Game Theoretical Formulation of a Decentralized Cooperative
Multi-Agent Surveillance Mission

Paulo E. U. de Souza, Caroline P. C. Chanel
Univesité de Toulouse – ISAE-SUPAERO

Institut Supérieur de l’Aéronautique et de l’Espace
31055 Toulouse Cedex 4, FRANCE

name.surname@isae.fr

Sidney Givigi
Royal Military College of Canada

PO Box 17000, Station Forces
Kingston, Ontario, CANADA

sidney.givigi@rmc.ca

Abstract

This paper presents a multi-aerial-robot coordi-
nation game theoretical approach to perform a
surveillance mission in a well-structured environ-
ment. Such a mission consists in constantly visit-
ing a set of points of interest while minimizing the
time interval between successive visits (idleness).
The proposed approach optimizes the agents’ ac-
tion selection based on an N-player (cooperative)
game framework. The main contributions are: (i)
the formulation of an original player’s utility func-
tion composed of parameters that are independent
from the action choices of the others players; (ii)
the demonstration that the game solution is the
Nash equilibrium, and this equilibrium can be ob-
tained by optimizing separately/individually the
single player’s action choice; (iii) the proposal of
a decentralized algorithm used to conduct the mis-
sion, which works considering minimum commu-
nication among players. Simulations evaluate the
different policies obtained, which are compared
using as metric the average idleness of all points
of interest. The proposed framework allows for the
decrease of the idleness of watched points com-
pared to random action selection, while keeping
some kind of randomness of motion (measured by
a predictability metric), which can likely be de-
sired to curb the prediction of the team surveil-
lance strategy by an intruder.

Introduction

The recent advancement in decision making techniques
for aerial robots, also known as drones, has significantly
increased the number of applications for a team of au-
tonomous agents. In certain scenarios, multi-robot sys-
tems are more desirable than a single robot due to
their robustness, stability, adaptability, and scalability
(Meng 2008). For instance, search and rescue missions
(Murphy et al. 2008; Suarez and Murphy 2011; Xue,
Zeng, and Zhang 2011), autonomous infrastructure in-
spection (Scaramuzza et al. 2014), or autonomous pa-
trolling systems (Amigoni, Basilico, and Gatti 2009;
Portugal and Rocha 2011; Hernández et al. 2013).

In particular, the multi-aerial-robot autonomous pa-
trolling or surveillance problem is very challenging: the

robots must navigate through the environment so dif-
ferent locations that are scattered in the operational
space, and they have to coordinate their actions in or-
der to optimize the time spent to cover all the desired
points of interest (Portugal and Rocha 2013a). One of
the key issues of a surveillance mission for a multi-robot
system is how to coordinate their behaviors in order to
optimize the global performance (Meng 2008). For ex-
ample, monitoring an area of interest requires that the
robots move repeatedly through the environment, and
the difficulty is to decide on the paths while optimizing
some performance criteria (Pasqualetti, Franchi, and
Bullo 2010). Moreover, since surveillance implies the
maximization of the number of visits to each node in
a given environment, a good surveillance strategy must
reduce the time interval between visits to the same lo-
cation (Chevaleyre 2004).

With the aim of evaluating surveillance stategies, a
comparative study using distinct topological environ-
ments and different team sizes is presented in (Portu-
gal and Rocha 2013b). This work analyzes the perfor-
mance and scalability of each patrolling approach. For
that, (Portugal and Rocha 2013b) proposed as an eval-
uation metric the average idleness of the graph (IdlG).
In the same point of view, (Chevaleyre 2004) demon-
strates that minimizing worst idleness will also lead to
a smaller average idleness. In any case, the smallest the
idleness, the better is the performance.

Another key point argued by some authors is that,
for security reasons, it should be suitable to consider
irregular time intervals to perform visits on desired lo-
cations while optimizing the strategy, in order to avoid
that a potential intruder could observe the movement
of the patrol members for some time and derive an ac-
curate belief of their strategies (Hernández et al. 2013;
Amigoni et al. 2010). The key idea is to make it more
difficult for an intruder to predict the motion strategy
of the team members.

In this kind of surveillance application, it is well
known that the minimal refresh time patrolling prob-
lem is NP-hard (Pasqualetti, Franchi, and Bullo 2010;
Portugal and Rocha 2011; Zhang and Kingston 2015).
This means that to update the state of each position
at each time step would be computational and mem-

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

33

ory expensive and impractical in real-world scenarios
(Meng 2008; Portugal and Rocha 2011). This is so be-
cause in order to improve the efficiency of the collective
searching strategy, the action of each robot does not
only depend on its own situation, but also on other
robots decisions.

In this sense, recent papers have based their ap-
proaches on Game Theory (Amigoni et al. 2010;
Hernández et al. 2013; Meng 2008; Peshkin et al. 2000;
An et al. 2012; Khan 2007), which is an elegant way
to model an agent’s decision making process based
on the others agents decisions in a decentralized and
distributed way. An example of such a Game Theory
application is presented in (Hernández et al. 2013),
where Game Theory models of the multi-robot pa-
trolling problem are solved with the use of dynamic
and decentralized collaborative approach. Another in-
teresting solution is proposed by (Amigoni et al. 2010)
based on Game Theory, which develops a surveillance
strategy to drive mobile robots around a known envi-
ronment in order to avoid intrusions while implement-
ing a non deterministic strategy for their movements in
order to make more difficult the task of intruders for
they do not know a priori the stochastic distribution of
such motions. Others examples can be found in: (Meng
2008), which proposed an N-agent cooperative nonzero-
sum game to achieve an optimal overall robots behav-
iors; (Peshkin et al. 2000) described a gradient-descent
policy-search algorithm for cooperative multi-agent do-
mains, where they all share a common payoff; and, (An
et al. 2012) that investigated the use of zero-sum games
for the protection of critical infrastructures.

For the purpose of a cooperative surveillance mission
based on Game Theory, this work addresses the prob-
lem of monitoring a closed area by a team of drones
minimizing the time to revisit the points of interest
(idleness) while keeping some kind of randomness of
motion in order to render movements less predictable.
Note that, this is neither a coverage problem nor a ad-
versarial problem, but a mix of them. The issue is the
development of a dynamic and decentralized approach
to multi-aerial-robot cooperation in order to solve the
patrolling problem by implementing game theoretical
models. In this sense, the main contributions of this
work are:

• the formulation of an original player’s utility function
composed by three parameters that are independent
from the action choices of the others players;

• the demonstration that the game solution is a Nash
equilibrium, and that this equilibrium can be ob-
tained by optimizing separately and individually the
single player’s action choice;

• the proposal of a decentralized algorithm used to con-
duct the mission, which works considering minimum
communication among players.

In other words, an original heuristic utility function is
presented, where not only the path travel cost is consid-
ered, but also the current positions of the other players

and the last time since each point of interest was vis-
ited. And, based on this utility function, a coordinated
game is generated, where the Nash Equilibrium solution
guides the player’s behavior toward the team goal. In
order to reduce the computational complexity the fol-
lowing approach for the solving algorithm is proposed:
(1) a fixed path between nodes in the graph and its
cost are generated off-line considering the graph does
not change during the mission; and (2) the communica-
tion between agents and a new game occur only when
the destination of each drone has been achieved, instead
of at every time step (i.e. the communication is asyn-
chronous).

This work is organized as follows: the considered
surveillance problem, its game formulation and the de-
centralized algorithm proposed to solve this game is
presented in Section . Simulation experiments results
are shown in Section to evaluate the parameters of the
single player’s utility function, and their different poli-
cies are compared using as metric the average idleness
of all points of interest and the overall randomness of
the aerial robots’ movements. Finally conclusions and
future work are discussed in Section .

Problem formulation
This mission can be defined as a frequent visitation
problem of all preset points for an aerial robot (here
also called drone) team in the lowest possible time in-
terval without having a cycling behavior in order to
make the motion model less predictable.

The idea of this paper is to present a method of
coordination between drones, based on Game Theory,
that is capable of carrying out a monitoring mission
on a known topological model represented as a graph
G = (S,E). In this graph G, S is the set of nodes rep-
resenting the points of interest in the environment (i.e.
positions), and where the edges E ⊆ S× S define adja-
cency relationships between the nodes S, i.e., the possi-
ble paths between positions or points of interest. Each
edge has a cost that represents the time required to
move from one node to another. These costs are fixed.

To define the game problem, some assumptions were
taken:

• For simplicity, time was discretized in turns;

• Each node can be considered as a point of interest
that should be observed, i.e. looking for an intruder;

• Each destination node is a point where the commu-
nication among the drones team arises.

• Each drone will select, only once it reaches its des-
tination point, the next point to visit, based on the
available information of the others. This means that a
new action selection problem will be considered by a
drone only when this one has reached the destination
point, instead of each time step;

• The drones are defined as ”Conscientious Cognitive”
agents (Portugal and Rocha 2011), i.e., they choose
the next point to visit in the global graph, instead of

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

34

in their neighborhood. So, at each time interval, each
drone can move from one node to another adjacent,
without necessarily selecting a new point of interest;

• All drones have perfect knowledge of the graph
model, of their own positions in the graph, the last
position informed by the others and their destinations
in the graph;

• We assume that each drone can avoid obstacles and
collisions;

• The horizon of the mission is considered as infinite.

Therefore, under these assumptions, a Game Theory
formulation of the problem is proposed.

Game theory problem formulation
The surveillance mission is defined as a dynamic game,
where the costs at each time step depend on: the min-
imal distance between points of interest represented as
nodes in a graph, the actual position (node) of the
robots and the last time since points of interest (nodes)
were visited. Formally, it can be defined as a N-player
finite game Γ = (N,A, u), where:

• N = {1, · · · , n} is the finite set of n players, indexed
by i;

• A = A1×A2×· · ·×An represents all possible actions
to be taken by all drones;

• u = h(u1, · · · , ui, · · · , un) is the payoff function
which is function of the payoff of each single player,
with u : A → R, and ui : Ai → R for each
player i.

Players’ actions. In conformity with the Game The-
ory formulation, ā = [a1, a2, · · · , an] is defined as the
vector of actions for all n ∈ N drones and Ai =
{a1
i , a

2
i , · · · , a

q
i }, where q is the number of actions at

the disposal of the ith drone. Observe that the sets of
actions Ai do not need to be equal for all drones; how-
ever, in the scenario we are modeling, we will consider
the possible actions to be all equal. Then, one may con-
clude that A = An and the cardinality |A| = q. An-
other point is that, the set A is equal to the subset of
states S = R ⊂ S meaning that the drone can choose
as an action any node sk ∈ S, then A = S.

Payoff function. According to the posi-
tions/destinations of drones at time step t, the
utility function µt can be calculated. The utility is
defined as the summation of the utilities of all players
involved in the game, i.e.,

µt(ā, s̄t) =
∑
ā∈A

µti(ā, s̄
t) (1)

where ā is the vector of actions and s̄t is the state of
the drones at time t.

The utility functions for each drone i ∈ N at time t
is defined as

µti(ā, s̄
t) = δi(ai, s

t
i) + λ−i(ai, s̄

t
−i)− ρti(ai) (2)

where:

• δi(·) is the cost to go for the drone i from the cur-
rent position, i.e., the distance for the drone to move
from its current position sti to all its possible future
locations aki ∈ Ai, with k ∈ {1, · · · , q}. There-
fore, considering that f∗(sti, a

k
i) is the optimal dis-

tance cost that refers to the optimal (or sub-optimal,
when the optimal cannot be calculated) path from
node sti to aki , one gets:

δi(a
k
i , s

t
i) = f∗(sti, a

k
i) (3)

• λ−i(·) is the weighted sum of all other drones inverted
distance (Ψ(·)), where inverted distance is defined as
a value that is equal to the maximum distance for
the nearest point and decreases with the distance.
Therefore, for the chosen action aki ∈ Ai we have:

Ψj(s
t
j , a

k
i) = max

apj∈Aj

(δj(a
p
j , s

t
j)) + min

arj∈Aj

(δj(a
r
j , s

t
j))

− δj(a
k
i , s

t
j). (4)

The idea here is to make the points more distant from
the other drones more attractive for drone i, then,
λ−i(·) for a determined action aki ∈ Ai is given by:

λ−i(a
k
i , s̄

t
−i) =

n−1∑
j=1

{Ψj(s
t
−i,j , a

k
i)}

n− 1
| j 6= i. (5)

• Finally, ρti(a
k
i) is the expected reward to reach the

node aki . These values are collected (turn into zero)
when a drone passes over the position and increase by
a factor γn each time step that they are not visited,
where γ is a normalizer constant and n is the number
of drones:

ρt+1
i (aki) = ρti(a

k
i) + (γn) | γ ∈ [0, 1] (6)

Note that since all action sets Ai are equal to A, the
expected reward is equal for all drones.

Based on the definition of the utilities, the minimal
global cost for this game would be:

µt∗(ā, s̄t) = min
ā∈A

µt(ā, s̄t) (7)

Notice that the utilities for each drone i, µti(·), is only
directly dependent on ai and only indirectly takes into
consideration the actions of all other drones (through
λ−i(·)). So, individual’s utility functions are composed
by three parameters that are, by definition, independent
from the action choices of the others players. In this
sense, (7) may be rewritten as:

µt∗(ā, s̄t) = min
a1∈A1

µt1(a1, s̄
t)+· · ·+ min

an∈An

µtn(an, s̄
t) (8)

Therefore, the minimal global cost strategy solution
for drone i, σti

∗
, is adopted for the decoupled game as

described in:

σti
∗

= argmin
ai∈Ai

µti(ai, s̄
t) (9)

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

35

It means that for this formulation the action choice
for drone i is independent from the action choices of
the others drones. We are now ready to enunciate and
prove the following theorem:

This result is summarized in the following theorem.

Theorem 1. The N-player finite game Γ = (N,A, u)
with utility functions defined in (1) and (2) possess a
pure-strategy equilibrium.

Proof. Let us consider a Wonderful Life Utility for
drone i.

WLUi = φ(z)− φ(z−i)

where z is the collection of all players and z−i is the
collection of all players except player i. It is clear, that
if one considers φ = µt(·), then

WLUi = µi(·)

Therefore, the game Γ becomes a Potential Game, i.e.,
the drones’ utilities µi(·) are aligned to the global utility
µ(·). Therefore, it is guaranteed to have a pure-strategy
equilibrium according to Corollary 2.2 of (Monderer
and Shapley 1996).

Moreover, it may be verified that this pure-strategy
equilibrium is indeed the Nash equilibrium of the game
(Philip, Givigi Jr, and Schwartz 2014), for:

µt(ā∗, s̄t) ≤ µt([a∗1, · · · , a∗j−1, aj , a
∗
j+1, · · · , a∗n], s̄t), ∀j ∈ N.

Finally, notice that this decentralized approach,
where the action selection is formalized as a potential
game, allows to drones to take decision in an asyn-
chronous way, as each drone selects the next action
only once it reaches the destination point based only
on available (last) information.

Algorithm for coordination

Algorithm 1 presents the process inside each drone. To
better explain this algorithm we introduce two execu-
tion status on which drones’ action selection relies. Be-
fore a drone starts to move it changes its status to Busy
and when it arrives at the destination point it changes
to NotBusy.

When one of then is NotBusy, i.e when it reaches a
destination point, (line 2 of Alg. 1), it sends a message
of its position and updates its knowledge of the position
of the NotBusy drones and the destination position for
the Busy ones (lines 3 and 4). Then, the drone changes
the cost value of its current position sti to ∞ which
forces it to move to somewhere else (line 5). After, it
proceeds all calculations for compute the cost vector µti,
and it selects the minimal cost strategy (lines 6 and 7)
applying the proposed approach. The concerned drone
computes the global minimal cost knowing that the oth-
ers will do the same. In this way, using game theory to
predict what others will do, coordination arises. Finally,
it informs its next destination to the others, change its
status, and starts to navigate again (lines 8-10).

Algorithm 1 Patrol mission for Dronei
1: while True do
2: if status == NotBusy then
3: report current position
4: read messages
5: assign infinity to current position cost -

f∗(sti, s
t
i) =∞

6: compute the cost vector µti (Eq. (2))
7: find and select the minimal cost strategy (Eq.

(9))
8: report destination
9: assign Busy to its current status

10: start navigation
11: else
12: if position == destination then
13: assign NotBusy to its current status
14: else
15: continue navigation
16: end if
17: end if
18: end while

When the drone is Busy, it only continuously veri-
fies if the destination point is reached, if is the case,
it changes its status to NotBusy, if not, it continues to
navigate (lines 11-15).

To evaluate the proposed approach an application
case is presented next.

Simulation Experiments

Setup

The topological model considered for experiments is
shown in Figure 1. This topological model is repre-
sented by the graph G = (S,E) in that the nodes
S = R∪D represent some positions in the environment,
with R = {r1, r2, ..., rq} the set of positions inside the
rooms and corridors (points of interest) and D the set
of doors. The edges E ⊆ S × S define adjacency rela-
tionships between the nodes S, i.e., the possible paths.
Each edge has a fixed cost associated with, here, the
time required to move from one node to another.

To evaluate the approach, a patrol simulator has been
developed in Python 2.7.8. In this simulation model
there are 25 points of interest (R), the 7 doors are
considered as connection points (D) and 60 edges, i.e.
|R| = 25, |D| = 7, |E| = 60 respectively, as shown in
Figure 1. Please note that, the set S of possible loca-
tions is equal to R (we do not consider doors - these
specific connection points - as points of interest), and
the set of actions Ai of each drone is equal to S.

Figure 2 shows a moment during the mission with
three drones. In this simulation, the color of the floor is
related to the idleness of the point, the blue areas are
associated with greater rewards ρt.

We note that, as commented before, the approach
presented in this paper is neither a coverage problem
nor an adversarial problem, but a mix of them. The

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

36

r11

r12

r13

r14

r21

r22

r31

r32

r33

r34

r41 r42 r5 r61 r62

r71

r72

r73

r74

r81

r82

r91

r92

r93

r94

d14

d32

d36

d74

d78

d96

d98

Figure 1: Topological model with the points of interest
and all possible transitions.

Figure 2: Geometric model.

mixed problem proposed, as far as we know, is for the
first time studied, and for this reason a comparison to
previous approaches is not straightforward possible.

In this context and in order to verify the performance
of the patrolling algorithm considering different num-
bers of drones in the team and the influence of each
component of the utility function (δ, λ and ρ from eq.
2), five scenarios were designed:

• complete Utility - where all components of the utility
function were used;

• no Reward - where ρ was removed from the utility
function;

• no Inverse - where λ was removed from the utility
function;

• only Distance - where ρ and λ were removed from the
utility function;

• random - where the drones select their destinies ran-
domly.

1000 missions for each scenario were played and each
patrol mission ran until each point of interest was vis-
ited at least fifty times.

Metrics

This study has been focused on (1) the interval between
visits (idleness) and (2) the difficulty of prediction of
the next position of the patrols (predictability). For the
first one the average idleness of the graph IdlG (Por-
tugal and Rocha 2013b) was used as a metric, and for
the second one, the Ljung-Box test (Box, Jenkins, and
Reinsel 2008) results were considered.

The average idleness of the graph (IdlG) proposed by
(Portugal and Rocha 2013b) is defined as:

Starting with the instantaneous idleness (Idltk) of a
position si ∈ S in the time step tk:

Idltk(si) = tk − tlastvisit
(10)

where tlastvisit
corresponds to the last time step when

that point si was visited by a drone. Consequently, the
average idleness (Idlm) of a point si in a total time T
is defined as:

Idlm(si) =

T∑
k=0

Idltk(si)

T
(11)

And, finally, the average idleness of the graph (IdlG)
is defined as:

IdlG =

|S|∑
i=0

Idlm(si)

| S |
(12)

where | S | represents the cardinality of the set S.
On the other hand, to evaluate how “unpredictable”

the drone paths were, the Ljung-Box test was used. This
statistical test allows the measurement of the ”overall
randomness” based on a number of lags of a time series
by means of a single value Q:

Q = p(p+ 2)

m∑
l=1

ρ̂2
l

p− l
(13)

and:

ρ̂l =

p−l∑
k=1

(Yi − Ȳ)(Yi+l − Ȳ)

p∑
k=1

(Yi − Ȳ)2

(14)

where p is the sample size, m is the number of lags being
tested, ρ̂l is the autocorrelation function (ACF) at lag
l and Y = (Y1, · · · , Yp) are the measurements. For a
significance level α, the critical region for rejection of
the hypothesis of randomness is given by the percentile
(1 − α) of the chi-squared distribution with m degrees
of freedom:

Q > χ2
1−α,m (15)

Thus, if Eq. 15 is TRUE it is possible to say that ex-
ists a linear correlation, in other words, the information
of past positions allows an inference of future positions.
Moreover, Q weights the correlation process, i.e., the
higher the value the greater the correlation.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

37

Obviously, all tested scenarios have a high degree of
autocorrelation between adjacent and near-adjacent po-
sitions, due to the movement model of the drones. Even
though, Q can identify an appropriate time series model
even when the data are not random.

In the end, in order to use this values as a metric of
predictability (π) in the present work, Q for each sce-
nario c was normalized by the worst value (per number
of drones n):

πnc =
Qnc

max(Qn)
(16)

In this work, for a specific number of drones, the de-
grees of freedom m were selected among all scenarios as
the smallest median number of steps necessary to com-
plete a cycle (i.e., to visit all positions at least once)
with an α = 0.05.

Results

Figure 3 shows that increasing the number of drones
implies the convergence of idleness, which will be zero
when the number of drones reaches the number of
points of interest. Nevertheless, looking to these charts
it is possible to infer the minimal number of drones
to achieve the goal of the mission in an efficient way,

defined as the ratio |N |
IdlG

(best cost-benefit ratio). In-
terestingly, in the no Inverse scenario, differently from
the others, the idleness seems to be almost steady with
two drones or more. The reason for that must be inter-
preted with caution, but it seems that when they do not
need to coordinate their moves (and that is in essence
what λ do), they can reach a local optimum very fast;
however, these values will eventually decrease to zero.
Also, it can be seen that the variance decreases with the
number of drones, except for the no Inverse scenario.
Together these results provide important insights into
the approach presented. It is easy to observe the im-
portance of each cost variable and their contribution
for idleness.

The increase of the mission performance with the rise
in the number of drones in all scenarios for both met-
rics, idleness and predictability, is shown in Figure 4.
The results also indicate that when ρ was not used (no
Reward) the paths became more predictable (greater
values of π). With a single drone the scenarios no Re-
ward and only Distance achieved the same value, as
expected, since, in this case, they have the same utility
function.

On the other hand, still looking to the single drone
case, a very predictable path can be identified for no
Inverse and complete Utility scenarios. A possible ex-
planation for these results may be that they tried to
maximize the reward earned at each iteration. Interest-
ingly, for more than one drone, the no Reward scenario
appears to maintain predictable paths. Overall, these
charts indicate that the best scenario is the complete
Utility.

The charts in Figure 5 present a slice of the surveil-
lance mission for three drones with 100 arbitrarily col-

lected steps from all scenarios, where each line repre-
sents the path of a drone. What is interesting here is
that in complete Utility, no Reward and only Distance
the drones tend to maintain themselves in a separated
sector from the others. The Random scenario presented,
as expected, the worst results as the drones moved ran-
domly around the environment. In complete Utility and
no Inverse, the path were longer than the others and
with almost no local cycles, indicating global movement
in contrast with some “sawtooth” path in the others
charts. Another interesting behavior is observed in the
no Inverse scenario where it seems like that the drones
are following each other, maintaining almost the same
path. The most striking observation to emerge from the
data comparison is that the complete Utility generated
longer and clearer paths, maintaining the drones sepa-
rated for almost all time and changing the patrol sectors
once in a while.

Conclusion and future work

A multi-aerial-robot game theoretical surveillance ap-
proach is proposed in this paper. The main contribu-
tions are the development of a dynamic and decentral-
ized approach to cooperation in order to solve the pa-
trol problem by implementing game theoretical mod-
els. In this way, a heuristic utility function is presented,
where not only the travel cost is considered, but also
the current positions of the other team members as
well as the last time each point of interest was vis-
ited. Based on this utility function, an N-player game
is played inside each drone, wherein the Nash Equilib-
rium was applied to the drones in order to make their
decisions. To improve the real-time performance, the
game is played only in the destination points of each
drone. Five scenarios and two metrics were designed
and used to evaluate the proposed model. Overall, the
results indicate that the proposed utility function can
minimize the idleness while also minimizing the patrol
predictability.

There is abundant room for further progress in this
proposed model. Future studies should consider:

• an unreliable human operator in the control loop;

• an intruder and different payoff values for drones and
positions;

• leader-follower equilibria;

• uncertainty in the movements and in the detection of
the evader;

• imperfect and not cost-free communication.

As it is known, depending on the type of game
used, the computational complexity would become in-
tractable with a large-scale team. This was the reason
why a potential game was proposed. Furthermore, in
the near future we intend to investigate the scalability
of this approach. Also, new models for the utilities of
the drones will be the focus of future investigations.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

38

Figure 3: Average idleness of the graph per number of drones.

Figure 4: Predictability versus idleness.

References
Amigoni, F.; Basilico, N.; and Gatti, N. 2009. Finding
the optimal strategies for robotic patrolling with ad-
versaries in topologically-represented environments. In
Robotics and Automation, 2009. ICRA’09. IEEE Inter-
national Conference on, 819–824. IEEE.

Amigoni, F.; Basilico, N.; Gatti, N.; Saporiti, A.; and
Troiani, S. 2010. Moving game theoretical patrolling
strategies from theory to practice: An usarsim simula-
tion. In Robotics and Automation (ICRA), 2010 IEEE
International Conference on, 426–431. IEEE.

An, B.; Kempe, D.; Kiekintveld, C.; Shieh, E.; Singh, S.;

Tambe, M.; and Vorobeychik, Y. 2012. Security games
with limited surveillance. Ann Arbor 1001:48109.

Box, G.; Jenkins, G.; and Reinsel, G. 2008. Time Se-
ries Analysis: Forecasting and Control. Wiley Series in
Probability and Statistics. Wiley.

Chevaleyre, Y. 2004. Theoretical analysis of the multi-
agent patrolling problem. In Intelligent Agent Technol-
ogy, 2004. (IAT 2004). Proceedings. IEEE/WIC/ACM
International Conference on, 302–308.

Hernández, E.; Cerro, J. d.; Barrientos, A.; et al.
2013. Game theory models for multi-robot patrolling
of infrastructures. International Journal of Advanced

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

39

Figure 5: Paths generated with three drones. The “path” axis contains the nodes of the graph.

Robotic Systems 10(181).

Khan, M. E. 2007. Game theory models for pursuit
evasion games. Technical report, Technical report, Uni-
versity of British Columbia, Vancouver.

Meng, Y. 2008. Multi-robot searching using game-

theory based approach. International Journal of Ad-
vanced Robotic Systems 5(4):341–350.

Monderer, D., and Shapley, L. S. 1996. Potential games.
Games and Economic Behavior 14(1):124 – 143.

Murphy, R. R.; Tadokoro, S.; Nardi, D.; Jacoff, A.; Fior-

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

40

ini, P.; Choset, H.; and Erkmen, A. M. 2008. Search
and rescue robotics. In Springer Handbook of Robotics.
Springer. 1151–1173.

Pasqualetti, F.; Franchi, A.; and Bullo, F. 2010. On
optimal cooperative patrolling. In Decision and Con-
trol (CDC), 2010 49th IEEE Conference on, 7153–7158.
IEEE.

Peshkin, L.; Kim, K.-E.; Meuleau, N.; and Kaelbling,
L. P. 2000. Learning to cooperate via policy search. In
Proceedings of the Sixteenth conference on Uncertainty
in artificial intelligence, 489–496. Morgan Kaufmann
Publishers Inc.

Philip, G.; Givigi Jr, S. N.; and Schwartz, H. M. 2014.
Cooperative navigation of unknown environments using
potential games. International Journal of Mechatronics
and Automation 4(3):173–187.

Portugal, D., and Rocha, R. 2011. A survey on multi-
robot patrolling algorithms. In Technological Innova-
tion for Sustainability. Springer. 139–146.

Portugal, D., and Rocha, R. P. 2013a. Distributed
multi-robot patrol: A scalable and fault-tolerant frame-
work. Robotics and Autonomous Systems 61(12):1572–
1587.

Portugal, D., and Rocha, R. P. 2013b. Multi-robot
patrolling algorithms: examining performance and scal-
ability. Advanced Robotics 27(5):325–336.

Scaramuzza, D.; Achtelik, M. C.; Doitsidis, L.;
Friedrich, F.; Kosmatopoulos, E.; Martinelli, A.; Achte-
lik, M. W.; Chli, M.; Chatzichristofis, S.; Kneip, L.;
et al. 2014. Vision-controlled micro flying robots: from
system design to autonomous navigation and mapping
in gps-denied environments. Robotics & Automation
Magazine, IEEE 21(3):26–40.

Suarez, J., and Murphy, R. 2011. A survey of an-
imal foraging for directed, persistent search by res-
cue robotics. In Safety, Security, and Rescue Robotics
(SSRR), 2011 IEEE International Symposium on, 314–
320. IEEE.

Xue, S.; Zeng, J.; and Zhang, G. 2011. A review of
autonomous robotic search. In Electrical and Control
Engineering (ICECE), 2011 International Conference
on, 3792–3795. IEEE.

Zhang, M., and Kingston, D. 2015. Time-space net-
work based exact models for periodical monitoring rout-
ing problem. In American Control Conference (ACC),
2015, 5264–5269. IEEE.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

41

Better Eager Than Lazy?
How Agent Types Impact the Successfulness of Implicit Coordination

Thomas Bolander
DTU Compute

Technical University of Denmark
Copenhagen, Denmark

tobo@dtu.dk

Thorsten Engesser
University of Freiburg

Freiburg, Germany
engesser@cs.uni-freiburg.de

Robert Mattmüller
University of Freiburg

Freiburg, Germany
mattmuel@cs.uni-freiburg.de

Bernhard Nebel
University of Freiburg

Freiburg, Germany
nebel@cs.uni-freiburg.de

Abstract

Epistemic planning can be used for decision making in multi-
agent situations with distributed knowledge and capabilities.
In recent work, we proposed a new notion of strong policies
with implicit coordination. With this it is possible to solve
planning tasks with joint goals from a single-agent perspec-
tive without the agents having to negotiate about and commit
to a joint policy at plan time. We study how and under which
circumstances the decentralized application of those policies
leads to the desired outcome.

1 Introduction
One important task in multi-agent systems is to collabora-
tively reach a joint goal with multiple autonomous agents
(e.g. robots and humans). For instance, if there is a group of
robots that are supposed to reach target locations, they have
to develop a plan that enables each robot to accomplish its
goal. Taking, for instance the situation in Figure 1, where
the circular robot C wants to go to the cell marked by the
solid circle and the square robot S wants to reach the place
with the solid square (the empty circle and square will only
become important later). One could come up with the fol-
lowing plan: (i) C moves to 2 and then to 4, (ii) S moves to
2 and then to target location 3, and (iii) C finally moves to
target location 2.

This plan could be generated centrally by an external ob-
server and then communicated to the two agents, which will
execute it. We will assume, however, that all plans are devel-
oped by the agents in a distributed fashion. Assuming that
the two agents can observe everything in the world, have
full knowledge of their goals, and execution is determin-
istic, they both can come up with the same plan as above
and execute this plan in a distributed way. If they came up
with different plans but have anticipated that the other agents
might deviate, then the joint execution might still be success-
ful. We have to make strong assumptions about the planning
agent types, though, as we will demonstrate.

The problem of planning and executing in a distributed
fashion becomes significantly more difficult if we drop the
assumption about full observability. In order to illustrate
this point, let us again consider the situation in Figure 1,
but unlike before, let us assume that each robot knows about
their own target positions with certainty (the solid circle and
square), but there is uncertainty about the target position of

the other robot (the empty circle and square are considered
as possible target positions for C and S, respectively). This
means that we still assume a common goal, namely each
robot wants that in the end all the robots have reached their
target positions. However, these target positions are not
common knowledge. In such a situation, we will consider
policies instead of plans, which can branch on observations
and sensing actions. As it turns out, an agent can still come
up with a successful policy which is implicitly coordinated,
i.e., contains only steps such that the acting agent knows that
her step contributes to reaching the goal. The key for gener-
ating such policies is to take perspective shifts, i.e., picturing
oneself in the shoes of the other agent. Giving general suc-
cess guarantees for the joint execution of policy profiles in
a partially observable setting appears to be much more dif-
ficult than in the former case of full observability, though.

1 2 3

4

Figure 1: Multi-robot coordination example

Although taking into account the plans of other agents
to achieve cooperation has been identified as an interest-
ing topic of artificial intelligence research for a considerable
amount of time (Konolige and Nilsson 1980), the application
of implicit coordination has been limited almost exclusively
to the fields of probabilistic robotics (Stulp et al. 2006; An-
derson and Papanikolopoulos 2008; Hollinger et al. 2009)
and Dec-POMDPs (Spaan et al. 2006). While existing clas-
sical planning approaches rely on continual (re-)planning
(Brenner and Nebel 2009), the work we present in this
paper is situated in the context of (multi-agent) epistemic
planning, which can be approached algorithmically either
by compilation to classical planning (Albore et al. 2009;
Kominis and Geffner 2015; Muise et al. 2015) or by search
in the space of “nested” (Bolander and Andersen 2011;
Engesser et al. 2015) or “shallow” knowledge states (Pet-
rick and Bacchus 2002; 2004; Petrick and Foster 2013).

In Section 2, we describe the formal framework for rep-

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

42

resenting states as the one in Figure 1, and how actions can
change these states. Section 3 formalizes the notions of poli-
cies, policy profiles and their executions. In Section 4, we
analyze the conditions under which the execution of policy
profiles can be successful.

2 Theoretical Background: DEL
2.1 Epistemic States and Perspective Shifts
To represent planning problems as the one described above
we need a formal framework where: (1) agents can reason
about the first- and higher-order knowledge and ignorance
of other agents; (2) both fully and partially observable ac-
tions can be described in a compact way. Dynamic Epis-
temic Logic (DEL) satisfies these conditions. We first very
briefly recapitulate the foundations of DEL, following the
conventions of Bolander and Andersen (2011).

In the following we will define epistemic languages, epis-
temic states and epistemic actions. All of these are de-
fined relative to a given finite set of agent names (or simply
agents)A and a given finite set of atomic propositions P . To
keep the exposition simple, we will not mention the depen-
dency onA and P in the following. The epistemic language
LK is

ϕ ::= > | ⊥ | p | ¬ϕ | ϕ∧ϕ | Kiϕ, where p ∈ P and i ∈ A.

As usual, we read Kiϕ as “agent i knows ϕ”. Formulas
are evaluated in epistemic models M = 〈W, (∼i)i∈A, V 〉
where the domain W is a non-empty finite set of worlds;
∼i ⊆ W 2 is an equivalence relation called the indistin-
guishability relation for agent i; and V : P → P(W) as-
signs a valuation to each atomic proposition. For Wd ⊆W ,
the pair (M,Wd) is called an epistemic state (or simply
a state), and the worlds of Wd are called the designated
worlds. A state is called global if Wd = {w} for some
world w (called the actual world), and we then often write
(M, w) instead of (M, {w}). We use Sgl to denote the
set of global states. For any state s = (M,Wd) we let
Globals(s) = {(M, w) | w ∈ Wd}. We define truth in
states as follows, where the propositional cases are standard
and hence left out:

(M,Wd) |= ϕ iff (M, w) |= ϕ for all w ∈Wd

(M, w) |= Kiϕ iff (M, w′) |= ϕ for all w′ ∼i w

A state (M,Wd) is called a local state for agent i if Wd

is closed under ∼i. Given a state s = (M,Wd), the asso-
ciated local state of agent i, denoted si, is (M, {v | v ∼i
w and w ∈Wd}). Going from s to si amounts to a perspec-
tive shift to the local perspective of agent i.

Example 1. Consider the global state s = (M, w1) given
as follows, where the nodes represent worlds, the edges rep-
resent the indistinguishability relations (reflexive edges left
out), and is used for designated worlds:

s =
w1 : p w2 :

1, 2

Each node is labeled with the name of the world, and the
list of atomic propositions true at the world. In the state
s, the proposition p is true but agent 1 does not know this:

s |= p∧¬K1p. Hence from the local perspective of agent 1,
p cannot be verified, and we correspondingly have s1 6|= p
and s1 6|= ¬p.

2.2 Epistemic Actions and Product Update
To model actions, we use the event models of DEL. An
event model is E = 〈E, (∼i)i∈A,pre,post〉 where the do-
main E is a non-empty finite set of events; ∼i ⊆ E2 is an
equivalence relation called the indistinguishability relation
for agent i; pre : E → LK assigns a precondition to each
event; and post : E → LK assigns a postcondition to each
event. For all e ∈ E, post(e) is a conjunction of literals
(atomic propositions and their negations, including > and
⊥). For Ed ⊆ E, the pair (E , Ed) is called an epistemic ac-
tion (or simply action), and the events in Ed are called the
designated events. Similar to states, (E , Ed) is called a local
action for agent i when Ed is closed under ∼i.

Each event of an action represents a different possible out-
come. By using multiple events e, e′ ∈ E that are indis-
tinguishable (i.e. e ∼i e′), it is possible to obfuscate the
outcomes for some agent i ∈ A, i.e. modeling partially ob-
servable actions. Using event models with |Ed| > 1, it is
also possible to model sensing actions and nondeterministic
actions (Bolander and Andersen 2011).

The product update is used to specify the successor state
resulting from the application of an action in a state. Let a
state s = (M,Wd) and an action a = (E , Ed) be given with
M = 〈W, (∼i)i∈A, V 〉 and E = 〈E, (∼i)i∈A,pre,post〉.
Then the product update of s with a is defined as s ⊗ a =
(〈W ′, (∼′i)i∈A, V ′〉 ,W ′d) where
• W ′ = {(w, e) ∈W × E | M, w |= pre(e)};
• ∼′i =

{
((w, e), (w′, e′)) ∈ (W ′)2 | w ∼i w′ & e ∼i e′

}
;

• V ′(p) = {(w, e) ∈W ′ | post(e) |= p or
(M, w |= p and post(e) 6|= ¬p)};

• W ′d = {(w, e) ∈W ′ | w ∈Wd and e ∈ Ed}.
We say that a = (E , Ed) is applicable in s = (M,Wd)

if for all w ∈ Wd there is an event e ∈ Ed s.t. (M, w) |=
pre(e).
Example 2. Consider the following epistemic action a =
(E , {e1, e2}), using the same conventions as for epistemic
states, except each event is labeled with 〈pre(e),post(e)〉:

a =
e1 : 〈p,>〉 e2 : 〈¬p,>〉

2

It is a private sensing action for agent 1, where agent 1 pri-
vately gets to know the truth value of p, since e1 and e2 are
distinguishable to agent 1 (and indistinguishable to agent 2).
Letting s be the state from Example 1, we get:

s⊗ a =
(w1, e1) : p (w2, e2) :

2

After the private sensing of p by agent 1, agent 1 will know
that p is true, but agent 2 will still not: s⊗a |= K1p∧¬K2p.

Isomorphic states and actions will be identified.

3 Planning Tasks, Policies and Executions
In this paper we consider cooperative planning tasks, that is,
planning tasks in which the agents plan towards a joint goal

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

43

(Engesser et al. 2015). Each action in a planning task is as-
sumed to be executable by a unique agent, called the owner
of the action. More precisely, given a set of actions A, an
owner function is a mapping ω : A → A from actions to
their owners. Mapping each action to a unique agent can be
done without loss of generality, since semantically equiva-
lent duplicates can always be added to the action set.

Definition 1. A planning task Π = 〈s0, A, ω, γ〉 consists of
a global state s0 called the initial state; a finite set of actions
A; an owner function ω : A → A; and a goal formula
γ ∈ LK. We require that each a ∈ A is local for ω(a).

Example 3. Consider the planning task 〈s0, {a1, a2}, ω, p〉
with initial state s0 = and two semantically equivalent
actions a1 = e1 : 〈>, p〉 and a2 = e′1 : 〈>, p〉 for the
owners ω(a1) = 1 and ω(a2) = 2 (both actions making the
goal p true unconditionally). Both the initial state s0 and the
effects of the actions a1 and a2 are fully observable for both
agents. Intuitively, a solution should prescribe the action a1
for agent 1 or the action a2 for agent 2.

3.1 Policies and Executions
Instead of working with sequential plans, our plans are going
to be policies, representing instructions that can be individ-
ually followed by each of the agents. We impose some min-
imal requirements on these policies to be reasonable. First,
we require knowledge of preconditions (KOP), i.e., in each
state s, the agent i supposed to perform a particular action
a according to policy π must know that a is applicable in s.
Moreover, we require π to be unambiguous for all agents in
the sense that in each state s where an agent i is supposed
to act according to π, π is deterministic for agent i (DET);
finally, we require uniformity, i.e., if the policy π prescribes
some action a to agent i in state s and agent i cannot distin-
guish s from some other state t, then π has to prescribe the
same action a for i in t as well (UNIF). More formally:

Definition 2. Let Π = 〈s0, A, ω, γ〉 be a planning task.
Then a policy π for Π is a partial mapping π : Sgl ↪→ P(A),
s. t.

(KOP) f. a. s ∈ Sgl, a ∈ π(s): a is applicable in sω(a),
(DET) f. a. s ∈ Sgl, a, a′ ∈ π(s) s. t. ω(a) = ω(a′): a = a′,
(UNIF) f. a. s, t ∈Sgl s. t. sω(a) = tω(a), a ∈ π(s): a ∈ π(t).

To characterize the different outcomes of agents acting
according to a common policy, we define the notion of pol-
icy executions. As in more classical non-epistemic settings,
relevant questions are whether the execution process termi-
nates or not, and if it does, whether a goal state is reached.

Definition 3. An execution of a policy π from a global state
s0 is a maximal (finite or infinite) sequence of alternating
global states and actions (s0, a1, s1, a2, s2, . . .), such that
for all m ≥ 0,

(1) am+1 ∈ π(sm), and
(2) sm+1 ∈ Globals(sm ⊗ am+1).

An execution is called successful for a planning
task Π = 〈s0, A, ω, γ〉, if it is a finite execution
(s0, a1, s1, . . . , an, sn) such that sn |= γ.

In the following, we will restrict our attention to policies
that are guaranteed to achieve the goal after a finite number
of steps. More formally, this means that all of their execu-
tions must be successful. As in nondeterministic planning,
we call such policies strong (Cimatti et al. 2003).

Definition 4. A policy π for a planning task Π =
〈s0, A, ω, γ〉 is called strong if s0 ∈ Dom(π) and for each
s ∈ Dom(π), any execution of π from s is successful for Π.
A planning task Π is called solvable if a strong policy for Π
exists. For i ∈ A, we call a policy π i-strong if it is strong
and Globals(si0) ⊆ Dom(π).

When a policy is i-strong it means that the policy is strong
and defined on all the global states that agent i cannot ini-
tially distinguish between. It follows directly from the def-
inition that any execution of an i-strong policy from any of
those initially indistinguishable states will be successful. So
if agent i comes up with an i-strong policy, it means that
agent i knows the policy to be successful.

We introduce the notion of reachability to talk about states
that can occur during executions.

Definition 5. Given global states s0 and s, we call s reach-
able from s0 if there are sequences of actions a1, . . . , an and
states s1, . . . , sn = s such that am+1 is applicable in sm and
sm+1 ∈ Globals(sm⊗ am+1) for all m = 0, . . . , n− 1. We
call s reachable from s0 by following a policy π if it is part
of an execution (s0, a1, . . . , s, . . .) of π.

A strong policy π is implicitly coordinated in the sense
that at any point during its execution, at least one agent
knows that it can execute a particular action as part of the
strong policy π. This is formalized by the following propo-
sition, that follows straightforwardly from Def. 4 and the
uniformity condition in Def. 2.

Proposition 1. Let π be a strong policy for Π =
〈s0, A, ω, γ〉 and let s be a non-goal state reachable from s0
by following π. Then for some i ∈ A: π(s) ∩ {a | ω(a) =
i} 6= ∅ and π is an i-strong policy for 〈s,A, ω, γ〉.

In this paper, our agents will most often try to plan for all
contingencies (as seen from their local perspective), so that
it never becomes necessary to change policy due to unex-
pected actions by other agents. The relevant notion of “plan-
ning for all contingencies” in this setting is captured by what
we call maximality of strong policies.

Definition 6. We call a strong policy π a maximal
strong policy for agent i and planning task Π = 〈s0, A, ω, γ〉
if s ∈ Dom(π) for all states s such that: (1) s is reachable
from some s′0 ∈ Globals(si0), and (2) 〈s,A, ω, ϕ〉 is solv-
able.

3.2 Policy Profiles
Besides the centralized scenario in which one agent plans
centrally for all agents, or equivalently, in which the in-
volved agents can already coordinate on a common plan at
plan time, we especially want to study the scenario in which
the agents cannot coordinate their plans, but rather have to
come up with plans individually. Those plans can easily dif-
fer, not only because of different reasoning capabilities of

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

44

the different agents, but also because of their non-uniform
knowledge of the initial state and of action outcomes. For
our formal analysis, we define a policy profile for a planning
task Π to be a family (πi)i∈A, where each πi is a policy
for Π. Executions can be generalized to policy profiles as
follows.
Definition 7. An execution of a policy profile (πi)i∈A is
a maximal (finite or infinite) sequence of alternating global
states and actions (s0, a1, s1, . . .), such that for all m ≥ 0,
(1) am+1 ∈ πi(sm) where i = ω(am+1), and
(2) sm+1 ∈ Globals(sm ⊗ am+1).
We call such an execution successful if it is a finite execution
(s0, a1, s1, . . . , an, sn) such that sn |= γ.

Note that there are two sources of nondeterminism for ex-
ecutions. One as a result from the possibility of multiple
policies prescribing actions for their respective agents (item
1 in Def. 7). The other one results from the possibility of
nondeterministic action outcomes (item 2 in Def. 7). Defi-
nition 4 implies that strong policies are closed in the usual
sense that following a strong policy cannot lead to an “off-
policy” non-goal state where the policy is undefined (Cimatti
et al. 2003). As a first positive result, we can now show
that policy profiles consisting of maximal strong policies are
also closed in the sense that they do not produce dead-end
executions, i. e. executions ending in a non-goal state where
some of the policies in the profile are undefined. By induc-
tive application of Proposition 1, we can show that in each
execution step from s via a = πi(s) to s′, the policy πi must
be defined for s′, and by maximality of the other policies πj ,
j 6= i, the policies of all other agents have to be defined in
s′ as well. Hence:
Proposition 2. Let (πi)i∈A be a policy profile where each πi
is a maximal strong policy for agent i and task Π. Then s ∈
Dom(πi) for all agents i ∈ A and states s ∈ Sgl occurring
in arbitrary executions (s0, a1, . . . , s, . . .) of (πi)i∈A.

If all agents have one strong policy in common which all
of them follow, then at execution time, the goal is guaran-
teed to be eventually reached. If, however, each agent acts
on its individual strong policy, then the incompatibility of
the individual policies may prevent the agents from reach-
ing the goal, even though each individual policy is strong.
The following example illustrates what may go wrong.
Example 4. Let Π = 〈s0, {a1, a2}, ω, p〉 be the planning
task described in Example 3, and let (π1, π2) be the policy
profile consisting of the two maximal strong policies π1 as-
signing only a2 to s0 and π2 assigning only a1 to s0. Here
each agent expects the other agent to do the work, since the
policy π1 for agent 1 specifies the action a2 belonging to
agent 2 and vice versa. This profile has only one execution,
the empty one, which is unsuccessful.

This shows that agents following maximal strong policies
may still not reach the goal. The issue we see here is that
the agents run into a “deadlock”, and the underlying reason
is that both agents are “lazy”, expecting the other agent to
act. In the following, we will discuss for which types of
agents (lazy, eager, . . .) and for which combinations of them
success can or cannot be guaranteed.

4 Agent Types
We distinguish between different agent types by distinguish-
ing between the types of policies they produce. To that end,
we identify agents with mappings from planning tasks to
policies. Additionally, the agent mapping must be associ-
ated with the part the agent plays in the planning task, since
a policy that is lazy from one agent’s perspective may be ea-
ger from another agent’s perspective; e.g. the policy π1 in
Example 4 is lazy for agent 1, but eager for agent 2.
Definition 8. A planning agent (or simply agent) is a pair
(i, T), where i is an agent name and T is a mapping from
planning tasks to policies, such that T (Π) is an i-strong pol-
icy for Π, whenever such a policy exists.

The requirement of T (Π) being i-strong, whenever such
a policy exists, comes from the fact that each agent should
produce a policy that it knows will be successful, whenever
it is possible to form such a policy. We can now extend the
definition of executions to groups of agents (i, Ti)i∈A.
Definition 9. Let (i, Ti)i∈A be a group of agents and let Π
be a planning task. Then the executions by (i, Ti)i∈A of Π
are the executions of the policy profile (Ti(Π))i∈A.

4.1 Lazy and Naively Eager Agents
We already saw that agents being lazy can be problem-
atic. To formally capture laziness (and its dual, eagerness),
we note that laziness essentially means having a preference
against using one’s own actions, and planning with someone
else’s actions instead. Similarly, eagerness means preferring
one’s own actions over someone else’s. Intuitively, an agent
has a preference for (or against) a set of actions if whenever
a policy produced by that agent is defined, it prescribes at
least one preferred action (or no unpreferred action), unless
violating the preference is unavoidable in that state.
Definition 10. For a state s, a policy π, and a set of actions
A′, we say that π uses A′ in s if π(s) ∩ A′ 6= ∅. Then we
say that agent (i, T) has preference
(1) for (the actions in) A′ if for all Π and all s ∈

Dom(T (Π)), policy T (Π) uses A′ in s unless no i-
strong policy for Π uses A′ in s, and

(2) against (the actions in) A′ if for all Π and all s ∈
Dom(T (Π)), policy T (Π) does not use A′ in s unless
every i-strong policy for Π uses A′ in s.

Unfortunately, preference against a set of actions is not
the same as preference for its complement, which is why
we need both notions. We can now define laziness as
preference against one’s own actions, that is, we call an
agent (i, T) lazy if it has preference against the actions in
{a ∈ A | ω(a) = i}.

To formalize in which sense Example 4 is problematic,
we still have to define deadlocks, which intuitively are states
where (1) something still needs to be done, where (2) it is
known that something can be done, but where (3) nothing
will be done because of incompatible individual policies.
Definition 11. A deadlock for a policy profile (πi)i∈A is a
global state s such that (1) s is not a goal state, (2) s ∈
Dom(πi) for some i ∈ A, and (3) ω(a) 6= i for all i ∈ A
and a ∈ πi(s).

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

45

p
1 2 3 4 5

Figure 2: Planning task—move chess piece left or right.

Requirement (2) is included to distinguish deadlocks from
dead ends, where none of the agents’ policies prescribe an
action, not even for another agent. From the above defini-
tions and Example 4 we immediately get the following re-
sult.

Proposition 3. There are solvable planning tasks for which
all executions by lazy agents result in a deadlock.

To avoid deadlocks, we define (naively) eager agents as
agents who have a preference for their own actions. That is,
we call an agent (i, T) naively eager if it has a preference for
the actions in {a ∈ A | ω(a) = i}. They are called naively
eager since it will turn out that in their eagerness they can in-
terfere with other agents’ plans and executions in a harmful
way. But still, we first get the positive result that eagerness
prevents the deadlocks we observed for lazy agents.

Proposition 4. Let Π be a planning task and (i, Ti)i∈A be
a group of naively eager agents. If πi = Ti(Π) is a maximal
strong policy for each i ∈ A, then all executions of (πi)i∈A
are deadlock-free.

Proof sketch. Assume for contradiction that s is a deadlock
for (πi)i∈A. Then there has to exist an agent name i ∈ A
and an action a such that a ∈ πi(s) with ω(a) = j and
j 6= i. Because πj is a maximal strong policy, we have
s ∈ Dom(πj). Then there also has to exist an a′ ∈ πj(s)
with ω(a′) = j, since (j, Tj) is naively eager and has pref-
erence for its own actions. This contradicts item (3) of Def-
inition 11.

Example 5. Consider the scenario in Fig. 2. The chess piece
can be moved left by agent 1 and right by agent 2 (one cell
at a time). Everything is fully observable. The goal is to
move the piece to one of the highlighted target cells. Every
possible naively eager policy π1 of agent 1 must assign ac-
tion left to every non-goal state, and similarly, every naively
eager policy π2 of agent 2 must assign right to every non-
goal state. Using si to denote that the piece is in cell i,
one possible execution of any such policy profile (π1, π2) is
the infinite sequence (s3, left , s2, right , s3, left , . . .), which
is clearly not successful.

This shows that naively eager agents may also not reach
the goal since they can potentially produce infinite execu-
tions.

Proposition 5. There are solvable planning tasks for which
some executions by naively eager agents are infinite.

4.2 Optimally Eager Agents
In order to address the stated problem, we will now consider
agents who always try to simplify the problem by reaching
states closer to the goal. This means that the agents should
come up with optimal policies, policies that reach the goal in

the fewest number of steps. In order to formally define opti-
mal policies, we need the notion of cost. The cost of a policy
can be defined as its worst-case execution length, that is, the
number of actions in its longest possible execution. An op-
timal policy is then one of minimal cost. However, due to
partial observability, different agents might assign different
costs to the same policy, and hence disagree on which poli-
cies have minimal cost.

For instance, in a variant of Example 5, agent 1 might
not know whether the chess piece is initially in cell 3 or 4,
and agent 2 might not know whether it is initially in cell 2
or 3. Then agent 1 would assign cost 2 to the “go right”
strategy, but cost 3 to the “go left” strategy (according to the
knowledge of agent 1, the chess piece might initially be in
cell 4, and hence 3 cells away from cell 1). Conversely, agent
2 would assign cost 2 to the “go left” strategy and cost 3 to
the “go right” strategy. If both agents choose strategies of
minimal cost, they would choose opposing strategies: agent
1 would want agent 2 to go right, and agent 2 would want
agent 1 to go left. Clearly this will result in a deadlock.

To remedy this, we need the agents to measure cost in
a “perspective-sensitive” way: the assigned cost takes the
different perspectives of the involved agents into account.
Definition 12. Let π be a strong policy for a planning task
Π. The perspective-sensitive cost (or simply cost) of π from
a state s ∈ Dom(π), denoted κπ(s), is defined as:

κπ(s) =

{
0 if there exists no a ∈ π(s)

1 + maxa∈π(s),s′∈Globals(sω(a)⊗a) κπ(s′) else.

We extend this to local states s with Globals(s) ⊆ Dom(π)
by letting κπ(s) := maxs′∈Globals(s) κπ(s′).

The following proposition captures the intuition that
perspective-sensitive costs can only increase with additional
uncertainty (by shifting perspective), and that in each global
state s with π(s) 6= ∅, one or more actions can be identified
as the ones maximizing the perspective-sensitive cost for the
successor state and thus defining the value of κπ(s). We will
need this to prove deadlock-freedom in Proposition 7.
Proposition 6. For any policy π, epistemic state s and
agent i ∈ A, it holds that κπ(s) ≤ κπ(si). Moreover,
if κπ(s) > 0, then there is an action a ∈ π(s) such that
κπ(s) = κπ(sω(a)).

It can be verified that in the variant of Example 5 with
partial observability about the initial state of the chess piece,
both the “go left” and the “go right” strategy will have the
same (perspective-sensitive) cost 3. The point is that the cost
assigned to the “go left” strategy will be measured from the
local state of the owner of the “go left” action, and similarly
for “right”, as seen from the Def. 12.
Definition 13. A policy π for a planning task Π =
〈s0, A, ω, γ〉 is called subjectively optimal if for all s ∈
Dom(π), all a ∈ π(s) and all ω(a)-strong policies π′ for
〈s,A, ω, γ〉 we have κπ′(sω(a)) ≥ κπ(sω(a)).
Definition 14. Given a set of actions A′, we say that agent
(i, T) is subjectively optimal with preference for the actions
in A′, if for all Π: (1) T (Π) is an i-strong subjectively op-
timal policy if such a policy exists, and (2) T (Π) uses A′ in

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

46

each s ∈ Dom(π) unless no i-strong subjectively optimal
policy for Π uses A′ in s.

We call an agent that is subjectively optimal with prefer-
ence for its own actions optimally eager. That is, a planning
agent (i, T) is called optimally eager if it is subjectively op-
timal with preference for the actions in {a ∈ A | ω(a) = i}.

In the variant of Example 5 with partial observability
about the initial state, optimally eager agents will always be
successful. They assign the same cost to both the “go left”
and “go right” strategies, but are eager, and will hence prefer
the policy where they act themselves. So initially they spec-
ify conflicting actions. Assume agent 1 gets to act first and
moves one cell left. In the resulting state, agent 2 assigns
cost 3 to the “move right” strategy and only cost 2 to the
“move left” strategy. Hence agent 2 will not try to prevent
agent 1 from moving the chess piece to the far left.

On the other hand, an optimally lazy agent (which we
could define analogously, by first defining subjective opti-
mality with preference against own actions) would exhibit
the same deadlock potential as naively lazy agents. We can
also see this in Example 4, where both policies are in fact
subjectively optimal ones. Our focus will thus be on op-
timally eager agents. We can indeed show that optimally
eager agents do not produce deadlocks.

Proposition 7. Let Π be a planning task and (i, Ti)i∈A be a
group of optimally eager agents. If πi = Ti(Π) is a maximal
strong policy for each i ∈ A, then all executions of (πi)i∈A
are deadlock-free.

Proof sketch. Let s be a reachable non-goal state. We ana-
lyze waiting chains, i. e., sequences of agents i1, . . . , in+1,
such that (abbreviating πij as πj , and κπj as κj), for all
j = 1, . . . , n, (1) there is no a ∈ πj(s) with ω(a) = ij ,
and (2) there is an a ∈ πj(s) with κj(sω(a)) = κj(s)
and ω(a) = ij+1. By Proposition 6 and the definition of
subjective optimality, we have κj+1(s) ≤ κj+1(sω(a)) ≤
κj(sω(a)) = κj(s) for all j = 1, . . . , n. This implies
that no agent can occur more than once in a waiting chain,
since that would directly contradict its eagerness. Thus, if
s ∈ Dom(π1) and π1(s) 6= ∅ for some agent i1 ∈ A,
then there has to exist a maximal waiting chain i1, . . . , in,
where the last agent in has an action a ∈ πn(s) such that
ω(a) = in.

We can also show that all agents being optimally eager
prevents infinite executions in the simple setting with uni-
form observability. We call a planning task 〈s0, A, ω, γ〉
uniformly observable if all agents share the same indistin-
guishability relations, both in the initial state s0 and in all
actions a ∈ A, which is tantamount to assuming that there
is a single agent planning in the belief space of a partially
observable nondeterministic (POND) problem (Bonet and
Geffner 2000).

Proposition 8. Let Π be a uniformly observable and solv-
able planning task and let (i, Ti)i∈A be a group of optimally
eager agents. Then all executions by (i, Ti)i∈A of Π are
finite.

Proof sketch. Let πi = Ti(Π) for each agent i ∈ A. Then
for any transition (. . . , s, a, s′, . . .) occurring in an execu-
tion, we have κπi

(s′) ≤ κπi
(s) − 1 for the acting agent

i = ω(a). Due to uniform observability and optimality,
κπi

(s′) = κπj
(s′) for any j ∈ A with s′ ∈ Dom(πj). Thus,

by monotonicity, the execution ends after at most κπi
(s′)

more actions.

This means that in the uniformly observable setting, we
can guarantee each execution to be successful, given all
agents are optimally eager and act with respect to a maximal
strong policy. Our result follows directly from Propositions
7 and 8.

Proposition 9. Let Π be a uniformly observable planning
task and (i, Ti)i∈A be a group of optimally eager agents. If
πi = Ti(Π) is a maximal strong policy for each i ∈ A, then
all executions of (πi)i∈A are successful.

Unfortunately, if there is non-uniform observability, op-
timally eager agents cannot always prevent infinite execu-
tions, as we see in the following example.

Example 6. Consider another variant of Example 5, where
the initial position of the chess piece is again fully observ-
able, but where the information about possible target cells is
non-uniformly distributed. The initial state is given as s3 =

at3, t1 at3, t1, t5 at3, t5

1 2 with ati meaning that the piece is in

cell i, and ti meaning that cell i is a target position. The joint
goal is γ = (t1 → at1) ∧ (t5 → at5). Since agent 1 only
knows that cell 1 is a target while agent 2 only knows that
cell 5 is one, optimally eager agents would produce policies
where they move the piece always in their own direction.
Similar to Example 5, an infinite execution would then be
(s3, left , s2, right , s3, left , . . .).

We can see from Example 6 that it is generally not pos-
sible to solve the problem of infinite executions just by im-
posing restrictions on the types of agents. Since, in this ex-
ample, for each state s and agent i there is only one possible
choice of action as part of an i-strong policy (left for agent
1, right for agent 2), every conceivable combination of plan-
ning agents produces infinite executions. Hence we get the
following:

Proposition 10. For every group of at least two agents
(i, Ti)i∈A there exists a partially observable and solv-
able planning task Π that has unsuccessful executions by
(i, Ti)i∈A of Π.

It is important to note that planning tasks with non-
uniform knowledge do exist in which implicit coordination
by optimally eager agents is guaranteed to be successful, i.e.,
without the potential occurrence of infinite executions. In
particular, by allowing communication between the agents
to be modelled directly as part of the planning task (using an-
nouncement actions), it is possible to solve more problems.
One example in this class of planning tasks is the robots ex-
ample from the introduction. To guarantee the existence of
strong policies, we enable a robot that has reached its tar-
get position to publicly announce that fact as its final action
(e.g., by visibly powering down).

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

47

A subjectively optimal policy for the square robot (that
can be easily extended to a maximal, optimally eager one) is
depicted in Figure 3. Solid edges denote actions and dashed
edges denote indistinguishability. For clarity, only such in-
distinguishability edges are shown that talk about the agent
designated to act and that, via uniformity, enforce inclusion
of some action in the policy. Here, the square robot starts
by moving out of the way of the circular robot, in order to
allow the circular robot to move to the leftmost cell. This
is because only from this position, the circular robot can
make sure that the square robot will be able to reach its
goal cell. Independently of the actual goal cell of the square
robot, the square robot will then be able to move there and
power down, after which the circular robot can finish the
task. Note that this strategy will succeed for the given global
initial state no matter which strong policy the circular robot
chooses, just provided it is subjectively optimal. If the ac-

right

down

left

left

up

right

announce

right

right

down

left

left

up

right

announce

left

left

announce

right

left

left

announce

Figure 3: Depiction of a strong policy for the robots example

tual goal cell for the circular robot was the leftmost one, an
optimally eager circular robot would already try to announce
and power down earlier when having reached its destination.
This contingency is covered by the maximal version of the
policy (or with re-planning).

5 Conclusion and Discussion

We investigated how agent types impact the successfulness
of implicit coordination in cooperative multi-agent plan-
ning with distributed knowledge and capabilities. We dis-
tinguished between lazy and eager agents and saw that lazy
agents may produce deadlocks (waiting for one another to
move), a problem that does not show up with eager agents.
However, it turned out that over-eager agents can produce
infinite executions instead (unintentionally working against
each other), which can only be avoided under rather strong
assumptions, namely if the agents optimize what we termed
perspective-sensitive costs and if they have uniform observ-
ability. Under non-uniform observability, even optimally ea-
ger agents may unintentionally sabotage each other.

This means that there is no general positive result for non-
uniformly observable settings such as the motivating multi-
robot coordination example with uncertain target positions
(Fig. 1). Still, in that particular example, implicit coordina-
tion does work and we can guarantee a successful execution
taking both robots to their targets, if we allow the first robot
that reaches its target to publicly announce that fact. How-
ever, to ensure successful implicit coordination, the square
robot has to move first, and the total number of moves (ex-
cluding the announcement) will be 7 instead of 5 as in the
full observability case.

For future work, we plan to investigate under which ad-
ditional assumptions unintentional sabotage can be avoided.
While, using our current solution concept, infinite execu-
tions often cannot be prevented, some improvements cer-
tainly can be made by increasing the agents’ reasoning ca-
pacity. Currently, our only assumption is that by performing
perspective shifts, agents can ensure other agents to be able
to find the relevant subpolicies in the future. By making an
even stronger assumption, namely that it is common knowl-
edge that each observed state change has to be caused by
the action of a rational agent of a certain type (e.g., an op-
timally eager one), it would be possible for agents to infer
additional useful information. This way, e.g., in Example 6,
the move of an agent would already signal the existence of
the unknown target cell to the other agent. At least after one
action from both agents, the remaining task would be fully
observable and thus without potential for infinite executions.
Similarly, in the robots example, it should be possible for
the square robot to signal being at the goal position to the
circle agent just by waiting, effectively rendering the addi-
tional announcement action unnecessary. We believe that by
improving our solution concepts to enable this kind of rea-
soning, and by imposing sufficient conditions on the actions
that are available to the agents, it will be possible to solve a
wide range of cooperative tasks using implicit coordination.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

48

References
Alexandre Albore, Hector Palacios, and Hector Geffner. A
translation-based approach to contingent planning. In Pro-
ceedings of the 21st International Joint Conference on Arti-
ficial Intelligence (IJCAI 2009), pages 1623–1628, 2009.
Monica Anderson and Nikolaos Papanikolopoulos. Implicit
cooperation strategies for multi-robot search of unknown ar-
eas. Journal of Intelligent and Robotic Systems, 53(4):381–
397, 2008.
Thomas Bolander and Mikkel Birkegaard Andersen. Epis-
temic planning for single and multi-agent systems. Journal
of Applied Non-Classical Logics, 21(1):9–34, 2011.
Blai Bonet and Hector Geffner. Planning with incomplete
information as heuristic search in belief space. In Proceed-
ings of the 5th International Conference on Artificial Intelli-
gence Planning Systems (AIPS 2000), pages 52–61, 2000.
Michael Brenner and Bernhard Nebel. Continual plan-
ning and acting in dynamic multiagent environments. Au-
tonomous Agents and Multi-Agent Systems, 19(3):297–331,
2009.
Alessandro Cimatti, Marco Pistore, Marco Roveri, and
Paolo Traverso. Weak, strong, and strong cyclic planning
via symbolic model checking. Artificial Intelligence, 147(1–
2):35–84, 2003.
Thorsten Engesser, Thomas Bolander, Robert Mattmüller,
and Bernhard Nebel. Cooperative epistemic multi-agent
planning with implicit coordination. In Proceedings of
the 3rd Workshop on Distributed and Multi-Agent Planning
(DMAP 2015), pages 68–75, 2015.
Geoffrey Hollinger, Sanjiv Singh, Joseph Djugash, and
Athanasios Kehagias. Efficient multi-robot search for a
moving target. The International Journal of Robotics Re-
search, 28(2):201–219, 2009.
Filippos Kominis and Hector Geffner. Beliefs in multiagent
planning: From one agent to many. In Proceedings of the
25th International Conference on Automated Planning and
Scheduling (ICAPS 2015), pages 147–155, 2015.
Kurt Konolige and Nils J. Nilsson. Multiple-agent planning
systems. In Proceedings of the 1st Annual National Confer-
ence on Artificial Intelligence (AAAI 1980), pages 138–142,
1980.
Christian Muise, Vaishak Belle, Paolo Felli, Sheila McIl-
raith, Tim Miller, Adrian R. Pearce, and Liz Sonenberg.
Planning over multi-agent epistemic states: A classical plan-
ning approach. In Proceedings of the 29th AAAI Conference
on Artificial Intelligence (AAAI 2015), pages 3327–3334,
2015.
Ronald P. A. Petrick and Fahiem Bacchus. A knowledge-
based approach to planning with incomplete information
and sensing. In Proceedings of the 6th International Con-
ference on Artificial Intelligence Planning Systems (AIPS
2002), pages 212–222, 2002.
Ronald P. A. Petrick and Fahiem Bacchus. Extending the
knowledge-based approach to planning with incomplete in-
formation and sensing. In Proceedings of the 14th Interna-

tional Conference on Automated Planning and Scheduling
(ICAPS 2004), pages 2–11, 2004.
Ronald P. A. Petrick and Mary Ellen Foster. Planning for so-
cial interaction in a robot bartender domain. In Proceedings
of the 23rd International Conference on Automated Plan-
ning and Scheduling (ICAPS 2013), pages 389–397, 2013.
Matthijs T.J. Spaan, Geoffrey J. Gordon, and Nikos Vlas-
sis. Decentralized planning under uncertainty for teams of
communicating agents. In Proceedings of the 5th Interna-
tional Joint Conference on Autonomous Agents and Multia-
gent Systems (AAMAS 2006), pages 249–256, 2006.
Freek Stulp, Michael Isik, and Michael Beetz. Implicit co-
ordination in robotic teams using learned prediction mod-
els. In Proceedings 2006 IEEE International Conference on
Robotics and Automation (ICRA 2006), pages 1330–1335,
2006.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

49

Trial-based Heuristic Tree-search for Distributed Multi-Agent Planning

Tim Schulte
Institut für Informatik

Albert-Ludwigs-Universität
Freiburg, Germany

schultet@cs.uni-freiburg.de

Bernhard Nebel
Institut für Informatik

Albert-Ludwigs-Universität
Freiburg, Germany

nebel@cs.uni-freiburg.de

Abstract
We present a novel search scheme for privacy-
preserving multi-agent planning. Inspired by UCT
search, the scheme is based on growing an asyn-
chronous search tree by running repeated trials through
the tree. We describe key differences to classical multi-
agent forward search, discuss theoretical properties of
the presented approach, and evaluate it based on bench-
marks from the CoDMAP competition.

Introduction
In multi-agent planning multiple agents attempt to satisfy a
given objective by interacting appropriately. Many tasks re-
quire collaboration among agents, either because they can-
not solve the problem on their own, or because they can-
not do so in a cost effective way. Planning algorithms gen-
erating solutions to such problems can, in principle, im-
plement one of two different concepts. First, centralized
multi-agent planning algorithms grant a single agent ac-
cess to the full description of the planning task. This agent
then devises plans for the coordinated execution of all
agents. Therefore, centralized multi-agent planning can be
described as single-agent planning for multiple agents. Sec-
ond, distributed multi-agent planning (DMAP) algorithms
implement local planning by each of the agents. In con-
trast to centralized multi-agent planning, no trusted center
is required. Each agent utilizes its own planning system that
needs to exploit only those parts of the search space which
are relevant to it. The agents inform each other about world
states relevant to one another, therefore communication and
coordination during the planning process are essential.

In this work, we consider a form of distributed multi-agent
planning where agents cooperate with one another while
keeping various information private. MA-STRIPS (Braf-
man and Domshlak 2013) is one of the most basic for-
malisms for this type of cooperative multi-agent planning,
and several planning techniques have since been proposed
to solve respective tasks (Nissim and Brafman 2013; 2014;
Torreño, Onaindia, and Sapena 2014). The recent emergence
of a dedicated competition on distributed and multi-agent
planning (CoDMAP) (Štolba, Komenda, and Kovacs 2015)
emphasizes the raising interest in this field.

In this paper, we introduce a novel search technique for
privacy preserving distributed multi-agent planning. The ap-

proach is based on trial-based heuristic tree-search (THTS)
(Keller and Helmert 2013); a general scalable framework for
solving different types of planning tasks. Though originating
from the field of probabilistic planning, THTS has recently
been applied to classical planning (Schulte and Keller 2014).
If we want to integrate THTS in a multi-agent planning con-
text, the challenging part is to incorporate communication
between the agents in such a way that the resulting algorithm
preserves privacy and completeness. To achieve this, we de-
fine a suitable message passing scheme and explain how the
agents can integrate states from other agents into their lo-
cal search tree. Our main contribution is the definition of the
resulting search framework, which we call distributed multi-
agent trial-based heuristic tree-search (DMT). This frame-
work extends the way of how distributed plans can be gen-
erated and so might be useful for portfolio approaches to
multi-agent planning. We exemplify two DMT algorithms.
The first approach resembles best-first search, comparable
to MAFS, the second balances exploitation and exploration
similar to UCT (Kocsis and Szepesvári 2006). We show that
both algorithms are sound and complete, and evaluate them
on a set of benchmark problems from the CoDMAP compe-
tition.

Background
We consider the problem of classical planning for multiple
cooperative agents that maintain private information on their
capabilities and internal states. The following definitions are
based on MA-STRIPS (Brafman and Domshlak 2013) but
use a multi-valued variable representation. Furthermore, pri-
vacy is not implied by the definition of the agents actions as
in MA-STRIPS, but declared explicitly.

Privacy-Preserving Multi-Agent Planning
Definition 1. A multi-agent multi-valued planning task
(MMPT) is a tuple Π = 〈N,V, s0, s?, {Ai}i∈N 〉 where

• N is a finite set of agents ϕi, indexed 1, . . . , |N |,
• V is a finite set of finite-domain state variables. Each
v ∈ V is associated with a domain Dv . A partial vari-
able assignment over V is a function s on some subset of
V such that s(v) ∈ Dv wherever s(v) is defined. A par-
tial variable assignment defined for all variables in V is
called state.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

50

• s0 is the initial state.
• s? is a partial variable assignment over V called the goal.
• Ai is a finite set of actions available to agent ϕi. Each

action a = 〈pre(a), eff(a), c(a)〉 ∈ Ai consists of two
partial variable assignments over V called precondition
and effect; and a cost c(a) ∈ R+

0 .
An action a is applicable in state s if its precondition

holds in that state, i.e. s is identical to pre(a) wherever
pre(a) is defined. Application of action a in state s, denoted
by a(s), yields successor state s′ which is identical to eff(a)
where eff(a) is defined, and identical to s, elsewhere. The so-
lution to a MMPT is a sequence of actions π = (a1, . . . , ak)
such that a1 is applicable in s0, every subsequent action is
applicable in the state generated by its preceding action, and
the goal holds in ak(. . . (a1(s0)) . . .). Such a sequence is
called plan. A plan is optimal if its incurred cost

∑k
i=1 c(ai)

is minimal among all plans.
In privacy preserving domains, the set of variables V is

partitioned into sets of private variables V inti containing
those variables proprietary to agent ϕi, and a set of public
variables V pub containing the remaining variables which are
common to all agents. Private variables can only be observed
and be affected by actions of the agent to which the variables
are private. The agents are mutually unaware of variables
private to another agent. In principle, it is possible to define
goals on public and private variables. For a simpler exposi-
tion of the algorithms presented below, we assume that goals
are only defined for public variables v ∈ V pub. In the same
manner as the set of variables is partitioned into sets of pri-
vate and public variables, each agents’ set of actions is par-
titioned into a set of private actions Ainti and a set of public
actions Apubi . Private actions are only known to the agent to
which they are private and only depend on and affect its pri-
vate variables. Public actions can affect or depend on both
public and private variables of the agent. During planning,
the agents use both their private and public variables and ac-
tions, but restrict information exchange to the set of public
variables and actions. To hide private preconditions or ef-
fects of public actions, the agents create and solely exchange
public projections of their actions.
Definition 2. A public projection a|pub of an action a of
agent ϕi consists of the actions’ precondition and effect re-
stricted to the set of public variables V pubi :

a|pub = 〈pre(a)|pub, eff(a)|pub, c(a)〉
where pre(a)|pub and eff(a)|pub are partial variable as-
signments over V pub, such that pre(a)|pub = pre(a) for
all variables v ∈ V pub for which pre(a) is defined and
eff(a)|pub = eff(a) for all variables v ∈ V pub for which
eff(a) is defined.

The set of public projections of ϕi’s public actions is
Ai|pub, the set of all agents public projections is A|pub =⋃
i∈N Ai|pub. Note that an MMPT planning task is a MA-

STRIPS task when (1) the domain of each state variable is
binary, (2) variables only affected or required by agent ϕi’s
actions are private to ϕi, and (3) actions that solely affect
or depend on variables private ϕi are private to ϕi. In other
words, MMPT is a generalization of MA-STRIPS.

Selection Initialization Backpropagation

Figure 1: Phases of THTS.

Multi-Agent Forward Search

Multi-Agent Forward Search (MAFS) (Nissim and Braf-
man 2014) is a general search scheme for privacy preserv-
ing multi-agent planning. Each agent conducts a best-first
search, maintaining its own open and closed list. Succes-
sors of expanded states are generated by using the agents
own actions only. Whenever a state is generated for which
another agent has an applicable public action, a message
is sent to that agent. The message contains the full state,
heuristic score and g-value of the sending agent. Private flu-
ents of the state are encrypted such that only the relevant
agents can decrypt it. When agent ϕi receives a message
m = 〈s, hj(s), gj(s)〉 of some other agent ϕj , it checks
whether s is already in its open or closed list. If this is not
the case, ϕi puts s on its open list. If ϕi generated state s
previously with higher cost, it puts s on its open list again
and assigns new costs gj(s) to it. When an agent generates a
goal state, it initiates a distributed plan extraction procedure
by broadcasting the goal state in a message to all agents.

Trial-based Heuristic Tree-search

In the same way as MAFS is locally based on best-first
search, DMT is based on trial-based heuristic tree-search.
Trial-based Heuristic Tree-Search (Keller and Helmert
2013) is a generic search framework for probabilistic plan-
ning that was recently applied to classical planning (Schulte
and Keller 2014). THTS algorithms repeatedly execute three
phases. Each of these phases corresponds to a search com-
ponent that must be specified in order to derive a concrete
algorithm. In contrast to best-first search (BFS) approaches
which expand nodes from an open list that is sorted by prior-
ity, THTS algorithms maintain a tree of nodes and select one
of its leaf nodes for expansion in each search step. We will
briefly sketch the three phases of THTS using the examples
displayed in Figure 1.
1. Selection is the first phase of the algorithm with the ob-

jective to select one of the leaf nodes for expansion. Be-
ginning from the root, a selection strategy recursively se-
lects a child, until a leaf node is reached.

2. In the initialization phase, the previously selected leaf
node is initialized. Successor Nodes are generated and in-
tegrated into the tree.

3. During backpropagation (or backup) phase new informa-
tion, like value estimates or the number of times a node
has been visited during selection, is propagated through
the tree.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

51

After the backpropagation phase, the algorithm starts
again with the first phase. This process is repeated until a
goal state is generated, or some limit is reached.

Distributed Multi-Agent THTS
We now present a complete and privacy preserving scheme
for the distributed application of trial-based heuristic tree-
search. The concept is similar to MAFS, where forward-
search is concurrently executed while state information is
exchanged between the planning agents according to a spe-
cific message passing scheme. Each agent performs THTS
locally, using its own actions only. Whenever agent ϕi ex-
pands a state s in which a public projection of an action of
ϕj is applicable, ϕi will send a message to ϕj containing
s. ϕj then integrates s into its search tree, such that it can
prospectively select s for expansion. To accomplish this, ϕj
identifies a suitable parent and adds s as a child to it. In prin-
ciple, any node can be used as a parent without soundness or
completeness being compromised. However, since the tree
structure is crucial to the success of THTS algorithms, it is
important where new states are integrated. Let s be the re-
sult of applying the sequence of actions (a1, . . . , ak) in the
initial state, i.e. ak(...(a1(s0))...) = s, and let aj be the last
action of ϕj in that sequence. If aj exists, ϕj adds s as a
child to s′ = aj(...(a1(s0))...). Otherwise, ϕj adds s as a
child to the root. Note that ϕj is not aware of all actions in
the sequence leading to s and hence cannot compute s′. We
enable ϕj to identify s′ by using a special message type.

Definition 3 (State message). A state message from ϕi to ϕj
for state s is a tuple m = 〈s, hi, gi, T 〉, where
• s is a state; private components are encrypted, such that

each agent can only decrypt its own private components.
• hi is a value estimate of ϕi for state s,
• gi is the cost of ϕi to establish state s,
• T is a set of state tokens.

Each state token belongs to an agent ϕk and contains a
state identification number. This number references a node
in the local search space of ϕk and is meaningless to all
other agents. Figure 2 illustrates how tokens are used to in-
tegrate states. Here, two agents ϕi and ϕj are planning con-
currently. Numbers next to nodes depict state IDs that cor-
respond to the local state represented by the node. Nodes
associated with states for which the other agent has an ap-
plicable public projection are rendered in bold. When ϕj
initializes the node with state ID 3, it transmits message
m1 = 〈s, 7, 2, {ϕj 7→ 3}〉 to ϕi. m1 contains a token that
enables ϕj to identify the node labelled with 3. When ϕi
receives m1, it creates a new search node for s. Because
m1 contains no token for ϕi, the new node is attached as a
child to the root. Later on, ϕi initializes the node with state
ID 5, for which ϕj has an applicable public projection. The
message m2 = 〈s′, 5, 2, {ϕj 7→ 3, ϕi 7→ 5}〉 is sent back,
from ϕi to ϕj . Because state 5 was generated in a branch to
which ϕj contributed an ancestor state, the token ϕj 7→ 3 is
attached to the message, along with the new token ϕi 7→ 5
of ϕi. The latter token enables ϕi to identify the state corre-
sponding to state ID 5. When ϕj receives m2 it looks up its

0

2

5

0

3

4

m1 = 〈s, 7, 2, {ϕj 7→ 3}〉

m2 = 〈s′, 5, 2, {ϕj 7→ 3, ϕi 7→ 5}〉
ϕi ϕj

Figure 2: State integration.

Algorithm 1: DMT for ϕi
Data: 〈N,V inti , V pub, s0, s?, A

int
i , Apubi , A|pub〉

Result: plan π = 〈ak ∈ Ai〉Kk=1
1 root← new tree from s0

2 while within computational budget do
3 σ ← root
4 if ¬l(σ) then
5 while children(σ) 6= ∅ do
6 σ ← select(children(σ))
7 initialize(σ) // memorizes plans
8 send-messages(σ, N) // distribution
9 mark σ for backup

10 process-messages() // integration
11 backup()
12 return best memorized plan

token ϕj 7→ 3, creates a new node for state s′, and attaches
it as a child to the node with state ID 3.

An overview of the resulting search scheme is depicted in
Figure 3. The algorithms main routine is defined in Algo-
rithm 1. Methods process-messages, select, initialize, send-
messages and backup correspond to integration-, selection-,
initialization-, distribution- and backup-phase respectively.
These components are described in detail below. For ease of
exposition we define the following functions to access infor-
mation stored with each search node σ:
• state(σ): associated search state
• par(σ): parent of σ
• children(σ): set of children of σ
• action(σ): action leading from state(par(σ)) to state(σ)
• h(σ): value estimate for σ
We refer to a search node σ and its associated state s =
state(σ) interchangeably where convenient.

Selection A selection strategy is a function that maps from
a set of search nodes Σ to a single node σ ∈ Σ. To ensure
that the node selected last in the selection phase is an unini-
tialized leaf node, a special locking mechanism is used. The
idea is to mark initialized nodes from which no uninitialized
leaf node is reachable as locked and to ignore such nodes
in the selection phase. Each initialized node σ∗ without any
non-locked children is locked in the backup phase by set-
ting l(σ∗) = true. New nodes created in the initialization
phase are non-locked by default. We use the following two

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

52

out: in:

Selection Initialization BackpropagationDistribution Integration

Figure 3: Phases of DMT.

selection strategies.

gbfs(Σ) = arg min
σ∈Σ,¬l(σ)

h(σ)

ucb(Σ) = arg min
σ∈Σ,¬l(σ)

h(σ)− c ·

√
ln v(par(σ))

v(σ)

gbfs constitutes a greedy best-first search variant, select-
ing the successor node σ with the best (minimum) value es-
timate h(σ).

ucb aims to balance exploration and exploitation by using
a selection formula similar to UCB1 (Auer, Cesa-Bianchi,
and Fischer 2002) found in UCT algorithms (Kocsis and
Szepesvári 2006). Here, h(σ) ∈ [0, 1] is the normalized
value estimate of σ, such that h(σ?) = 0 for the node
σ? with the best (minimum) value estimate from Σ and
h(σ−) = 1 for the node σ− with the worst (maximum)
value estimate from Σ. All other nodes σ′ ∈ Σ are inter-
polated accordingly. The number of times a node has been
selected during selection phase is denoted by v(σ) (visits).
ucb selection favours nodes with fewer visits. Coefficient c
is a weight bias to increase or decrease the desired amount
of exploration. The higher c the higher the bias towards ex-
ploration. gbfs and ucb are just two examples of selection
strategies that can be used in line 6 of Algorithm 1.

Initialization Algorithm 2 specifies how a node σ is ini-
tialized by an agent ϕi. First, a heuristic value for state(σ)
is computed and h(σ) is set to that value. Then, all succes-
sor states s′ are generated. For each successor state s′ that
is not already in the tree a new node σ′ is created and added
to children(σ); its values are set accordingly (Algorithm 2,
line 9-11). If a successor state s′ is already in the tree, the re-
spective search node σ′ with state(σ′) = s′ is determined. If
the new path to s′ induces lower costs than the existing path,
the subtree rooted at σ′ is moved to children(σ) by adapting
parent and child pointers of the involved nodes (Algorithm
2, line 16-18). Since the former parent of σ′ lost a child,
the value estimates of all nodes along the path from the for-
mer parent to the root are deprecated. Therefore, before σ′ is
moved to its new parent σ, par(σ′) is marked to get updated
in the next backup phase (line 15).

Distribution Let σ be the node ϕi initialized last. In
the distribution phase ϕi creates a state message m =
〈state(σ), g(σ), h(σ), T 〉, such that T contains a token of ϕi
to identify σ. For each other agent the first token traceable

Algorithm 2: Initialization for ϕi
Data: σ,Ai = Ainti ∪A

pub
i

Result: modified tree node σ
1 s← state(σ)
2 h(σ)← evaluate heuristic function for s
3 foreach action a ∈ Ai applicable in s do
4 s′ ← a(s)
5 if s′ is a goal state then
6 extract and memorize plan
7 if s′ is not in the tree then
8 σ′ ← new node
9 par(σ′), action(σ′), h(σ′)← σ, a, h(σ)

10 state(σ′), v(σ′), l(σ′)← s′, 0, false
11 children(σ)← children(σ) ∪ {σ′}
12 else
13 lookup σ′ where state(σ′) = s′

14 if g(σ) + c(a) < g(σ′) and ¬l(σ′) then
15 mark par(σ′) for backup
16 remove σ′ from children(par(σ′))
17 par(σ′), action(σ′), h(σ′)← σ, a, h(σ)
18 children(σ)← children(σ) ∪ {σ′}

on the path from σ to the root is attached to T . Then, ϕi
sends m to all agents that have a public action projection
applicable in s.

Integration Following the distribution phase ϕi integrates
each state s received in a messagem = 〈s, hj , gj , T 〉 into its
local search tree. First, ϕi identifies the new parent σ∗ for s
by looking up its token from T . If T contains no token for
ϕi, then σ∗ is set to the tree’s root node. If s is new to ϕi,
a new search node σ is created and added to children(σ∗).
If some node σ′ representing s is already in the tree, it is
moved to children(σ∗) in case s is reachable with lower cost
that way. As in the initialization phase, when σ′ is moved,
its old parent is marked for backup.

Backpropagation The backup function starts at the node
σ that was initialized last and updates its values. The nodes
visits are increased by one, its value estimate is set to the
minimum among its non-locked children, and the locked flag

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

53

is set if the node itself has no non-locked child:

v(σ) = v(σ) + 1

h(σ) = minσ′∈children(σ),¬l(σ) h(σ′)

l(σ) =
∧
σ′∈children(σ) l(σ

′)

Then backup continues with the nodes parent par(σ) and
updates it accordingly. This process is repeated until the
root node is reached. In case other nodes have been marked
for backup, during initialization or integration, the process
is repeated for each marked node. This may lead to the
same node getting updated multiple times, but can easily be
avoided by using a backup queue.

Trial Length When a node σ is initialized, all its succes-
sors are generated and associated state messages are sent.
Before the agent continues with the integration phase, it
can select one of the newly generated nodes and initialize it
as well. By alternatingly executing selection-, initialization-
and distribution phase, multiple nodes can be initialized in
each search step. The number of nodes to get initialized in
a single search step is denoted as trial length. For simplicity
we did not include it in Algorithm 1. It can easily be imple-
mented by looping around lines 5-10.

Plan Extraction
If an agent ϕi generates a state that satisfies the goal a valid
plan can be extracted. ϕi informs all other agents about the
goal state and initiates a distributed plan extraction process.
First, it traces back all states of its local plan, until a state
s∗ is reached that was received in a state message from an-
other agent ϕj . Then, ϕi sends a plan extraction request to
ϕj , including s∗. ϕj then continues to trace back its local
plan, beginning from the state received in the state message.
This process is repeated until some agent reaches the initial
state, at which point plan extraction ends. The solution plan
is sequential but can often be parallelized.

The first solution found is not necessarily the optimal so-
lution. Therefore, if more planning time is available, DMT
search can easily be extended to progressively search for bet-
ter solutions. When a plan is extracted, its cost is computed
and the plan with the best cost found so far is memorized
as π. From then on each agent marks search nodes with a
higher g-value than π as locked. Each time a new goal state
is reached, its g-value is computed, and, if it is an improve-
ment, π is updated. Once each agents root is locked, π is the
optimal solution. If the time limit is exceeded earlier, π is
returned.

Soundness and Completeness
Lemma 1. Each state s in the search tree of an agent ϕi is
reachable.

Proof sketch. The first state generated by DMT is the initial
state. Each subsequently generated state is reached by an ac-
tion applied in a previously generated state. Therefore, every
state s in the search tree represents a valid sequence of ac-
tions that is applicable starting with the initial state, and that
results in state s. Hence, if a state satisfies the goal, a valid
plan can be extracted.

Lemma 2. If a goal is reachable by some sequence of ac-
tions then some agent will generate a goal.

Proof sketch. We will only consider sequences in which a
private action of an agent is followed by another action of
that agent. In (Nissim and Brafman 2014) it was shown that
it suffices to consider such sequences for any goal that in-
volves public variables only. Completeness must be decided
individually for each concrete DMT algorithm, because it
depends on the components used. In the following we argue
that the presented two selection functions (gbfs and ucb),
in combination with the other components presented, yield
complete algorithms.

In every search step, each agent initializes a new leaf node
and generates all its successors. Nodes without children are
locked, either because they are dead-ends or because all of
their successor states can be reached on shorter paths and
have been moved to other states in the tree. Therefore, all
paths that do not lead to a solution will eventually be locked.
Both selection functions solely select non-locked nodes and
will eventually, for the lack of an alternative, select a node
along a path that leads to a goal. Given sufficient time, all
nodes along such a path will be selected until the goal is
reached. If no such path exists in an agents local search
space, the agent exhaustively generates all possible states,
until its root node is locked.

We now regard sequences that involve actions of different
agents and that lead to a goal state. It is easy to see that each
agent transmits the last state s, established by a subsequence
of its own actions, to the agent owning the next action in
the sequence. If the next action is private, it is always fol-
lowed by another action of the same agent, until one action
is public. This actions public projection is applicable in state
s, and hence sent to the agent in a state message.

Relation to MAFS
MAFS and DMT are both schemes for distributing search al-
gorithms, such that completeness and privacy is preserved.
They differ in the types of algorithms that they support.
MAFS supports forward search algorithms where nodes are
expanded from an open list, while DMT supports THTS al-
gorithms that use a search tree instead. In MAFS, states are
inserted into an open list together with a static value esti-
mate computed prior insertion. The value estimates of states
in the open list never changes, hence, their relative order
remains unchanged. DMT algorithms, by way of contrast,
insert states into a tree together with value estimates that
are continuously subject to change. Therefore, algorithms
that depend on a dynamic node ordering, like UCT (Kocsis
and Szepesvári 2006), can easily be expressed as DMT al-
gorithms by defining appropriate selection, backup and ini-
tialization functions. It is not possible to implement these al-
gorithms competitively with an open list, especially when a
large number of nodes change their relative position in each
search step.

Another major difference between the two approaches
concerns the reopening of closed states. In MAFS, a newly

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

54

t = 1 t = 100

Domain mafs dmt-bfs dmt-gus mafs dmt-bfs dmt-gus

blocksworld - - - 3 - 2
depot 1 1 - 2 - 4
driverlog 16 16 15 17 16 16
elevators - - - 1 - -
logistics 8 5 1 9 5 2
rovers 10 6 1 19 19 18
satellites 3 2 3 6 11 9
sokoban 4 8 8 3 9 8
taxi 17 14 11 10 14 6
wireless 2 2 - 1 1 -
woodworking 6 3 1 5 4 6
zenotravel 13 12 12 13 13 13

Total (240) 80 69 52 89 92 84

Table 1: Coverage

generated state s is put on the open list, only, if it is not al-
ready on the closed list or if its new g-value is smaller than
the registered g-value. In the latter case, states previously
generated as successors to s will potentially be reopened in
future search steps as well. In DMT, if s is already in the
tree and its new g-value is smaller than the current g-value,
the subtree of the existing node is moved to the node that is
currently initialized. This is achieved by adapting parent and
child pointers of the involved nodes (Algorithm 2, line 15-
18). Successor states must not be generated all over again.

Evaluation
The presented DMAP algorithms were implemented in a
distributed multi-agent planning system written in Go. Ex-
periments were run on a PC with an Intel 3.2 Ghz quad-
core CPU and 4 GB of RAM. The four cores were shared
among all agents; assignment of processor time was left to
the Linux process scheduler. For communication between
processes a TCP connection was used. We experimented
with the set of benchmarks from the CoDMAP competition
(Štolba, Komenda, and Kovacs 2015) consisting of 12 do-
mains with 20 problem instances each. Planning time was
limited to two minutes per planning task. Table 1 shows cov-
erage results for the tested configurations: Multi-agent for-
ward search (mafs), DMT with greedy selection (dmt-bfs)
and DMT with ucb selection (dmt-ucb). The configurations
were tested with a trial length of either 1 or 100. In all cases
FF heuristic (Hoffmann and Nebel 2001) was used to com-
pute state value estimates. The heuristic function was ap-
plied to the agents local problem projection, containing the
agents private and public variables and actions together with
the other agents public actions projections.

Regarding configurations with a trial length of 1 (t = 1),
the numbers reflect that mafs performs best, solving 11 in-
stances more than dmt-bfs, and 28 instances more than dmt-
gus. The only domain in which dmt-bfs and dmt-gus solve
more instances than mafs is sokoban. We expected dmt-bfs to
perform slightly worse than mafs, because both approaches

search the state space in a greedy manner, but the DMT ap-
proach is computationally more expensive. Due to the brief
time limit of 2 minutes, this also affects coverage. When the
trial length is set to 100 (t = 100) all configurations im-
prove in coverage. dmt-gus records the biggest gain solv-
ing 32 additional instances, followed by dmt-bfs with 23
and mafs with 9 additional instances solved. The increase
in coverage is most noticable in the rovers domain where
mafs, dmt-bfs and dmt-gus increase their coverage by factor
1.9, 3.17 and 18.0 respectively. Increasing the trial length
causes regular search to perform additional exploration and
encourages faster escape from local minima. This is most
beneficial in domains where many solution paths exist but
search is misguided into local minima by inaccurate heuris-
tic values. When combining the solutions solved between
configurations, we find that the two MAFS configurations
solve 102 problems combined, while the DMT configura-
tions solve 110 problems combined. A portfolio planner run-
ning dmt-gus, dmt-bfs and mafs with t = 100 for 2 min-
utes each solves 117 instances, which shows that MAFS and
DMT complement each other well.

Conclusion

In this paper we presented DMT, a novel and privacy pre-
serving scheme for distributing THTS algorithms. Based on
DMT, we derived two concrete algorithms and showed them
to be sound and complete. The algorithms were evaluated
on a set of benchmark instances from the CoDMAP compe-
tition and compared to classical multi-agent forward search.
Overall, DMT and MAFS approaches performed equally
well, complementing each other in a promising way. In fu-
ture work we will create and analyze new DMT algorithms
to further exploit such complementary strengths. Addition-
ally, we would like to use DMT in settings where goals are
also defined for private variables.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

55

References
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time analysis of the multiarmed bandit problem. Machine
Learning 47(2-3):235–256.
Brafman, R. I., and Domshlak, C. 2013. On the complexity
of planning for agent teams and its implications for single
agent planning. Artificial Intelligence 198:52–71.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research (JAIR 2001) 14:253–302.
Keller, T., and Helmert, M. 2013. Trial-based heuristic
tree search for finite horizon MDPs. In Proceedings of the
Twenty-Third International Conference on Automated Plan-
ning and Scheduling (ICAPS 2013).
Kocsis, L., and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In Proceedings of the Seventeenth European
Conference on Machine Learning (ECML 2006), 282–293.
Nissim, R., and Brafman, R. I. 2013. Cost-optimal plan-
ning by self-interested agents. In Proceedings of the Twenty-
Seventh AAAI Conference on Artificial Intelligence (AAAI
2013).
Nissim, R., and Brafman, R. I. 2014. Distributed heuristic
forward search for multi-agent planning. Journal of Artifi-
cial Intelligence Research (JAIR 2014) 51:293–332.
Schulte, T., and Keller, T. 2014. Balancing exploration
and exploitation in classical planning. In Proceedings of the
Seventh Annual Symposium on Combinatorial Search (SoCS
2014).
Štolba, M.; Komenda, A.; and Kovacs, D. L. 2015. Compe-
tition of distributed and multiagent planners (CoDMAP). In
The International Planning Competition (WIPC 2015), 24–
28.
Torreño, A.; Onaindia, E.; and Sapena, O. 2014. FMAP:
distributed cooperative multi-agent planning. Applied Intel-
ligence 41(2):606–626.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

56

Hierarchical Planning with Traffic Zones for a Team of Industrial Transport
Robots

Stefan Imlauer and Clemens Mühlbacher and Gerald Steinbauer
Institute for Software Technology, Graz University of Technology, Austria

{simlauer,cmuehlbacher,steinbauer}@ist.tugraz.at

Michael Reip and Stephan Gspandl
incubed IT, Hart bei Graz, Austria

{m.reip,s.gspandl}@incubedit.com

Abstract

Fleets of transport robots in industrial settings can gain per-
formance in relation to safety and throughput by using zones
with traffic constraints in the environment. In this paper we
present a hierarchical navigation system for a fleet of robots
that is able to consider such zones in planning. The perfor-
mance of the proposed planning system is based on an en-
riched roadmap representation, a central zone reservation and
a search heuristic that is able to cope with waiting times for
temporary unavailable zones. The proposed system was im-
plemented on top of existing industrial transport robots and
evaluated in an industrial use case.

1 Introduction
Nowadays it becomes increasingly common to use fleets of
autonomous transport robots to carry out transport tasks.
Prominent examples are the replacement of traditional con-
veyors in warehouse automation and the automated deliv-
ery of parts in production settings. The major advantages
of transport robots in comparison to traditional installations
are: (1) the installation costs are much lower than static con-
veyors, (2) the robots are much more flexible because they
can be simply rerouted if setups change and (3) the through-
put of a robot team scales quite well with its size. An exam-
ple of an industry-grade robot is depicted in Figure 1.

Figure 1: Robots of the incubed IT system. c© incubed IT

In order to realize a fleet of automated transport robots
several challenges have to be tackled. The basic challenge is

to realize safe and reliable navigation of individuals between
locations to perform individual transport tasks. Safety plays
a major role here because the robots share their environment
with humans. Research in robotics provided almost perfect
solution to this challenge using various planning methods
to find a route. On the fleet level the allocation of transport
tasks to the robots and the coordination of the navigation of
the individual robots are challenges. The former is usually
solved as a centralized scheduling problem while the latter
can be solved in a centralized, distributed or hybrid way.

In this paper we focus on the planning and coordination of
the navigation of the robots in industrial settings. Although
robots are able to navigate freely in the environment mak-
ing use of alternative routes for safety and operational rea-
sons and to optimize the throughput the navigation of the
robots might be restricted. This is realized by introducing
traffic zones into the environment. Similar to certain traffic
regulations in public streets such zones impose constraints
on robots navigating in it. For example in a traffic zone one
can restrict that only one robot is allowed to enter this zone.
Given the possibility of such traffic zones a warehouse man-
ager can optimize safety and throughput by installing a one-
way zone in a narrow corridor or a single robot zone near an
emergency exit.

In order to integrate the concept of traffic zones into the
multi-robot system we propose a hierarchical planning ap-
proach. Traffic zones are treated like common resources
where their use is restricted by their constraints. Robots can
reserve zones for a (future) time period on a central server.
Each robot plans its route locally based on a roadmap and
the current reservations. If successful the robot comes up
with a route and a consistent reservation of zones along this
route. The roadmap is a graph-based representation of the
environment enriched with information about the constraints
imposed by the traffic zones. The planning algorithm of the
individual robots is an extension of the well-known A* al-
gorithm (Hart, Nilsson, and Raphael 1968). The key contri-
bution here is the development of a heuristics that estimates
the time to the goal taking into consideration the traffic con-
straints such as a waiting time to enter a restricted zone. Such
an intelligent heuristics allows the planner to prefer a detour
if a zone along the direct path is not available for some time.
The actual navigation is done using a more fine-grained path
obtained using a gridmap of the reserved zones.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

57

The remainder of the paper is organized as follows. In the
next section we will briefly review some related research. In
Section 3 we will state the problem of multi-robot navigating
in an environment with traffic zones more formally. In the
proceeding section we describe the system architecture. In
Section 5 we discuss the planning algorithm in detail. This
section is followed by an experimental evaluation. Finally
we draw some conclusions and point out future work.

2 Related Research
We start our brief review of related research with a method
which uses a central server for coordination. In (Kleiner,
Sun, and Meyer-Delius 2011) the authors describe a method
which creates a roadmap based on an adaptive gridmap.
The gridmap is initially created through an simultaneous lo-
calization and mapping (SLAM) algorithm. During the life
time of the system every robot reports inconsistencies of this
map to the central server. The central server uses a hidden
Markov Model (HMM) combined with the gridmap to up-
date the gridmap according to the reported inconsistencies.
To perform this update for every gridmap cell a Bayes filter
is used to keep track of the reported inconsistencies. If a cer-
tain amount of cells are changed in the gridmap the roadmap
is recalculated. With the help of this roadmap and a linear
programming method the ideal routing of the deliver tasks
is calculated taking into account capacities as well as flow
directions. Finally the single robot queries the routing for its
task. The main difference of this approach to the approach
presented within this paper is that the central server is used
within our approach for bookkeeping about zones only. The
planning is done on the robots allowing good scalability.

Another approach which uses a central server was de-
scribed in (Ryan 2010). The method poses the planning
problem of a fleet of robots as a constrained satisfaction
problem (CSP). The method composes a graph to represent
the different robots and its environment. In order to solve
the problem the graph is split into subgraphs which repre-
sent special structures like cliques and halls. Each subgraph
is encoded as CSP. Again in contrast to the approach pre-
sented in this paper the authors use a central planning in-
stance. Which always poses the risk to scale badly with a
fleet.

Many other approaches of multi-robot navigation don’t
rely on an central coordination. This allows the approach
to be more scalable than a complete centralized one. These
concepts follow the model of the distributed robot architec-
ture (DRA) (Siciliano and Khatib 2008, chap. 40.2.3). We
will discuss two different approaches following this idea.

A method we want to discuss as an example for a de-
centralized method was presented in (Kleiner, Nebel, and
others 2014). Each robot plans its path without considering
the other robots. Then the robot starts to navigate along the
calculated path. If two robots meet each other simple be-
haviors are applied. These behaviors are designed to handle
crossings, congestions and more. To coordinate these behav-
iors the robots communicate locally to their neighbors. The
authors showed that through this method other multi-robot
navigation methods are outperformed. Especially when a
fleet becomes large. In contrast to our approach no central

component is used at all. Thus there is no possibility to deal
with resources in a global way. Considering a long corri-
dor which can only be traversed by one robot. As there is
no global coordination both robots would enter the corridor
and would block each other. Such an effect would be avoided
through our central server.

The second method which uses a decentralized method
was presented in (Wang and Premvuti 1995). All robots use
a network of traffic segments. Each traffic segment has only
a finite capacity and thus needs to be handled properly. If a
robot leaves or enters a traffic segment the robots communi-
cate with each other to negotiate which robot can enter the
traffic segment. As this negotiations are only performed lo-
cally the path a robot is traveling might not be optimal in a
global sense. This is caused as no information about future
needs are presented in the system and thus a robot can not
plan ahead to avoid traffic segments.

Beside the research on multi-robot navigation the man-
agement of resource allocation with multiple robots is a
close related field. The different traffic zones in the naviga-
tion scenario are the resources the robots need to shared. In
the remainder of this section we will discuss approaches of
resource management and the impact on the work presented
in this paper.

In (Alami et al. 1995) the authors describe the so called
‘Plan-Merging Paradigm’. The idea is that each robot creates
a plan satisfying its goal. Before the plan can be executed the
robot has to perform plan merging operations. These opera-
tions are communicated through a shared resource or by di-
rect communication to all robots. By using these operations
conflicting plan steps are detected and the robot can repair
its plan accordingly. This concept is used within the method
presented in this paper as every robot plan its path and af-
terwards it coordinates the plan the other robots through a
central server.

3 Problem Definition
As motivated in the introduction the problem we consider
is to navigate a fleet of robots within an environment con-
taining traffic zones. Thus we consider a fleet of n robots
R := {R1, R2, . . . , Rn}. Where each robot has for any time
t ∈ R+ a position given through the function pos:R× t→
R2. Additionally the direction for each robot at a given time
is defined through a direction vector represented by the func-
tion dir:R× t→ R2.

All robots navigate in an environment E . To represent
this environment we use convex polygons where each con-
vex polygon P is defined through a list of points P :=
(P1, P2, . . . , Pl), Pi ∈ R2, 1 ≤ i ≤ l. Furthermore we use
an inclusion operator ∈ which is defined as follows:

∈ :R2×P→
{

1, if position p within the area of P
0, otherwise (1)

The environment is now characterized through E := {x ∈
R2 | x∈P}. As the robots are only allowed to drive in the
environment it holds that ∀r ∈ R, t ∈ R+.pos(r, t)∈E = 1.

Beside the robots the environment contains static stations
L := {L1, L2, . . . , Lk}, Li ∈ E , 1 ≤ i ≤ k. These static

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

58

stations are the start respectively the end of a navigation
task T = 〈s, g〉, where s ∈ L and g ∈ L. Additionally
such a navigation task is assigned to exactly one robot. As
the problem considers the navigation of the complete fleet
we define the set T to contain all navigation tasks. As we
consider the navigation of the fleet we will not discuss the
assignment of the tasks which itself is a complex planning
problem.

To define the traffic zones within the environment we use
a set of m areas A := {A1, A2, . . . , Am}. Each area Ai is
defined as a tuple 〈Pi, Ci〉, where Pi is the polygon of the
area and Ci ⊆ C denotes a set of constraints imposed on the
area.

We consider the following constrains C for an area:

• N-Robots cN
A maximum number of robots are permitted in an area
at any time. NAi

is defined as the maximum number of
allowed robots in zone Ai:

∀t ∈ R+.

(∑
r∈R

pos(r, t)∈Pi

)
≤ NAi

(2)

• Single Robot cS
Only one robot is permitted in an area at any time:

∀t ∈ R+.

(∑
r∈R

pos(r, t)∈Pi

)
≤ 1 (3)

• Forbidden cF
No robot is allowed to traverse the area:

∀t ∈ R+.

(∑
r∈R

pos(r, t)∈Pi

)
= 0 (4)

• One Way cO
This zone is only traversable in a specific direction: The
direction of this zone is defined by dirAi

.

∀t ∈ R+, r ∈ R . pos(r, t)∈Pi → dir(r, t) = dirAi

(5)
• Velocity cV

The maximal allowed velocity of a zone is restricted to
velAi :

∀t ∈ R+, r ∈ R . pos(r, t)∈Pi → ‖dir(r, t)‖ ≤ velAi

(6)

By combining these simple traffic constraints and areas
also more complex traffic zones can be described. We will
give an example of a more complex traffic zone consisting
of several simpler traffic zones.

• Right Hand Traffic cR
Robots in this region are forced to drive on the right hand
side. This constraint is built with two cO constraints. The
areas corresponding to the constraints have to be adjoined
and face in opposite directions (Figure 2).

To state the planning problem we define the set of all con-
straints imposed by A as C =

⋃
Ai∈A Ci. Additionally we

define the path of a robot r, following (Choset 2005, chap.

cS
cS

cO
cO

Figure 2: Constraints of Right Hand Traffic. Illustration of
the constraint decomposition. (cO) shows the one way con-
straints.

3), as a continuous mapping π(r): [tr, tr + ∆tr]→ E . Given
a transport order for a robot r from location sr to a location
gr the start of the path is constraint to π(r)(tr) = sr and
the goal of the path is constraint to π(r)(tr + ∆tr) = gr. tr
represents the starting time of the task while ∆tr represents
its duration. Furthermore the velocity on the path of robot r
at time t is computed in Equation 7.

dir(r, t) =
dπ(r)(t)

dt
=

[
dπ(r)

x (t)
dt

dπ(r)
y (t)

dt

]
(7)

As we are concerned with all tasks the fleet executes we
want to find the set of paths Π which comprises the paths of
all robots and minimizes the maximal end time tri +∆tri for
all paths π(ri) ∈ Π subjected to C, or more formally stated
in Equation 8.

Π∗ = argmin
Π

{
max
π(ri)∈Π

(tri + ∆tri)

}
s. t. C (8)

4 Realization
The optimal solution for this problem requires the complete
information of every task assigned to a robot from the be-
ginning. Since this information is simply not available in a
real industrial system we are not able to generate an opti-
mal solution for that use case. Therefore we relax the plan-
ning problem and allow the robots to look individually for
their optimal solution given the already known paths of other
robots. We define in Equation 9 a new planning problem
which minimizes the end time of the task of a specific robot
ri subjected to C and a given set of paths Π from other
robots.

π(ri)∗ = argmin
π(ri)

{(tri + ∆tri)} s. t. C,Π (9)

The given set Π of already known paths of other robots
can be mapped to a set of n tuples I which represents the
traversal of a robot through a zone Aj . Ii ∈ I denotes the
tuple Ii := 〈tsi , tei , ri,Pi〉 where tsi , tei ∈ R+ are the time
robot ri ∈ R enters respectively leaves the area Pi of Aj .

This information formulates an additional constraint cI :

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

59

∀Ii ∈ I, t ∈ [tsi , tei].pos(ri, t)∈Pi = 1 (10)

This constraint can be used to reformulate the problem
above as follows:

π(Ri)∗ = argmin
π(Ri)

{(tRi + ∆tRi)} s. t. C ∪ {cI} (11)

Thus the planning problem is to find an optimal path for
individual robots by considering all constraints of the areas
and all intervals of other robots within certain areas. As not
every area has constraints concerning for instance the num-
ber of robot in an area we don’t consider all intervals but
instead only those intervals where the related area needs a
reservation.

System Overview
In order to realize the system we use a central server which
keeps track of all the reservations. Each robot queries the
central server for the current reservations of areas and uses
this information to calculate its optimal path assuming a
static environment. Then the robot tries to reserve all nec-
essary areas along its path at the server. The server validates
if the requested reservations violates any constraint imposed
by the traffic zones. If this reservation succeeds the robot
starts moving along the calculated path. Otherwise the robot
fetches the reservations again and starts over again with the
planning. This optimistic approach avoids issues due to mul-
tiple robots planning their paths at the same time while still
achieving a decent throughput. In general this hybrid ap-
proach allows a high scalability of robot fleets due to bal-
anced resource utilization and lightweight communication.
Especially as each robot is already equipped with a industrial
computer which is powerful enough to perform the planning
procedure in a short amount of time.

Environment Representation
Besides an effective management of the reservations of
zones a powerful representation of the environment and the
traffic zones is needed. The starting point for the planning
is a representation based on labeled polygons representing
different traffic zones as well as obstacles. An example for
such an environment is depicted in Figure 3(a). Such maps
are created by the industrial users of the robot fleet accord-
ing to their needs.

As there are basically no constraints on location, orien-
tation and shape of traffic zones overlaps or even inclu-
sions of traffic zones are possible. Moreover, some types of
zones such as right-hand traffic are combinations of individ-
ual zones. Therefore, in a pre-processing step all intersect-
ing areas are replaced by areas representing their partition
where the new areas collect all constraints of the involved
areas. For instance the two intersection one-way areas in the
example are replaced by three areas where one represents
the intersecting area and the others the initial areas with the
intersection cut out.

Beside the traffic zones the map also contains space which
is not occluded by a traffic zone. This free space can be tra-
versed by the robot without any restrictions. The free space

is not necessarily a convex polygon. In order to represent the
environment (traffic zones and free space) using only convex
polygons which is important for the next step the environ-
ment is triangulated into sub-areas.

In order to enable the use of search-based path planning
the sub-areas are converted into a roadmap. The roadmap
consists of nodes on the center of the edges of the sub-areas.
Thus edges in the roadmap represent the traversal of a sub-
area. Using this representation the robot needs to reserve a
sub-area in order to use such an edge in the path. The edges
know to which original traffic zone they belong. The sub-
areas and the resulting roadmap are depicted in Figure 3(b).

5 Planning
In order to solve the route planning for an individual robot
we propose a hierarchical approach. On the top we use the
roadmap to find a path from the node representing the sub-
area containing the start to the node representing the sub-
area containing the goal. After finding a path within the
roadmap the robot uses this path to reserve the areas it tra-
verses. After the successful reservation the robot uses the
nodes in the graph as way-points for its navigation. To find
a smooth path between these way-points we use a gridmap
representing the obstacles and the free areas and standard
path planning for robotics (Marder-Eppstein et al. 2010).
The planning on the gridmap is restricted to those areas
which where reserved through the previous step. After this
plan has been created the robot executes the plan using a lo-
cal path planner which generates a motion plan to consider
dynamic obstacles (Marder-Eppstein et al. 2010). Hence the
system is able to avoid collisions independently from the
previous planning steps. Dynamic obstacles are identified
with laser scanners and represented in a local occupancy
gridmap. Thus the path planning for a robot consists of a
hierarchy of three planning steps allowing fast planning and
robust execution of paths.

To perform this top-level planning the start and the goal
nodes are marked in the roadmap which was created from
information about the environment. A modified A* is used to
find a path within the roadmap. The modified A* is depicted
in Algorithm 1. The major modification is located at line 19
which estimates the heuristic to the goal as well as calculates
a potential waiting time for entering an area. Thus during an
expansion the algorithm uses as costs the time to move along
the edge towards the entry as well as the time the robot needs
to wait until it can enter the zone.

The calculation of the heuristic (line 25) uses the prede-
cessor node n and the border node n′ to an area. The cal-
culation consists of calculating the shortest path through the
area in the direction of the goal. This is done by expand-
ing a copy of the roadmap towards the goal until a node is
found that represents the transition to another area. The es-
timated time to traverse this path is later used together with
the shortest line distance from the leaving node to the goal as
heuristic h(n′). The traversal time is used to find a valid slot
(given by the time the entry node is reached and the time for
traversal) within the existing area reservations which allow
the robot to traverse the area.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

60

Algorithm 1: A* extensions (Adapted from (Nash et al.
2007))

Data: G . . . directed graph
Data: nstart ∈ G . . . start node of the graph
Data: ngoal ∈ G . . . goal node of the graph

1 begin
2 openList←− {}
3 closedList←− {}
4 g(nstart)←− 0
5 f(nstart) = g(nstart) + hSLT (nstart)
6 openList.insert(nstart, f(nstart)))
7 while openList 6= {} do
8 n←− openList.pop()
9 if n = ngoal then

10 return “found path”
11 end
12 closedList←− closedList ∪ {n}
13 foreach n′ ∈ successor(n) do
14 if n′ 6∈ closedList then
15 if n′ 6∈ openList then
16 g(n′)←−∞
17 parent(n′)←− NULL
18 end
19 UpdateV ertex(n, n′)
20 end
21 end
22 end
23 return “no path found”
24 end

25 Function UpdateV ertex(n, n′)
26 if g(n) + we(n, n

′) < g(n′) then
27 if n′ ∈ openList then
28 openList.remove(n′)
29 end

/* calculate heuristic and waiting
time */

30 g(n′)←− g(n) + we(n, n
′)

31 h(n′), tw ←− CalculateHeuristic(n′)
32 g(n′)←− g(n′) + tw
33 f(n′) = g(n′) + h(n′)
34 parent(n′)←− n
35 openList.insert(n′, f(n′))
36 end

If such a slot exists the robot is immediately allowed to
enter the area once it arrives at its edge. Hence the waiting
time tw = 0. Otherwise the algorithm takes the arrival and
traversing time to search for a slot that is consistent with
all area constraints by simply iterating through all the con-
flicting intervals and looking for the earliest starting time for
such a slot. The waiting time is the difference of the start of
the slot and the arrival time.

The result of the top-level planning is a path consisting of
way-points and the areas which are traversed by this path.
Two example paths are depicted in Figure 4. The figure
shows that after the top-level planning the robot could start
to move along the edges of the roadmap to reach its goal.
It also shows the benefit of the extended heuristics. In left

(a) Level 1 (b) Level 2

(c) Level 3

Figure 5: Evaluation scenarios with increasing complexity.
The variable v describes the maximal allowed velocity in
the corresponding region. The blue and green spots in the
free space denotes goal stations. The maps comprises: one
ways (yellow); n-robot zone where maximal two robots are
allowed (orange); single Robot zone (green); simple traffic
areas (blue); forbidden areas (gray).

example the lower single-robot zone is unreserved. Thus the
planner finds its way directly trough the zone. In the right ex-
ample the single robot-zone is already reserved by another
robot for some time. Because the estimation which is now
increased by the waiting time other nodes are expanded as
well and the algorithm finds a quicker detour to the goal.

After finding the path through the areas the robot needs
to navigate in the geometric world between the way-points
defining this path. To plan between the given way-points and
to execute this plan we use the well-known approach pre-
sented in (Marder-Eppstein et al. 2010). As it implements a
global planner for the way-point navigation as well as a local
planner which allows to consider dynamic obstacles.

For a detailed description of the planning hierarchy we
refer the interested reader to (Imlauer 2016).

6 Evaluation

The proposed hierarchical navigation system has been eval-
uated in a simulation suite representing the industrial use
case. The evaluation considers two different aspects of the
planning system. The first evaluation investigates the com-
putation time of the developed planner for an individual
robot. The second evaluation is intended to determine per-
formance gains in the overall system with multiple robots. In
Figure 5 we denote three scenarios with increasing complex-
ity. In this evaluation it is assumed that the number of zone
with traffic regulating constraints and their arrangement in-
crease the complexity of an environment.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

61

tmedian tavg
Level 1 8.90 9.38
Level 2 9.78 11.83
Level 3 9.24 14.92

Table 1: Planner evaluation on three different evaluation sce-
narios. The runtimes are given in ms.

Planner Evaluation
The planner evaluation is subjected to the performance cri-
teria defined by the computation time needed for plan gener-
ation. With this evaluation it is intended to show that the in-
troduced heuristic is suitable for the graph search procedure
used by our algorithm. The evaluation setup consists of 1000
randomly generated pairs of start and goal positions. We
sampled the positions in the most complex scenario (Level
3). Since all three complexity levels build on each other (see
Figure 5(a-c)) we can guarantee to sample valid start and
goal positions in every scenario. Furthermore we provide
equal problems for every evaluation scenario which allows a
fair comparison.

In Table 1 the evaluation results of the previous evalua-
tion setup are illustrated. This table shows the median and
mean of the computation time. By examining these results
one can see that the planner is able to find plans in reason-
able time. Another observation shows that the assumed in-
creasing complexity of the evaluation scenarios does not af-
fect the performance dramatically. The medians of the indi-
vidual evaluations are approximately equal. Since good av-
erage performance on growing graphs is the nature of good
heuristics in heuristic search the observation is intended. As
a result we can claim that the chosen heuristic performs well
on our problem.

However these observations raises the need of harder
problems in order to quantify the worst case computation
of the planner. Considering harder problems difficulties for
the planning instance have to be identified. We assume that
paths through zones that can be reserved and additional traf-
fic region reservations will challenge the planner most. We
can force the paths to traverse such regions more likely by
increasing the Euclidean distance between starts and goals.
Region reservations are modeled with randomly generated
intervals represented by duration and start time. We define
two reservation models: (1) fluctuating reservations, (2) long
reservations. The first model creates reservations that do not
reserve regions continuously. Hence, the planner has to find
a path and schedule corresponding the interval set to find a
valid plan. This includes the computation of waiting times.
The second generates reservations which tend to start imme-
diately and last “long” which likely prohibits a robot to find
a valid time slot for the region quickly.

In Table 2 the median and average value of the computa-
tion times are visualized for four experiments in the scenario
of Level 3. This table compares the results of the previous
evaluation with the no reservations and the two new reserva-
tion models. As one can see the performance of the planner
applied on the new problems is actually worse than for the
primarily defined problem. Already the enlarged Euclidean

Level 3 Median Average
Prev. Evaluation 9.24 14.9
No Reservation 16.8 23.4
Fluctuating Reservation 21.21 29.2
Long Reservation 20.5 29.6

Table 2: Evaluation of a worst case scenario for the new
planning instance. The runtimes are given in ms.

Level Robots Original System New System
Median Avg. Median Avg.

Level 1
2 39.9 46.6 40.55 43.6
4 50.05 51.3 48.5 49.1
10 53.2 56.5 53.3 55.6

Level 2
2 50.2 59.8 50.8 54.8
4 55 61.1 56.6 60.5
10 62.5 67.8 55.6 62.7

Level 3
2 60.8 63.5 56.85 57.8
4 68.6 69.8 58.6 61.7
10 67.3 73.5 61.9 69.5

Table 3: System evaluation with random goal assignment.
Median and average goal execution time show a perfor-
mance increase of the new system. The execution time is
given in seconds.

distance increases the computation time due to longer paths.
The evaluation trials considering reservations between start
and goal are even worse. Furthermore it seems to be not rel-
evant for the worst case computation whether the planner
has to deal with (1) or (2). These observations indicate that
we can generate the worst case for our planning algorithm
by forcing the planner to investigate any region reservations
and to detour reserved traffic regions.

System Evaluation
The system evaluation aims on identifying the performance
increase of a multi-robot system with the new hierarchical
planner. Therefore the new system proposed in this paper
is compared with the original system used in the industrial
use case as a baseline. In comparison to the previous eval-
uation we focus here on the execution time te of transport
tasks of individual robots. This evaluation method consid-
ers fleets of different sizes (2, 4, 10 robots) performing 50
individual navigation tasks per robot. In a first method of
generating navigation tasks randomly sampled start and goal
positions from the scenarios are used. A navigation task is
given through a combination of two sampled positions. We
perform evaluations for all scenarios and the three different
sizes of robot fleets with the Original System and the New
System. In Table 3 the results of this evaluation are listed.

The table generally states a continuous increase of the
execution times with increasing complexity of the scenar-
ios. Furthermore the execution times rise with the number
of robots in a fleet. The former observation can be moti-
vated by the scenario topology. The more obstacles a sce-
nario consists of the more likely longer paths which have

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

62

2 Robots 4 Robots 10 Robots
0

50

100

150

200

System Evaluation: Goal Distribution

e
x
e

c
tu

ti
o

n
 t

im
e

 t
e
 [

s
]

New System

Original System

Figure 6: Visualization of a more realistic system evalua-
tion with different number of robots. Comparison of the ex-
ecution time (te) distributions of the New System and the
Original System. The asterisk (*) denotes the average value
(execution time per goal).

to detour obstacles are. The latter is basically due to the fact
that in multi-robot scenario the probability of colliding paths
increase with the number of robots in a fleet. However the
amount of time loss due to the path collision is obviously
depending on the evaluation setup. The data of the Original
System show in general higher execution times than the New
System. Hence this table states that the New System is actu-
ally increasing the performance, but the data shows that the
gain of performance is moderate.

For this reason we tried to generate a second setup which
favors the new hierarchical planner and is moreover closer
to a realistic scenario. Therefore we define a list of fixed
goal stations in the scenario. A navigation task is now given
by a combination of two stations out of a predefined set of
stations. These goals are randomly assigned to a robot. The
setup consists of 50 random goals drawn from this list. We
perform this evaluation only on scenario Level 3 but again
with different fleet sizes (2, 4, 10 robots). The results of this
evaluation are depicted in Figure 6.

This figure shows again the execution time per goal and
the distribution of the measured execution times via a box
plot. In this plot the performance gain of the New System is
even higher. This is of course the desired effect, since this
more realistic scenario provokes paths through allocatable
regions. These paths generate the need of reservations and a
high-level plan which considers paths of other robots too.

Furthermore we investigated also the throughput of the
system in this more realistic evaluation scenario. We define
the throughput as the completion time tc of the last robot
of all robots executing a set of navigation tasks. The data
distributions in Figure 7 show that even the throughput is
significantly increased by the New System.

7 Conclusion and Future Work
Fleets of transport robots in industrial settings can gain per-
formance in relation to safety and throughput by using zones
with traffic constraints in the environment. In this paper we
presented an hierarchical navigation system for a fleet of
robots that is able to consider such zones in planning. A key
contribution of this paper is a powerful graph-based repre-

2 Robots 4 Robots 10 Robots
0

20

40

60

80

100

120

140

160

180

System Evaluation: Goal Distribution Throughput

c
o

m
p

le
ti
o

n
 t

im
e

 t
A
 [

s
]

New System

Original System

Figure 7: Visualization of the completion time tA for the
evaluation trials of the all robots in fleet. The completion
time represents the execution time of the last finishing robot
which is a good indicator for the throughput.

sentation of the enriched environment that includes infor-
mation about the zones and can be automatically generated
from a given map using triangulation and manipulation of
polygons. Another contribution is the top-level planning sys-
tem based on the A* algorithm that uses the above represen-
tation and is able to integrate information about the tempo-
ral availability of zones by using an intelligent heuristic. The
proposed planning system has been implemented on top of
existing industrial transport robots. In an simulated evalua-
tion the system showed to be scalable and to provide plans in
reasonable time. Moreover, in a multi-robot setting the pro-
posed planner with a central resource management outper-
formed the existing system in terms of throughput. In future
work we like to extend the system in the direction of an im-
proved triangulation of the environment allowing smoother
path and a more intelligent zone allocation. Currently the
reservations are done on a first come first serve basis ignor-
ing completely the spatial and temporal constraints of the
transport orders.

References
Alami, R.; Robert, F.; Ingrand, F.; and Suzuki, S. 1995.
Multi-robot cooperation through incremental plan-merging.
In Robotics and Automation, 1995. Proceedings., 1995 IEEE
International Conference on, volume 3, 2573–2579. IEEE.
Choset, H. M. 2005. Principles of robot motion: theory,
algorithms, and implementation. MIT press.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. Systems Science and Cybernetics, IEEE Transactions
on 4(2):100–107.
Imlauer, S. 2016. A hierarchical navigation system for
groups of autonomous logistics robots in industrial environ-
ments. Master’s thesis, Faculty of Computer Science and
Biomedical Engineering, Graz University of Technology.
Kleiner, A.; Nebel, B.; et al. 2014. Behavior-based multi-
robot collision avoidance. In IEEE International Confer-
ence on Robotics and Automation (ICRA), 2014, 1668–
1673. IEEE.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

63

Kleiner, A.; Sun, D.; and Meyer-Delius, D. 2011. Armo:
Adaptive road map optimization for large robot teams. In
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2011, 3276–3282.
Marder-Eppstein, E.; Berger, E.; Foote, T.; Gerkey, B.; and
Konolige, K. 2010. The office marathon. IEEE International
Conference on Robotics and Automation (ICRA).
Nash, A.; Daniel, K.; Koenig, S.; and Felner, A. 2007.
Theta*: Any-Angle Path Planning on Grids. In Proceedings
of the National Conference on Artificial Intelligence, volume
22(2), 1177. Menlo Park, CA; Cambridge, MA; London;
AAAI Press; MIT Press; 1999.
Ryan, M. 2010. Constraint-based multi-robot path plan-
ning. In Robotics and Automation (ICRA), 2010 IEEE Inter-
national Conference on, 922–928. IEEE.
Siciliano, B., and Khatib, O. 2008. Handbook of robotics.
Springer Science & Business Media.
Wang, J., and Premvuti, S. 1995. Distributed traffic regula-
tion and control for multiple autonomous mobile robots op-
erating in discrete space. In IEEE International Conference
on Robotics and Automation, 1995. Proceedings., 1995, vol-
ume 2, 1619–1624. IEEE.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

64

1

 1

N

(a) Map of an example environment with traffic zones. (b) Graph of the roadmap overlaid with the initial map.

Figure 3: Illustration of the generated roadmap based on the triangulation of the environment. In green the triangulation of
the environment is shown Please note the safety margin to obstacles (gray). The graph shown in red representing the resulting
roadmap.

(a) Planner result trough an empty single robot zone. (b) Planner result considering a blocked single robot zone.

Figure 4: Resulting high-level plan for a start-goal combination in example environment. In (a) the high-level plan leads through
the empty single robot region. In (b) the high-level plan bypasses a blocked single robot region, since waiting in front of the
region would take longer than detouring the blocked region. Path connecting the waypoints (blue); corresponding local planning
window (cyan).

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

65

Efficient SAT Approach to Multi-Agent Path Finding under the Sum of Costs
Objective

Pavel Surynek
Charles University Prague
Malostranské náměstı́ 25

11800, Praha, Czech Republic
pavel.surynek@mff.cuni.cz

Ariel Felner and Roni Stern
Ben Gurion University

Beer-Sheva, Israel 84105
felner,sternron@bgu.ac.il

Eli Boyarski
Bar-Ilan University
Ramat-Gan, Israel

eli.boyarski@gmail.com

Abstract

In the multi-agent path finding (MAPF) the task is
to find non-conflicting paths for multiple agents. In
this paper we present the first SAT-solver for the sum-
of-costs variant of MAPF which was previously only
solved by search-based methods. Using both a lower
bound on the sum-of-costs and an upper bound on the
makespan, we are able to have a reasonable number of
variables in our SAT encoding. We then further improve
the encoding by borrowing ideas from ICTS, a search-
based solver. Experimental evaluation on several do-
mains shown that there are many scenarios where the
new SAT-based method outperforms the best variants
of previous sum-of-costs search solvers - the ICTS and
ICBS algorithms.

1 Introduction and Background
The multi-agent path finding (MAPF) problem consists

a graph, G = (V,E) and a set A = {a1, a2, . . . am} of
m agents. Time is discretized into time steps. The arrange-
ment of agents at time-step t is denoted as αt. Each agent
ai has a start position α0(ai) ∈ V and a goal position
α+(ai) ∈ V . At each time step an agent can either move
to an adjacent empty location1 or wait in its current loca-
tion. The task is to find a sequence of move/wait actions
for each agent ai, moving it from α0(ai) to α+(ai) such
that agents do not conflict, i.e., do not occupy the same lo-
cation at the same time. Formally, an MAPF instance is a
tuple Σ = (G = (V,E), A, α0, α+). A solution for Σ is a
sequence of arrangements S(Σ) = [α0, α1, ..., αµ] such that
αµ = α+ where αt+1 results from valid movements from αt
for t = 1, 2, ..., µ−1. An example of MAPF and its solution
are shown in Figure 1.

MAPF has practical applications in video games, traffic
control, robotics etc. (see Sharon et al. (2015) for a survey).
The scope of this paper is limited to the setting of fully coop-
erative agents that are centrally controlled. MAPF is usually
solved aiming to minimize one of the two commonly-used
global cumulative cost functions:

1Some variants of MAPF relax the empty location requirement
by allowing a chain of neighboring agents to move, given that the
head of the chain enters an empty locations. Most MAPF algo-
rithms are robust (or at least easily modified) across these variants.

5

1

9

2

6

10

3

7

4

8

11

12 13 14
a1

a2

a3

MAPF Σ=(G, {a1,a2,a3}, α0, α+)

(Σ)

a1

a2

a3

α0 α1 α2 α3 α4 α5= α+

14 11 8 7 6 6

4 4 4 4 8 7

12 9 5 1 2 3

Figure 1: Example of MAPF for agents a1, a2, and a3 over
a 4-connected grid (left) and its optimal solution (right)

(1) sum-of-costs (denoted ξ) is the summation, over all
agents, of the number of time steps required to reach the goal
location Dresner and Stone (2008); Standley (2010); Sharon
et al. (2013, 2015). Formally, ξ =

∑m
i=1 ξ(ai), where ξ(ai)

is an individual path cost of agent ai.
(2) makespan: (denoted µ) is the total time until the last
agent reaches its destination (i.e., the maximum of the indi-
vidual costs) Surynek (2010, 2014a, 2015).

It is important to note that in any solution S(Σ) it holds
that µ ≤ ξ ≤ m · µ Thus the optimal makespan is usually
smaller than the optimal sum-of-costs.

Finding optimal solutions for both variants is NP-Hard Yu
and LaValle (2013b); Surynek (2010). Therefore, many sub-
optimal solvers were developed and are usually used when
m is large Ryan (2010); Cohen, Uras, and Koenig (2015);
Silver (2005); Röger and Helmert (2012); Khorshid, Holte,
and Sturtevant (2011); Wang and Botea (2011)

1.1 Optimal MAPF Solvers
The focus of this paper is on optimal solvers which are di-
vided into two main classes:
(1) Reduction-based solvers. Many recent optimal solvers
reduce MAPF to known problems such as CSP Ryan (2010),
SAT Surynek (2012), Inductive Logic Programming Yu and
LaValle (2013a) and Answer Set Programming Erdem et al.
(2013). These papers mostly prove a polynomial-time reduc-
tion from MAPF to these problems. These reductions are
usually designed for the makespan variant of MAPF; they
are not applicable for the sum-of-costsvariant.
(2) Search-based solvers. By contrast, many recent opti-

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

66

u2

u1

u3

G=(V,E)
u0

1

u0
2

u0
3

u2
1

u2
2

u2
3

time step

0 1 2

u1
1

u1
2

u1
3

𝜇=3

Figure 2: An example of time expansion graph.

mal MAPF solvers are search-based. Some are variants of
the A* algorithm on a global search space – all different
ways to place m agents into V vertices, one agent per ver-
tex Standley (2010); Wagner and Choset (2015). Other em-
ploy novel search trees Sharon et al. (2013, 2015); Boyarski
et al. (2015). These search-based solvers are usually de-
signed for the sum-of-costs MAPF variant.

A major weaknesses is that connection/comparison be-
tween different algorithms was usually done only within a
given class of algorithms and cost variant but not across
these two classes.

1.2 Contributions
This paper aims to start and close the gap. Most of the
search-based algorithms can be easily modified to the
makespan variant by modifying the cost function and the
way the state-space is represented. Some initial directions
are given by Sharon et al. (2015). By contrast, the reduction-
based algorithms are not trivially modified to the sum-of-
costs variant and sometimes a completely new reduction is
needed.

In this paper we develop the first SAT-based solvers for
the sum-of-costs variant which is based on adding cardi-
nality constraints Bailleux and Boufkhad (2003); Silva and
Lynce (2007) for bounding the sum-of-costs. We show how
to use known lower bounds on the sum-of-costs to reduce the
number of variables that encode these cardinality constraints
so as to be practicle for current SAT solvers. We then present
an enhanced SAT-solver which adapts ideas from the ICTS
algorithm Sharon et al. (2013) and uses multi-value decision
diagrams (MDDs) Srinivasan et al. (1990) to further reduce
the encoding. Experimental results show that our SAT solver
outperforms the best existing search-based solvers for the
sum-of-costs variant on many scenarios.

2 SAT Encoding for Optimal Makespan
SAT solvers encompass boolean variables and answer bi-
nary questions. The challenge is to apply SAT for MAPF
where there is a cumulative cost function. This challenge is
stronger for the sum-of-costs variant where each agent has
its own cost. We first describe existing SAT encodings for
makespan. Then, we present our SAT encoding for sum-of-
costs.

A time expansion graph (denoted TEG) is a basic concept
used in SAT solvers for makespan Surynek (2014a). We use
it too in the sum-of-costs variant below. A TEG is a directed

acyclic graph (DAG). First, the set of vertices of the under-
laying graph G are duplicated for all time-steps from 0 up to
the given bound µ. Then, possible actions (move along edges
or wait) are represented as directed edges between succes-
sive time steps. Figure 2 shows a graph and its TEG for time
steps 0, 1 and 2 (vertical layouts). It is important to note that
in this example (1) horizonal edges in TEG correspond to
wait actions. (2) diagonal moves in TEG correspond to real
moves. Formally a TEG is defined as follows:
Definition 1. Time expansion graph of depth µ is a digraph
(V,E) where V = {utj |t = 0, 1, ..., µ ∧ uj ∈ V } and E ⊆
{(utj , u

t+1
k)|t = 0, 1, ..., µ− 1 ∧ ({uj , uk} ∈ E ∨ j = k)}.

The encoding for MAPF introduces propositional vari-
ables and constraints for a single time-step t in order to rep-
resent any possible arrangement of agents at time t. Given a
desired makespan µ, the formula represents the question of
whether there is a solution in the TEG of µ time steps. The
search for optimal makespan is done by iteratively incre-
menting µ (=0, 1, 2...) until a satisfiable formula is obtained.
This ensures optimality in case of a solvable MAPF instance.
More information on SAT encoding for the makespan vari-
ant can be found, e.g. in Surynek (2014a,b,c)

3 Basic-SAT for Optimal Sum-of-costs
The general scheme described above for finding optimal
makespan is to convert the optimization problem (finding
minimal makespan) to a sequence of decision problems (is
there a solution of a given makespan µ). We apply the same
scheme for finding optimal sum-of-costs, converting it to
a sequence of decision problems – is there a solution of a
given sum-of-costs ξ. However, encoding this decision prob-
lem is more challenging than the makespan case, because
one needs to both bound the sum-of-costs, but also to pre-
dict how many time expansions are needed. We address this
challenge by using two key techniques descried next: (1)
Cardinality constraint for bounding ξ and (2) Bounding the
Makespan.

3.1 Cardinality Constraint for Bounding ξ
The SAT literature offers a technique for encoding a cardi-
nality constraint Bailleux and Boufkhad (2003); Silva and
Lynce (2007), which allows calculating and bounding a nu-
meric cost within the formula. Formally, for a bound λ ∈ N
and a set of propositional variablesX = {x1, x2, ..., xk} the
cardinality constraint ≤λ {x1, x2, ..., xk} is satisfied iff the
number of variables from the set X that are set to TRUE is
≤ λ.

In our SAT encoding, we bound the sum-of-costs by map-
ping every agent’s action to a propositional variable, and
then encoding a cardinality constraint on these variables.
Thus, one can use the general structure of the makespan SAT
encoding (which iterates over possible makespans), and add
such a cardinality constraint on top. Next we address the
challenge of how to connect these two factors together.

3.2 Bounding the Makespan for the Sum of Costs
Next, we compute how many time expansions (µ) are needed
to guarantee that if a solution with sum-of-costs ξ exists then

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

67

Algorithm 1: SAT consult
1 MAPF-SAT(MAPF Σ = (G = (V,E), A, α0, α+))
2 µ0 = maxai∈A ξ0(ai) ;∆← 0
3 while Solution not found do
4 µ← µ0 + ∆;
5 for each agent ai do
6 build TEGi(µ);
7 end
8 Solution=Consult-SAT-SOLVER(Σ, µ,∆);
9 if Solution not found then

10 ∆++;
11 end
12 end
13 return (Solution);
14 end

it will be found. In other words, in our encoding, the values
we give to ξ and µ must fulfill the following requirement:
R1: all possible solutions with sum-of-costs ξ must be pos-
sible for a makespan of at most µ.

To find a µ value that meets R1, we require the follow-
ing definitions. Let ξ0(ai) be the shortest individual path for
agent ai, and let ξ0 =

∑
ai∈A ξ0(ai). ξ0 was called the sum

of individual costs (SIC) Sharon et al. (2013). ξ0 is an admis-
sible heuristic for optimal sum-of-costs search algorithms,
since ξ0 is a lower bound on the minimal sum-of-costs. ξ0
is calculated by relaxing the problem by omitting the other
agents. Similarly, we define µ0 = maxai∈A ξ0(ai). µ0 is
length of the longest of the shortest individual paths and is
thus a lower bound on the minimal makespan. Finally, let ∆
be the extra cost over SIC (as done in Sharon et al. (2013)).
That is, let ∆ = ξ − ξ0.
Proposition 1. For makespan µ of any solution with sum-
of-costs ξ, R1 holds for µ ≤ µ0 + ∆.

Proof outline: The worst-case scenario, in terms of
makespan, is that all the ∆ extra moves belong to a single
agent. Given this scenario, in the worst case, ∆ is assigned
to the agent with the largest shortest-path. Thus, the result-
ing path of that agent would be µ0 + ∆, as required. �

Using Proposition 1, we can safely encode the decision
problem of whether there is a solution with sum-of-costs ξ
by using µ = µ0 + ∆ time expansions, knowing that if a so-
lution of cost ξ exists then it will be found within µ = µ0+∆
time expansions. Algorithm 1 summarizes our optimal sum-
of-costs algorithm. In every iteration, µ is set to µ0+∆ (Line
4) and the relevant TEGs (described below) for the various
agents are built. Next a decision problem asking whether
there is a solution with sum-of-costs ξ and makespan µ is
queried (Line 8). The first iteration starts with ∆ = 0. If such
a solution exists, it is returned. Otherwise ξ is incremented
by one, ∆ and consequently µ are modified accordingly and
another iteration of SAT consulting is activated.

This algorithm clearly terminates for solvable MAPF in-
stances as we start seeking a solution of ξ = ξ0 (∆ = 0)
and increment ξ (and ∆) to all possible values. The un-
solvability of an MAPF instance can be checked separately
by a polynomial-time complete sub-optimal algorithm such

α+

α0

a1

MAPF Σ=(G, {a1}, α0, α+)

a1

TEG1 for 𝜇 = 4

a1

(V1,E1,F1)

u0
1

u0
2

u0
3

u3
1

u3
2

u3
3

Ei standard
Fi extra

edges

time step

0 1 2 3

u2
1

u2
2

u2
3

u1
1

u1
2

u1
3

u2

u1

u3

u2

u1

u3

Figure 3: A TEG for an agent that need to go from u1 to u3.

as PUSH-AND-ROTATE de Wilde, ter Mors, and Witteveen
(2014).

3.3 Efficient Use of the Cardinality Constraint
The complexity of encoding a cardinality constraint de-
pends linearly in the number of constrained variables Silva
and Lynce (2007); Sinz (2005). Since each agent ai must
move at least ξ0(ai), we can reduce the number of variables
counted by the cardinality constraint by only counting the
variables corresponding to extra movements over the first
ξ0(ai) movement ai makes. We implement this by introduc-
ing a TEG for a given agent ai (labeled TEGi).
TEGi differs from TEG (Definition 1) in that it distin-

guishes between two types of edges: Ei and Fi. Ei are (di-
rected) edges whose destination is at time step ≤ ξ0(ai).
These are called standard edges. Fi denoted by extra edges
are directed edges whose destination is at time step >
ξ0(ai). Figure 3 shows an underlying graph for agent a1

(left) and the corresponding TEG1. Note that the optimal
solution of cost 2 is denoted by the diagonal path of the
TEG. Edges that belong to Fi are those that their destina-
tion is time step 3 (dotted lines). The key in this definition is
that the cardinality constraint would only be applied to the
extra edges, that is, we will only bound the number of extra
edges (they sum up to ∆) making it more efficient.

3.4 Detailed Description of the SAT Encoding
Agent ai must go from its initial position to its goal within
TEGi. This simulates its location in time in the underly-
ing graphG. That is, the task is to find a path from α0

0(ai) to
αµ+(ai) in TEGi. The search for such a path will be encoded
within the Boolean formula. Additional constraints will be
added to capture all movement constraints such as collision
avoidance etc. And, of course, we will encode the cardinal-
ity constraint that the number of extra edges must be exactly
∆.

We want to ask whether a sum-of-costs solution of ξ exist.
For this we build TEGi for each agent ai ∈ A of depth µ0 +
∆. We use Vi to denote the set of vertices in TEGi that agent
ai might occupy during the time steps. Next we introduce
the Boolean encoding (denoted BASIC-SAT)which has the
following Boolean variables:
1:) X tj (ai) for every t ∈ {0, 1, ..., µ} and utj ∈ Vi – Boolean
variable of whether agent ai is in vertex vj at time step t.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

68

2:) Etj,k(ai) for every t ∈ {0, 1, ..., µ− 1} and (utj , u
t+1
k) ∈

(Ei∪i) — Boolean variables that model transition of agent
ai from vertex vj to vertex vk through any edge (standard or
extra) between time steps t and t+ 1 respectively.
3:) Ct(ai) for every t ∈ {0, 1, ..., µ−1} such that there exist
utj ∈ Vi and ut+1

k ∈ Vi with (utj , u
t+1
k) ∈ Fi — Boolean

variables that model cost of movements along extra edges
(from Fi) between time steps t and t+ 1.

We now introduce constraints on these variables to restrict
illegal values as defined by our variant of MAPF. Other vari-
ants may use a slightly different encoding but the principle
is the same. Let Tµ = {0, 1, ..., µ − 1}. Several groups of
constraints are introduced for each agent ai ∈ A as follows:
C1: If an agent appears in a vertex at a given time step, then
it must follow through exactly one adjacent edge into the
next time step. This is encoded by the following two con-
straints, which are posted for every t ∈ Tµ and utj ∈ Vi

X tj (ai)⇒
∨

(ut
j ,u

t+1
k)∈Ei∪Fi

Etj,k(ai) (1)

∧
(ut

j ,u
t+1
k),(ut

j ,u
t+1
l)∈Ei∪Fi∧k<l

¬Etj,k(ai) ∨ ¬Etj,l(ai) (2)

C2: Whenever an agent occupies an edge it must also enter
it before and leave it at the next time-step. This is ensured
by the following constraint introduced for every t ∈ Tµ and
(utj , u

t+1
k) ∈ Ei ∪ Fi:

Etj,k(ai)⇒ X tj (ai) ∧ X t+1
k (ai) (3)

C3: The target vertex of any movement except wait action
must be empty. This is ensured by the following constraint
introduced for every t ∈ Tµ and (utj , u

t+1
k) ∈ Ei ∪ Fi such

that j 6= k.

Etj,k(ai)⇒
∧

al∈A∧al 6=ai∧ut
j∈Vl

¬X tj (al) (4)

C4: No two agents can appear in the same vertex at the same
time step. That is the following constraint is added for every
t ∈ Tµ and pair of of agents ai, al ∈ A such that i 6= l:∧

ut
j∈Vi∩Vl

¬X tj (ai) ∨ ¬X tj (al) (5)

C5: Whenever an extra edge is traversed the cost needs to be
accumulated. In fact, this is the only cost that we accumulate
as discussed above. This is done by the following constraint
for every t ∈ Tµ and extra edge (utj , u

t+1
k) ∈ Fi.

Etj,k(ai)⇒ Ct(ai) (6)

C6: Cardinality constraint. Finally the bound on the total
cost needs to be introduced. Reaching the sum-of-costs of
ξ corresponds to traversing exactly ∆ extra edges from Fi.
The following cardinality constrains ensures this:

≤∆

{ Ct(ai)|i = 1, 2, ..., n ∧ t = 0, 1, ..., µ− 1
∧{(utj , u

t+1
k) ∈ Fi} 6= ∅

}
(7)

Final formula. The resulting Boolean formula that is a con-
junction of C1 . . . C6 will be denoted as FBASIC(Σ, µ,∆)
and is the one that is consulted by Algorithm 1 (line 4).

The following proposition summarizes the correctness of
our encoding.
Proposition 2. MAPF Σ = (G = (V,E), A, α0, α+) has a
sum-of-costs solution of ξ if and only if FBASIC(Σ, µ,∆) is
satisfiable. Moreover, a solution of MAPF Σ with the sum-
of-costs of ξ can be extracted from the satisfying valuation
of FBASIC(Σ, µ,∆) by reading its X tj (ai) variables.
Proof: The direct consequence of the above definitions is
that a valid solution of a given MAPF Σ corresponds to
non-conflicting paths in the TEGs of the individual agents.
These non-conflicting paths further correspond to satisfying
the variable assignment of FBASIC(Σ, µ,∆), i.e., that there
are ∆ extra edges in TEGs of depth µ = µ0 + ∆. �

Proposition 3. Let D be the maximal degree of any vertex
in G and let m be the number of agents. If m · |E| ≥ ∆ and
m ≥ D then the number of clauses in FBASIC(Σ, µ,∆) is
O(µ·m2 ·|E|), and the number of variables isO(µ·|E|·m).
Proof: The components ofFBASIC(Σ, µ,∆) is described in
equations 1– 7. Equation 1 introduces at most O(m ·µ · |E|)
clauses. Equation 2 introduces at most O(m · µ|E| · D)
clauses. Equation 3 introduces at mostO(m·µ·|E|) clauses.
Equation 4 introduces at most O(m2 · µ · |E|) Equation 5
introduces at most O(m2 ·µ · |V |) clauses. Equation 6 intro-
duces at most O(m · µ · |E|) clauses. Equation 7 introduces
at most O(m · µ · (ξ − ξ0)) clauses, since a cardinality con-
straint checking that n variables has a cardinality constraint
ofm requiresO(n·m) clauses Sinz (2005). Summing all the
above results in a total ofO(µ·m·(|E|·(D+m)+(ξ−ξ0))).
If we assume that m > D and that m · |E| > (ξ − ξ0) then
the number of clauses is O(µ · m2 · |E|). The number of
variables is easily computed in a similar way. �

4 Improving Basic SAT by Adding MDDs
A major parameter that affects the speed of solving of
Boolean formulae is their size Petke (2015). The size of for-
mulae in the BASIC-SAT encoding is affected mostly by the
size of the TEGs (this is embodied in the |E| factor in the
encoding size). To obtain a significant speedup we reduce
the size of TEGi for agent ai in terms of number of vertices
while the soundness of encoding is preserved.

Let TEGµi denote TEGi for µ time expansions. We set
µ = µ0 + ∆ in our solution. The data structure we use for
reducing TEGµi is a multi-value Decision Diagram (MDD).
MDDs were already used in the search-based MAPF algo-
rithm ICTS Sharon et al. (2013). In our context,MDDµ

i is a
digraph that represents all possible valid paths from α0(ai)
to α+(ai) of cost µ for agent ai.MDDµ

i has a single source
node at level 0 and a single sink node at level µ. Every node
at depth t ofMDDµ

i corresponds to a possible location of ai
at time t, that is on a path of cost µ from α0(ai) to α+(ai).
It is easy to see that MDDµ

i is subgraph of TEGi. While
TEGµi includes all vertices of G at each time step, MDDµ

i
includes only those vertices and edges that represent pos-
sible valid paths, and thus vertices not in MDDµ

i can be
ignored.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

69

0

0,2

0,4

0,6

0,8

1

1,2

1 3 5 7 9 11 13 15 17 19
Number of agents

Success rate
Grid 8x8 | 10% obstacles

MDD-SAT

ICBS

EPEA

ICTS

BASIC-SAT

0,0001

0,001

0,01

0,1

1

1 2 3 4 5 6 7 8

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Number of agents

Average Runtime
Grid 8x8 | 10% obstacles

0

20

40

60

80

100

120

140

160

180

0,1 1 10 100

N
u

m
b

er
 o

f
in

st
an

ce
s

Runtime (seconds)

Solved instances
Grid 16x16|10% obstacles

0

50

100

150

200

250

300

350

0,1 1 10 100

N
u

m
b

er
 o

f
in

st
an

ce
s

Runtime (seconds)

Solved instances
Grid 32x32 | 10% obstacles

MDD-SAT
ICBS
EPEA
ICTS
BASIC-SAT

Figure 5: Results on 8× 8 grid (left). Number of solved instances in the given runtime on 16× 16 and 32× 32 grids. (right)

14

11 8 7
a1 a1 : (V1,E1,F1)

6

6

4

3

7 7 7

7

8

a2

12
9

5 1 2

3
10 6

7

a3

a2 : (V2,E2,F2)

a3 : (V3,E3,F3)

Sum of costs 𝜉 ≤ 11, makespan 𝜇 = 5

time step 0 1 2 3 4 5

u0
12 u5

3

u0
4

u0
14 u5

6

u5
7

Figure 4: MDDs for agents a1, a2, and a3 for the MAPF
from Figure 1 for sum of individual cost ξ ≤ 11

Moreover, the maximum cost that can be consumed
by single agent ai under given sum-of-costs bound ξ is
ξ0(ai) + ∆ where, as defined above, ξ0(ai) is the short-
est path connecting α0(ai) with α+(ai) in G (assuming no
other agent exist). Thus, it is sufficient to replace TEGµi
with MDD

ξ0(ai)+∆
i , which is useful since ξ0(ai) + ∆ ≤

µ0 + ∆ = µ.

MDDs for the agents of Figure 1 are shown in Figure 4.
Indeed, the size of the MDDs is much smaller than the cor-
responding TEGs which include all states for all time steps.

The encoding that uses MDD-based time expansion will
be called MDD-SAT and the corresponding formulae will be
denoted as FMDD(Σ, µ,∆). FMDD(Σ, µ,∆) are similar to
BASIC-SAT. The only different is that in BASIC-SAT there
is a variable for all vertices and edges of the TEGs while
in MDD-SAT, only variables for the vertices and edges of
the MDDs are needed. This difference can be significant.
Table 1 presents the number of propositional variables and
clauses accumulated over all the constructed formulae for a
given MAPF instance for BASIC-SAT and for MDD-SAT
over 8× 8 grid with 10% obstacles. The average values out
of 10 random instances per number of agents is shown. Up
to two orders of magnitude reduction is shown.

5 Experimental Evaluation
We experimented on 4-connected grids with randomly

placed obstacles Silver (2005); Standley (2010) and on
Dragon Age maps Sturtevant (2012). Both settings are a
standard MAPF benchmarks. The initial position of the
agents was randomly selected. To ensure solvability the goal
positions were selected by performing a long random walk
from the initial arrangement.

We compared our SAT solvers to several state-of-the-art
search-based algorithms: the increasing cost tree search -
ICTS Sharon et al. (2013), Enhanced Partial Expansion A*
- EPEA* Goldenberg et al. (2014) and improved conflict-
based search - ICBS Boyarski et al. (2015). For all the
search algorithms we used the best known setup of their pa-
rameters and enhancements suitable for solving the given
instances.

The SAT approaches were implemented in C++ using
Glucose 3.0 Audemard and Simon (2009); Audemard,
Lagniez, and Simon (2013); a top performing SAT solver
in the SAT Competition Järvisalo et al. (2012); Surynek
(2014a). The cardinality constraint was encoded using a
simple standard circuit based encoding called sequential
counter Sinz (2005). ICTS and ICBS were implemented in
C#, based on their original implementation. All experiments
were performed on a Xeon 2Ghz, and on Phenom II 3.6Ghz,
both with 12 Gb of memory.

5.1 Square Grid Experiments
We first experimented on 8× 8, 16× 16, and 32× 32 grids
with 10% obstacles while varying the number of agents from
1 to 20. Figure 5 presents results over 10 instances where
each algorithm was given a time limit of 300 seconds. The
leftmost plot shows the success rate (=precantage of in-
stances solved within the time limit) as a function of the
number of agents. The next plot reports the average runtime
for instances that were solved by all algorithms. The right
plots visualize the results on 16 × 16 and 32 × 32 grids but

Grid 8x8
m

BASIC-SAT MDD-SAT
Variables Clauses Variables Clauses

1
4
8

16

1 552.8 11 617.6 20.6 27.9

14 712.0 127 732.2 276.5 554.0

226 391.2 2 099 127.6 18 355.6 68 826.0

4 075 187.2 32 108 347.2 2 253 508.2 13 128 646.9

Table 1: The number of variables and clauses

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

70

0

50

100

150

200

250

0,1 1 10 100

N
u

m
b

er
 o

f
in

st
an

ce
s

Runtime (seconds)

Solved instances
Ost003d|16 agents

ICTS

ICBS

MDD-SAT

0

50

100

150

200

250

0,1 1 10 100

N
u

m
b

er
 o

f
in

st
an

ce
s

Runtime (seconds)

Solved instances
Ost003d|32 agents

ICTS

ICBS

MDD-SAT

0

50

100

150

200

250

0,1 1 10 100

N
u

m
b

er
 o

f
in

st
an

ce
s

Runtime (seconds)

Solved instances
Den520d|32 agents

ICTS

ICBS

MDD-SAT

0

50

100

150

200

250

300

0,1 1 10 100

N
u

m
b

er
 o

f
in

st
an

ce
s

Runtime (seconds)

Solved instances
Brc202d|32 agents

ICTS

ICBS

MDD-SAT

Figure 6: The number of solved instances in the given runtime on Dragon Age maps for 16 and 32 agents.

0

0,2

0,4

0,6

0,8

1

1,2

0 2 4 6 8 10 12 14 16 18 20 22 24
Number of obstacles

Success rate
Grid 8x8 | 10 agents

EPEA
ICTS
ICBS
MDD-SAT

0

50

100

150

200

250

0,1 1 10 100

N
u

m
b

er
 o

f
in

st
an

ce
s

Runtime (seconds)

Solved instances
Grid 8x8|10 agents

Figure 7: Success rate and runtime on the 8 × 8 grid with
increasing number of obstacles (out of 64 cells).

in a different way. Here, we present the number of instances
(out of all 200 instances for all number of agents) that each
method solved (y-axis) as a function of the elapsed time (x-
axis).

The first clear trend is that MDD-SAT significantly out-
performs BASIC-SAT in all aspects. This shows the impor-
tance of developing efficient SAT encodings for this prob-
lem. In addition, a prominent trend observed in all the plots
is that MDD-SAT has higher success rate and solves more
instances than all other algorithms. In some cases, however,
where the available runtime is very small, MDD-SAT is out-
performed by the search-based algorithms.

For the rest of our experiments, we only evaluated the
most efficient algorithms, namely, MDD-SAT, ICTS, and
ICBS.

Next, we varied the number of obstacles for the 8 × 8
grid with 10 agents. Results are shown in Figure 7. Clearly
MDD-SAT can solve more instances over all settings. MDD-
SAT was always faster except for some easy instances where
ICBS was slightly faster. Interestingly, increasing the num-
ber of obstacles reduces the number of open cells. This is an
advantage for the SAT solver as the SAT formula has less
variables. By contrast, for the search-based solvers, adding
obstacles means that the graphs gets denser and harder to
solve.

5.2 Results on the Dragon Age Maps
Next, we experimented on three Dragon-Age maps
(ost003d, den520d, and brc202d) commonly used as
testbeds. In these maps there is a large number of open cells
but the graph is sparse with agents. This gives a clear ad-

vantage to the search-based solvers. To obtain instances of
various difficulties we varied the distance between start and
goal locations. 10 random instances were generated for each
distance in the range: {8, 16, 24, . . . , 200}. The results are
shown in Figure 6 (the number of instances solved as the
function of time).

In the Dragon-Age setting there is no universal win-
ner. Each algorithm was the best for some of the instances
(especially in case of ost003d). When limited time is al-
lowed ICTS or ICBS are better. However, given enough time
MDD-SAT catches up and even outperforms the other algo-
rithms. This was evident in all these experiments except for
ost003d with 32 agents. Concrete runtimes for 10 instances
of ost003d are given in Table 2. MDD-SAT solves the hard-
est instance (#1) while other solvers ran out of time. The
right part of the table illustrates the cumulative size of the
formulae generated during the solving process. Although the
map is much larger than the square grids, the size of for-
mulae is comparable to the densely occupied grid (see Fig-
ure 1). This is because ξ0 is a good lower bound of the opti-
mal cost in the sparse maps.

The entire set of experiments show a clear trend. When
a small amount of time is given the search-based algorithm
may be faster. But, given enough time MDD-SAT is the cor-
rect choice, even in the large maps where it has an initial
disadvantage. One of the reasons for this is modern SAT
solvers have the ability to learn and improve their speed
during the process of answering a SAT question. But, this
learning needs sufficient time and large search trees to be
effective. By contrast, search algorithms do not have this ad-
vantage.

6 Summary and Conclusions
We introduced the first state-of-the-art SAT-based solver

for the sum-of-costs variant of MAPF. The resulting encod-
ing, called MDD-SAT, was shown to be competitive in com-
parison with the state-of-the-art search-based solvers over a
variety of domains. Nevertheless, as previous authors men-
tioned Sharon et al. (2015); Boyarski et al. (2015) there is
no universal winner and each of the approaches has pros and
cons and worsk best in different circumstances. This calls
for a deeper study of various classes of MAPF instances and
their characteristics.

There are several factors behind the performance of the
SAT-based approach: clause learning, constraint propaga-
tion, good implementation of the SAT solver. On the other

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

71

hand, the SAT solver doesn’t understand the structure of the
encoded problem which may downgrade the performance.
Hence, we consider that implementing techniques such as
learning directly into the dedicated MAPF solver may be a
future direction.

MAPF
Ost003d (seconds)

16 agents, distance=168
MDD-SAT ICBS ICTS

1 101.4 N/A N/A
2 12.8 9.7 2.4
3 13.2 4.4 2.4
4 3.8 0.6 1.2
5 13.5 9.6 3.2
6 22.7 10.7 N/A
7 N/A N/A N/A
8 36.9 49.6 2.5
9 12.0 2.6 1.4

10 N/A N/A N/A

m

Distance

MDD-SAT, 16 agents

Variables Clauses

8 758.0 1 169.7
64 34 648.7 120 961.1

128 932 440.9 9 128 568.8

m

Distance

MDD-SAT, 32 agents

Variables Clauses

8 2 377.6 3 751.3
64 571 915.1 3 672 249.3

128 5 163 157.0 49 201 960.0

Table 2: Runtime for 10 instances (left) and the average size
of the MDD-SAT formulae for ost003d (right)

References
Audemard, G., and Simon, L. 2009. Predicting learnt clauses qual-

ity in modern SAT solvers. In IJCAI, 399–404.

Audemard, G.; Lagniez, J.; and Simon, L. 2013. Improving glucose
for incremental SAT solving with assumptions: Application to
MUS extraction. In Theory and Applications of Satisfiability
Testing - SAT 2013, 309–317.

Bailleux, O., and Boufkhad, Y. 2003. Efficient CNF encoding of
boolean cardinality constraints. In CP, 108–122.

Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Tolpin, D.; Betza-
lel, O.; and Shimony, S. 2015. ICBS: improved conflict-based
search algorithm for multi-agent pathfinding. In IJCAI, 740–
746.

Cohen, L.; Uras, T.; and Koenig, S. 2015. Feasibility study: Using
highways for bounded-suboptimal mapf. In SOCS, 2–8.

de Wilde, B.; ter Mors, A.; and Witteveen, C. 2014. Push and
rotate: a complete multi-agent pathfinding algorithm. JAIR
51:443–492.

Dresner, K., and Stone, P. 2008. A multiagent approach to au-
tonomous intersection management. JAIR 31:591–656.

Erdem, E.; Kisa, D. G.; Oztok, U.; and Schueller, P. 2013. A gen-
eral formal framework for pathfinding problems with multiple
agents. In AAAI.

Goldenberg, M.; Felner, A.; Stern, R.; Sharon, G.; Sturtevant, N.;
Holte, R.; and Schaeffer, J. 2014. Enhanced partial expansion
A*. JAIR 50:141–187.

Järvisalo, M.; Berre, D. L.; Roussel, O.; and Simon, L. 2012. The
international SAT solver competitions. AI Magazine 33(1).

Khorshid, M. M.; Holte, R. C.; and Sturtevant, N. R. 2011.
A polynomial-time algorithm for non-optimal multi-agent
pathfinding. In Symposium on Combinatorial Search (SOCS).

Petke, J. 2015. Bridging Constraint Satisfaction and Boolean Sat-
isfiability. Artificial Intelligence: Foundations, Theory, and Al-
gorithms. Springer.

Röger, G., and Helmert, M. 2012. Non-optimal multi-agent
pathfinding is solved (since 1984). In SOCS).

Ryan, M. 2010. Constraint-based multi-robot path planning. In
ICRA, 922–928.

Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2013. The
increasing cost tree search for optimal multi-agent pathfinding.
Artificial Intelligence 195:470–495.

Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding. Artif.
Intell. 219:40–66.

Silva, J., and Lynce, I. 2007. Towards robust CNF encodings of
cardinality constraints. In CP, 483–497.

Silver, D. 2005. Cooperative pathfinding. In AIIDE, 117–122.

Sinz, C. 2005. Towards an optimal CNF encoding of boolean
cardinality constraints. In CP, 827–831.

Srinivasan, A.; Ham, T.; Malik, S.; and Brayton, R. 1990. Algo-
rithms for discrete function manipulation. In (ICCAD, 92–95.

Standley, T. 2010. Finding optimal solutions to cooperative
pathfinding problems. In AAAI, 173–178.

Sturtevant, N. R. 2012. Benchmarks for grid-based pathfinding.
Computational Intelligence and AI in Games 4(2):144–148.

Surynek, P. 2010. An optimization variant of multi-robot path
planning is intractable. In AAAI.

Surynek, P. 2012. Towards optimal cooperative path planning in
hard setups through satisfiability solving. In PRICAI. 564–576.

Surynek, P. 2014a. Compact representations of cooperative path-
finding as SAT based on matchings in bipartite graphs. In ICTAI,
875–882.

Surynek, P. 2014b. A simple approach to solving cooperative path-
finding as propositional satisfiability works well. In PRICAI,
827–833.

Surynek, P. 2014c. Simple direct propositional encoding of coop-
erative path finding simplified yet more. In MICAI, 410–425.

Surynek, P. 2015. Reduced time-expansion graphs and goal de-
composition for solving cooperative path finding sub-optimally.
In IJCAI, 1916–1922.

Wagner, G., and Choset, H. 2015. Subdimensional expansion for
multirobot path planning. Artif. Intell. 219:1–24.

Wang, K., and Botea, A. 2011. MAPP: a scalable multi-agent path
planning algorithm with tractability and completeness guaran-
tees. JAIR) 42:55–90.

Yu, J., and LaValle, S. 2013a. Planning optimal paths for multiple
robots on graphs. In ICRA, 3612–3617.

Yu, J., and LaValle, S. M. 2013b. Structure and intractability of
optimal multi-robot path planning on graphs. In AAAI.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

72

Automated Verification of Social Law Robustness in STRIPS

Erez Karpas and Alexander Shleyfman and Moshe Tennenholtz
Faculty of Industrial Engineering and Management

Technion — Israel Institute of Technology

Abstract
Agents operating in a multi-agent system must con-
sider not just their own actions, but also those of
the other agents in the system. Artificial social sys-
tems are a well known means for coordinating a set
of agents, without requiring centralized planning or
online negotiation between agents. Artificial social
systems enact a social law which restricts the agents
from performing some actions under some circum-
stances. A good social law prevents the agents from
interfering with each other, but does not prevent
them from achieving their goals. However, design-
ing good social laws, or even checking whether a
proposed social law is good, are hard questions. In
this paper, we take a first step towards automating
these processes, by formulating criteria for good
social laws in a multi-agent planning framework.
We then describe an automated technique for veri-
fying if a proposed social law meets these criteria,
which is based on a compilation to classical plan-
ning.

1 Introduction
The design of an agent which is about to operate in a multi-
agent environment is quite different from the design of an
agent which performs his activities in isolation from other
agents. Typically, a plan that would have allowed an agent
to obtain his goals had he operated in isolation might yield
unexpected results as a consequence of other agents’ activ-
ities. Various approaches to multi-agent coordination have
been considered in the literature. We could, for instance, sub-
ordinate the agents to a central controller. This approach
may be useful in various domains but might suffer from
well-known limitations, such as bottlenecks at the central
site or sensitivity to failure. Another approach is to design
rules of encounter, that is, rules which determine the be-
havior of the agent, and in particular the structure of nego-
tiation, when his activities interfere with those of another
agent. Rules of encounter may be quite useful for conflict
resolution, but might sometimes be inefficient, requiring re-
peated negotiations to solve on-line conflicts. In this paper we
consider a canonical intermediate approach to coordination,
referred to as artificial social systems [Tennenholtz, 1991;

Shoham and Tennenholtz, 1992a; 1992b; 1995; Moses and
Tennenholtz, 1995].

An artificial social system institutes a social law that the
agents shall obey. Intuitively, a social law restricts, off-line,
the actions legally available to the agents, and thus minimizes
the chances of an on-line conflict, and the need to negotiate.
Similarly to a code of laws in a human society [Rousseau,
1762], an artificial social law regulates the individual behav-
ior of the agents and benefits the community as a whole. Yet,
the agents should still be able to achieve their goals, and re-
stricting their legal actions to a too wide extent might leave
them with no possible way to do so.

Consider for instance a domain consisting of roads on
which our agents travel. These roads cross one another at
junctions where total freedom on the side of the agents makes
an accident a likely event. In order to guarantee accident-free
traffic we could set a law that allows an agent to enter an
intersection only if the crossing road is free. This law cer-
tainly prevents accidents, but restricts the agents too much.
Although we have guaranteed an accident-free environment,
we have also introduced the possibility of a deadlock: when
two agents reach the intersection via crossing roads, they
might find themselves waiting indefinitely for the crossing
road to get free before initiating their move. This example
illustrates the fact that we must be careful in designing social
laws: Only useful social laws, i.e laws which guarantee that
each agent achieves his goals, are to be considered. In the
example above, the law could be modified to give one direc-
tion the right-of-way, obliging cars coming from the crossing
direction to yield.

The artificial social systems approach has become a canon-
ical approach to the design of multi-agent systems [Wool-
ridge, 2001; Shoham and Leyton-Brown, 2008; Horling and
Lesser, 2004; d’Inverno and Luck, 2004; Klusch, 1999].
However, while the origins of the artificial social systems
approach arise from a knowledge representation and plan-
ning perspective, and early work by the founders of that ap-
proach had advocated the use of planning paradigms, such
as STRIPS-like presentations for multi-agent planning [Ten-
nenholtz and Moses, 1989], the connection between artificial
social systems to modern planning techniques has not been
crystallized or exploited. The aim of our current line of re-
search is to re-visit the artificial social systems approach in
view of progress made in planning. Specifically, the contri-

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

73

butions of this paper are threefold: First, we describe a for-
malism for representing and reasoning over social laws in a
multi-agent planning framework. Second, we describe some
robustness criteria we believe good social laws should sat-
isfy. Third, we describe an algorithm for verifying if a given
social law meets these criteria, which is based on a compila-
tion to classical planning. An empirical evaluation shows this
approach scales up very well.

2 Preliminaries
We consider multi-agent planning settings formulated in (a
variation of) MA-STRIPS [Brafman and Domshlak, 2008].
Our focus in this paper is on problems which do not require
cooperation, but do require coordination, and thus we modify
MA-STRIPS to include a goal for each agent, rather than an
overall goal. A multi-agent planning setting is defined by
a tuple Π = 〈F, {Ai}ni=1, I, {Gi}ni=1〉, where: F is a set
of facts, I ⊆ F is the initial state, Gi ⊆ F is the goal of
agent i, and Ai is the set of actions of agent i. Each action
a ∈ Ai is described by preconditions pre(a) ⊆ F , add ef-
fects add(a) ⊆ F , and delete effects del(a) ⊆ F . The result
of applying action a in state s is (s \ del(a)) ∪ add(a).

The projection of Π for agent i is the (single agent)
STRIPS [Fikes and Nilsson, 1971] planning problem Πi =
〈F,Ai, I, Gi〉. A sequence of actions πi is a solution for Πi

if applying the actions in πi from state I results in a state s
that satisfies the goal, that is, a state such that Gi ⊆ s. In
the execution model we consider here, each agent attempts
to follow its own plan πi. The plans interact with each other
through a scheduler, which determines which agent acts next.
We do not make any assumptions about the fairness of the
scheduler, and in fact, consider it to be adversarial.

3 Encoding Social Laws
We have described our multi-agent setting, but we have yet
to describe how we represent social laws in this setting. To
begin with, we will represent social laws as modifications to
a MA-STRIPS problem. That is, a social law l takes an input
MA-STRIPS problem Π, modifies it, and outputs a new MA-
STRIPS problem Πl. Such a social law can be described by:

1. The facts it adds or removes,

2. The actions it adds or removes,

3. The preconditions, add effects, or delete effects it adds
or removes from each existing action,

4. The facts it adds or removes from the initial state

5. The facts it adds or removes from each agent’s goal, and

6. The action preconditions which are denoted as waitfor
preconditions

The first 5 items above are simply syntactic modifications
of an MA-STRIPS setting. For example, the social law which
says that everyone must drive on the right side of the road can
be encoded by removing all actions which drive to the left
side of the road.

The waitfor precondition annotations, however, require
some explanation. Waiting is one of the most basic forms

of coordination, and can eliminate some failures. For exam-
ple, waiting for an intersection to be clear before entering it
eliminates the possibility of collision. However, waiting also
introduces the possibility of a deadlock — if our social law
states that to enter the intersection we wait until there are no
cars to the right, then a deadlock occurs when there are four
cars on the four sides of the intersection, as illustrated in Fig-
ure 2(c).

The semantics of executing an action with a waitfor pre-
condition in our model is as follows: When an agent invokes
an action a with a waitfor precondition p in state s, the sched-
uler will only execute the action if p holds in s. We will de-
note the waitfor preconditions of action a by prew(a) and the
other preconditions of a by pref (a). Then the scheduler can
only choose to execute an action a whose waitfor precondi-
tions hold in the current state s, that is prew(a) ⊆ s. If all
agents are currently either waiting for some precondition or
finished (that is, have already achieved their goal), then the
system is in a deadlock.

We conclude this section with a brief discussion of when
it does or does not make sense to wait for some precondi-
tion of an action. One of the original motivations for social
laws comes from robotics, and in the real world, robots can
not sense everything. Thus, it only makes sense to wait for
something the agent can sense, as otherwise there is no way
to implement the action on a robot. This is a subtle point with
the assumptions underlying classical planning: assuming the
actions are deterministic, do we sense at every state, or only
at the initial state? For classical planning, the answer is ir-
relevant, but when there are multiple agents operating in the
world, the answer is very important. waitfor precondition an-
notations answer this question by stating that we sense before
we start executing an action.

Secondly, it does not make sense to wait for a precondi-
tion which the agent can achieve by itself — a private fact
in multi-agent planning terms. This would automatically re-
sult in an agent entering a deadlock by itself. For example,
consider the action move(A,X, Y) which has a precondition
at(A,X), which the agent waits for. Unless some other agent
can move A to X , and has a good reason to do so, A will be
stuck waiting for itself to move to X .

4 Properties of Social Laws
Now that we have formalized the setting in which we con-
sider social laws, we describe what are the criteria that define
a good social law. We consider two different criteria for so-
cial laws, which we call rational and adversarial robustness.
In rational robustness, we assume all agents are rational and
want to achieve their goal, and ask whether there is any pos-
sible way for them to interfere with each other. In adversarial
robustness, we assume all agents except for one specific agent
(say agent i) are adversarial, and only want to prevent agent
i from achieving its goal, without regard for achieving their
own goal later.

These criteria are formally stated in the following defini-
tion:

Definition 1. A social law l for multi agent setting Π =
〈F, {Ai}ni=1, I, {Gi}ni=1〉 is robust to:

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

74

rational iff for all agents i = 1 . . . n, for all individual so-
lutions πi for Πi, for all possible action sequences π re-
sulting from any arbitrary interleaving of {πi}ni=1 which
respects waitfor preconditions, π achievesG1∪. . .∪Gn.

adversarial against i iff for all individual solutions πi for
Πi, for all possible action sequences π resulting from
an arbitrary interleaving of πi which respects waitfor
preconditions with any valid action sequence of all other
agents, π achieves Gi.

adversarial iff it is robust to adversarial against i for all i =
1 . . . n.

It is easy to see that if a social law is robust to adversarial,
then it is also robust to rational. Conversely, we show that
the verification problem for adversarial robustness VERIFY-
ADVERSARIAL is reducible to the verification problem for
rational robustness VERIFY-RATIONAL.

Theorem 1.
VERIFY-RATIONAL ≥p VERIFY-ADVERSARIAL.

Proof. Given a multi-agent setting Π and a social law l, we
want to solve VERIFY-ADVERSARIAL(Πl). From Definition
1, this is equivalent to verifying that Πl is robust to adversar-
ial against i for all i = 1 . . . n. To verify that Πl is robust to
adversarial against a given i, we will construct a 2-agent set-
ting Π′ and a social law l, such that Π

′l is robust to rational
iff Πl is robust to adversarial against i.

The facts and the initial state in Π′ are the same facts as in
Π: F and I , respectively. The first agent in Π′ is agent i from
Π, and its actions and goal are the same as in Π: Ai and Gi,
respectively. The second agent in Π′ is a single virtual agent,
which controls all agents in Π except for i, that is, its action
set is

⋃
j 6=iAj . The goal of this agent is always true (>), that

is, it can achieve its goal whenever it wants. The social law l
is the same, except for the required modifications introduced
by renaming the agents.

To see that Π
′l is robust to rational iff Πl is robust to adver-

sarial against i, note that for any solution πi for Πi, and for
any sequence of actions π′ of all other agents, the set of inter-
leavings of πi and π′ which respects waitfor preconditions is
the same in Π

′l and in Πl. Furthermore, note that given any
such interleaving π, it achieves Gi in Π

′l iff it achieves Gi

in Πl. Finally, note that π always achieves the (always true)
goal of the second agent in Π

′l, and that the definition for ad-
versarial against i does not require the agents other than i to
achieve their goal.

We conclude this section by noting that Definition 1 is
somewhat restrictive. Specifically, it assumes each agent
chooses a plan to execute a-priori, and then executes that
plan. Without introducing the ability to wait, this is similar
to conformant planning — whenever the scheduler tells an
agent to act, it must execute its next action. If the precondi-
tions of that action do not hold, the agent fails.

In general, we would like to be able to support more gen-
eral policies for the agents. This would be similar to con-
tingent planning, except that the non-determinism is really
the result of other agents acting in the world. However,

this makes the non-deterministic planning problem highly in-
tractable, as any action can have many outcomes [Muise et
al., 2015].

Therefore, in this paper we adopt a limited form of con-
tingent planning — waiting until some condition holds. This
means that each agent can treat its own individual planning
problem as a classical planning problem, and does not need
to reason about the possible changes introduced by the other
agents. In fact, we argue that the purpose of a good social law
is to allow agents to do just that — not have to reason about
what the other agents are going to do, assuming they respect
the social law.

To show that waiting is a natural way to specify social laws,
consider a traffic light. Without waiting, if an agent chooses
to execute the action which drives into the intersection, and
the light happens to be red, the action will fail because one
of its preconditions is violated. However, if we denote the
precondition of having a green light as waitfor, we obtain the
desired behavior of waiting for the light to turn green.

5 Verifying Social Laws
Now that we have formally stated the criteria we want in
a social law, and showed that verifying adversarial robust-
ness can be compiled into verifying rational robustness, we
turn to describing how we can verify that a social law l ap-
plied in a multi-agent setting Π is rationally robust. Our al-
gorithm compiles the VERIFY-RATIONAL problem for Πl =
〈F, {Ai}ni=1, I, {Gi}ni=1〉 into a classical planning problem.
This compilation is described formally in full in Figure 1, but
we will first provide some explanations of the compilation,
and then prove its correctness.

The idea behind this compilation is to create n + 1 copies
of each fact of the planning problem, and thus of the state.
We will refer to copies 1 . . . n as local copies (one for each
agent), and the final copy as the global copy, which will be
denoted by g. Each action of agent i affects both its local
copy i and the global copy g. Thus, each agent i acts alone in
copy i, and all agents act together in the global copy g. The
goal is to find a plan for each agent which works alone (that
is, in copy i), but when all plans are joined together (in an
order chosen by the planner) in copy g, there is a failure. The
goal of this planning task is to achieve Gi in copy i, and have
either a deadlock or some action fail in the global copy, as
indicated by the flag failure. We remark that this duplication
of facts is similar to the compilations for discovering worst
case distinctiveness in goal recognition design [Keren et al.,
2014; 2015; 2016], although the rest of the compilation is
very different.

In order to identify failures in the global copy, we create
several versions of each action ai for each of the possible
outcomes of ai: ai succeeds, ai fails due to a violated (non-
wait) precondition, or ai leads to a deadlock. Each of these
work in copy i as if ai succeeds, but has different effects on
the global copy: the success outcome also succeeds in the
global copy, the fail version requires one of the preconditions
of ai to be false in the global copy1, and the deadlock version

1note that this requires disjunctive negative preconditions, which
can be easily compiled away by adding more actions

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

75

Π′ = 〈F ′, A′, I ′, G′〉, where:
• F ′ = {f1 . . . fn | f ∈ F} ∪ {fg, fc | f ∈ F} ∪
{wtf,i | f ∈ F, i = 1 . . . n} ∪ {fini | i = 1 . . . n} ∪
{failure, act}
• A′ =

⋃n
i=1A

′
i ∪

{CHECK-NO-f,CHECK-NO-WAITING-f | f ∈ F},
where:
A′

i = {ENDs
i ,ENDf

i ,ENDw
i } ∪ {asi , a

f
i | ai ∈

Ai} ∪ {aw,x
i | ai ∈ Ai, x ∈ prew(ai)}, such that:

pre(asi) = act ∧ (
∧

f∈pre(ai)
(fi ∧ fg)),

add(asi) = {fi, fg | f ∈ add(ai)},
del(asi) = {fi, fg | f ∈ del(ai)},

pre(afi) = act ∧ (
∧

f∈pre(ai)
fi) ∧ (

∧
f∈prew(a) fg) ∧

(
∨

f∈pref (ai)
¬fg),

add(afi) = {failure} ∪ {fi | f ∈ add(ai)},
del(afi) = {fi | f ∈ del(ai)},

pre(aw,x
i) = act ∧ (

∧
f∈pre(ai)

fi) ∧ ¬xg ,
add(aw,x

i) = {failure, wtx,i} ∪ {fi | f ∈ add(ai)},
del(aw,x

i) = {fi | f ∈ del(ai)},

pre(ENDs
i) = ¬fini ∧ (

∧
f∈Gi

fi) ∧ (
∧

f∈Gi
fg),

add(ENDs
i) = {fini},

del(ENDs
i) = {act},

pre(ENDf
i) = ¬fini ∧ (

∧
f∈Gi

fi) ∧ (
∨

f∈Gi
¬fg),

add(ENDf
i) = {fini, failure},

del(ENDf
i) = {act}

pre(ENDw
i) = ¬fini ∧ (

∧
f∈Gi

fi) ∧ (
∨

f∈F wtf,i),
add(ENDw

i) = {fini, failure},
del(ENDw

i) = {act}

pre(CHECK-NO-f) = (
∧

i=1...n fini) ∧ ¬fg ,
add(CHECK-NO-f) = fc,
del(CHECK-NO-f) = ∅

pre(CHECK-NO-WAITING-f) = (
∧

i=1...n fini) ∧
(
∧

i=1...n ¬wtf,i),
add(CHECK-NO-WAITING-f) = fc,
del(CHECK-NO-WAITING-f) = ∅

• I ′ = {act} ∪ {fi | f ∈ I, i = 1 . . . n} ∪ {fg | f ∈ I},
and

• G′ = {failure} ∪ {fc | f ∈ F} ∪ {fini | i ∈
{1 . . . n}}

Figure 1: Formal Description of the Compilation. For ease
of exposition, we use logic, rather than sets, to express pre-
conditions.

requires that one of the facts that ai waits for is false, and re-
mains false when agent i has a chance to act. This is achieved
by raising a flag wtf,i that indicates that agent i is waiting
for fact f . Since we assume the scheduler is adversarial to
the agents, and thus under the control of the planner, the next
opportunity when agent i is sure to be able to act is after all
other agents have finished (either achieved their goal or are
also waiting).

It is important to note here that we are attempting to find a
sequence in which actions are executed which leads to a fail-
ure, not a sequence in which actions are started. Thus, if agent
i has started action ai, which is currently waiting for fact f ,
this could be reflected in the final plan in two different ways.
If this is going to result in a deadlock, meaning that the wait
precondition f must not hold at the end, then the plan will
contain the deadlock version of ai, at the point when agent i
decides to apply ai. However, if f is going to be achieved,
and the scheduler is going to execute ai when this happens,
then the success version of ai will appear in the plan later,
when ai is actually executed, and not when agent i decides to
apply ai.

In order to know when agents have finished, we also add an
END action for each agent, whose preconditions are the goal
facts of the agent. We create the success, fail, and deadlock
versions of this action, and thus the only failures we need
to consider are action preconditions not holding and dead-
locks. However, in order to prevent a situation where an agent
achieves its goal early, and then another agent invalidates it
later, we do not allow any “regular” actions to occur after one
agent executed an END action, which is controlled by the act
flag.

Finally, in order to make sure that deadlocks are true dead-
locks (that is, that if agent i is waiting for fact f , then f will
be false after all agents have finished), for each fact f we
also add two actions which are meant to verify that no agent
is waiting for f at the end, and f holds. These actions are
called CHECK-NO-f and CHECK-NO-WAITING-f . The
first checks that f does not hold, and the second checks that
no agents are waiting for f . Both of these achieve a new fact,
fc, which is also included in the goal, and are only applicable
after all agents have executed their END actions. Together,
these actions verify that at the end, wtf,i → ¬f , that is, that
if agent i is waiting for fact f , then f does not hold at the
end. Note that, since we need this to hold for all agents, this
is equivalent to ¬f ∨ (

∧
1=1...n ¬wtf,i), and each of these

actions is responsible for checking one of the disjuncts.
We now proceed to prove that the compilation is correct,

through a series of lemmas. We begin by proving a lemma
about the structure of any solution of Π′.
Lemma 1. Any solution π of Π′ can be divided into three sub-
sequences, π = πa · πEND · πCHECK, such that πa contains
only “regular” actions (asi , a

f
i or aw,f

i for some ai ∈ Ai),
πEND contains only END actions, and πCHECK contains
only CHECK-NO-f and CHECK-NO-WAITING-f actions.

Proof. By construction of Π′, as soon as one of the END ac-
tions is executed, act is deleted. As act is a precondition of
all regular actions, they must all precede the first END ac-
tion. Similarly,

∧
i=1...n fini is a precondition of all CHECK

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

76

actions, and since fini can only by achieved by one of the
ENDi actions, all END actions must precede all CHECK ac-
tions.

Next, we prove that any solution for Π′ contains valid in-
dividual solutions for each of the agents:
Lemma 2. Let π = πa · πEND · πCHECK be an arbitrary
solution of Π′. Define πi to be the subsequence of πa consist-
ing only of actions of agent i. Then πi is a solution for Πl

i —
the projection of Πl for agent i.

Proof. Let us look at the projection of Π′ on {fi | f ∈ F} ∪
{fini}, which we will denote by Π′

i. It is easy to see that Π′
i

is simply Πl
i with an END action that achieves fini added to

it. As Π′
i is an abstraction of Π′, any solution for Π′ is also

a solution for Π′
i. Since actions that do not belong to agent

i do not affect {fi | f ∈ F} or fini, if π is a solution of
Π′, πi · 〈ENDi〉 is a solution of Π′

i, for any of the versions
of ENDi. Because Π′

i and Πl
i are equivalent except for the

addition of END and fini, πi is a solution for Πl
i.

We now prove that any solution of Π′ respects the waitfor
preconditions:
Lemma 3. Let π = πa · πEND · πCHECK be an arbitrary
solution of Π′. π respects the waitfor preconditions of all
actions in πa, that is, whenever one of the success (asi) or
fail (afi) variants of action ai is executed in π, all waitfor
preconditions of ai hold.

Proof. prew(ai) is in the preconditions of both asi and afi ,
meaning that any action that is executed, is executed only
when the agent would not have waited to execute it. Recall
that the meaning of aw,f

i is that agent i is attempting to exe-
cute ai, and will now wait for f forever (that is, until the end
of the plan).

We are now ready to prove our main theorem, about the
correctness of the compilation:
Theorem 2. Assume Πl

i is solvable for all agents i. Then Π′

is not solvable iff Πl is rationally robust.

Proof. Assume Π′ is solvable, let π = πa ·πEND ·πCHECK
be a solution for Π′, and denote by πi the subsequence of πa
consisting only of actions of agent i. Let us denote the first
non-success action in πi (that is, afi or aw,f

i) by nsi, where
nsi = ⊥ if all actions in πi are success actions (that is, asi).
From Lemma 2, each πi is a solution for Πi.

First, note that there must exist some j such that nsj 6= ⊥.
Otherwise, none of the actions in the plan achieve failure,
which is part of the goal. If there exists some j such that
nsj = afj then πa gives us an interleaving of {πi}ni=1 which
violates one of the (non-wait) preconditions of afj . From
Lemma 3, πa respects all waitfor preconditions. Thus, we
have found an interleaving of valid individual plans, which
respects waitfor preconditions, but leads to an illegal joint
plan, and thus Πl is not rationally robust.

If there does not exist some j such that nsj = afj then
there must exist some j such that nsj = aw,f

j . We can

(a) (b) (c)

Figure 2: Intersection Example Illustration

guarantee that f will not hold at the end, since the only way
to achieve fc, which is part of the goal, would be through
CHECK-NO-f (as CHECK-NO-WAITING-f is not applica-
ble after aw,f

j is executed). Thus, if the scheduler does not
allow agent j to act until all other agents are done, we have an
interleaving in which agent j is in a deadlock. Here again, we
have found an interleaving of valid individual plans, which re-
spects waitfor preconditions, but leads to an illegal joint plan,
and thus Πl is not rationally robust.

We have shown that if Π′ has a solution then Πl is not ra-
tionally robust. Now assume Π′ does not have a solution, and
let πi be any solution for Πi, for i = 1 . . . n. Let π be any
interleaving of these individual plans which respects waitfor
preconditions. All preconditions of all actions in π hold when
the action is executed, as otherwise Π′ would have been solv-
able (taking π with the appropriate END and CHECK ac-
tions added at the end as a solution). Similarly, π achieves
G1 ∪ . . . ∪ Gn, and none of the agents is stuck waiting for
some fact (as again, either of these scenarios would have led
to Π′ being solvable). Thus, if Π′ does not have a solution
then Πl is rationally robust.

6 Empirical Evaluation
We implemented our compilation, based upon the script
which was used to convert MA-PDDL to PDDL representing
a centralized planning problem from the first Competition of
Distributed and Multiagent Planners [Stolba et al., 2015]. We
remark that while we have described the compilation for a
grounded MA-STRIPS setting, most of the compilation can ac-
tually be done on the lifted level of MA-PDDL.

Our empirical evaluation is divided into two parts: First,
to demonstrate the benefits of our approach, we describe a
scenario in which a human designer uses it to create a useful
social law. Second, we provide some empirical results on ex-
isting benchmarks, to demonstrate how our technique scales
up with problem size.

6.1 Intersection Example
We demonstrate how one might use our proposed compila-
tion on the classical example for deadlock — that of an inter-
section with entrances from the north, south, east, and west,
where each car wants to go straight. This is illustrated in Fig-
ure 2.

This example can be modeled with facts: at(A,L) and
clear(L) where A is an agent and L is one of the 12 locations
illustrated in Figure 2(a): both lanes on the north, south, east,

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

77

BLOCKSWORLD
Instance Time (s)
9-0 0.1
9-1 0.09
9-2 0.11
10-0 0.1
10-1 0.08
10-2 0.09
11-0 0.17
11-1 0.18
11-2 0.11
12-0 0.18
12-1 0.26
13-0 0.32
13-1 0.48
14-0 0.44
14-1 0.19
15-0 4.17
15-1 1.83
16-1 1.83
16-2 0.43
17-0 8.23

DRIVERLOG
Instance Time (s)
pfile1 0
pfile2 0
pfile3 0
pfile4 0
pfile5 0
pfile6 0
pfile7 0
pfile8 0
pfile9 0
pfile10 0
pfile11 0.01
pfile12 0.01
pfile13 0.02
pfile14 0.04
pfile15 0.17
pfile16 1.25
pfile17 28.63
pfile18 23.53
pfile19 88.06
pfile20 111.54

ZENOTRAVEL
Instance Time (s)
pfile3 0
pfile4 0
pfile5 0
pfile6 0
pfile7 0
pfile8 0
pfile9 0
pfile10 0.01
pfile12 0
pfile13 0.04
pfile14 0.1
pfile15 0.22
pfile16 0.12
pfile17 0.61
pfile18 1.04
pfile19 5.26
pfile20 2.77
pfile21 3.85
pfile22 5.46
pfile23 15.06

SATELLITES
Instance Time (s)
p05 0.11
p07 0.24
p21 243.38
p24 —
p25 —

SOKOBAN
Instance Time (s)
p06-1 —

Table 1: Solution Times on Benchmark Domains (timeouts
indicated by a dash)

or west of the intersection, as well as the southeast, south-
west, northeast, or northwest corners of the intersection. The
actions are:
• arrive(A, l), which models the arrival of agent A at lo-

cation l, which must be one of the north, south, east,
or west entrances to the intersection. This action adds
at(A, l), and can only be applied once per agent2.
• drive(A, l1, l2), which models agent A driving from lo-

cation l1 to location l2. This requires at(A, l1) and
clear(l2).

When we run our compilation on this problem, we of
course obtain a failure, as agents can crash into each other
in the intersection, which is represented by violating the clear
preconditions of drive.

In an effort to correct this, we add to drive a wait annotation
which avoids driving into occupied locations. Running our
compilation on this yields a deadlock, as illustrated in Figure
2(b).

Attempting to correct this, we add to drive a precondition
stating that a car that is about to enter the intersection must
yield to a car which is about to enter the intersection from its
right. Running our compilation on this yields a deadlock, as
illustrated in Figure 2(c).

Finally, we arrive at a deadlock free solution, by dropping
the yield preconditions we added for cars entering from the
east and the west, while still making cars entering from the
north and south yield, and also adding preconditions which
ensure that a car does not enter the intersection when it is
blocked. Our compilation then verifies that this social law is
rationally robust. All planner runs in this example terminate
within fractions of a second.

6.2 Benchmarks
In order to evaluate the effectiveness of our compilation on
problems with increasing size, we used the benchmark do-

2we keep track of this through another fact, which we omit for
the sake of brevity

mains from the first Competition of Distributed and Multia-
gent Planners [Stolba et al., 2015]. These benchmarks are
for cooperative planning, and thus contain a single goal in
each instance. We created an instance with a separate goal
for each agent by allocating each fact in the goal to one of
the agents, in a round-robin manner (except in cases where
the first argument of the goal fact mentions a specific agent,
in which case it was allocated to that agent). We excluded
problem instances in which one of the agents was not able
to achieve its goal alone (we checked this by solving the Πi

planning problem for each agent), which left us with only
3 full domains (BLOCKSWORLD, DRIVERLOG, and ZENO-
TRAVEL), as well as 5 instances from SATELLITE and one
instance of SOKOBAN.

The choice of planner to use here poses an interesting ques-
tion. On the one hand, if the social law we are trying to verify
is robust, then the planning problem is going to be unsolvable.
In such a case, planners for proving unsolvability [Bäckström
et al., 2013; Hoffmann et al., 2014] might be a good choice.
On the other hand, if we were sure that the social law is ro-
bust, we would not be verifying it, and thus using a planner
that is geared towards finding solutions might be better.

While in general it is probably a good idea to combine sev-
eral planners in a portfolio, we have no reason to assume that
the multi-agent planning benchmarks already contain a ro-
bust social law. In fact, if they did, they would have been
fairly easy planning tasks. Therefore, we used the FF planner
[Hoffmann and Nebel, 2001] on the compilation for each of
these instances, with a timeout of 5 minutes. Table 1 shows
how much time it took to solve each of these instances. As
these results show, we are able to solve almost all of them
very quickly.

7 Discussion

In this paper, we have connected social laws to model-based
planning, and formalized some criteria which we believe
“good” social laws should exhibit under this framework. We
have also described a compilation to classical planning for
verifying whether an artificial social system meets these cri-
teria, and provided an empirical demonstration that this com-
pilation is feasible in practice.

We remark that the principles behind the compilation we
present can be easily extended to more realistic settings. First,
agents might not know what the goals of other agents are, and
only have some idea of what the possible goals are. A simple
compilation which eliminates disjunctive goals can solve this
problem. Second, agents might enter the system at different
places and at different times. It is very easy to define actions
for “adding” agents at legal locations, and our compilation
will take care of making sure the social law criteria are not
violated by this.

We conclude by noting that, in this paper, we focus on
the problem of verifying whether a social law (encoded in
a multi-agent planning framework) meets some desired crite-
rion. However, our ultimate goal is to automatically synthe-
size such social laws, rather than just verifying them. Having
efficient verification techniques is a first step in this direction.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

78

References
[Bäckström et al., 2013] Christer Bäckström, Peter Jonsson,

and Simon Ståhlberg. Fast detection of unsolvable plan-
ning instances using local consistency. In Proceedings
of the Sixth Annual Symposium on Combinatorial Search,
SOCS 2013, Leavenworth, Washington, USA, July 11-13,
2013. AAAI Press, 2013.

[Brafman and Domshlak, 2008] Ronen I. Brafman and
Carmel Domshlak. From one to many: Planning for
loosely coupled multi-agent systems. In ICAPS 2008,
pages 28–35. AAAI Press, 2008.

[d’Inverno and Luck, 2004] Mark d’Inverno and Michael
Luck. Understanding agent systems. Springer, 2004.

[Fikes and Nilsson, 1971] Richard Fikes and Nils J. Nils-
son. STRIPS: A new approach to the application of the-
orem proving to problem solving. Artificial Intelligence,
2(3/4):189–208, 1971.

[Hoffmann and Nebel, 2001] Jörg Hoffmann and Bernhard
Nebel. The FF planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence,
14:253–302, 2001.

[Hoffmann et al., 2014] Jörg Hoffmann, Peter Kissmann,
and Álvaro Torralba. Distance? who cares? tailoring
merge-and-shrink heuristics to detect unsolvability. In
ECAI 2014 - 21st European Conference on Artificial In-
telligence, 18-22 August 2014, Prague, Czech Republic -
Including Prestigious Applications of Intelligent Systems
(PAIS 2014), pages 441–446. IOS Press, 2014.

[Horling and Lesser, 2004] Bryan Horling and Victor Lesser.
A survey of multi-agent organizational paradigms. The
Knowledge Engineering Review, 19(04):281–316, 2004.

[Keren et al., 2014] Sarah Keren, Avigdor Gal, and Erez
Karpas. Goal recognition design. In ICAPS Conference
Proceedings, June 2014.

[Keren et al., 2015] Sarah Keren, Avigdor Gal, and Erez
Karpas. Goal recognition design for non optimal agents.
In Proceedings of the Conference of the American Associ-
ation of Artificial Intelligence (AAAI 2015), January 2015.

[Keren et al., 2016] Sarah Keren, Avigdor Gal, and Erez
Karpas. Goal recognition design with non oservable ac-
tions. In Proceedings of the Conference of the American
Association of Artificial Intelligence (AAAI 2016) - to ap-
pear, February 2016.

[Klusch, 1999] Matthias Klusch. Intelligent Information
Agents: Agent-Based Information Discovery and Manage-
ment on the Internet. Springer-Verlag New York, Inc., Se-
caucus, NJ, USA, 1st edition, 1999.

[Moses and Tennenholtz, 1995] Yoram Moses and Moshe
Tennenholtz. Artificial social systems. Computers and
Artificial Intelligence, 14(6), 1995.

[Muise et al., 2015] Christian Muise, Paolo Felli, Tim
Miller, Adrian R. Pearce, and Liz Sonenberg. Leveraging
fond planning technology to solve multi-agent planning
problems. In Workshop on Distributed and Multi-Agent
Planning (DMAP’15), 2015.

[Rousseau, 1762] J.J. Rousseau. Du Contrat Social. 1762.
[Shoham and Leyton-Brown, 2008] Yoav Shoham and

Kevin Leyton-Brown. Multiagent Systems: Algorithmic,
Game-Theoretic, and Logical Foundations. Cambridge
University Press, New York, NY, USA, 2008.

[Shoham and Tennenholtz, 1992a] Yoav Shoham and Moshe
Tennenholtz. On the synthesis of useful social laws for ar-
tificial agent societies (preliminary report). In AAAI 1992,
pages 276–281, 1992.

[Shoham and Tennenholtz, 1992b] Yoav Shoham and Moshe
Tennenholtz. On traffic laws for mobile robots (extended
abstract). In AIPS 1992, pages 309–310. Kaufmann, San
Mateo, CA, 1992.

[Shoham and Tennenholtz, 1995] Yoav Shoham and Moshe
Tennenholtz. On social laws for artificial agent societies:
Off-line design. Artificial Intelligence, 73(1-2):231–252,
1995.

[Stolba et al., 2015] Michal Stolba, Antonı́n Komenda,
and Daniel Laszlo Kovacs. Competition of dis-
tributed and multiagent planners (CoDMAP).
http://agents.fel.cvut.cz/codmap/, 2015.

[Tennenholtz and Moses, 1989] Moshe Tennenholtz and
Yoram Moses. On cooperation in a multi-entity model. In
IJCAI 1989, pages 918–923. Morgan Kaufmann, 1989.

[Tennenholtz, 1991] M. Tennenholtz. Efficient Representa-
tion and Reasoning in Multi-Agent Systems. PhD thesis,
Weizmann Institute, Israel, 1991.

[Woolridge, 2001] Michael Woolridge. Introduction to Mul-
tiagent Systems. John Wiley & Sons, Inc., New York, NY,
USA, 2001.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

79

Quantifying Privacy Leakage in Multi-Agent Planning

Michal Štolba and Jan Tožička and Antonı́n Komenda
{stolba,tozicka,komenda}@agents.fel.cvut.cz

Department of Computer Science, Faculty of Electrical Engineering,
Czech Technical University in Prague, Czech Republic

Abstract

Multi-agent planning using MA-STRIPS-related models is
often motivated by the preservation of private information.
Such motivation is not only natural for multi-agent systems,
but is one of the main reasons, why multi-agent planning
(MAP) problems cannot be solved centrally. Although the
motivation is common in the literature, formal treatment of
privacy is mostly missing. An exception is a definition of two
extreme concepts, weak and strong privacy.
In this paper, we first analyze privacy leakage in the terms
of secure Multi-Party Computation and Quantitative Infor-
mation Flow. Then, we follow by analyzing privacy leakage
of the most common MAP paradigms. Finally, we propose
a new theoretical class of secure MAP algorithms and show
how the existing techniques can be modified in order to fall
in the proposed class.

Introduction
Multi-agent planning models the problems in which multi-
ple entities (or agents) need to generate a sequence of ac-
tions in order to fulfill some specified goal, either common
or respective to each agent. If the environment and actions
are deterministic (that is their outcome is unambiguously de-
fined by the state they are applied in), we are talking about
deterministic multi-agent planning. Here, we focus on a co-
operative scenario, where the agents are coordinating their
actions in order to fulfill a common goal. The reason the
agents cannot simply feed their problem descriptions into a
centralized planner typically lies in that although the agents
cooperate, they want to share only the information necessary
for their cooperation, but not the information about their in-
ner processes.

We denote deterministic cooperative multi-agent planning
problems with privacy as Privacy-Preserving Multi-Agent
Planning (PP-MAP) problems. A number of planners solv-
ing PP-MAP has been proposed in recent years, such as
MAFS (Nissim and Brafman 2014), FMAP (Torreño et al.
2014), PSM (Tožička et al. 2015) and GPPP (Maliah et
al. 2016). Although all of the mentioned planners claim
to be privacy-preserving, thorough formal treatment of such
claims is rather scarce. The privacy of MAFS is discussed
in (Nissim and Brafman 2014) and expanded upon in (Braf-
man 2015), proposing Secure-MAFS, a version of MAFS
with stronger privacy guarantees.

The most formal definition and treatment was published
in (Nissim and Brafman 2014) and further elaborated on
in (Brafman 2015). The authors present two notions, weak
and strong privacy preservation. It turns out, that the two
definitions are both extremities of a whole spectrum. Weak
privacy preservation forbids only explicit communication of
the private information, which is trivial to achieve and pro-
vides no security guarantees. The strong privacy preser-
vation forbids leakage of any information allowing other
agents to deduce any private information at all.

The amount of privacy loss in general algorithms (or
functions) has been studied in secure Multi-Party Compu-
tation (MPC) (Yao 1982) as information leakage in Quanti-
tative Information Flow (Smith 2009; Braun et al. 2009).
In this paper, we take this general approach and apply it
on the problem of PP-MAP, in order to theoretically ana-
lyze privacy leakage of the main planning paradigms used
in multi-agent planning and also of the particular planning
algorithms. We propose a new class of MAP algorithms,
SECMAP and show that it preserves more privacy than any
of the existing algorithms and how the existing algorithms
can be modified to fall in the new class of SECMAP algo-
rithms.

Multi-Agent Planning
The most common model for PP-MAP problems is MA-
STRIPS (Brafman and Domshlak 2008) and derived models
(such as MA-MPT (Nissim and Brafman 2014) using multi-
valued variables). We reformulate the MA-STRIPS defini-
tion and we also generalize the definition to multi-valued
variables. Formally, for a set of agents A, a PP-MAP prob-
lem M = {Πi}|A|i=1 is a set of agent problems. An agent
problem of agent αi ∈ A is defined as

Πi =
〈
Vi = Vpub ∪ Vpriv

i ,Oi = Opub
i ∪ Opriv

i ∪ Oproj, sI , s?
〉
,

where Vi is a set of variables s.t. each V ∈ Vi has a finite
domain dom(V), if all variables are binary (i.e. |dom(V)| =
2), the formalism corresponds to MA-STRIPS. The set of
variables is partitioned into the set Vpub of public variables
(with all values public), common to all agents and the set
Vpriv
i of variables private to αi (with all values private), such

that Vpub ∩ Vpriv
i = ∅. A complete assignment over V is a

state, partial assignment over V is a partial state. We denote

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

80

s[V] as the value of V in the (partial) state s and vars(s) as
the set of variables defined in s. The state sI is the initial
state and s? is a partial state representing the goal condition,
that is if for all variables V ∈ vars(s?), s?[V] = s[V], s is a
goal state.

The set Oi of actions comprises of a set Opriv
i of private

actions of αi, a set Opub
i of public actions of αi and a set

Oproj of public projections of other agents’ actions. Opub
i ,

Opriv
i , andOproj are pairwise disjoint. An action is defined as

a tuple a = 〈pre(a), eff(a), lbl(a)〉, where pre(a) and eff(a)
are partial states representing the precondition and effect re-
spectively and lbl(a) is a unique label. An action a is appli-
cable in state s if s[V] = pre(a)[V] for all V ∈ vars(pre(a))
and the application of a in s, denoted a◦s, results in a state s′
s.t. s′[V] = eff(a)[V] if V ∈ vars(eff(a)) and s′[V] = s[V]
otherwise. When we are considering the planning problem
from the perspective of a single agent αi, we omit the index
i whenever possible.

We model all “other” agents as a single agent (the adver-
sary), which is common in secure MPC, as all the agents
can collude and combine their information in order to in-
fer more. The public part of the problem Π which can
be shared with the adversary is denoted as a public pro-
jection. The public projection of a (partial) state s is sB,
restricted only to variables in Vpub, that is vars(sB) =
vars(s) ∩ Vpub. We say that s, s′ are publicly equivalent
states if sB = s′B. The public projection of action a ∈ Opub

is aB = 〈pre(a)B, eff(a)B, lbl(a)B〉 and of action a′ ∈ Opriv

is an empty (no-op) action ε. The public projection of Π is
ΠB =

〈
Vpub, {aB|a ∈ Opub}, sBI , sB?

〉
.

In general, the public projection lbl(a)B of the label
lbl(a), does not have to preserve the uniqueness. Thus a
single public projection aB can represent multiple actions
a, a′ such that pre(a)B = pre(a′)B and eff(a)B = eff(a′)B

. Even though for an agent trying to hide its private infor-
mation it is reasonable to publish only one publicly pro-
jected action with distinct public precondition and effect
〈pre(a)B, eff(a)B〉, none of the existing PP-MAP planners
does it. Therefore we define also a label preserving projec-
tion D which differs in that lbl(a)D = lbl(a). Apart from this
difference, ΠD is defined equivalently to ΠB. Later we show
the label preserving projection leaks a significant amount of
information.

Finally, we define the solution to Π andM. A sequence
π = (a1, ..., ak) of actions from O , s.t. a1 is applicable in
sI = s0 and for each 1 ≤ i ≤ k, ai is applicable in si−1 and
si = ai ◦ si−1, is a local sk-plan, where sk is the resulting
state. If sk is a goal state, π is a local plan, that is a local
solution to Π. Such π does not have to be the global solution
toM, as the actions of other agents (Oproj) are used only as
public projections and may be missing private preconditions
and effects of other agents. We define πB = (aB1 , ..., a

B
k)

with ε actions omitted to be the public projection of π.
From the global perspective of M a public plan πB =

(aB1 , ..., a
B
k) is a sequence of public projections of actions

of various agents from A such that the actions are sequen-
tially applicable with respect to Vpub starting in sBI and the
resulting state satisfies sB? . A public plan is i-extensible, if

by replacing aBk′ s.t. ak′ ∈ Opub
i by the respective ak′ and

adding ak′′ ∈ Opriv to required places we obtain a local plan
(solution) to Πi. According to (Tožička et al. 2015), a pub-
lic plan πB i-extensible by all αi ∈ A is a global solution to
M.

Transition System Model
We will define explicitly the transition system induced by
the planning problem. A transition system of a prob-
lem Π is a tuple T (Π) = 〈S,L, T, sI , s?〉, where S =∏
V ∈V dom(V) is a set of states, L = {lbl(a)|a ∈ O}

is a set of transition labels corresponding to the actions in
O and T ⊆ S × L × S is a transition relation of Π s.t.
〈s, l, s′〉 ∈ T if a ∈ O s.t. lbl(a) = l is applicable in s
and s′ = a ◦ s. The state sI ∈ S is the initial state and the
goal condition s? describes all goal states as in Π. A public
projection of T (Π) is T (Π)B = 〈SB, LB, TB, sBI , s

B
? 〉 such

that SB is S restricted to Vpub, LB = {lbl(a)B|a ∈ O} and
〈sB, lbl(a)B, s′B〉 ∈ TB if 〈s, lbl(a), s′〉 ∈ T . We denote
s ∈ S as a private state (although it contains also public
variables) and sB ∈ SB as a public state.

For the global problem M, we define an intersection of
the transition systems T (M) =

⋂
αi∈A T (Πi) as a transi-

tion system on states s̄ over Vpub ∪
⋃
αi∈A V

priv
i . A transi-

tion 〈s, l, s′〉 in T (Πi) is represented by a set of transitions
〈s̄, l, s̄′〉 such that s̄[V] = s[V] for all V ∈ Vpub ∪ Vpriv

i ,
s̄′[V] = s′[V] for all V ∈ Vpub ∪ Vpriv

i and s̄[V] = s̄′[V] for
all V ∈

⋃
αj∈A\αi

Vpriv
j .

Privacy in the Literature
Apart from a specialized privacy leakage quantification
by (Van Der Krogt 2009) (which is not practical as it is
based on enumeration of all plans and also is not applica-
ble to MA-STRIPS in general), the only rigorous definition
of privacy for PP-MAP so far was proposed in (Nissim and
Brafman 2014) and extended in (Brafman 2015). Here, we
rephrase the definitions in order to build on them in the fol-
lowing sections.

We say that an algorithm is weak privacy-preserving if,
during the whole run of the algorithm, the agent does not
openly communicate private parts of the states, private ac-
tions and private parts of the public actions. In other words,
the agent openly communicates only the information in ΠB.
Even if not communicated, the adversary may deduce the
existence and values of private variables, preconditions and
effects from the (public) information communicated.

An algorithm is strong privacy-preserving if the adversary
can deduce no information about a private variable and its
values and private preconditions/effect of an action, beyond
what can be deduced from the public projection ΠB and the
public projection of the solution plan πB.

Privacy Leakage
One of the threat models studied in the literature on secure
MPC is the threat that an attack will allow the adversary to
guess the private information of the agent. In the case of
PP-MAP this means that the adversary may be able to guess

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

81

the actual transition system of the agent. In the weak privacy
case, the probability of the right guess is not considered at
all, whereas in the strong privacy case even an unrealistically
small probability is considered a breach of the privacy.

Based on (Smith 2009), let us have an algorithm which
takes a high (private) inputH and produces low (public) out-
put L. What we are interested in is, how much information
about H can be deduced by an adversary who sees the out-
put L. We assume that there is an a priori, publicly-known
probability distribution of a random variable H with a finite
space of possible valuesH. We denote the a priori probabil-
ity that H has a value h ∈ H by P [H = h], and we assume
that each element h ofH has nonzero probability. Similarly,
we assume that L is a random variable with a finite space
of possible values L, and with probabilities P [L = l]. We
assume that each output l ∈ L is possible, in that it can be
produced by some input h ∈ H.

The leakage of private information is based on the un-
certainty of the adversary about the input H . A high-level
formula is

information leaked = initial uncertainty− remaining uncertainty, (1)

where initial uncertainty is related to the probability of
guessing the right input without any additional knowledge
gained from the output L of the algorithm, whereas remain-
ing uncertainty is the probability of guessing the right input
H given the output L.

In the case of PP-MAP, the high (private) input the ad-
versary is attempting to guess is the transition system T (Π)
of the agent’s problem. In agreement with the assumptions
above, we assume that an upper bound on the size (num-
ber of states) of T (Π) is publicly known as n. This bound
together with the public projection of the transition system
limits the number of the possible transition systems, denoted
as tapriori. We also assume that all possible transition systems
are equally probable, which gives us an uniform distribution.

The public output consists of all information obtained
from the agent during the planning process, that is the pub-
lic projection of the transition system T (Π)B, the resulting
plan π and all additional information obtained during the
planning process.

By the application of (Smith 2009) to the case of the pos-
sible transition system which is deterministic and has as-
sumed uniform distribution, we obtain information leakage
measures based on min-entropy H∞(H):

initial uncertainty: H∞(H) = log tapriori

remaining uncertainty: H∞(H|L) = log tpost

information leaked: H∞(H)−H∞(H|L) =

log tapriori − log tpost = log
tapriori
tpost

(2)

Where tapriori is the number of possible transition sys-
tems known a-priori, that is based on the public projection
T (ΠB), the assumption of maximum n nodes and the public
projection of the resulting plan πB. Conversely, tpost is the
number of transition systems based on the posteriori knowl-
edge, that is the public projection of the transition system,

public projection of the resulting plan and all other informa-
tion obtained from the run of the planning algorithm.

The remaining uncertainty gives a security guarantee as
the expected probability of guessing H , that is the transi-
tion system of the agent, given L, the public output of the
planning algorithm, is 2−H∞(H|L) = 2− log tpost = 1/tpost
where, again, tpost is the number of possible transition sys-
tems given the public output. Thanks to the determinism
and uniform distributions, the result conveys with an intu-
ition that the privacy preservation decreases by lowering the
number of possible transition systems. In the next section,
we will focus on how to estimate both tapriori and tpost.

Leakage Quantification in PP-MAP
In the previous section we have placed an assumption that
an upper bound n on the total number of the states of the
agent’s transition system is publicly known. This results in
n2 possible transitions (including loops) and 2n

2

possible
transition systems. Moreover, we assume, that bounds on
the number of private variables p ≥ |Vpriv| and on the size of
the private variable domains d ≥ |dom(V)| for all V ∈ Vpriv

are also publicly known.
Similarly to (Brafman 2015), for the simplicity of presen-

tation we assume that Opriv = ∅. This assumption can be
stated without the loss of generality as each sequence of pri-
vate actions followed by a public action can be compiled as
a single public action (with a potential exponential blow-up
in the number of public actions). From the perspective of
privacy, it is clear, that when adhering at least to the weak
privacy, private action is never communicated and thus can
never leak. Any information about private action always
leaks in the sense of the described compilation, that is it ap-
pears as if the respective public action had some additional
private preconditions or effects.

Let us first consider the public projection of the agent’s
transition system T (Π)B. Based on the above bounds, the
number of private states s ∈ S represented by a single public
state sB ∈ SB is dp. The number of possible private transi-
tions 〈s, l, s′〉 ∈ T represented by a single public transition
〈sB, lB, s′B〉 ∈ TBis (dp)2, that is from each private state s
is a transition to a private state s′.

For a single variable (p = 1), there are d private states
represented by each public state and for a single action a,
the respective public transition 〈sB, lbl(a)B, s′B〉 ∈ TB rep-
resents d2 possible private transitions between two public
states, that is, for each of the first d private states there either
is or is not a transition to each of the second d private states,
based on the private preconditions and effects of a. This set
of transitions represents a transition system of the action a.
An upper bound on the number of all such transition sys-
tems for a is ta = 2d

2

, that is the number of subsets of the
d2 transitions. It is reasonable to assume that a public transi-
tion encodes only existing transitions (actions applicable in
at least one private state). This means that an empty transi-
tion system is not an option, thus ta = 2d

2 − 1, for binary
(STRIPS) variable, ta = 15. As the variables are indepen-
dent, for p variables, we get ta = (2d

2 − 1)p, or ta = 15p

for STRIPS where d = 2.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

82

In the case of a label preserving projection, lbl(a) =
lbl(aD) all actions a ∈ O have unique labels, because each
public transition

〈
sD, lD, s′D

〉
∈ TD represents exactly one

action a ∈ O . As a single action can never produce multiple
states when applied in a single state, the number of possible
transition systems ta is significantly reduced. For a single
variable with d values, we get the number of partial func-
tions between two sets of size d, which is ta = (1 + d)d − 1
(again −1 for empty transition system), for STRIPS ta = 8,
without conditional effects ta = 7. Again, as the variables
are independent, the numbers can be multiplied for each
variable.

Based on the above, a complete public projection T (Π)B

of the agent’s transition system restricts the number of pos-
sible private transition system to tproj = (ta)|O

pub|, where ta
is the number of transition systems represented by a single
action.

Sources of Leakage
Before we analyze complex algorithms, let us first focus on
elements which have a major impact on the privacy leakage.
From the Equation 1 and its particular instance Equation 2
follows, that the source we need to focus on is the informa-
tion which is communicated in addition to the initial infor-
mation (the projected problem ΠB and the projected plan)
which is superfluous. In particular, the sources of informa-
tion we focus on are superfluous plans, superfluous distinct
states and superfluous action applicability information.

Of course, there are plenty of possible other sources of
information leakage and their combinations, but we base
our analysis on these three prominent sources separately,
thus providing a lower bound on the information leaked. In
the following, we provide more detailed description of the
aforementioned sources of leakage.

Superfluous plans are (partial) plans revealed by the al-
gorithm without being the actual solution (or its prefix).

In the public projection of the transition system, all public
projections of actions are independent. One possibility how
to interconnect actions is a sk-plan π = (a1, ..., ak). As
we assume a single initial state sI , a public projection πD

reveals information, that the first action is applicable in sI .
Without the loss of generality, we can assume that all vari-
ables have a particular value (e.g., 0 for STRIPS) in sI , as
the values can be arbitrarily renamed. This fixes uncertainty
about a1 in that it is now not possible that a1 is not appli-
cable in the initial state. But since we know that sI [V] = 0
and application of a single action always results in single
state, s1 = a1 ◦sI has also fixed value of V (although we do
not know which one). This means that a2 has also reduced
number of possible transition systems.

For the general projection πB, as a single public action
may represent multiple actions, transition systems with non-
deterministic behavior are possible, because even though ap-
plied on a single state, each of the represented actions may
result in a different state. Thus the only information revealed
is about the first action a1.

Combination of multiple plans does not leak any addi-
tional information in comparison to the separate plans. If the

projections of all plans of the agent are revealed to the adver-
sary (e.g., after exhaustive search) and the adversary knows
that no other plans exist (e.g., the complete state-space was
explored), more can be deduced. Let πB

1 = (a1, a2, a3) and
πB
2 = (a4, a5, a6) be two projected plans such that s1 =
a2 ◦ (a1 ◦sI) and s2 = a5 ◦ (a4 ◦sI) are two publicly equiv-
alent states. From the information that πB

3 = (a1, a2, a6) is
not in the set of all possible plans it can be deduced, that s1
and s2 are in fact two distinct, although publicly equivalent,
states. This leads to the definition of superfluous distinct
states.

Superfluous distinct states are publicly equivalent states
s, s′ revealed that s 6= s′ and either s or s′ is not part of the
solution. In the previous example, the states s1 and s2 were
discovered to be distinct, but if πB

2 = (a4, a5, a6) was the
only actual solution, this distinction was not necessary and
the private information has leaked.

The most common situation where the superfluous dis-
tinct state information leaks is the use of unique state labels.
For example, in MAFS, each state communicated with other
agents has to have a unique label representing the private
part of the state, which is then copied to its successors cre-
ated by other agents. Thus, when a successor of the state is
communicated back to the original agent, it can reconstruct
its private part. The same holds also for Secure-MAFS.

The superfluous distinct state information itself does not
reduce the number of possible transition systems, but can be
used for further deduction of superfluous action applicabil-
ity, defined as follows.

Superfluous action applicability is an information of ap-
plicability of an action a on two distinct publicly equivalent
states s, s′ s.t. aB is applicable in both sB, s′B known to
the adversary that s, s′ are distinct states and either s or s′
is not part of the solution, in other words, the states s, s′ are
superfluous distinct states.

In general, if the adversary obtains an information, that an
action a s.t. aB is applicable in public state sB, but is not
applicable in some of the private states represented by sB,
the number of possible transition systems represented by a
is reduced. We refer to such action as privately-dependent
action, as it must depend on a private variable. If the state s
or the action a is not part of the solution, this information is
superfluous and considered privacy leakage.

A similar situation appears, when a single action a is ap-
plicable in two publicly equivalent, but superfluous distinct
states s, s′. In this case, the information learned is that the
action does not depend on the private variable which distin-
guishes s and s′, thus reduces the number of possible tran-
sition systems for a. We refer to such action as privately-
independent, as it does not depend on any particular private
variable (although it may still depend on other private vari-
able).

A single action a may be privately-dependent for some
private variable and privately-independent for some other
variable.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

83

Leakage Estimate
Let the number of transition systems represented by a sin-
gle action a without any information revealed be ta, which
depends on the number of variables, their domain size and
other factors. LetOplan denote the set of all actions a used in
any superfluous plan1 and tplana the number of transition sys-
tems represented by a single action a reduced by the infor-
mation learned from the plan existence. Similarly, we define
the setOpd of privately-dependent actions and the setOpi of
privately-independent actions and the respective number of
transition systems represented by each such action a as tpda
and tpia respectively, each reduced2 according to the revealed
information. Thus for each action a ∈ Opub, we can define
the number of transition systems it represents as

τpost(a) = min

ta always

tplana if a ∈ Oplan

tpda if a ∈ Opd

tpia if a ∈ Opi

that is the minimum of the number of transition systems rep-
resented by a based on its membership in theOplan,Opd,Opi

sets. For example if an action a1 is revealed as privately-
independent and is in some communicated plan, τpost(a1) =
min(ta, t

plan
a , tpia) where for a STRIPS variables, single pri-

vate variable and label-preserving projection, the constants
are ta = 7, tplana = 5, tpia = 3 and thus τpost(a1) = 3.

The knowledge obtained about particular actions can be
combined to compute the total number of possible transition
systems tpost =

∏
a∈Opub τpost(a) giving us an upper bound on

the remaining uncertainty as

H∞(H|L) = log(tpost)
= log

∏
a∈Opub τpost(a)

=
∑
a∈Opub log τpost(a).

(3)

In the above formula, the number of possible transition
systems include not only the superfluous (and thus leaked)
information, but also the a-priori known information. The
a-priori formula for initial uncertainty can be constructed
similarly, but using only the information from the projected
problem ta and the projection πB of the solution plan, that
is Oplan = {a|a ∈ πB} resulting in

τapriori(a) = min

{
ta always

tplana if aB ∈ πB,

which for the action a1 from the previous example, as-
suming it is not part of the solution plan, is τapriori(a1) =
min(ta) = 7. The final formula for the leaked
information is obtained as H∞(H) − H∞(H|L) =∑
a∈Opub log τapriori(a)−

∑
a∈Opub log τpost(a) =∑

a∈Opub

(log τapriori(a)− log τpost(a)) (4)

1In the case of general projection which does not preserve la-
bels, only the first action of each plan reveals some information.

2We omit the numbers for simplicity, but they can be computed
for a particular model by enumerating the possible transition sys-
tems of an action.

where clearly, for the actions with no additional informa-
tion revealed we obtain log τapriori(a)− log τpost(a) = 0 and
for actions with leaked information (those which are part
of an superfluous plan, or for which the superfluous action
applicability has been revealed) we obtain log τapriori(a) −
log τpost(a) > 0. Again, for our example action a1,
log τapriori(a1) − log τpost(a1) = log 7 − log 3 ∼= 1.2. Be-
cause always τapriori(a) ≥ τpost(a) as no information can be
lost, only obtained, the number of possible transition sys-
tems can only decrease. This is important, because it shows
that the more actions is revealed by the superfluous plans or
superfluous applicability (itself following from superfluous
distinct states), the more private information is leaked.

It is also clear, that private actions do not have to be con-
sidered, as a private action is never part of a projection of
any (partial) plan and no information about its applicability
can be learned, thus a private action is never a member of the
Oplan,Opd,Opi sets and thus does not influence the leaked
information measure.

In the above equations, we assume independence of the
actions. Obviously, as the sources of information leakage
are not exhaustive and the actions are not independent, more
information may possibly leak (also by interactions between
the sources). This results in possibly lower number of possi-
ble transition systems and thus higher information leakage.
The results provided here serve as an upper bound on the
number of possible transition systems and therefore a lower
bound on the information leakage.

Analysis of PP-MAP Algorithms
So far we have shown lower bound on the leakage of pri-
vacy based on parameters such as the number of privately-
dependent actions observed by the adversary. This measure
is largely dependent on the particular problem, planning al-
gorithm and various non-deterministic decisions. In order
to compare algorithms, we need to abstract such details. In
this section we analyze the worst-case scenarios. To allow
such analysis of different planning paradigms, we alter the
multi-agent planning problemM we are solving in the fol-
lowing way. LetM∗ be the problem of finding all solutions
ofM. From the perspective of a single agent, we are look-
ing for all solutions of Π extensible by all other agents. This
modified problem corresponds to the worst-case execution
of state-space search algorithms (explore complete search
space), partial-order planning algorithms (explore all possi-
ble partial plans) and coordination-space search algorithms
(explore all possible combinations of local plans).

Minimal Leaked Information
To analyze what private knowledge can be deduced from the
solution toM∗, let us first define the solution as a transition
system T ∗(M), which can be obtained from an intersection
of transition systems T (Πi) of all agents, that is T (M) =⋂
αi∈A T (Πi). Informally, the intersection preserves only

nodes and transitions (joining preserved nodes) present in
the source transition systems.

From T (M) we obtain T ∗(M) by merging all publicly
equivalent states s, s′ (that is s[V] = s′[V] for all V ∈ Vpub)

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

84

as long as doing so does not introduce any new solution. In
other words, the set of paths from s to any goal state is equal
to the set of paths from s′ to any goal state. This means that
only the necessary publicly equivalent states are not merged
and thus their difference in private parts revealed. This is
clearly the minimal knowledge that is revealed by the solu-
tion ofM∗ and thus also by the worst case scenario inM.
Obviously, it is not tractable to achieve T ∗(M) leakage as it
would require to solve theM∗ problem first.

The leakage quantification and estimation is applicable to
M∗, by defining the a-priori information as all information
revealed by M∗, in particular all plans and all privately-
dependent and privately-independent actions. The notions
of superfluous plans, distinct states and action applicability
carry on as well, only with the solution (included in the in-
formation which can be revealed) which now consists ofM∗
instead of just one solution plan πB.

Multi-Agent Planning Paradigms
Here, we describe the dominating multi-agent planning
paradigms. We use a high-level description and present
examples of state-of-the-art planners falling into each
paradigm.
FS is a forward-chaining (and analogously backward-

chaining) state-space search. In the multi-agent version,
each state expanded by a public action is sent to all other
agents (or just agents with an applicable action). Exam-
ples of such planners are MAFS (Nissim and Brafman
2014) and SECURE-MAFS (Brafman 2015). Forward-
chaining Partial Order Planning (POP) falls in the same
category. In multi-agent POP, the (public projections of)
plans are shared in order to coordinate the exploration.
Example of such planners is FMAP (Torreño et al. 2014).

CS is a coordination-space search, a paradigm specific
for multi-agent planning, where agents attempt to agree
on a coordination scheme (public projections of local
plans) which is then extended by private actions of all
agents. Examples of such are the PSM (Tožička et
al. 2015), COMPLETEPSM (Tožička et al. 2014) and
GPPP (Maliah et al. 2016) planners.

Privacy Leakage of PP-MAP Algorithms
We analyze the leakage of private information of the de-
scribed planning paradigms and particular planners in the
worst-case scenario, that is when solvingM∗. Let λA(M∗)
denote the worst-case information leakage of algorithm A ,
according to definition of information leakage (Equation 2
and in particular Equation 4).

Forward/Backward State-Space Search The most sig-
nificant source of leakage in state-space search algorithms
is the use of unique IDs representing the private parts of
the states, thus distinguishing publicly equivalent states even
when it is not necessary3.

A multi-agent forward search algorithm jointly explores
the state-spaces of all agents, s.t. only globally reachable

3Certainly, it is not necessary to distinguish states which are
represented by only one node in T ∗(M).

states are explored. A source of superfluous distinct states
is that dead-end4 states are also explored, communicated
with other actions and subsequently action applicability is
revealed. Analogous situation appears in backward search,
where the dead-end states are not explored, but states un-
reachable from the initial state are. All analyzed algorithms
reveal public actions as label-preserving projection, which
leaks significant amount of privacy (as showed in previous
section) even though it is not necessary.

In the worst-case scenario (that is solving M∗), plain
FS (e.g., MAFS) reveals all reachable states and all reach-
able privately-dependent and privately-independent actions
together with all plans. Let Osup

FS denote the set of
all privately-dependent and privately-independent actions
which are globally reachable inM from the initial state and
are not part of the solution T ∗(M) (the actions are applica-
ble to a dead-end state). This means that all actions in Osup

FS
reveal their superfluous reachability. There are no superflu-
ous plans in FS. Based on Equation 4, a lower bound on
information leakage can be stated as

λFS(M∗) =
∑
a∈Osup

FS

(log τapriori(a)− log τpost(a)) (5)

where for all other actions a /∈ Osup
FS , log τapriori(a) =

log τpost(a) and thus the respective sum element results in
0 and can be ignored. Similar bound can be constructed for
the BS algorithm, where the set of superfluous actions con-
tains actions applicable in states from which the goal is glob-
ally reachable but which are not globally reachable from the
initial state.

The SECURE-MAFS algorithm reduces privacy leak-
age by not communicating a state with equal public and
other agents’ private parts twice. In general, this ap-
proach reduces the number of revealed states and privately-
dependent/independent actions, but it does not prevent
the exploration of dead-end states. This means that
Osup

SECURE-MAFS ⊆ Osup
FS and thus λSECURE-MAFS(M∗) ≤

λFS(M∗). There are cases, where the number of revealed
actions can be reduced to zero as shown in (Brafman 2015).

Forward-Chaining Plan-Space Search The forward-
chaining plan-space search does not have to reveal private
state IDs, but instead reveals private ordering constraints.
The ordering constraints can be used to deduce at least the
same knowledge as can be deduced from the state-space
search. Thanks to the forward-chaining property, each pub-
lic projection of a partial plan encodes a public state, say
s. If an action a is applicable in s, eventually, a partial
plan containing a will be reached and thus the applicabil-
ity of a revealed. If s is reachable, but a dead-end state,
it forms an superfluous distinct state thus providing excess
action applicability information for a. Thus, similarly to
MAFS, the forward-chaining principle leads to the explo-
ration of the reachable, but possible dead-end states, result-
ing in λPOP(M∗) = λFS(M∗) for the forward-chaining
variant of POP.

4As dead-end state is commonly referred to any state from
which there is no solution, i.e. no path to any goal state.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

85

Coordination-Space Search Only states and actions
which appear in some local plan are explored in the
coordination-space search, that is states which are locally
reachable and are not local dead-ends. On the contrary, parts
of the state-space which are not globally reachable may be
explored as well.

In CS, only the necessary publicly equivalent states need
to be distinguished, which also results in less privately-
dependent/independent superfluous action applicability re-
vealed. The set Osup

CS contains all actions in public projec-
tions of all local plans (that is projections πB

i of plans πi
solving Πi) an also all actions with superfluous action ap-
plicability revealed. Again, the lower bound on information
leakage is analogous to Equation 5 as all actions not inOsup

CS
leak no information. In general, λCS(M∗) and λFS(M∗) are
not comparable, as the content and relative sizes ofOsup

FS and
Osup

CS are problem-dependent.

Designing a Secure Multi-Agent Planner
Based on the above analysis, we can attempt to improve
the existing algorithms to reduce leaked private information
when solving M∗. Let us state three rules preventing pri-
vacy leakage based on the techniques used in the existing
algorithms:

CS-RULE: Before communicating a state s, make sure it is
part of a local solution to the agent’s problem Πi.

FS-RULE: Before communicating a state s, make sure it is
reachable inM. In the case of plan-space search, before
communicating a (partial) plan, make sure it is valid in
M.

B-RULE: Do not use label-preserving projection and do
not communicate a state with equivalent public and other
agent’s private parts more than once.

Figure 1 illustrates portions of the state space leaked by ap-
plication of the CS-RULE, FS-RULE and their intersection.
The B-RULE is not shown in the figure as it does not di-
rectly influence the search space, but rather make the leaked
information less dense. Obviously, the best algorithm would
expand and communicate only states of T ∗(M), thus result-
ing in zero leakage, but that would require to check whether
a state is part of a global solution (i.e. solvingM∗).

We propose a class of algorithms called SECMAP, con-
taining algorithms which follow all three proposed rules
when communicating about states, actions and plans. In the
rest of this section, we show that SECMAP algorithms leak
less private information than all existing algorithms.

Definition 1. An algorithm A1 leaks less information than
algorithm A2, denoted as A1 ⊂ A2, if after solvingM∗ by
both algorithms, λA1(M∗) < λA2(M∗). Analogously, we
define A1 ⊆ A2.

The amount of information leaked by a SECMAP algo-
rithm is λSECMAP(M∗) and can be estimated as follows. In
SECMAP, the only superfluous state is s (and subsequently
actions applicable in s) such that s is globally reachable
(thanks to the FS-RULE), s is part of a solution of Πi (thanks
to the CS-RULE), but s is not part of a solution of M. In

Figure 1: Portions of the state space leaked by application
of the CS-RULE, FS-RULE and their combination, where
πD is a sequence of actions leading to a dead-end, πL is a
local plan for Π which cannot be extended to form a global
plan forM and π is a global plan forM.

other words, the only leaked information of a SECMAP al-
gorithm is the information about states which are not part of
a global solution, thus are not part of T ∗(M), but are glob-
ally reachable and are part of a local solution of agent i. By
application of the B-RULE, even less superfluous states is re-
vealed, similarly to SECURE-MAFS. Let us denote the set
of all actions applicable in such states as Osup

SECMAP and thus
λSECMAP(M∗) =

∑
a∈Osup

SECMAP
(log τapriori(a)− log τpost(a)).

In the rest section we show that SECMAP leaks at most as
much information as any of the existing planning paradigms
in general and strictly less information in specific classes of
problems.

Lemma 2. From the combination of the FS-RULE,
CS-RULE and B-RULE follows Osup

SECMAP = Osup
FS ∩ O

sup
CS ∩

Osup
SECURE-MAFS .

Proof. For an action a ∈ Opub
i holds a ∈ Osup

SECMAP only if it
is applicable in a globally reachable state s, that is a ∈ Osup

FS ,
a is a part of a local solution to Πi, that is a ∈ Osup

CS and s′
publicly equivalent to s was not already published.

Now we define two specific classes of MAP problems.

Definition 3. LetM be a MAP problem. We say thatM is
worst-case FS-superfluous if there exist a state s in T (M)
which is globally reachable from sI , no goal state is locally
reachable from s in Πi for some i and there is an action
a ∈ Opub

i applicable in s.

For example, such situation may rise in a factory domain,
where a factory consumes too much of a resource, thus mak-
ing it impossible to reach the goal in the long run, but in FS,
many other actions may be explored and published to the
adversary before reaching the dead end.

Definition 4. LetM be a MAP problem. We say thatM is
worst-case CS-superfluous if there exist a state s in T (M)
which is part of a local solution of Πi for some i, s is not
globally reachable from sI and there is an action a ∈ Opub

i
for some i applicable in s.

In logistics, an agent αi may deduce based on its local
problem that some other agent αj is able to deliver a package
from A to B and thus αi explore states and publish actions

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

86

based on this assumption. But the assumption may be wrong
for some internal reasons of αj (e.g., not enough fuel or no
route between A and B).

Based on the above definitions we can state the following.

Theorem 5. For a worst-case FS-superfluous MAP problem
M, SECMAP ⊂ SECURE-MAFS ⊆ MAFS.

Proof. SECURE-MAFS ⊆ MAFS has been proven
in (Brafman 2015) and it was already shown that
Osup

SECURE-MAFS ⊆ Osup
FS and thus λSECURE-MAFS(M∗) ≤

λFS(M∗). From Lemma 2 and becauseM is worst-case FS-
superfluous, there exist an action a such that a ∈ Osup

FS and
a /∈ Osup

CS and thus Osup
SECMAP ⊂ O

sup
FS and λSECMAP(M∗) <

λFS(M∗) and MAFS is an instance of FS. By including
the B-RULE, we remove the same actions from Osup

SECMAP
and Osup

FS . As the action a was superfluous based on the
FS-RULE and does not satisfy the B-RULE it is not removed
and thus the inequality holds also for SECURE-MAFS, that
is λSECMAP(M∗) < λSECURE-MAFS(M∗).

Theorem 6. For a worst-case CS-superfluous MAP problem
M, SECMAP ⊂ PSM.

Proof. From Lemma 2 and because M is worst-case CS-
superfluous, there exist an action a such that a /∈ Osup

FS and
a ∈ Osup

CS and thus Osup
SECMAP ⊂ O

sup
CS and λSECMAP(M∗) <

λCS(M∗) and PSM is an instance of CS.

The same results hold for FMAP which is an instance of
FS and for GPPP which is an instance of CS. It is obvious,
that in general case, a SECMAP algorithm never leaks more
information than any of the considered algorithms.

SECMAP Algorithms
The rules defining SECMAP are constructive and thus
they can help us modify each of algorithms to fall in the
SECMAP class. First, all algorithms need to be modified
not to publish the label-preserving projection of public ac-
tions. Furthermore, each algorithm has to be extended to
comply with all rules of SECMAP.

MAFS, SECURE-MAFS Algorithm 1 (black lines)
presents the MAFS algorithm. Let us show how to modify
this algorithm to belong to SECMAP (red and black lines).

MAFS already satisfies the FS-RULE as all reached states
during the search are globally reachable. The FS-RULE
follows form the distributed forward-chaining principle of
MAFS which passes through all agents which has to use
their private actions to reach further public actions which
again passes the process (lines 18 and 3).

To satisfy the CS-RULE in the secure variant
SECMAP-MAFS, the agents need to verify that the
extracted state s (line 9) is part of some local solution,
before sending it to other agents (line 18). Since MAFS
assures that s is (globally) reachable, it is enough to check
that also the goal is reachable from this state using actions
of the agent and public projections of all other actions of all
other agents as defined in Πi. Such check requires to solve
new local planning task and if it unsolvable (represented as
⊥ on line 13) the state s has to be ignored. The lines 12–15

1 Algorithm MAFS(M, αi)and
SECMAP-MAFS(M, αi)

2 while TRUE do
3 forall the messages m = 〈s, ...〉 in message

queue do
4 if s is not in open or closed list or ... then
5 add state from m to open list
6 ...
7 end
8 end
9 s← extract-min(open list);

10 move s to closed list
11 check whether s is a goal state
12 πB ← reconstruct-public-plan(s);
13 if local-planning(Πi, π

B) = ⊥ then
14 goto line 3
15 end
16 forall the αj ∈ A do
17 if s is relevant for αj then
18 send s to αj
19 end
20 end
21 expand s
22 end

Algorithm 1: MAFS algorithm (shortened to contain only
parts relevant to the privacy disclosure) for the agent αi,
see (Nissim and Brafman 2014), and its SECMAP variant
when are the red lines included.

describe such process. First, a projected public plan πB to
the expanded state s is reconstructed using classical recur-
sion over parent actions and states backwards to the initial
state (function reconstruct-public-plan(s)).
Second, the local planning process is run for Πi (function
local-planning(Πi,πB)) which searches for a plan
solving Πi and containing actions of πB in that specific
order. In other words, the planning task is about filling gaps
between the initial state, the public actions in πB and one of
the goal states, such that the potential private preconditions
of the public actions in πB are satisfied. The B-RULE can
be satisfied by the same way as in SECURE-MAFS, that is
never sending a state s which differs only in the private part
of the sending agent.

FMAP We will omit the FMAP algorithm pseudo-code
as it is similar to the MAFS but it searches in coordinated
way the space of partial plans. Thus, the only differences are
that s is a partial plan and that the successors are generated
using different expansion function.

PSM The PSM algorithm builds local plans in parallel by
all agents . These plans are exchanged among all agents,
therefore all agents have (in the end) all agents’ local solu-
tions in form of projections . A non-empty intersection of
these solutions contains only plans which were local solu-
tions, therefore together they represent global solutions (a
public plan πB i-extensible by all αi ∈ A is a global solu-
tion toM (Tožička et al. 2015)).

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

87

PSM already fulfills the CS-RULE, as the agents’ sets of
local plans Φ are generated considering both the public pro-
jection and agent’s private part together in Πi. To satisfy the
FS-RULE, the secure variant SECMAP-PSM must not send
the whole local solutions π at once , but each agent has to
check prefixes of the generated plans in Φ whether they are
all globally reachable. Again, the B-RULE can be satisfied
by never sending a state s which differs only in the agent’s
own private part from some already sent state s′.

GPPP The Greedy Privacy-Preserving Planner
(GPPP) (Maliah et al. 2016) fits in the CS paradigm.
The algorithm plans centrally in forward-chaining fashion
over publicly projected ΠB and checks the solution by local
planning on all agents, filling in the missing private parts
of the projected plan πB (that is basically checking the
i-extensibility of πB). If all agents can successfully provide
local plans for the projected plan πBthe algorithm found a
global solution of the problem. Although based on different
principle, the CS-RULE is satisfied by GPPP similarly to
PSM. In order to get a SECMAP variant of GPPP, the
FS-RULE has to be ensured. As in SECMAP-PSM, the
check of i-extensibility has to be performed iteratively on
the prefix of πB starting with the length of 1 and ending
with the length of |πB|. Additionally, the check should
never be performed on a state s such that it was already
performed on a publicly equivalent s′, thus satisfying the
B-RULE.

Finally, from the above analysis follows:

Theorem 7. The SECMAP-MAFS, SECMAP-FMAP,
SECMAP-PSM and SECMAP-GPPP algorithms do not
leak more information than SECMAP.

Proof. All the algorithms satisfy FS-RULE, CS-RULE
and B-RULE, thus Osup

SECMAP-MAFS ⊆ Osup
FS ∩ O

sup
CS ∩

Osup
SECURE-MAFS. Then from Lemma 2 Osup

SECMAP-MAFS ⊆
Osup

SECMAP and analogously for SECMAP-FMAP,
SECMAP-PSM and SECMAP-GPPP.

Conclusions and Future Work
We have proposed a way how to quantify the amount of
leaked information during multi-agent planning. The use
of this measure is demonstrated on several cases of pri-
vate information leakage. Furthermore, we have identified
which cases of information leakage are presented in the most
common multi-agent planning paradigms and a new class
SECMAP of privacy preserving algorithms has been pro-
posed. This class is guaranteed to leak less information than
any currently known algorithm for a certain classes of prob-
lems.

Dominant multi-agent planning algorithms representing
different paradigms were analyzed and we proposed how
to change them to belong to SECMAP for the price of in-
creased computational complexity as all SECMAP algo-
rithms require another (albeit local) planning process to de-
crease the need for communicating information which can
be used to deduce private parts of the problem. Propos-
ing a practically efficient SECMAP (or at least close to
SECMAP) algorithms is left for future work together with

experimental comparison against the less privacy preserving
algorithms.

Acknowledgments This research was supported by the
Czech Science Foundation (grant no. 15-20433Y) and
by the Grant Agency of the CTU in Prague (grant no.
SGS16/235/OHK3/3T/13).

References
Ronen I. Brafman and Carmel Domshlak. From one to
many: Planning for loosely coupled multi-agent systems. In
Proceedings of the Eighteenth International Conference on
Automated Planning and Scheduling, ICAPS, pages 28–35,
2008.
Ronen I. Brafman. A privacy preserving algorithm for multi-
agent planning and search. In Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelli-
gence, IJCAI, pages 1530–1536, 2015.
Christelle Braun, Konstantinos Chatzikokolakis, and Catus-
cia Palamidessi. Quantitative notions of leakage for one-try
attacks. Electr. Notes Theor. Comput. Sci., 249:75–91, 2009.
Shlomi Maliah, Guy Shani, and Roni Stern. Collabora-
tive privacy preserving multi-agent planning. Autonomous
Agents and Multi-Agent Systems, pages 1–38, 2016.
Raz Nissim and Ronen I. Brafman. Distributed heuristic
forward search for multi-agent planning. J. Artif. Intell. Res.
(JAIR), 51:293–332, 2014.
Geoffrey Smith. On the foundations of quantitative infor-
mation flow. In Proceedings of the 12th International Con-
ference on Foundations of Software Science and Computa-
tional Structures, FOSSACS , Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software,
ETAPS, pages 288–302, 2009.
Alejandro Torreño, Eva Onaindia, and Oscar Sapena.
FMAP: distributed cooperative multi-agent planning. Appl.
Intell., 41(2):606–626, 2014.
Jan Tožička, Jan Jakubův, Karel Durkota, Antonı́n
Komenda, and Michal Pěchouček. Multiagent planning sup-
ported by plan diversity metrics and landmark actions. In
Proceedings of the 6th International Conference on Agents
and Artificial Intelligence, ICAART, volume 1, pages 178–
189, 2014.
Jan Tožička, Jan Jakubův, Antonı́n Komenda, and Michal
Pěchouček. Privacy-concerned multiagent planning. Knowl-
edge and Information Systems, pages 1–38 (pre–print),
2015.
Roman Van Der Krogt. Quantifying privacy in multia-
gent planning. Multiagent and Grid Systems, 5(4):451–469,
2009.
Andrew C. Yao. Protocols for secure computations. In Pro-
ceedings of the 23rd Annual Symposium on Foundations of
Computer Science, SFCS, pages 160–164, 1982.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

88

Computing Multi-Agent Heuristics Additively

Michal Štolba and Antonı́n Komenda
{stolba,komenda}@agents.fel.cvut.cz

Department of Computer Science, Faculty of Electrical Engineering,
Czech Technical University in Prague, Czech Republic

Abstract

Similarly to classical planning, heuristics play a crucial role
in most multi-agent and privacy-preserving multi-agent plan-
ning systems. It has been shown that distributed heuristics
may crucially improve the search guidance, but are costly in
terms of communication and computation time and are of-
ten a source of privacy concerns. One solution is to compute
a heuristic additively, in the sense that each agent can com-
pute its part of the heuristic independently and obtain a com-
plete heuristic estimate by summing up the individual parts.
In this preliminary paper, we propose a technique based on
cost-partitioning allowing us to use any heuristic in such a
way.

Introduction
Modern real-world large-scale personal, corporate or mili-
tary applications often consist of multiple independent en-
tities. Such entities may need to cooperate in the plan syn-
thesis, while still wanting to protect the privacy of their in-
put data and internal processes. Multi-agent and privacy-
preserving multi-agent planning allows the definition of fac-
tors of the global planning problem private to the respective
entities (i.e. agents) in order to improve the efficiency of
planning and/or maintain privacy of the information.

In such privacy-preserving planning systems (Torreño,
Onaindia, and Sapena 2014; Nissim and Brafman 2014;
Maliah, Shani, and Stern 2014; Tožička, Jakubův, and
Komenda 2014), each agent has access only to its part of the
global problem, thus can plan only using its operators. The
agent can compute a heuristic from its view on the global
problem, its projection. Such projection also contains view
of other agent’s public operators, which allows for a heuris-
tic estimate of the entire problem, but such estimate may
be significantly misguided as shown in (Štolba, Fišer, and
Komenda 2015). The reason is that the projection does not
take into account the parts of the problem private to other
agents, moreover in some problems, the optimal heuristic
estimate may be arbitrarily lower for the projection than for
the global problem.

To obtain a better guidance, a global heuristic estimate
can be computed using a distributed process while in some
cases still preserving privacy. A number of inadmissi-
ble heuristics has been treated this way such as the FF

heuristic (Štolba and Komenda 2014), a DTG-based heuris-
tic (Torreño, Onaindia, and Sapena 2014) and a landmark-
based heuristic (Maliah, Shani, and Stern 2014). The ad-
missible LM-Cut heuristic (Helmert and Domshlak 2009)
is computed in a distributed way in (Štolba, Fišer, and
Komenda 2015) and in (Maliah, Shani, and Stern 2015), the
authors distribute an admissible pattern database heuristic.
The recent class of potential heuristic has been computed
distributedly in (Štolba, Fišer, and Komenda 2016).

MAD-A* (Nissim and Brafman 2012) and its secure
variant secure-MAFS (Brafman 2015) are the only optimal
privacy-preserving multi-agent planners. There is a number
of optimal multi-agent planners not concerning privacy (Di-
mopoulos, Hashmi, and Moraitis 2012; Jezequel and Fabre
2012).

All distributed heuristics published up-to-date present ad-
hoc techniques to distribute each particular heuristic. Typ-
ically, the distributed computation of heuristic estimate re-
quires cooperation of all (or at least most of) the agents and
incurs a substantial amount of communication. In many sce-
narios, the communication may be very costly (multi-robot
systems) or prohibited (military) and even on high-speed
networks, communication takes significant time compared
to local computation. In such cases it may pay off to use the
projected heuristic instead of its better informed counterpart.
Most of the referenced heuristics is also missing any formal
treatment of privacy, which is for complex algorithms indeed
a nontrivial undertaking.

In (Nissim and Brafman 2014), the authors propose an
idea of an additive heuristic such that projected estimates of
two agents could be added together and still maintain admis-
sibility. In this paper we apply the results of research of ad-
ditive heuristics, namely the approach of cost-partitioning,
to the case of distribution of heuristics for multi-agent plan-
ning. This way we obtain a fully general approach allowing
us to compute any heuristic additively in a distributed way.
Also, it allows us to combine different heuristics, which ad-
heres to the idea of independent agents (that is, each agent
can use the heuristic it sees most fit). Last but not least, the
presented approach allows us to compute admissible sum of
admissible heuristics.

In classical planning, the cost partitioning is typically
computed for each state evaluated during the planning pro-
cess. In PP-MAP, such approach does not make much sense

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

89

as we want to keep local as much computation as possible.
Thus, the envisioned use of such cost-partitioning is to com-
pute it once at the beginning of the planning process, use the
cost-partitioned problems to evaluate heuristics locally and
sum the local heuristics to obtain a global estimate.

Since this paper is preliminary, we present mostly theo-
retical results and leave a proper evaluation for the future
work.

Formalism
In this section we present the formalism used throughout
the paper. First of all, we define a general (that is single-
agent) planning task in the form of Multi-Valued Planning
Task (Helmert 2006) (MPT). The MPT is a tuple

Π = 〈V,O, sI , s?, cost〉
where V is a finite set of finite-domain variables, O is a
finite set of operators, sI is the initial state, s? is the goal
condition and cost : O 7→ R+

0 is a cost function. Each V
in the finite set of variables V has a finite domain of val-
ues dom(V). A fact 〈V, v〉 is a pair of a variable V and
one of the values v from its domain (i.e. an assignment).
Let p be a partial variable assignment over some set of vari-
ables V . We use vars(p) ⊆ V to denote a subset of V on
which p is defined and p[V] to denote the value of V as-
signed by p. Alternatively, p can be seen as a set of facts
{〈V, p[V]〉 |V ∈ vars(p)} corresponding to that partial vari-
able assignment. A complete assignment over V is a state
over V . A (partial) assignment p is consistent with a (par-
tial) assignment p′ iff p[V] = p′[V] for all V ∈ vars(p).

An operator o from the finite set O has a precondition
pre(o) and effect eff(o) which are both partial variable as-
signments. An operator o is applicable in state s if pre(o) is
consistent with s. Application of operator o in a state s re-
sults in state s′ such that all variables in eff(o) are assigned
to the values in eff(o) and all other variables retain the values
from s, formally s′ = o ◦ s.

A solution to MPT Π is a sequence (a plan) π =
(o1, ..., ok) of operators from O , such that o1 is applicable
in sI = s0, for each 1 ≤ l ≤ k, ol is applicable in sl−1 and
sl = ol ◦sl−1 and sk is a goal state (i.e. s? is consistent with
sk).

Similarly as MA-STRIPS (Brafman and Domshlak 2008)
is an extension of STRIPS (Fikes and Nilsson 1971) towards
privacy and multi-agent planning, we now present MA-MPT
as a multi-agent extension of the Multi-Valued Planning
Task. For n agents, the MA-MPT problemM = {Πi}ni=1
consists of a set of n MPTs. Each MPT for an agent αi ∈ A
is a tuple

Πi =
〈
Vi = Vpub ∪ Vprivi ,Oi = Opubi ∪ Oprivi , siI , s

i
?, costi

〉
where Vprivi is a set of private variables Vpub is a set of public
variables shared among all agents Vpub ∪Vprivi = ∅, and for
each i 6= j, Vprivi ∩ Vprivj = ∅ and Oi ∩ Oj = ∅.

All variables in Vpub and all values in their respective do-
main are public, that is known to all agents. All variables in
Vprivi and all values in their respective domains are private
to agent αi which is the only agent aware of such V and
allowed to modify its value.

A global state is a state over VG =
⋃

i∈1..n Vi. A global
state represents the true state of the world, but no agent may
be able to observe it as a whole. Instead, each agent works
with an i-projected state which is a state over Vi such that
all variables in VG ∩ Vi are equal in both assignments (the
assignments are consistent).

The setOi of operators of agent αi consists of private and
public operators such thatOpubi∩Oprivi = ∅. The precondi-
tion pre(o) and effect eff(o) of private operators o ∈ Oprivi ,
are partial assignments over Vprivi , whereas in the case of
public operators o ∈ Opubi the assignment is over Vi and
either pre(o) or eff(o) assigns a value to at least one public
variable from Vpub . Because Vpub is shared, public opera-
tors can influence other agents. A function costi : Oi 7→ R+

0
assigns a cost to each operator of agent αi. The initial state
sI and the partial goal state s? (partial variable assignment
over VG) are in each agent’s problem represented only as
i-projected (partial) states.

We define a global problem (MPT) as a union of the agent
problems, that is

ΠG =

〈 ⋃
i∈1..n

Vi,
⋃

i∈1..n
Oi, sI , s?, costG

〉
where costG is a union of the cost functions costi. The
global problem is the actual problem the agents are solving.

An i-projected problem is a complete view of agent αi on
the global problem ΠG. The i-projected problem of agent
αi contains i-projections of all operators of all agents. For-
mally, an i-projection o.i of o ∈ Oi is o. For a public
operator o′ ∈ Opubj of some agent αj s.t. j 6= i, an i-
projected operator o′.i is o′ with precondition and effect re-
stricted to the variables of Vi, that is pre(o′.i) is a partial
variable assignment over Vi consistent with pre(o′) (eff(o′)
treated analogously). An i-projection of a private operator
o′′ ∈ Oprivj s.t. j 6= i is o′′.i = ε, that is a no-op action with
cost.i(o′′.i) = costi(ε) = 0. The cost of i-projection of
o′′ ∈ Opubj is preserved, formally cost.i(o.i) = costj(o).

The set of i-projected operators is

O.i = {o.i|o ∈
⋃

j∈1...n
Oj}

and an i-projected problem is

Π.i =
〈
Vi,O.i, siI , s

i
?, cost.i

〉
The set of all i-projected problems is thenM. = {Π.i}ni=1.

Example
Here we present a small running example with two agents
α1 and α2. The problem of agent α1 is Π1:

Vpub = {V3 ∈ {u, g}}
Vpriv1 = {V1 ∈ {i1, p1}}
Opub1 = {b1}
Opriv1 = {a1}

s1I = V1 7→ i1, V3 7→ u

s1? = V3 7→ g

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

90

where the actions a1, b1 are:

a pre(a) eff(a) cost1(a)

a1 V1 7→ i1 V1 7→ p1 cost1(a1) = 1
b1 V1 7→ p1 V1 7→ i1,V3 7→ g cost1(b1) = 2

The problem of agent α2 is Π2:

Vpub = {V3 ∈ {u, g}}
Vpriv2 = {V2 ∈ {i2, p2}}
Opub2 = {b2}
Opriv2 = {a2}

s2I = V2 7→ i2, V3 7→ u

s2? = V3 7→ g

where the actions are:

a pre(a) eff(a) cost2(a)

a2 V2 7→ i2 V2 7→ p2 cost2(a2) = 1
b2 V2 7→ p2 V2 7→ i2,V3 7→ g cost2(b2) = 2

In addition, the actions of projected problem Π.1 are
O.1 = {a.11 , b.11 , b.12 }, where a.11 , b

.1
1 are unchanged and

b.12 :
a pre(a) eff(a) cost1(a)

b.12 ∅ V3 7→ g cost1(b.12) = 2

Analogously, the actions of projected problem Π.2 are
O.2 = {a.22 , b.22 , b.21 }, where a.22 , b

.2
2 are unchanged and

b.21 :
a pre(a) eff(a) cost2(a)

b.21 ∅ V3 7→ g cost2(b.21) = 2

Obviously, a global solution to the problem is either
(a1, b1) or (a2, b2), both of cost 3. The optimal solution of
Π.1 is (b.12) with the cost of 2 and symmetrically for Π.2.
Thus if we take the baseline approach and maximize the two
optimal costs we obtain 2 which is a bound on the value any
two admissible heuristics can give as a maximum of pro-
jected heuristics.

Abstractions
The setM. of all i-projected problems can be seen as a set
of abstractions of the global problem ΠG. To do so, we first
define the transition system of a MPT problem Π.

Definition 1. (Transition system) A transition system of a
planning task Π is a tuple T (Π) = 〈S,L, T, sI , S?〉, where
S =

∏
V ∈V dom(V) is a set of states, L is a set of transition

labels corresponding to the actions inO and T ⊆ S×L×S
is a transition relation of Π s.t. 〈s, a, s′〉 ∈ T if a ∈ O s.t. a
is applicable in s and s′ = a ◦ s. A state-changing transition
is 〈s, a, s′〉 ∈ T such that s 6= s′. The state sI ∈ S is the
initial state and S? is the set of all goal states (that is all states
s s.t. s? is consistent with s).

Next, we proceed with the definition of an abstraction.

Definition 2. (Abstraction) Let T = 〈S,L, T, sI , S?〉 and
T ′ = 〈S′, L′, T ′, s′I , S′?〉 be transition systems with the
same label set L = L′ and let σ : S 7→ S′. We say that T ′ is
an abstraction of T with abstraction function (mapping) σ if
• s′I = σ(sI),
• for all s ∈ S? also σ(s) ∈ S′?, and
• for all 〈s, a, s′〉 ∈ T , 〈σ(s), a, σ(s′)〉 ∈ T ′.

To conclude this section, we show that an i-projection is
an abstraction.
Theorem 3. (Projection is an abstraction) Let T (ΠG) =〈
SG,

⋃
i∈1..nOi, TG, sI , S?

〉
be the transition system of the

global problem ΠG and T (Π.i) =
〈
S.i,O.i , T .i, siI , S

i
?

〉
the transition system of the i-projected problem Π.i. Then
T (Π.i) is an abstraction of T (ΠG) with respect to the state-
changing transitions.

Proof. We define an abstraction mapping σ.i : SG 7→ S.i

such that for a state s ∈ SG we define σ.i(s) as a re-
striction of s to the variables in Vi . Then from definition,
σ.i(s) = s.i. From definition also s.iI = σ.i(sI). If s ∈ S?

then s? is compatible with s, if both are restricted to Vi , the
compatibility is not violated and thus σ.i(s) ∈ Si

?.
For each action a ∈ Oi and each transition 〈s, a, s′〉 ∈ TG

there is a transition
〈
s.i, a.i, s′.i

〉
∈ T .i as a.i = a. For

j 6= i and for each action a′ ∈ Opubj and each transition
〈t, a′, t′〉 ∈ TG, there is a transition

〈
t.i, a′.i, t′.i

〉
∈ T .i as

pre(a′.i) is pre(a′) restricted to Vi and t.i is t restricted to
Vi (the same goes for eff(a.i). For each action a′′ ∈ Oprivj

and each transition 〈u, a′, u′〉 ∈ TG, there is no transition〈
u.i, a′′.i, u′.i

〉
∈ T .i, but as both pre(a′′) and eff(a′′) are

defined only over Vprivj , u.i = u′.i and thus the missing
transition

〈
u.i, a′′.i, u′.i

〉
∈ T .i is a loop.

The missing loops never influence the shortest path and
thus can be ignored (or added at will).

Cost Partitioning
In this section we describe the idea of cost-partitioning (Katz
and Domshlak 2010) as used in classical planning and de-
fine a novel notion of multi-agent cost-partitioning. We will
be talking about non-negative cost-partitioning, where the
costs of actions are not allowed to be less than 0, but all no-
tions and techniques generalize to the case of general cost-
partitioning without such restriction.
Definition 4. (Cost partitioning). Let Π be a planning task
with operatorsO and cost function cost. A cost partitioning
for Π is a tuple cp = 〈cp1, ..., cpk〉 where cpl : O → R+

0

for 1 ≤ l ≤ k and
∑k

l=1 cpl(o) ≤ cost(o) for all o ∈ O .
As shown in (Katz and Domshlak 2010), a sum of admis-

sible heuristics computed on the cost-partitioned problem is
also admissible, formally
Proposition 5. (Katz and Domshlak 2010). Let Π be a plan-
ning task, let h1, ..., hk be admissible heuristics for Π, and
let cp = 〈cp1, ..., cpk〉 be a cost partitioning for Π. Then
hcp =

∑k
l=1 hl(s) where each hl is computed with cpl is an

admissible heuristic estimate for a state s.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

91

ΠG: Π.1:

Figure 1: a) Transition system of the global problem ΠG respective to the example. b) Example transition system, 1-projection
(abstraction).

Based on the particular cost partitioning cp, the heuris-
tic estimate can have varying quality. By optimal cost-
partitioning (OCP) we mean a cost-partitioning which max-
imizes hcp.

Now we proceed with definition of a multi-agent variant
of cost-partitioning, which differs in that the partitions are
defined a-priori by the set of i-projected problems.
Definition 6. (Multi-agent cost partitioning). Let M. =
{Π.i}ni=1 be the set of all i-projected problems with respec-
tive cost functions cost.i. A multi-agent cost-partitioning
for M. is a tuple of functions cp = 〈cp1, ..., cpn〉 where
cpi : O.i → R+

0 . For 1 ≤ i ≤ n and for each o ∈ OG holds∑n
i=1 cpi(o

.i) ≤ cost.j(o.j) where αj is the owner of o,
that is o ∈ Oj .
Theorem 7. Let M. = {Π.i}ni=1 be the set of all i-
projected problems, ΠG the global problem respective toM
and cp a multi-agent cost-partitioning forM.. Then cp is a
cost-partitioning for ΠG.

Proof. The theorem follows from Definition 4, Definition 6
for all public actions and from setting o.i = ε for all
o ∈ Oprivj s.t. j 6= i. As cost.i(o.i) = cost.i(ε) = 0
and cost.j(o.j) = costj(o), the cost-partitioning property∑n

i=1 cpi(o
.i) ≤ costj(o) holds also for private opera-

tors.

Thanks to Theorem 7 we can apply the Proposition 5
also in the multi-agent setting using a multi-agent cost-
partitioning. Thus, each agent αi can compute its part of
the heuristic locally on Π.i using cpi instead of costi as the
cost function. To obtain the global heuristic, the individual
parts can be simply summed

hG(s) =

n∑
i=1

h.icpi(s
.i) (1)

where h.icpi is an i-projected heuristic computed on Π.i using
cpi. We contrast this approach to the current state of the art,
which is taking the maximum, formally

hmax(s) = max
1≤i≤n

h.i(s.i) (2)

where h.i is any (admissible) heuristic computed on Π.i us-
ing the original costi.

Optimal Cost Partitioning
To compute the optimal cost partitioning (OCP) for i-
projections, based on Theorems 3 and 7 we can readily
apply the results of optimal cost partitioning for abstrac-
tions (Pommerening et al. 2014).

The idea behind the following LP is to encode the ab-
stract transition systems and possible shortest paths in it.
The LP variables used for each αi ∈ A are h̄.i encoding
the i-projected heuristic value (given the cost-partitioning),
s̄′.i representing the cost of shortest path from a state s (or
actually s.i) to s′.i in the i-projected problem given the cost
partitioning and ā.i representing the cost-partitioned cost of
action a.i ∈ O.i . The LP is formulated as follows:

Maximize
∑n

i=1 h̄
.i subject to

s̄′.i = 0 for all s′.i = s.i

s̄′′.i ≤ s̄′.i + ā.i for all
〈
s′.i, a.i, s′′.i

〉
∈ T .i

h̄.i ≤ s̄′.i for all s̄′.i ∈ si?∑n
j=1 ā

.j ≤ costi(a) for all a ∈ Opubi

ā.i ≤ costi(a) for all a ∈ Oprivi

where the first set of constraints sets all states equal (in the
i-projection) with the current state s to have zero cost of
shortest path. The second set of constraints encode the ac-
tual (abstracted) transitions and their costs (transitions where
s′.i = s′′.i can be ignored), the third set of constraints
places an upper bound on the actual heuristic estimate to
keep it admissible. The fourth and fifth sets of constraints
represent the cost partitioning of public and private actions
respectively. Note, that private actions of agent αi always
occur only as i-projections and are not partitioned (i.e. any
other projection of such action has the cost of 0).

Let us show how the optimal cost partitioning is com-
puted on the running example. The global transition system
is shown in Figure 1 a) and the transition system projected
to agent α1 in Figure 1 b) (transition system projected to
α2 is symmetrical). The LP is built based on the projected
problems as follows:

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

92

Maximize h̄.1 + h̄.2 subject to

s̄.11 = 0

s̄.12 ≤ s̄.11 + ā.11

s̄.13 ≤ s̄.12 + b̄.11

s̄.13 ≤ s̄.11 + b̄.12

h̄.1 ≤ s̄.13
...

ā.11 ≤ 1

b̄.11 + b̄.21 ≤ 2

..

where the omitted parts are defined for agent α2 analo-
gously. The solution gives h.1 +h.2 = 3 as the value of the
objective function and b̄.11 = 1, b̄.21 = 1, b̄.12 = 2, b̄.22 = 0
as the values of (relevant) LP variables. The values directly
give the cost partitioning. When applied, the optimal solu-
tions of Π.1 and Π.2 has the cost of 1 and 2 respectively,
which is the maximal value so that the sum does not violate
admissibility.

In contrast to the use in classical planning, we intend to
compute the cost-partitioning LP only once at the beginning
of the planning process. Obviously, this results in a possibly
sub-optimal cost-partitioning for other states than the initial
one, but still should give better informed heuristics than just
taking maximum of the projections.

Unfortunately, even computing such OCP once may be
intractable in general, as the i-projected problems may be
as large and as hard as the global problem e.g., in a sce-
nario where all (or most of) actions and variables are pub-
lic. Even though typically the projected problems are sig-
nificantly smaller and thus it is reasonable to experimentally
evaluate this approach.

Approximate OCP
Another approach is to approximate the optimal cost-
partitioning. The most obvious approach is to compute a
smaller abstraction of each of the Π.i and compute the OCP
as above on that set of smaller abstractions. Moreover, a
cost-partitioning LP formulation is known also for other
heuristics, such as LM-Cut and even more heuristics can
be expressed as a LP (Pommerening et al. 2014) and modi-
fied to compute the cost-partitioning. In the following text,
we describe two such examples, a LM-Cut (Helmert and
Domshlak 2009) based cost-partitioning and a cost partition-
ing modification of a State Equation (SEQ) heuristic (Van
Den Briel et al. 2007) LP.

Finally we describe a number of ad-hoc cost-partitioning
techniques which are very easy to compute (without the use
of LP) and still may lead to interesting results.

Landmarks
The LM-Cut heuristic proceeds by computing disjunctive
landmarks in the relaxed problem and iteratively reducing
their cost.

Definition 8. (Disjunctive Landmark) For a planning task
Π, a disjunctive landmark L = {a1, ..., ak} is a set of ac-
tions fromO such that each solution π of Π contains at least
one action a ∈ L. The cost of landmark L is defined as
cost(L) = min(cost(a1), ..., cost(ak)).

Its LP formulation (Pommerening et al. 2014) starts with
a set L of landmarks and assigns a LP variable to the cost of
each L ∈ L respective to each cost-partitioning. Also, cost
of each action respective to each CP is represented by a LP
variable. The LP maximizes the sum of all landmark costs
subject to ∑

a∈L
L̄ ≤ ā

for each a and the cost-partitioning constraints. The LP vari-
ables ā and L̄ represent the costs of respective actions and
landmarks.

In the running example, there is one disjunctive landmark
for agent α1, that is L.1

1 = {b.11 , b.12 } and symmetrically
L.2
2 = {b.21 , b.22 } for α2. The private actions do not form

a disjunctive landmark as the plan (b.12) solves Π.1 without
using a1. The LP is then formulated as follows:

Maximize L̄.1
1 + L̄.2

2 subject to

b̄.11 ≤ L̄.1
1

b̄.12 ≤ L̄.1
1

...

b̄.11 + b̄.21 ≤ 2

b̄.12 + b̄.22 ≤ 2

where the constraints for L̄.2
1 are analogous to those for L̄.1

2 .
The solution is L̄.1

1 = 2, L̄.2
2 = 0, b̄.11 = 2, b̄.21 = 0, b̄.12 =

2, b̄.22 = 0, from which is clear that given the resulting CP,
the optimal solution for Π.1 is (b.12) with cost 2 and for Π.2

is (b.21) with cost 0. Thus the sum of optimal costs is 2 which
is not more than the maximum using the original costs.

It might help to compute the landmarks globally (as
in (Štolba, Fišer, and Komenda 2015)). It would make no
difference in the example above, but in general, including
private and public actions of different agents in a single
landmark might improve the quality of the resulting cost-
partitioning.

State Equation
State equation heuristic (SEQ) (Van Den Briel et al. 2007)
builds on the idea of counting the operators necessary to
change the values of variables from the initial state values to
the goal state values. It is naturally formulated as a LP (Pom-
merening et al. 2014) and can be easily modified so that
the resulting values can be interpreted as a multi-agent cost-
partitioning.

In the original formulation, there is a LP variable for each
action, encoding the number of times it has to be used in any
optimal plan. There is a constraint for each fact, that is a
variable-value pair 〈V, v〉 for each v ∈ V and each variable
V . In order to formulate the constraint, we need to determine
the set OAP of actions which always produce the fact (i.e.
〈V, v〉 ∈ eff(a) and 〈V, v′〉 ∈ pre(a) for some v′ ∈ V),

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

93

a set OSP of actions which sometimes produce the fact (i.e.
〈V, v〉 ∈ eff(a) and V /∈ vars(pre(a))) and analogously a set
OAC of actions which always consume the fact (i.e. 〈V, v〉 ∈
pre(a) and 〈V, v′〉 ∈ eff(a) for some v′ ∈ V) and a set OSC

of actions which sometimes consume the fact (i.e. 〈V, v〉 ∈
pre(a) and V /∈ vars(eff(a))). The constraints for each fact
〈V, v〉 are∑

a∈OAP

ā+
∑

a′∈OSP

ā′ −
∑

a′′∈OAC

ā′′ ≥ L

∑
b∈OAP

b̄−
∑

b′∈OAC

b̄′ −
∑

b′′∈OSC

b̄′′ ≤ U

where the bounds L,U are determined based on the ini-
tial and goal state. The optimization function of the LP is
minimize

∑
a∈O cost(a)ā, where O is a set of all actions.

In order to compute a multi-agent CP based on the SEQ
LP, we simply express all constraints respective to the i-
projected problem Π.i for each agent and add them to a
single LP. The optimization criterion is modified so that it
minimizes the sum of cost(a)ā for all actions and all agents.
The computed values of the LP variables then represent how
many times each projection of each action has to be used in
a solution of each projected problem. That is, for an action
a ∈ Opubj of some agent αj ∈ A, we obtain ā.1, ..., ā.n.
Subsequently, the cost partitioning cpk for agent αk ∈ A
can be computed as

cpk(a.k) = costj(a)
ā.k∑n
i=1 ā

.i
(3)

that is, based on the ratio of the use of the action projec-
tions in the respective projected problems. Of course, if∑n

i=1 ā
.i = 0, we need to determine the cost partitioning

some other way. The LP for the example problem is formu-
lated as follows:

Minimize ā.11 + 2b̄.11 + 2b̄.12 + ā.22 + 2b̄.21 + 2b̄.22 subject
to

〈V1, i1〉 : b̄.11 − ā.11 ≥ −1
〈V1, i1〉 : ā.11 − b̄.11 ≤ 0
〈V1, p1〉 : ā.11 − b̄.11 ≥ 0
〈V1, p1〉 : ā.11 − b̄.11 ≤ 1

...
〈V3, g〉 : b̄.11 + b̄.12 ≥ 1
〈V3, g〉 : b̄.11 + b̄.12 ≤ 1

where the constraints for V2 are symmetric to the constraints
for V1. The resulting values are b̄.21 = 1, b̄.12 = 1 and 0 for
all other LP variables. According to Equation 3, the costs
of b.11 , b

.1
2 is computed as cp1(b.11) = 2 · 0/1 = 0 and

cp1(b.12) = 2 · 1/1 = 2 respectively and analogously for
b.21 , b

.2
2 , which gives exactly the same results as the solution

based on LM-Cut formulation.

Orthogonal Abstractions
Let us, again, have a closer look on the i-projections as ab-
stractions. What is the reason, that the i-projections can-
not be admissibly summed by default? It is the use of the
same actions (the public ones) in multiple abstractions. This
means, that the abstractions are not orthogonal, formally:

Definition 9. (Orthogonal Abstractions) Let T1, T2 be two
abstractions of a planning task Π with transition system
T and let σ1, σ2 be their respective abstraction functions.
The abstractions T1, T2 are orthogonal if for each transi-
tion 〈s, l, s′〉 in T holds σk(s) = σk(s′) for at least one
k ∈ {1, 2}.

Orthogonal abstractions can be admissibly summed, ac-
cording to the following proposition.
Proposition 10. (Helmert, Haslum & Hoffmann 2007) Let
T1, ..., Tk be pairwise orthogonal abstractions of the same
transition system T and let h1, ..., hk be admissible heuris-
tics computed on the respective transition systems. Then∑k

l=1 hl is an admissible heuristic.
This means, that in order to be admissibly summed, each

action has to be represented by a loop in all but one abstrac-
tion. In the i-projected problems, the only problematic ac-
tions are projections of public actions, which are counted
(non-loop) in each of the projections. A straightforward
remedy is to introduce two new types of projection. We will
refer to the first one as i-private projection.
Definition 11. (i-private Projection) Let Πi =〈
Vi,Oi, siI , s

i
?, costi

〉
be the problem of an agent

αi. Then the i-private projection of Πi is ΠOi =〈
Vprivi ,OOi, sOi

I , s
Oi
? , costOi

〉
, where OOi is the set of

i-private projected operators from Oprivi , sOi
I , s

Oi
? are the

i-private projected initial and goal (partial) states and costOi

is costi restricted to the operators in OOi. An i-private
projected operator oOi is o with pre(o) and eff(o) restricted
to the variables in Vprivi . An i-private projected (partial)
state sOi is s restricted to the variables in Vprivi .

Analogously, we define a public projection.
Definition 12. (Public Projection) Let ΠG =〈⋃

i∈1..n Vi,
⋃

i∈1..nOi, sI , sF, costG
〉

be the global
problem. Then the public projection of ΠG is
Π.pub =

〈
Vpub ,O.pub, s.pubI , s.pub? , cost.pub

〉
, where

O.pub is the set of public projection of operators from⋃n
i=1Opubi , s.pubI , s.pub? are the public projections of initial

and goal (partial) states and cost.pub is costG restricted to
the operators in O.pub. A public projection of operator o
is o.pub with pre(o) and eff(o) restricted to the variables in
Vpub . A public projection s.pub of a (partial) state s is s
restricted to the variables in Vpub .

By computing an admissible heuristic on the public pro-
jection and on each of the i-private projections and summing
the results, we obtain an admissible heuristic.
Theorem 13. Let T (ΠG) be the transition system of the
global problem ΠG, T (ΠOi) the transition system of the
i-private projected problem ΠOi for each 1 ≤ i ≤ n
and T (Π.pub) the transition system of the public projection
Π.pub. Let hO1, ..., hOn, h.pub be admissible heuristics com-
puted on the respective projections. Then h.pub +

∑n
i=1 h

Oi

is an admissible heuristic.

Proof. The public and i-private projections are abstractions
by the same reasoning as in Theorem 3. They are (pairwise)

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

94

orthogonal from definition and from Oi ∩ Oj = ∅ for each
j 6= i and Opubi ∩ Oprivi = ∅ for each i, thus by application
of Proposition 10 the theorem holds.

A question remains, whether the i-private and public pro-
jections can be expressed in the form of cost partitioning of
the i-projected problems. An obvious answer is yes, they
can. By setting cpi(a

.i) = 0 for all i-projections of public
actions a, the heuristic computed on Π.i using cpi as a cost
function ignores the public actions as if they were self-loops
and thus computes the heuristic on ΠOi. Similar treatment
of private actions (i.e. retaining costs only of i-projections
of public actions) leads to computation of the heuristic on
the public projection Π.pub.

In order to maintain only the n cost-partitioned problems,
one of the agents (say αj) may keep the problem not parti-
tioned, resulting in a heuristic h.j +

∑n
i=1,i6=j h

Oi, where
h.j is an admissible heuristic computed on the j-projected
problem Π.j . In such case, the orthogonality of abstractions
still holds and thus the resulting heuristic is also admissible
(and possibly more informative).

Let us now apply this approach on the running example.
A public projection Π.pub of the problem reflects only the
variable V3 and actions b.pub1 , b.pub2 . The transition system
T (Π.pub) has two states, an initial state s.pubI where V3 = u

and a goal state s.pub? where V3 = g. There are two tran-
sitions (one for each actions) from s.pubI to s.pub? with cost
2, thus the cost of optimal solution is h.pub(s.pubI) = 2. A
1-private projection ΠO1 reflects only the variable V1, thus
has two states, which are both goal states (the goal condition
is empty). Thus hO1 = 0 and similarly hO2 = 0, resulting
in total estimate of h.pub + hO1 + hO2 = 2. Using h.1 in-
stead of h.pub + hO1 does not help in this particular case as
h.1 = 2.

Ad-hoc Cost Partitioning
So far, we have presented a number of more or less involved
multi-agent cost-partitioning schema, but more trivial ap-
proaches should not be omitted. First is the very baseline
uniform cost-partitioning, where

cpj(a
.j) =

costi(a.i)

n

for each action a ∈ Opubi and each agent αj ∈ A. Private
actions are not partitioned as in the other cases.

Often, the costs of plans using projections of other agent’s
actions are underestimated as the cost of their private pre-
conditions (that is the cost of private actions achieving them)
is not reflected. The aim of presented cost-partitioning tech-
niques is to balance this out. Instead of complex optimiza-
tion, a simple rule of thumb may work in many cases. We
denote such simple approach as projection-compensating
cost-partitioning and base it on the following equation

cpj(a
.j) = 1−k

n−1costi(a.i) for j 6= i

cpi(a
.i) = kcosti(a.i)

where k ∈ 〈0, 1〉. For k = 1/n, we obtain the uniform cost-
partitioning. For k = 0, the cost of action a.i s.t. a ∈ Oi

in Π.i is 0 and the cost is uniformly distributed among all
other agents. For k = 1, the cost is retained by the owner
agent and the costs of projections are 0. In general, as k is
the same for all actions, the OCP cannot be achieved.

On the running example, the uniform CP results in
cp1(b.11) = 1, cp1(b.12) = 1 and cp2(b.21) = 1, cp2(b.22) =
1. The sum of optimal costs computed on such cost-
partitioning is 2. We obtain the same result for k = 0, where
cp1(b.11) = 0, cp1(b.12) = 2 and cp2(b.21) = 2, cp2(b.22) =
0 and 0 for k = 1. In this particular example, we can
express the OCP by setting k = 3/4, where cp1(b.11) =
0.5, cp1(b.12) = 1.5 and cp2(b.21) = 1.5, cp2(b.22) = 0.5
and the resulting cost of the sum of optimal solutions is 3.

Privacy
So far, we have avoided the question of privacy which is cru-
cial in privacy-preserving multi-agent planning. In spite of
its importance, privacy has been scarcely formally treated
in the literature. Apart from an attempt to quantify privacy
leakage by (Van Der Krogt 2009) (which is not applica-
ble on heuristic computation as it evaluates possible plans),
there are basically two commonly accepted definitions of
privacy according to (Nissim and Brafman 2014).

Definition 14. (Weak Privacy) A weak privacy-preserving
algorithm is a distributed algorithm, such that during its ex-
ecution no agent αi ∈ A communicates any private part of
Πi, that is any V ∈ Vprivi , its value, any a ∈ Oprivi and the
actions a′ ∈ Opubi are communicated only in the form of
a′.pub.

The private aspects of Πi may be deduced from the infor-
mation communicated.

Definition 15. (Strong Privacy) A strong privacy-
preserving algorithm is a distributed algorithm, such that
after its execution no agent αj can deduce an isomorphic
(that is differing only in renaming) model of a private
variable V ∈ Vprivi and its values, a private operator
a ∈ Oprivi and its cost or an i-private projection a′Oi of a
public operator a′ ∈ Opubi of an agent αi, beyond what can
be deduced from the projected problem Π.j and the output
of the algorithm.

It is clear, that the privacy of a heuristic planner depends
not only on both the planning algorithm and the heuristic,
but also on their interaction. That said, here we focus only
on the heuristic itself.

The privacy of the additive computation of cost-
partitioned heuristics can be split in two separate issues,
computation of the sum of cost-partitioned heuristics and
computation of the cost-partitioning itself. In the following
sections we briefly analyze both cases.

Privacy of Additive Heuristics
Clearly, any heuristic, such that for agent αi, h(s.i) 6=
h(s′.i) for states s, s′ such that s.i = s′.i reveals the in-
formation that s and s′ are in fact different states, although
the same from the perspective of the agent αi. That is, s, s′
differ in at least one variable V ∈ Vprivj for some j 6= i,
although for n > 2, αi does not know the value of j. It is

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

95

not perfectly clear, whether this violates strong privacy, as
only the existence of V and |dom(V)| ≥ 2 is revealed. It is
also clear, that no heuristic which provides the same search
guidance can reveal less information.

In the case of a multi-agent cost-partitioning heuristic in
Equation 1 where hcpi is a heuristic computed by αi on Π.i

based on the cost-partitioning cpi, the situation is a little bit
more complex. If the sum is computed plainly, that is each
agent αj provides agent αi with the value of hcpj (s.j), the
information revealed is not only that s 6= s′, but also that
s.j 6= s′.j for each j such that hcpj (s.j) 6= hcpj (s′.j).
Nevertheless, this is the same information revealed by the
baseline max-heuristic in Equation 2, where h.i is an i-
projected heuristic computed by αi on Π.i (without any
cost-partitioning).

In addition to that, there exist algorithms for secure sum
computation in the literature (Sheikh, Kumar, and Mishra
2010). Moreover, in some situations, it may not be neces-
sary to compute such sum altogether. For example in dis-
tributed forward state-space search (e.g. MAD-A* (Nissim
and Brafman 2012)), the value of h(s) is sent together with
the state. Then if agent αi wants to expand s.i with a private
action a ∈ Oprivi such that s′ = a ◦ s, because a does not
change any part of Π.j for any j 6= i, the heuristic of state
s′ can be computed as

h(s′) = h(s)− hcpi(s
.i) + hcpi(s

′.i)

so that the only information revealed is the same as in the
very first case. Of course, this approach cannot be used for
public actions, except for the orthogonal abstraction based
cost-partitioning and is not practical if hcpi(s

.i) is computa-
tionally intensive.

It is worth noting, that in the MAD-A* algorithm and also
its more secure variant Secure-MAFS (Brafman 2015), each
state is accompanied with unique state IDs for each agent,
thus effectively revealing the information that s.j 6= s′.j

straight away. In that situation, the plain sum of cost-
partitioned heuristics does not reveal any additional infor-
mation.

Privacy of the Cost-Partitioning Computation
Theorem 16. (Strongly Private Cost-Partitionings) The
computation of Orthogonal Abstraction cost-partitioning
and Privacy-Compenstaing cost-partioning are strong
privacy-preserving.

Proof. There is no information exchanged between any
agents in computation of either cost-partitioning.

Regarding the LP-based cost-partitioning computation,
there are techniques for secure LP computation such
as (Mangasarian 2011; Dreier and Kerschbaum 2011),
which were already applied in (Štolba, Fišer, and Komenda
2016) to securely compute LP for a multi-agent version of
potential heuristics (Pommerening et al. 2015).

The technique of (Mangasarian 2011) is applicable only
on vertically partitioned LPs, which means that each agent
has to own a subset of the LP variables. In the case of the
OCP, the LP consists of state and heuristic LP variables for

each projection thus satisfying the requirement (each projec-
tion falls into the partition of the respective agent). The same
can be said about the landmark-based and SEQ-based LPs,
where the actions and landmarks are represented as projec-
tions and thus each variable falls to the respective partition.
The constraints can be shared by multiple partitions (agents)
in which case the constraint is split according to the vari-
ables. This technique does not encrypt the right-hand side
vector of the LP, which is not a problem in the OCP and
landmark-based case, where the right-hand side is either 0,
or the cost of a public action. In the case of the SEQ-based
LP, the right-hand side of the LP represents the upper and
lower bounds which may potentially leak some information.
The technique of (Dreier and Kerschbaum 2011) is applica-
ble in the general case and encrypts the whole LP.

Both techniques use encryption, which has some proba-
bility of revealing the actual LP, in (Mangasarian 2011), the
probability is not discussed, but in (Dreier and Kerschbaum
2011) it is analyzed and quantified. In PP-MAP, there is no
theory which would account for such probabilistic approach
to privacy, thus we cannot say any formal conclusion about
the usage of such techniques in PP-MAP. Nevertheless, in
practice, such approaches should be enough to assure rea-
sonable degree of privacy.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

max

oc
p

●● ●

bloc
depo
driv
elev
logi
rove
sate
wood
zeno

Figure 2: Preliminary comparison on various domains. Let
h∗ be the cost of global optimal solution, h∗i the cost of opti-
mal solution of the projected problem of agent αi and hOCP∗

i
the cost of optimal solution of projected problem of agent αi

using the OCP cost. Then the x axis shows (maxn
i=1 h

∗
i)/h∗

and the y axis shows (
∑n

i=1 h
OCP∗
i)/h∗.

Conclusions and Future Work
To draw definitive conclusions, we need to perform thor-
ough experimental evaluation of both the cost-partitioning
techniques themselves (that is how well do they estimate the
global optimal solution) and the practical use of the cost-
partitioning and heuristics in a MAD-A*-style planner. The
Figure 2 shows preliminary results where the OCP approach
provides better estimates for a number of domains and prob-
lems. The hcp using optimal cost-partitioning (OCP) always
gives better or equal results to hmax, as hmax can also be
expressed via cost-partitioning, but as already mentioned,
computing the OCP is often not tractable. In the example,

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

96

all other cost-partitioning techniques resulted in the same
heuristic estimate, but in practice, we expect diverse results.

A very promising next step seems to be the use of general
cost-partitioning which should allow to compensate more
private actions in the costs of the projected operators. On
the other hand, use of negative costs would disqualify many
heuristics to be used on top of the cost-partitioned problem.

Acknowledgments This research was supported by the
Czech Science Foundation (grant no. 15-20433Y) and
by the Grant Agency of the CTU in Prague (grant no.
SGS16/235/OHK3/3T/13).

References
Brafman, R. I., and Domshlak, C. 2008. From one to many:
Planning for loosely coupled multi-agent systems. In Pro-
ceedings of the 18th International Conference on Automated
Planning and Scheduling (ICAPS), 28–35.
Brafman, R. I. 2015. A privacy preserving algorithm for
multi-agent planning and search. In Proceedings of the
24th International Conference on Artificial Intelligence, IJ-
CAI’15, 1530–1536. AAAI Press.
Dimopoulos, Y.; Hashmi, M. A.; and Moraitis, P. 2012. µ-
satplan: Multi-agent planning as satisfiability. Knowledge-
Based Systems 29:54–62.
Dreier, J., and Kerschbaum, F. 2011. Practical privacy-
preserving multiparty linear programming based on prob-
lem transformation. In Proceedings of IEEE 3rd Interna-
tional Conference on Privacy, Security, Risk and Trust (PAS-
SAT) and IEEE 3rd Third Inernational Conference on Social
Computing (SocialCom), 916–924.
Fikes, R., and Nilsson, N. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving.
In Proceedings of the 2nd International Joint Conference on
Artificial Intelligence (IJCAI), 608–620.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Proceedings of the 19th International Conference on Auto-
mated Planning and Scheduling (ICAPS), 162–169.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Jezequel, L., and Fabre, E. 2012. A#: A distributed version
of a* for factored planning. In Proceedings of the 51th IEEE
Conference on Decision and Control, CDC 2012, December
10-13, 2012, Maui, HI, USA, 7377–7382.
Katz, M., and Domshlak, C. 2010. Implicit abstraction
heuristics. Journal of Artificial Intelligence Research 51–
126.
Maliah, S.; Shani, G.; and Stern, R. 2014. Privacy preserv-
ing landmark detection. In Proceedings of the 21st European
Conference on Artificial Intelligence (ECAI), 597–602.
Maliah, S.; Shani, G.; and Stern, R. 2015. Privacy preserv-
ing pattern databases. In Proceedings of the 3rd Distributed
and Multiagent Planning (DMAP) Workshop of ICAPS’15,
9–17.
Mangasarian, O. L. 2011. Privacy-preserving linear pro-
gramming. Optimization Letters 5(1):165–172.

Nissim, R., and Brafman, R. I. 2012. Multi-agent A* for
parallel and distributed systems. In Proceedings of the 11th
International Conference on Autonomous Agents and Multi-
agent Systems (AAMAS), 1265–1266.
Nissim, R., and Brafman, R. 2014. Distributed heuristic for-
ward search for multi-agent planning. Journal of Artificial
Intelligence Research 51:293–332.
Pommerening, F.; Röger, G.; Helmert, M.; and Bonet, B.
2014. LP-Based heuristics for cost-optimal planning. In
Proceedings of the 24th International Conference on Auto-
mated Planning and Scheduling (ICAPS), 226–234.
Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J.
2015. From non-negative to general operator cost partition-
ing. In Proceedings of the 29th AAAI Conference on Artifi-
cial Intelligence, 3335–3341.
Sheikh, R.; Kumar, B.; and Mishra, D. K. 2010. A dis-
tributed k-secure sum protocol for secure multi-party com-
putations. arXiv preprint arXiv:1003.4071.
Štolba, M., and Komenda, A. 2014. Relaxation heuristics
for multiagent planning. In Proceedings of the 24th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 298–306.
Štolba, M.; Fišer, D.; and Komenda, A. 2015. Admissible
landmark heuristic for multi-agent planning. In Proceedings
of the 25th International Conference on Automated Planning
and Scheduling (ICAPS), 211–219.
Štolba, M.; Fišer, D.; and Komenda, A. 2016. Potential
heuristics for multi-agent planning. In Proceedings of the
26th International Conference on Automated Planning and
Scheduling (ICAPS).
Torreño, A.; Onaindia, E.; and Sapena, O. 2014. FMAP:
distributed cooperative multi-agent planning. Applied Intel-
ligence 41(2):606–626.
Tožička, J.; Jakubův, J.; and Komenda, A. 2014. Generating
multi-agent plans by distributed intersection of finite state
machines. In Proceedings of 21st European Conference on
Artificial Intelligence (ECAI), 1111–1112.
Van Den Briel, M.; Benton, J.; Kambhampati, S.; and
Vossen, T. 2007. An lp-based heuristic for optimal planning.
In Principles and Practice of Constraint Programming–CP
2007. Springer Berlin Heidelberg. 651–665.
Van Der Krogt, R. 2009. Quantifying privacy in multiagent
planning. Multiagent and Grid Systems 5(4):451–469.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

97

Generating Collaborative Behaviour through Plan Recognition and Planning

Christopher Geib
Department of Computer Science

Drexel University
Philadelphia, PA 19104, USA
cgeib@drexel.edu

Bart Craenen
School of Computing Science

Newcastle University
Newcastle NE1 7RU, England, UK
Bart.Craenen@newcastle.ac.uk

Ronald P. A. Petrick
Department of Computer Science

Heriot-Watt University
Edinburgh EH14 4AS, Scotland, UK

R.Petrick@hw.ac.uk

Abstract

This paper presents a framework for integrated plan recog-
nition and automated planning, to produce collaborative be-
haviour for one agent to help another agent. By observing an
“initiator” agent performing a task, the plan recognizer hy-
pothesises how a “supporter” agent could help the initiator
by proposing a set of subgoals to be achieved. A lightweight
negotiation process mediates between the two agents to pro-
duce a mutually agreeable set of goals for the supporter. The
goals are passed to a planner which builds an appropriate se-
quence of actions for satisfying the goals. The approach is
demonstrated in a series of experimental scenarios.

Introduction
The ability of an agent to help another agent is a desirable at-
tribute when designing artificial entities, such as robots, that
must operate together with humans in real-world environ-
ments. Indeed, the idea of building assistive agents that must
work alongside humans in a cooperative fashion has been
a long-standing goal of artificial intelligence and robotics
since its earliest days. However, the task of deciding when
and how to help another agent can be difficult. Effective
helping involves recognising the goals or intentions of other
agents, reasoning about opportunities to contribute to ex-
isting plans, generating appropriate actions, and potentially
communicating such information to the agents involved. In
the worst case, identifying an opportunity to help, and gen-
erating an appropriate response, may require reasoning over
the entire joint space of goals and actions for all the agents.

While the computational cost of reasoning about cooper-
ative action in its most general form may be entirely imprac-
tical, constrained forms of reasoning do exist that could be
used as the basis for helpful behaviour. For instance, con-
sider the case of two agents setting a table for dinner, where
the first agent sets the plates and glasses, and the second
agent sets the knives, forks, and spoons. The subgoals pur-
sued by each agent are disjoint but together they contribute
to a shared overall goal. Moreover, each action is performed
by a single agent, with no action requiring the joint coordi-
nation of multiple agents (e.g., two agents lifting a table).
Finally, the order of subgoal achievement is independent of
the actions of the other agent (e.g., it makes no difference if
the knives are placed before the forks or vice versa).

In this paper we consider scenarios of the above form,
where one agent, called the supporter, must decide how to
act to help a second agent, called the initiator, achieve its
goals. While the supporter is considered to be an artificial
agent, no assumption is made about the initiator which may
either be a human or artificial agent. In this work, we con-
sider goals which can be decomposed as in the above exam-
ple, and tasks that consist of independent sequences of ac-
tions for each agent. While such conditions may appear to be
restrictive, they nevertheless characterise a useful collection
of problem scenarios whose solution is far from trivial: the
goals of the initiator must be identified and suitable subgoals
must be appropriately selected for the supporter to achieve.

To do so, we combine plan recognition and automated
planning, together with a lightweight negotiation process
for ensuring that a set of supporter goals is acceptable to
both agents. Plan recognition and plan generation are pro-
vided by two existing frameworks: the ELEXIR plan recog-
nizer (Geib 2009) and the PKS planner (Petrick and Bacchus
2002; 2004). As such, we focus on the high-level (symbolic)
reasoning involved in this task, rather than the low-level pro-
cesses (e.g., involving continuous models or geometric rea-
soning) that are part of the design of certain artificial agents
like robots. Moreover, the novelty of the approach arises
from the particular combination of these two general tech-
niques (i.e., plan recognition and planning), rather than the
specific tools used to implement them.

In this approach, the supporter will infer the high-level
plans of the initiator and identify possible subgoals that con-
tribute to the initiator’s plan. Pairs consisting of the initia-
tor’s hypothesised high-level goal, and a candidate subgoal,
will then be proposed to the initiator as possible helpful sub-
goals that the supporter could accomplish. This involves a
directed search that first attempts to find the hypothesised
goal of the initiator, followed by a search of the remaining
subgoals that could be performed by the supporter.

Once negotiation is complete, the agreed upon goals are
passed to an automated planner which constructs an inde-
pendent sequence of actions for the supporter to execute to
help the initiator. In particular, no centralised planning or
scheduling component is used to enforce collaborative be-
haviour through joint plans. For example, after observing
the initiator place spoons on the table, the supporter might
infer that the initiator is setting the table, and that the plates

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

98

still need to be set. After confirming with the initiator that
setting the plates would help the initiator achieve its goals,
the supporter can build and execute a plan for this subgoal.
However, if the initiator denies either the hypothesised goal
(e.g., the initiator is instead placing the spoons onto the table
in order to polish them) or the proposed subgoal (e.g., only
bowls need to be set), then an alternative goal/subgoal pair
could be proposed to find another way to help the initiator.

The rest of this paper is organised as follows. First, we re-
view the relevant related work. Next, we highlight the main
components in our approach, notably the ELEXIR plan rec-
ognizer and the PKS planner, and discuss the integration of
these systems. We then present the results of our approach
tested in three experimental domains. Finally, we discuss the
limitations of our approach and highlight future directions.

Related Work
The idea of constructing cooperative agents has been a
longstanding area of research (Nwana 1996). Moreover, the
task of building artificial agents (especially robots) that can
proactively achieve goals has been an active area of study
(Schrempf et al. 2005; Pandey, Ali, and Alami 2013), as has
the idea of human-robot collaboration (Bauer, Wollherr, and
Buss 2008; Chandrasekaran and Conrad 2015). As a result,
this work follows a long tradition of prior approaches ad-
dressing various aspects of this complex problem.

The general idea of agents that help other agents (includ-
ing humans) has variously been viewed as a primary prop-
erty of a plan, or as implicit in multiagent actions. For ex-
ample, (Pollack 1990; Lochbaum, Grosz, and Sidner 1990)
explicitly reason about coordination and helping in the form
of shared plans and mutual beliefs. However, establishing
agreement of such plans or beliefs has typically relied on
shared knowledge which has long been a stumbling block
of such theories. Similarly, action representations for mul-
tiagent joint actions (i.e., actions that require two or more
agents for their execution) (Brafman and Domshlak 2008;
Boutilier and Brafman 2001) could be used to model situa-
tions where one agent helps another agent. However, these
representations do not address the case where helping is not
a consequence of such multiagent joint actions.

There has also been significant prior research on a vari-
ety of approaches to multiagent planning (e.g., (Nau 2007;
Brenner 2003; Brafman and Domshlak 2008; Crosby, Jon-
sson, and Rovatsos 2014)), along with work on the decen-
tralised solving of constraint optimisation problems (Modi
et al. 2003). Approaches have also considered the use of plan
recognition (Talamadupula et al. 2014) and intent recogni-
tion (Karpas et al. 2015) as a means of coordinating human-
robot teams. The idea of ambient intelligence (Augusto
2007) also has connections to the problem of designing sys-
tems that proactively aid humans in achieving their goals.

The role of natural language dialogue as an effective
means of coordinating actions between a robot and a human
has also been previously studied (Fong, Thorpe, and Baur
2003). Moreover, the combination of natural language and
goal inference has been explored for the task of selecting
actions to contribute to an ongoing task, or for correcting
the action of a human already engaged in the task (Foster

Description

Domain

ELEXIR
observations

Initiator
Negotiator

Hypothesis

structure (sub)goals

Planner

PKS

Description

Domain

Supporter

plan

Negotiation

Figure 1: Components and interactions in the framework.

et al. 2008; Giuliani et al. 2010). Finally, hybrid architec-
tures have been used to integrate diverse components with
different representational requirements, particularly when a
robot must cooperate with a human (Hawes et al. 2007;
Kennedy et al. 2007; Zender et al. 2007).

A Framework for Collaborative Behaviour
We now present our approach to collaborative behaviour by
describing the main components in our work: the Engine for
LEXicalized Intent Recognition (ELEXIR) plan recognizer,
the negotiation process, and the Planning with Knowledge
and Sensing (PKS) planner. The relationship between these
components is shown in Figure 1 and discussed below.

Plan Recognition with ELEXIR
We begin by first distinguishing between work in activity
recognition (also called goal recognition (Liao, Fox, and
Kautz 2005; Hoogs and Perera 2008; Blaylock and Allen
2003)) and plan recognition in this context. Activity recog-
nition is the creation of a single unstructured label that rep-
resents the overarching goal of the activity being observed.
For example, such an algorithm would recognize a sequence
of pick and place actions of forks, knives, spoons, and plates
as an instance of setting the table. This kind of single label
is insufficient for our purposes. We need to know the steps in
the plan already completed by the initiator, and whether or
which future subgoals the supporter can still contribute to.

In contrast, plan recognition attempts to identify not only
the goal being pursued by the agent but also the subgoals of
the plan that have already been accomplished, and those that
are anticipated to be part of the plan in the future. Thus,
a plan recognition algorithm is able to produce the com-
plete unexecuted frontier of a hierarchical plan (Kautz 1991;
Blaylock and Allen 2003; Geib 2009). For example, follow-
ing observations of picking and placing forks followed by
knives, such a system could identify that the goal was to set
the table, the current subgoal was to set the knives, and that
in the future, the agent would be setting spoons and plates.
These predicted future subgoals are required to effectively
reason about possible collaborative contexts.

In this work, we use ELEXIR (Geib 2009) to perform
the kind of plan recognition described above. ELEXIR is a
probabilistic plan recognition system that views the problem
as an instance of parsing a probabilistic grammar. As such,
ELEXIR takes as input a formal probabilistic grammar that
specifies the set of plans to be recognized and a set of ob-
served actions. ELEXIR represents its plans using Combina-

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

99

set-forks :=SetTable/{SetKnives, SetSpoons, SetPlates, SetGlasses} |
(CleanForks/{PutAwayForks})/{WashForks}.

set-knives :=SetKnives. set-spoons := SetSpoons.
set-plates :=SetPlates. store-forks := PutAwayForks.

Figure 2: Portion of a CCG action grammar in ELEXIR.

tory Categorial Grammars (CCGs) (Steedman 2000). While
a full discussion of CCGs in ELEXIR is not possible in the
space available, we include an example to aid our discussion.

Figure 2 shows a portion of a CCG action grammar
that captures a plan for SetTable and CleanForks. SetTable,
SetKnives, SetSpoons, SetPlates, SetGlasses, CleanForks,
PutAwayForks, and WashForks are all symbols that repre-
sent goals or subgoals within the plan library. As such, this
grammar already encodes some abstraction in the plans. For
example, as we will see, a set-forks action can be realized
by the planner as a sequence of four lower level actions. We
assume activity recognition is able to produce observations
of the defined high-level actions (e.g., set-forks, set-knives,
set-spoons,....) from observations of lower level actions. We
could have encoded the grammar at a finer granularity, but
this would have added significant unnecessary complexity to
the example. Further, because the actions are being executed
by the initiator, this would not have eliminated the need for
assuming activity recognition of the observed actions. Thus,
our example grammar is presented at this abstract level.

That said, the grammar doesn’t make commitments about
the level of subgoal abstraction. For example, WashForks is
likely a complex subplan in its own right. Finally, we note
that while ELEXIR does support actions with variable argu-
ments, all of our examples use propositional actions, again
to simplify the discussion (see (Geib 2009) for more details
about ELEXIR’s handling of non-propositional actions).

The grammar in Figure 2 specifies that two possible plans
can account for an observation of the action set-forks: Set-
Table and CleanForks. SetTable requires that SetKnives, Set-
Spoons, SetPlates, and SetGlasses follow the observed oc-
currence of set-forks, but the subgoals are unordered with
respect to each other. CleanForks can explain the observed
set-forks, but only if WashForks follows it, and followed by
PutAwayForks.

Given a set of observed actions, and a formal grammar
as above, ELEXIR produces the complete set of hierarchical
plan structures that conforms to the grammar and is consis-
tent with the observations, along with a probability for each.
These structures represent the hypothesised plans being ex-
ecuted by the agent. Using it we can extract an ordered set
of subgoals from each hypothesis that must still be executed
for the goal to be achieved, associated with the probability
of the hypothesis.

Note that ELEXIR supports both the possibility that a
given agent can be pursuing multiple plans as well as the
possibility of partially ordered plans. Therefore, for this dis-
cussion we will represent a hypothesis produced by ELEXIR

as a tuple of the form:

(P, [{Gi : {sg1, ..., sgn}∗}+]),
whereP is the probability of the hypothesis,Gi is the goal of
the hypothesised plan, and sgj the remaining sets of possibly
partially ordered subgoals that must be achieved for Gi to
be completed. The sgj within one set of braces are treated as
unordered with respect to each other, but all the sgj within
one set must be achieved before those in the next set.

Thus, the three hypotheses from the table setting example
(after observing the setting of forks) might be captured as:

(.95, [{SetTable : {SetKnives, SetSpoons, SetPlates, SetGlasses}}]),
(.045, [{CleanForks : {WashForks}{PutAwayForks}}]),
(.005, [{CountingForks : {}}]).

The first tuple captures the hypothesis that with 95% prob-
ability the agent is following a plan to set the table, and
still has the subgoals to set the knives, spoons, and plates.
These subgoals are unordered with respect to each other
within the plan. The second tuple captures the hypothesis
that with 4.5% probability the agent is cleaning the forks
and still needs to wash them and put them away, in that or-
der. The third tuple captures the hypothesis that with only
0.5% probability the agent is simply counting the forks and
is done with its plan. Thus, each hypothesis provides us with
access to the probability of the plans being executed, the
goals they are intended to achieve, and the subgoals in the
plan that have yet to be achieved. This is precisely the infor-
mation that we need in order to identify opportunities where
the supporter can help the initiator. We discuss how this is
done in the next section.

Subgoal Identification and Negotiation
In order to efficiently negotiate collaboration, a supporter
must first confirm that it understands the objective of the ini-
tiator’s high-level plan. Without this confirmation, the sup-
porter might waste significant amounts of time suggesting
subgoals that it could achieve, but that may not contribute to
the initiator’s goal and plan. Using the hypothesis structures
from ELEXIR this can be done in a straightforward way.

In the case where a single plan is being pursued by the
initiator, sorting the hypotheses by their probabilities ranks
the goals of the plan being pursued. This makes it relatively
easy for the supporter to verify the initiator’s actual plan by
a simple query to the initiator.

Having thus identified the goal of the initiator’s plan,
the supporter can then attempt to identify a future subgoal
within those hypotheses that share the identified goal. Re-
turning to our example, when considering the hypotheses for
the setting of forks, the first hypothesis is the most likely:

(.95, [{SetTable : {SetKnives, SetSpoons, SetPlates, SetGlasses}}]).

If the initiator confirms that SetTable is in fact the goal of its
plan, the supporter could then suggest that it take on the sub-
goals of SetKnives, SetSpoons, SetPlates, and SetGlasses, or
some subset thereof. As we will see in Section , a maximally
helpful agent would volunteer to do all of these subgoals.
Note, however, that the negotiation process could also re-
sult in a number of other outcomes, whereby the supporter
agrees to some subset of the subgoals, or none of them at all.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

100

In effect, the process of negotiating collaboration between
the initiator and the supporter is then a directed search: first
to identify the goal of the initiator’s plan, and then to find
appropriate subgoals from the set of known unaccomplished
subgoals of the plan the supporter has inferred for the goal.

Automated Planning with PKS
Once negotiation is complete and has produced a set of sub-
goals for helping the initiator, the supporter must generate a
concrete sequence of actions to execute in the world. To do
so, we use the off-the-shelf PKS planning system.

PKS (Planning with Knowledge and Sensing) (Petrick
and Bacchus 2002; 2004) is a contingent planner that builds
plans using incomplete information and sensing. PKS op-
erates at the knowledge level (Newell 1982) by reasoning
about how the planner’s knowledge state changes due to ac-
tion. PKS is based on a generalisation of STRIPS (Fikes
and Nilsson 1971). In PKS, the planner’s knowledge state
(rather than the world state) is represented by a set of
databases, each of which models a particular type of knowl-
edge. The contents of each database have a formal interpre-
tation in a modal logic of knowledge. Actions can modify
the databases, which has the effect of updating the planner’s
knowledge. To ensure efficient inference, PKS restricts the
type of knowledge (especially disjunctions) it can represent.
The information in PKS’s databases can also be incomplete,
and PKS does not make a closed world assumption. PKS
also supports features like functions and run-time variables
that arise in real-world planning scenarios.

Like other planners, a PKS planning domain consists of
an initial state, a set of actions, and a set of goals. The initial
state is simply the planner’s initial knowledge (databases).
Goals specify the knowledge conditions that the planner is
trying to achieve, formed from the supporter’s agreed upon
subgoals through a syntactic compilation process which
transforms the subgoals into a form understandable by PKS.
Actions in PKS are modelled by their preconditions that
query the planner’s knowledge state, and effects that change
the knowledge state by updating particular databases. Plans
are constructed by a forward-chaining heuristic search, start-
ing from the initial knowledge state, and continuing until the
goal conditions are satisfied or the search fails.

For instance, Figure 3 shows two PKS actions taken from
our experimental domains (Section). A precondition K(φ)
queries PKS’s knowledge to determine if the planner knows
φ, while an effect that references Kf updates PKS’s database
of known world facts. Using these actions, a plan such as:

grasp(left,drawer,fork1),
putdown(left,table_pos1,fork1),
grasp(left,drawer,fork2),
putdown(left,table_pos2,fork2)

might be built in support of a goal to put forks on the table.

Integration and Operation
From a technical point of view, both ELEXIR and PKS
are implemented as C++ libraries, with ELEXIR structured
into core and recognizer parts. Both libraries expose a user
interface through ZeroC’s Internet Communication Engine

action grasp(?h : hand, ?l : loc, ?o : obj)
preconds: K(graspable(?o, ?h)) &

K(objectAt(?o, ?l)) &
K(holding(?h) = nil)

effects: add(Kf, holding(?h) = ?o),
del(Kf, objectAt(?o, ?l))

action putdown(?h : hand, ?l : loc, ?o : obj)
preconds: K(holding(?h) = ?o)
effects: add(Kf, objectAt(?o, ?l)),

add(Kf, holding(?h) = nil)

Figure 3: PKS actions in the experimental domain.

(ICE), a modern distributed computing platform (Henning
2004). This allows both ELEXIR and PKS to be used as
standalone servers by a client application implementing the
framework, in a traditional client-server architecture.

Figure 1 illustrates the flow of control between the plan
recognition, negotiation, and automated planning compo-
nents in the framework. At system initialisation time, both
the plan recognizer and planner are provided with domain-
dependent knowledge in the form of their respective domain
descriptions. This information is minimally aligned to en-
sure interoperation between these components (see below).

The process then starts with the supporter observing ac-
tions performed by the initiator. These observations are fed
into ELEXIR, which produces a set of hypotheses about the
initiator’s high-level plan, as goal/subgoal pairs, in a hypoth-
esis structure. This structure is then handed over to the nego-
tiation process which mediates the negotiation between the
supporter and initiator. Negotiation proceeds by applying di-
rected search to the hypothesis structure to produce a set of
goals for the planner. In the final step, PKS uses these goals
to attempt to generate a plan to be executed by the supporter.

Experimental Demonstration and Validation
We now present three scenarios, based on the table setting
running example, as an experimental demonstration of the
proposed framework, integrated as depicted in Figure 1. The
underlying domain setting for the three scenarios remains
the same: an initiator agent has begun setting a table for a
dinner for two people, where each place setting should in-
clude a knife, fork, spoon, plate, and glass. The aim of the
supporter agent is to help the initiator complete the overall
goal of setting the table. Knowledge about the operating en-
vironment and the requirements for setting tables is supplied
to both the plan recognizer and the planner using appropriate
domain descriptions, as detailed earlier.

The observations provided to the ELEXIR plan recog-
nizer remain the same for each scenario: one by one the
initiator picks up two forks and two knives and puts them
down in their appropriate positions on the table. The scenar-
ios differ in the way these observations are interpreted, and
the, way in which differences in the negotiation process can
lead to the identification of different subgoals, and how that
can affect the resulting plans. The process ends when the
planner builds a plan for the supporter to perform, based on
the goals identified during the negotiation process.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

101

Are you setting the table?

Yes.

Supporter Initiator

Do you want me to set the plates?

Do you want me to set the spoons?

Do you want me to set the glasses?

I will now help you set the table.

Yes.

Yes.

Yes.

Figure 4: Negotiation in Scenario 1.

For each scenario the correctness of the approach is val-
idated during experimentation. Validation focuses on two
points in the process: first, whether the plan recognizer in-
terprets the observation correctly, and, second, whether the
planner produces the correct plans. Validation of this form
is possible in this case because the example scenarios are
designed so that we know, beforehand, what the negotiation
process should look like and, as a consequence, how the sup-
porter is supposed to help the initiator set the table.

The computational requirements for all three example
scenarios are minimal. Both plan recognition and planning
in this domain context takes minimal time, while the com-
putational cost of the negotiation process, excluding the re-
quired by the negotiation exchange, is negligible. Total ex-
ecution time for these, admittedly small-scale, scenarios, on
contemporary hardware, takes only seconds. For larger sce-
narios, and more ambiguous domains, the time required for
plan recognition and planning is expected to increase, al-
though ELEXIR and PKS, as well as the negotiation process,
scale well. Experience thus far indicates that both scenarios
and domains can substantially increase in size before com-
putational costs, and thus execution time, become an issue.

Scenario 1: We begin with the base-case scenario. In this
scenario, the plan recognizer correctly identifies the initia-
tor’s goal of setting the table, as well as the subgoals the
initiator would like the supporter to fulfil. The hypothesis
the negotiator examines first is given by:

(0.8, [{SetTable : {SetSpoons, SetPlates, SetGlasses}}]).

In this scenario, there is no need for a directed search of
the hypothesis structure supplied by ELEXIR. Using this hy-
pothesis, the negotiation then takes the form in Figure 4.

Once completed, the SetSpoons, SetPlates, and Set-
Glasses subgoals are syntactically translated into PKS goals
and the planner attempts to generate a plan. For example, the
partial plan for the SetPlates subgoal may be:

grasp(left,sidetable,plate1),
grasp(right,sidetable,plate2),
putdown(left,table_pos1,plate1),
putdown(right,table_pos2,plate2).

(The plans for the other two subgoals will be similar.) Since
the hypothesis and the resulting plan(s) are both known be-

Are you setting the table?

Yes.

Do you want me to set the plates?

Do you want me to set the spoons?

Do you want me to set the glasses?

I will now help you set the table.

Yes.

Yes.

Yes.

No.

Are you cleaning the forks?

Supporter Initiator

Figure 5: Negotiation in Scenario 2.

forehand, they can be used to verify that the experimental
results match the expected outcome in this scenario.

Scenario 2: This scenario extends the first scenario, and is
designed to test the use of directed search to correctly iden-
tify the initiator’s goal from the hypothesis structure sup-
plied by ELEXIR. In particular, the search focuses on high-
level goal identification during negotiation, with the initiator
rejecting the hypothesis initially presented by the supporter.

In the first iteration of the negotiation process, the sup-
porter presents the initiator with the following hypothesis:

(0.8, [{CleanForks : {WashForks}{PutAwayForks}}]).

This hypothesis incorrectly identifies the initiator’s goal to
be that of cleaning the forks. The initiator rejects this hy-
pothesis, with the supporter moving to the next most proba-
ble hypothesis, thus iteratively negotiating with the initiator
until the correct goal is found. The number of negotiation
iterations can be reduced by adding further reasoning logic
about the hypothesis. For simplicity, the next hypothesis cor-
rectly identifies the goal of the initiator, so further directed
search and negotiation iterations are unnecessary. The cor-
rect hypothesis is then the same as the one in Scenario 1:

(0.8, [{SetTable : {SetSpoons, SetPlates, SetGlasses}}]).

Negotiation would then take the form as shown in Figure 5.
The remainder of the process then follows the one given

in the first scenario: the subgoals are translated for use by
PKS; the planner builds plans for setting the plates, spoons,
and glasses; and the supporter performs the plan.

This scenario demonstrates that by considering all hy-
potheses, the framework can recover from an initially incor-
rect identification of the initiator’s goal through the use of
a lightweight negotiation strategy and directed search of the
hypothesis structure provided by ELEXIR.

Scenario 3: The final scenario we consider is designed to
test the framework when dealing with the situation in which
the goal of the plan pursued by the initiator is correctly iden-
tified, but one (or more) of the hypothesised subgoals is not,
and is thus rejected by the initiator. If this happens, the sup-
porter, using directed search of the hypothesis structure, will

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

102

Are you setting the table?

Yes.

Supporter Initiator

Do you want me to set the plates?

Do you want me to set the spoons?

Do you want me to set the glasses?

I will now help you set the table.

Yes.

Yes.

No.

Figure 6: Negotiation in Scenario 3.

iteratively negotiate with the initiator until it finds an accept-
able subgoal. It is possible for the supporter to run out of
subgoals, if none of the (remaining) subgoals contained in
the hypothesis are acceptable to the initiator. If this occurs,
the supporter can then revert back to the hypothesis structure
to find another hypothesis with the same goal, and continue
negotiation with the initiator to see if the (other) subgoals
are acceptable. This eventuality is not examined in this sce-
nario due to lack of space. Instead, this scenario considers
the same hypothesis as in the first scenario:

(0.8, [{SetTable : {SetSpoons, SetPlates, SetGlasses}}])
with negotiation taking the form shown in Figure 6.

The remainder of this process differs from the above sce-
narios in that the rejected subgoal is not translated and
passed to the planner. Instead, only a plan for setting the
spoons and glasses is built and performed by the supporter.

This scenario demonstrates that by using ELEXIR’s hy-
pothesis structure, the initiator is not limited to accepting all
subgoals in a hypothesis: the framework provides enough
flexibility for the initiator to decide how, and in which way,
he wants to be helped, without the need for elaborate rea-
soning or goal decomposition on the part of the supporter.

Discussion
The three experimental scenarios demonstrate that our ap-
proach successfully generates cooperative plans: for each
scenario, ELEXIR interprets the observations correctly, sup-
plying the correct hypothesis structure to the negotiation
process; and the negotiator subsequently presents PKS with
the expected subgoals, with the planner producing the cor-
rect plans. Thus, in each case the framework produces the
expected behaviour, thereby validating the process.

However, the framework also relied on certain assump-
tions concerning the knowledge of the initiator and sup-
porter. For instance, the plan inferred by the supporter is
never shared with the initiator, and this approach does not
generate plans with joint actions, where multiple agents
must coordinate to perform the same task (e.g., lifting a ta-
ble). Instead, it only generates independent action sequences
for the supporter once there is mutual agreement as to the
supporter’s subgoals. It is also possible that different agents
might use different terms to refer to the same objects. If

there is sufficient disagreement on such terms, negotiation
will simply break down in the face of failed communication.
Likewise, a high degree of overlap between the knowledge
of the agents, and a tighter correspondence in the names used
to identify domain concepts, should give rise to situations
where cooperation is more easily negotiated.

In this work, we have also focused on the importance
of the supporter being proactive in suggesting goals that it
could help the initiator with, based on an understanding of
the initiator’s plan as identified through plan recognition.
While an alternative strategy on the part of the supporter
may be to simply ask the initiator how it can help, this is
not the focus of our approach. For instance, if the initiator
is a human, and the supporter is an artificial agent, the hu-
man may be forced to respond to a large number of requests
(including clarifications) as to what the initiator is doing.
Conversely, the approach in the paper could be adapted to
scenarios where an initiator may tell a supporter to achieve
certain subgoals. In this case, we could simply bypass the
plan recognition process and negotiation stages, using goal
translation to pass goals directly to the planner. However,
both scenarios require knowledge of the terms used by the
initiator, which could be much more extensive than the re-
stricted domain descriptions we work with.

During plan execution, there is no direct reasoning of
goal changes on the part of the initiator, except as detected
through additional plan recognition. Similarly, the adoption
by the initiator of a subgoal assigned to the supporter may
result in the initiator performing tasks that have already been
planned by the supporter. In such a case, we rely on plan
execution monitoring and replanning techniques to generate
appropriate behaviour to avoid a duplication of tasks.

Another representational problem that must be overcome
involves the correspondence between the domain descrip-
tions used by the plan recognizer and the planner. In partic-
ular, it is not unusual for a plan recognizer and a planner to
have different representations for the same domain, resulting
from differences in the underlying representation languages
and problems being solved. However, since the plan recog-
nizer and planner must operate within the same reasoning
framework, the onus is currently placed on the domain de-
signer to ensure that domains are appropriately engineered
to interoperate correctly. One area of future work is to find a
common representation that can be used for both tasks, or to
automatically induce one representation from the other.

Finally, in this first stage of our work we have placed
greater emphasis on the role of plan recognition, compared
with that of planning. However, a key direction of future
work is to extend our approach to more complex real-world
domains, such as those involving incomplete information
and uncertainty, where we can take advantage of PKS’s abil-
ity to build plans with sensing actions (including commu-
nicative actions (Petrick and Foster 2013)) to gather infor-
mation from the world or other agents at execution time.
For instance, if in the example scenario the supporter agreed
to place wine glasses on the table, then it may first need
to query the initiator as to who is drinking wine (and what
type of wine) to ensure the table is properly set. One way to
do this is by building a contingent plan with information-

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

103

gathering actions completely at the planning stage. Thus,
plans could be significantly more complex compared to
those in the experimental scenarios.

Another potential use of the planner in the next phase of
the work is to address the problem of subgoal achievability
during the negotiation stage. Currently, the supporter pro-
poses subgoals to the initiator without determining a priori
whether those goals are actually achievable by the supporter.
Instead, we are exploring the feasibility of trying to generate
(partial) plans for particular subgoals at negotiation, in an
attempt to limit the supporter’s subgoal proposals to achiev-
able subgoals (or subgoals that at least appear likely to be
achievable). While it is not expected that this can be done
for all subgoals, due to the time that plan generation could
take in complex domains, we are nevertheless exploring this
approach as a possibility in smaller domains. One additional
advantage of such a technique is that in cases where the sup-
porter knows a subgoal is achievable, the supporter could
also explain how the subgoal could be achieved, by present-
ing or summarising the plan. Such an approach may also
lead to further opportunities for collaborative behaviour be-
tween the supporter and initiator as part of such plans.

Conclusion
This paper presented a framework for combining plan recog-
nition and automated planning to produce collaborative be-
haviour between a pair of agents. Successful integration
of the plan recognition and planning components centred
around appropriate subgoal identification by the plan rec-
ognizer, combined with a lightweight negotiation process
which generated goals to be used by the planner for con-
structing appropriate action sequences. A set of experiments
demonstrated the potential of our approach, and helped mo-
tivate our ongoing and future work to extend these tech-
niques to more complex real-world situations.

Acknowledgements
The research leading to these results has received funding
from the European Union’s Seventh Framework Programme
under grant no. 270273 (XPERIENCE, xperience.org)
and grant no. 610917 (STAMINA, stamina-robot.eu).

References
Augusto, J. C. 2007. Intelligent Computing Everywhere.
London: Springer. chapter Ambient Intelligence: The Con-
fluence of Ubiquitous/Pervasive Computing and Artificial
Intelligence, 213–234.
Bauer, A. M.; Wollherr, D.; and Buss, M. 2008. Human-
robot collaboration: a survey. International Journal of Hu-
manoid Robotics 5(1):47–66.
Blaylock, N., and Allen, J. 2003. Corpus-based statistical
goal recognition. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), 1303–1308.
Boutilier, C., and Brafman, R. 2001. Partial-order planning
with concurrent interacting actions. Journal of Artificial In-
telligence Research 14:105–136.

Brafman, R., and Domshlak, C. 2008. From one to
many: Planning for loosely coupled multi-agent systems. In
Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS), 28–35.
Brenner, M. 2003. A Multiagent Planning Language. In
Proceedings of the Workshop on PDDL at ICAPS 2003.
Chandrasekaran, B., and Conrad, J. M. 2015. Human-robot
collaboration: A survey. In Proceedigs of the IEEE South-
eastCon, 1–8.
Crosby, M.; Jonsson, A.; and Rovatsos, M. 2014. A single-
agent approach to multiagent planning. In Proceedings of
the European Conference on Artificial Intelligence (ECAI),
237–242.
Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new
approach to the application of theorem proving to problem
solving. Artificial Intelligence 2:189–208.
Fong, T.; Thorpe, C.; and Baur, C. 2003. Collaboration, di-
alogue, and human-robot interaction. In Robotics Research,
Volume 6 of Springer Tracts in Advanced Robotics. Springer.
255–266.
Foster, M. E.; Giuliani, M.; Müller, T.; Rickert, M.; Knoll,
A.; Erlhagen, W.; Bicho, E.; Hipólito, N.; and Louro, L.
2008. Combining goal inference and natural-language di-
alogue for human-robot joint action. In ECAI Workshop on
Combinations of Intelligent Methods and Applications.
Geib, C. W. 2009. Delaying commitment in probabilistic
plan recognition using combinatory categorial grammars. In
Proceedings of the International Joint Conference on Artifi-
cial Intelligence (IJCAI), 1702–1707.
Giuliani, M.; Foster, M. E.; Isard, A.; Matheson, C.; Ober-
lander, J.; and Knoll, A. 2010. Situated reference in a hybrid
human-robot interaction system. In Proceedings of the Inter-
national Natural Language Generation Conference (INLG),
67–75.
Hawes, N.; Sloman, A.; Wyatt, J.; Zillich, M.; Jacobsson,
H.; Kruijff, G.-J. M.; Brenner, M.; Berginc, G.; and Skočaj,
D. 2007. Towards an integrated robot with multiple cogni-
tive functions. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI), 1548–1553.
Henning, M. 2004. A new approach to object-oriented mid-
dleware. IEEE Internet Computing 8(1):66–75.
Hoogs, A., and Perera, A. A. 2008. Video activity recogni-
tion in the real world. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence (AAAI), 1551–1554.
Karpas, E.; Levine, S. J.; Yu, P.; and Williams, B. C. 2015.
Robust execution of plans for human-robot teams. In
Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS), 342–346.
Kautz, H. A. 1991. A formal theory of plan recognition and
its implementation. In Allen, J. F.; Kautz, H. A.; Pelavin,
R. N.; and Tenenberg, J. D., eds., Reasoning About Plans.
Morgan Kaufmann. 69–126.
Kennedy, W. G.; Bugajska, M. D.; Marge, M.; Adams, W.;
Fransen, B. R.; Perzanowski, D.; Schultz, A. C.; and Trafton,
J. G. 2007. Spatial representation and reasoning for human-

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

104

robot collaboration. In Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI), 1554–1559.
Liao, L.; Fox, D.; and Kautz, H. A. 2005. Location-based
activity recognition using relational Markov networks. In
Proceedings of the International Joint Conference on Artifi-
cial Intelligence (IJCAI), 773–778.
Lochbaum, K.; Grosz, B.; and Sidner, C. 1990. Models of
plans to support communication: An initial report. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence
(AAAI), 485–490.
Modi, P. J.; Shen, W.-M.; Tambe, M.; and Yokoo, M. 2003.
An asynchronous complete method for distributed constraint
optimization. In Proceedings of International Conference
on Autonomous Agents and Multiagent Systems (AAMAS),
161–176.
Nau, D. S. 2007. Current trends in automated planning. AI
Magazine 28(4):43–58.
Newell, A. 1982. The Knowledge Level. Artificial Intelli-
gence 18(1):87–127.
Nwana, H. S. 1996. Software agents: an overview. The
Knowledge Engineering Review 11(3):205–244.
Pandey, A. K.; Ali, M.; and Alami, R. 2013. Towards
a task-aware proactive sociable robot based on multi-state
perspective-taking. International Journal of Social Robotics
5(2):215–236.
Petrick, R., and Bacchus, F. 2002. A knowledge-based ap-
proach to planning with incomplete information and sens-
ing. In Proceedings of the International Conference on Ar-
tificial Intelligence Planning and Scheduling (AIPS), 212–
221.
Petrick, R., and Bacchus, F. 2004. Extending the knowledge-
based approach to planning with incomplete information and
sensing. In Proceedings of the International Conference on
Automated Planning and Scheduling (ICAPS), 2–11.
Petrick, R., and Foster, M. E. 2013. Planning for social
interaction in a robot bartender domain. In Proceedings of
the International Conference on Automated Planning and
Scheduling (ICAPS), 389–397.
Pollack, M. 1990. Plans as complex mental attitudes. In
Intentions in Communication. MIT Press. 77–103.
Schrempf, O. C.; Hanebeck, U. D.; Schmid, A. J.; and Worn,
H. 2005. A novel approach to proactive human-robot coop-
eration. In Proceedings of the IEEE International Sympo-
sium on Robot and Human-Robot Interactive Communica-
tion (RO-MAN), 555–560.
Steedman, M. 2000. The Syntactic Process. MIT Press.
Talamadupula, K.; Briggs, G.; Chakraborti, T.; Scheutz, M.;
and Kambhampati, S. 2014. Coordination in human-robot
teams using mental modeling and plan recognition. In Pro-
ceedings of the IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), 2957–2962.
Zender, H.; Jensfelt, P.; Óscar Martínez Mozos; Kruijff, G.-
J. M.; and Burgard, W. 2007. An integrated robotic system
for spatial understanding and situated interaction in indoor
environments. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI), 1584–1589.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

105

Increased Privacy with Reduced Communication and Computation in
Multi-Agent Planning

Shlomi Maliah
Information Systems Engineering

Ben Gurion University
shlomima@post.bgu.ac.il

Ronen I. Brafman
Computer Science

Ben Gurion University
brafman@cs.bgu.ac.il

Guy Shani
Information Systems Engineering

Ben Gurion University
shanigu@bgu.ac.il

Abstract
Multi-agent forward search (MAFS) is a state-of-
the-art privacy-preserving planning algorithm. We
describe a new variant of MAFS, called multi-agent
forward-backward search (MAFBS) that uses both
forward and backward messages to reduce the num-
ber of messages and obtain new privacy properties.
While MAFS requires agents to send a state s pro-
duced by an action a to all agents that can apply
any action in s, MAFBS sends such messages for-
ward only to agents that have an action that requires
one of the effects of a. To achieve completeness, it
sends messages backward to agents that can supply
a missing precondition. This more focused message
passing scheme reduces states exchanged, and re-
quires that agents be aware only of other agents that
they directly interact with, leading to agent privacy.

1 Introduction
In various settings, agents may wish to cooperate to achieve
joint goals, while concealing certain private facts. For exam-
ple, different manufacturers may want to collaborate in the
production of a good without disclosing their entire supply-
chain, inventory levels, and local processes. An attractive
framework for such planning problems is privacy preserving
planning [Nissim and Brafman, 2014] which has gained in-
creasing attention in recent years. The latest CoDMAP com-
petition [Štolba et al., 2015b] accepted numerous submis-
sions from 10 different groups. While several approaches
were suggested, heuristic search algorithms [Maliah et al.,
2015; Štolba and Komenda, 2014; Štolba et al., 2015a;
Maliah et al., 2014a] seem to be the best performers, at
least in the centralized track. In particular, the Multi-Agent
Forward Search algorithm (MAFS) [Nissim and Brafman,
2012], combined with strong heuristic estimates [Štolba et al.,
2015a] produces high coverage over the competition domain.

The typical notion of privacy used so far in most work on
cooperative, privacy preserving planning, is dichotomic: ev-
ery action and variable is either private to a single agent or
public and accessible to all agents. However, as noted by Bon-
isoli et al. [Bonisoli et al., 2014], various facts or actions are
naturally described as private to a strict subset of agents. For

example, a supplier and a customer must know the content of
a package, but the courier that delivers it need not. Moreover,
when two organizations interact to achieve joint goals, each
employing sub contractors, it may well be that each wishes
that the identity, or even the existence, of its sub contractors
would not be known to the other. This is called in the DisCSP
literature as agent privacy [Faltings et al., 2008].

In this paper, we describe a model of refined privacy fol-
lowing [Bonisoli et al., 2014], and a new algorithm, which
we call forward-backward MAFS (MAFBS), which not only
provides this type of (weak) privacy, but also ensures that two
agents that do not share a private variable, never communicate
with each other, and hence, need not be aware of the existence
of each other. Moreover, through the use of focused commu-
nication, we not only obtain the above privacy property, but
also reduce the number of messages sent.

Our algorithm, while still a forward search algorithm, in-
troduces elements of regression, in the form of backward re-
quest messages, allowing for subset privacy and efficiency.
Our efficiency gains stem from the use of goal driven ex-
pansion. In MAFS, agents send a state s generated by a non-
private action to any agent that can apply a public action in
s. In MAFBS, when an agent generates a new state using an
action that has non-private effects, it will send this state only
to agents that have an action that requires one of these effects.
Unfortunately, this state sharing scheme is incomplete.

Too see this, consider 3 agents, ϕ1,ϕ2,ϕ3 , and a solution
plan a1, a2, a3, with ai an action of ϕi. a1, a2 have no precon-
ditions and generate p1 and p2 respectively. a3 requires both
p1 and p2 and produces the goal. Upon applying a1, agent ϕ1

sends the resulting state to ϕ3, while ϕ2 sends the result of
applying a2 to ϕ3. However, ϕ3 never gets a state where both
p1 and p2 exist, and cannot execute a3.

To address this problem we use simple backward reason-
ing – if agent ϕ receives a state s because a precondition of
an action a of ϕ was just produced, it sends s backward to all
agents that can supply some precondition for ϕ. In the exam-
ple above, when ϕ3 receives a state s where p1 holds from ϕ1

it will send it to ϕ2, which can then apply a2, achieving p2

and sending the state back to ϕ3. These backward messages
ensure completeness.

Thus, the main contribution is a new sound and complete
privacy preserving multi-agent planning algorithm that differs
from the two main current alternatives: forward search, and

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

106

Figure 1: A logistics example.

constraint-based search. The algorithm reduces the message
transmission in many domains and provides agent privacy. A
secure variant of MAFBS, in the sense of secure-MAFS [Braf-
man, 2015] can be defined on top of MAFBS.

2 Background
We describe the model of privacy preserving collaborative
planning and the MAFS algorithm.

2.1 Privacy Preserving Planning
An MA-STRIPS problem [Brafman and Domshlak, 2013] is
represented by a tuple 〈Φ, P, {Ai}|Φ|i=1, I, G〉 where:

• Φ is a set of agents.

• P is a finite set of primitive propositions (facts).

• Ai is agent ϕi’s action set. Ai ∩Aj = ∅ if i 6= j.

• I is the start state.

• G is the goal condition.

Each action a = 〈pre(a), eff (a)〉 is defined by its pre-
conditions (pre(a)), and effects (eff (a)). Preconditions and
effects are conjunctions of primitive propositions and literals,
respectively. A state is a truth assignment over P . G is a con-
junction of facts. a(s) denotes the result of applying action a
to state s. A plan π = (a1, . . . , ak) is a solution to a planning
task iff ak(. . . (a1(I) . . .) |= G.

An important assumption we make, for the ease of expo-
sition of the correctness of our algorithm, is that actions are
in transition normal form [Pommerening and Helmert, 2015].
More specifically, we assume that a primitive proposition ap-
pears in a precondition iff it (or its negation) appears in the
effect of the action. It is easy to convert any problem into
transition normal form.

Privacy-preserving MA-STRIPS extends MA-STRIPS by
defining sets of facts and actions as private, known only to
a single agent. We extend this, in the spirit of [Bonisoli et
al., 2014], allowing a fact to be private to multiple agents.1
We refer to this as subset privacy Thus, for each p ∈ P we
associate a set, pr(p) ⊆ Φ, the set of agents to whom p is pri-
vate. All agents in pr(p) are immediately aware of changes in
the value of p during runtime. We require that for every fact

1Given multi-valued variables, this definition can be further re-
fined, allowing for private variable-value pairs.

p, if p appears in the description of an action a ∈ Ai, then
ϕi ∈ pr(p). That is, an agent is aware of facts that appear
as precondition or effect of one of its actions. Similarly, let
pr(ϕ) be the set of propositions that ϕ is aware of. That is,
for each p ∈ pr(ϕ), ϕ ∈ pr(p), and for each q 6∈ pr(ϕ),
ϕ 6∈ pr(q).

Compared with the standard definition of multi-agent pri-
vacy, the so-called private facts, are now facts private to a
single agent only. We support subset-private facts that are
not supported in the standard definition. public facts in the
standard definition are now simply a special case of subset-
privacy, where the subset is the entire agent set.

In what follows, when we say that a proposition p is private
to ϕi we mean that ϕi ∈ pr(p). When we say that a propo-
sition p is private to ϕi only, this means that pr(p) = {ϕi}.
Finally, when we say that p is public we mean that p is not pri-
vate to a single agent only. Similarly, we refer to an action as
public when it has some public proposition in its description.

Recently, there is growing awareness of the need to bet-
ter quantify and improve the privacy guarantees in privacy
preserving planning [Brafman, 2015]. A well known privacy
property in the area of DisCSP is agent privacy [Faltings et
al., 2008]. Applying this idea to distributed planning we say
that a multi-agent planning algorithm satisfies agent privacy
if an agent ϕi cannot learn from participation in the algorithm
about the existence of an agent ϕj with whom it shares no
variable (that is, pr(ϕi)∩ pr(ϕj) = ∅). The agents that share
at least one variable with ϕi are called the neighbors of ϕi.
Thus ϕi is only aware of the existence of its neighbors. As ex-
plained above, this seems to be a desirable property in many
multi-agent collaboration settings. Moreover, to the best of
our knowledge, no current MA planning algorithm satisfies
this property.

Figure 1 illustrates a simple logistics example in which the
agents are trucks tasked with delivering packages. The set
of facts P represents the location of two packages and six
trucks. Each truck has three actions: move, load, and unload,
corresponding to moving between locations, loading a pack-
age and unloading it. Trucks can only drive along the edges
in Figure 1. Agents are heterogeneous and their range is re-
stricted, such that location i, j can only be reached using the
truck of agent ϕi. The rectangles are logistic centers visited
by multiple trucks that load or unload packages.

Truck are owned by different companies that do not want
to share their locations and coverage (which locations it can
reach) with other companies. Thus, all the facts representing
the location of trucks are private, while the facts representing
whether a package is at a logistic center are shared among all
agents that can reach that logistic center. Only the load/unload
actions at the logistic centers are not fully private, whereas the
move actions are private for each agent, as well as loading and
unloading at private locations.

In the example above, agent privacy requires that agent ϕ1

will be unaware of the existence of agents ϕ2, ϕ4, ϕ5, ϕ6. No
agent in the above example is aware of all other agents, yet
these agents must collaborate to move the packages to their
target locations.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

107

2.2 Multi-Agent Forward Search
Multi-Agent Forward Search (MAFS) [Nissim and Brafman,
2014] is a distributed algorithm schema for forward-search
planning that also preserves privacy. MAFS was designed fol-
lowing the standard definition of privacy, where facts are ei-
ther private to a single agent, or public to all agents, and we
present it as such.

In MAFS, each agent maintains a separate search space with
its own open and closed lists. The agent expands states using
its own actions only. This means that two agents (that have
different actions) expanding the same state, will generate dif-
ferent successor states. When it generates a state s using a
public action of ϕi, then it must send the new state to all other
agents that can apply a public action in s. When agent i re-
ceives a state s that does not appear in it or in its closed list,
it adds s to its open list. For more details, see [Nissim and
Brafman, 2014].

Messages sent between agents contain the full state s but
the values of private facts in s are encrypted so that only the
relevant agent can decipher them. This is typically done by
sending an identifier to the private state, rather than encrypt-
ing each fact independently. By definition, if q is private to
an agent, other agents do not have operators that affect its
value, and so they do not need to know or manipulate its
value. They simply copy the encrypted value to the next state.
As noted by [Bonisoli et al., 2014], by using a slightly more
involved encryption scheme, one can also support subset pri-
vacy within MAFS.

3 Forward-Backward MAFS

Forward-Backward MAFS (MAFBS) employs a high-level
concept similar to MAFS: cooperative state-space search by
a group of agents, where each agent expands a state using its
own operators only. MAFBS differs from MAFS in its message
passing scheme. Whereas MAFS sends a state s generated by
a public action to all agents that can apply an action in s,
MAFBS sends similar, yet more restricted forward messages,
as well as backward messages.

3.1 Forward-Backward Messages
A forward message a(s) is sent to all agents that require a pre-
condition that a produces. Thus, forward messages progress
the state forward in a focused manner. The next action of ϕi

must use an effect of the last action in the expanded state.
Backward messages use relevance reasoning to identify

which agents can supply a missing precondition. In practice,
regression is used to identify agents that can help to satisfy
these preconditions. A message is sent to an agent that can
supply the missing precondition(s), and it may continue to
regress them further.

Specifically, if a(s) produces a precondition p of action
ai ∈ Ai, and ϕj has an action aj that produces another, miss-
ing public precondition q of ai, then ϕi sends to ϕj the state
a(s). If ϕj can apply aj in a(s), it will do so, and return
aj(a(s)) to ϕi (and only to ϕi). If ϕj cannot apply aj in
a(s), as a precondition r of aj is missing, it will send a(s)
backward to any agent that can produce r, and so on.

The above schema, requires that forward-backward mes-
sage passing be applied both between agents and within
agents. Thus, internally, agents cannot use off-the-shelf for-
ward search algorithms, as they must implement forward-
backward search. This is highly inconvenient, and most likely
inefficient.

Instead, internally, we allow agents to use standard forward
search with their own operators, and adapt the message pass-
ing scheme as follows: forward messages are sent following
any action that impacts another agent, as described above.
We use a more complex mechanism for backward messages.
When the current state expanded by ϕi is s, and there is an
action ai ∈ Ai such that: (1) at least one precondition of ai
achieved by the action that lead to s; (2) at least one public
precondition of ai - pi does not hold in s. A message is then
sent backward to all agents that can supply pi to ϕi. However,
as in the above case, if an action is applied to a state that was
received through a backward message, the resulting state is
sent only to the agent that sent the backward message.

Note that the agents maintain closed lists. In the case of
forwards messages, this the usual closed list. In the case of
backwards messages, agent need to check whether they have
already expanded that state in a forward fashion in the past,
or whether they expanded this state following a backwards
message from the same agent. In these cases, they can ignore
the message.

In the pseudo-code below, we describe the latter version
of MAFBS. We use forward state to denote a state received
in a forward message and backward state to denote a state
received in a backward message. We will assume that for ev-
ery state, we know whether it is a forward or backward state,
which agent sent it, and what was the last non-private action
in the path that generated each state.

3.2 Goal Detection
Most previous privacy preserving algorithms assume that all
goals are public to all agents, or that agents can define artifi-
cial public goal actions, and thus report goal states to all other
agents. However, by adding artificially shared variables, these
schemes violate agent privacy.

Hence, we create a message passing goal identification
mechanism. Our goal detection mechanism is similar in na-
ture to consensus with no failures in distributed system liter-
ature [Berman et al., 1992]. Agents that identify a local goal
notify all their neighbors. Each agent may reject the notifica-
tion if it knows of some goal that has not been achieved. If all
agents confirm the goal, then the search is terminated.

In what follows, we assume that at least one agent has a
private goal and that this is common knowledge. It should
be straightforward to keep this information private by using
a privacy preserving implementation of the Or function. We
define 4 goal messages — goal proposal, goal confirmation,
goal rejection, and termination. When ϕi generates a state in
which all sub-goals private to it as well as all public goals
are satisfied, it sends a goal-proposal message to all its neigh-
bors.This message contains the (proposed) goal state, and a
unique identifier. An agent that receives a goal proposal mes-
sage with state s checks whether s satisfies its part of the goal.
If not, it sends a rejection message to all its neighbors (with

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

108

the appropriate state id). Otherwise, it forwards the message
to all its neighbors (except the sending agent). Agents that re-
ceive the same message twice (identified using the message
identifier) ignore it. Agents that receive goal rejection mes-
sages forward them to all their neighbors.

If an agent received a goal proposal from all its neighbors,
and does not reject it, it sends back a goal confirmation. An
agent that receives a goal confirmation message from all its
neighbors (except for the one that sent it the goal proposal),
and does not reject it, forwards the confirmation to all its
neighbors.

Algorithm 1: MAFBS for Agent ϕi

1 MAFBS(i)
2 Insert I into open list
3 while TRUE do
4 foreach state s in message queue do
5 process-message(s)
6 s← extract-min(open list)
7 expand(s)

8 process-message(s)
9 if s is a forward state not in the closed-list or

(s, j), where j is the sending agent is a backward
state not in the backwards closed-list then

10 add s to open list

11 expand(s)
12 if s is a goal state then
13 traceback solution and terminate
14 if s is a forward state then
15 move s to closed list;
16 foreach ai ∈ Ai s.t. pre(ai) |= s, and ai(s)

not in the closed list do
17 add ai(s) to open;
18 foreach agent ϕj (j 6= i) that has an action

that requires an effect of ai do
19 send forward ai(s) to ϕj

20 let a be the last public action performed on the
path to s;

21 foreach ai ∈ Ai that (1) consumes an effect of
a, and (2) has a public precondition p that does
not hold in s do

22 send s backward to all agents ϕj (j 6= i)
that have an action that produces p

23 if s is a backward state then
24 Let ϕj be the sending agent;
25 move (s, j) to the backwards closed list;
26 foreach ai ∈ Ai applicable in s that satisfies a

precondition of some aj ∈ Aj do
27 send ai(s) forward to ϕj ;
28 add ai(s) to open as a backward state;
29 foreach ϕk that can supply some precondition

to ϕi do
30 send s backward to ϕk;

When the agent that initiated the goal proposal receives a
goal confirmation, it sends to all its neighbors a termination
message. An agent that receives a termination message for-
ward it to all its neighbors, and terminates the search. Agents
that receive the termination message can extract their per-
sonal plan from the state.

As with the forward backward messages, when agents for-
ward the goal state to others, they adjust the state to expose
only the relevant parts to the receiving agent. Every agent that
receives one of the messages above (except for termination),
extracts the state and adds it to its open list.

4 MAFBS Properties
We now discuss the key properties of MAFBS: soundness,
completeness, and agent privacy.
Claim 1. MAFBS is sound.

Each state generated in MAFBS is obtained by applying an
action to a state that was previously generated, starting at the
initial state. Thus, all states are reachable, and if a goal state
is found, there must be a plan.

A key technical result of this section is the completeness of
MAFBS.
Theorem 1. MAFBS is complete.

Proof. We prove that if a solution plan π exists, then MAFBS
will find it. We assume that π includes no action that is private
to a single agent only. We later remove this assumption. We
also assume that π is minimal in the following sense: we can-
not remove some subsequence of actions from π while main-
taining the current order of the remaining actions and end up
with a valid plan.

The causal structure of π [Karpas and Domshlak, 2012]
is a graph defined as follows: The nodes in this graph are the
actions of π, and a is a parent of a′ if a supplies a precondition
p to a′ in the plan. That is, a appears before a′ in π, and no
action between a and a′ produces p. In other words, there is
a causal link between a and a′ [Tate, 1977].

Our first step is to transform π as follows: starting with
i = 1, we consider the actions between ai and aj , the first
action to consume an effect of ai. By minimality, aj must ex-
ist, or ai is a goal achieving action and is not the producer in
any causal link. To address this latter case, just for the sake
of the transformation described, we add an END action that
consumes the goal literals and must appear last in the plan.
For every ak (i < k < j) that is not an ancestor of aj in
the dependency graph, we try to move ak forward as much
as possible by exchanging it with the actions that follows it
without invalidating the plan. If possible, we move ak beyond
aj , at which point we stop moving ak (in this iteration). We
perform this backward, starting at k = j − 1 and ending at
k = i+ 1. Once we are done with the current i, we increase i
to the (possibly new) index of aj – the first action to consume
an effect of ai – plus one. Clearly, this is a finite process. Let
π now denote the plan following this transformation. By con-
struction, π is a valid plan. We call plans with this property,
goal focused plans. Notice that any action that can be moved
beyond the END action has no role in the plan, and its exis-
tence would thus contradict our minimality assumption.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

109

Messages Time States(×1000)
MAFS MAFBS MAFS MAFBS MAFS MAFBS

MALogistics 2086 582 15.7 14 579.5 514.8
MABlocksWorld 129.5 84.3 294.9 292.1 272.3 281.1
Driverlog 622.5 116.5 2.7 0.7 197.1 36.8
Elevators08 519.9 361 31.9 11.9 845.4 312.5
Logistics00 902.5 361.4 1.8 1.6 50.6 44.6
Rovers 676.7 182.7 23.6 16.8 330.8 182.9
Satellites 2174 69.8 24.9 7 1482.3 359.3
Zenotravel 117 52.1 6.1 5.1 302.4 221.8
Depot 1668 799 1.3 0.8 72.3 56.6
Woodworking08 2040 531.6 7.7 2.1 242.6 64.3

Table 1: Comparing the performance of MAFBSand MAFS. For each domain we report the average over all problems.

Claim 2. A goal-focused plan π satisfies the following prop-
erty: for every action ai and aj such that aj is the first con-
sumer of an effect of ai, the actions between ai and aj contain
only ancestors of aj in the dependency graph of π.

Proof. First, we make the following observation. If ak−1 can-
not be exchanged with ak without invalidating the plan, then
ak−1 supplies ak with a precondition. To see this, suppose
to the contrary that ak−1 does not supply ak with some pre-
condition. Then, we cannot exchange them because either ak
destroys a precondition of ak−1 or ak−1 destroys an effect of
ak required by some future action.

Recall that our actions are in transition normal form. Thus,
since in both of the above cases some primitive proposition p
appears in the description of both actions, it must appear in
their preconditions and effects as well. In that case, the value
of p following ak−1 must equal its value in the precondition
of ak for π to be applicable. Thus, ak−1 supplies a precondi-
tion to ak, and hence, it is one of its parents in the dependency
graph.

Thus, proceeding backward from aj , we see that aj−1 must
be an ancestor of aj . Now, suppose that ak+1, . . . , aj−1 are
all ancestors of aj . Consider ak. If ak cannot be exchanged
with ak+1, then it is a parent of ak+1, and by transitivity,
an ancestor of aj . Otherwise, pre-transformation, ak supplied
some precondition to aj or one of its ancestors. However, it
could be the case that some action a that was before ak orig-
inally, was moved forward beyond ak, and now supplies this
same precondition instead of ak. This means that both supply
some condition p. But since actions are in transition normal
form, a must also have p as a precondition to appear after ak,
and hence ak is an ancestor of a in π now, and thus an an-
cestor of aj . If a moved forward beyond another action that
supplies p, the same argument can be applied repeatedly.

Thus, considering an action ai, we see that all the actions
between it and aj , the first action to consume an effect of ai
must be ancestors of aj in the dependency graph. Not only
that, it is clear that, to preserve plan validity, if some ak for
i < k < j is an ancestor of aj , then all the ancestors of aj
that are descendants of ak have to appear between aj and ak
for the plan to be valid.

Claim 3. π can be generated by MAFBS.

Proof. We now explain how MAFBS will generate π in goal-
focused form. Let aj be the first action that consumes a pre-
condition of a1. MAFBS sends a1(I) to the agent that owns
aj (Line 18). This agent will send a1(s) to all its parents in
the dependency graph (Line 21), who will continue to send
it to their parents, etc. (Line 28). As we observed, the en-
tire line of ancestors between any two nodes must be present.
This continues until one of the earliest ancestors (one that
does not have another ancestor between a1 and aj) will re-
ceive it. Amongst them must be a2, who will apply its action.
Now, there must be an action that consumes the effect of a2

between a3 and aj , as it is an ancestor of aj and the plan is
minimal. The process now continues up and down the tree un-
til a3 can apply its action and so on. Eventually, we reach the
state aj(· · · (a1(I))) at which point we continue in the same
manner.

We assumed so far, that all actions in π are public. To see
that the proof holds when private actions are allowed too, no-
tice that within the search space of the agent, full forward
search is used. The only caveat is that it is possible that an
agent will receive a state s from another agent in which it can-
not apply any non-private action. That is, it must first apply a
few private actions, and only then does some precondition for
a non-private action becomes satisfied. At this point, it may
need another precondition from a different agent in order to
apply its non-private action. This is handled in lines 20-22,
where we allow backward messages not only after a forward
message was received.

An important, technically straightforward property is:

Theorem 2. MAFBS with a heuristic whose computation pre-
serves agent privacy preserves agent privacy.

Proof. In MAFBS agents communicate only with agents that
share a private variable with them. The information they get
from other agents includes the value of variables that are pri-
vate to them, with the rest of the state encrypted. Assuming
the encryption scheme is secure, they cannot deduce the ex-
istence of any other agent, as the state of agents that are not
their neighbors is concealed in the encrypted state, and they
cannot differentiate between aspects of that state that are pri-
vate to their neighbors and those that are private to agents they

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

110

(a) Elevators (b) MALogistics (c) Depot

Figure 2: Agent interaction graph. Larger nodes represent agents while smaller nodes represent shared facts.

do not know. If the heuristic computation preserves agent pri-
vacy too, then the entire algorithm respects agent privacy.

So as not to make this claim somewhat vacuous, we note
that the landmarks heuristics of Maliah et al. [Maliah et al.,
2014b] respects agent privacy: agents are aware only of land-
marks of agents with whom they share some variable.

Finally, here are a number of optimizations that can be
made to improve the simple MAFBS algorithm above.

1. When a message is sent backwards, the required condi-
tion is associated with it, so that only actions that achieve
it will be sent forward. Notice that this requires slightly
more careful book-keeping in the backwards closed list.

2. If ϕi sent a state s backwards to ϕj , it will not send back-
wards to ϕj any descendant of s obtained by applying
only ϕi’s actions.

The above changes preserve completeness because the basic
scheme that is used to show that we can generate sequences
that correspond to goal-focused plans requires only the type
of focused forward and backward message passing that is
captured by these changes.

5 Empirical Evaluation
We conduct an empirical analysis of MAFBS. We experiment
with a set of benchmarks from the CoDMAP competition
[Štolba et al., 2015b], and two more complicated domains
— MA-Blocks and MA-Logistics, where a larger number of
private actions need to be executed between two consecutive
non-private actions, and agents choose between several paths
for achieving goals.

We compare MAFBS to MAFS. Both algorithms use a land-
mark heuristic [Maliah et al., 2014a], which naturally extends
to preserve agent privacy. We experiment only with CoDMAP
instances of each problem that both algorithms were able to
solve. Table 1 shows the results of the experiments. We re-
port 3 metrics — the number of messages that were sent (a
message broadcasted to k agents is counted as k separate
messages, MAFBS messages contain one extra bit), the time
to completion, and the number of expanded states. While
MAFBS is advantageous in all metrics on (almost) all do-
mains, the differences are especially pronounced in the case

of the number of messages. MAFBS sends from 3% to 69% of
the messages sent by MAFS, and 36% on average. This is not
surprising, as MAFS sends new states to all agents that can ap-
ply an action, while MAFBS sends forward messages only to
agents that use an effect of the generating action. The added
backward messages do not reduce the advantage of MAFBS.

The number of generated states is often much smaller for
MAFBS and is slightly worse only in one domain. Runtime
improves across all domains.

To further understand the behavior of MAFBS we take a
closer look at the domains where MAFBS does best and worst.
Satellites is by far the easiest domain for MAFBS. This is be-
cause in satellites no agent ever generates a precondition for
another agent. Agents share however resources that are con-
sumed by actions, but never produced. Different agents can
achieve different subgoals. Thus, there is no need for an agent
to ever send forward (or backward) messages. Instead, the
only messages that are sent are goal messages, allowing one
agent to achieve goals that the other could not.

MAFBS also performs well on MALogistics, which is a
more complex domains similar to the running example in Fig-
ure 1. We created domains where the number of interacting
agents is limited, that is, the area under the control of each
truck is connected to at most 2 other agents. Thus, each time
an agent drops a package at some logistic center it needs to
inform only a small number of agents, greatly reducing the
number of messages.

We show (Figure 2) the agent interaction graphs for exam-
ple problems from 3 additional domains — MALogistics and
Depot, where MAFBSperforms well, and Elevators where it
does not. In the graphs, the larger nodes represent agents, and
the smaller nodes represent facts that agents share. As can be
seen, in MALogistics there is only one fact that is shared be-
tween 4 agents. All other facts are shared between exactly 2
agents. In Depot, only one fact is shared between 3 agents,
and all other facts are shared only between two agents. Given
these sparse dependencies, it is no surprise that MAFBS send
much less messages than MAFS.

In Elevators, on the other hand, changes in each floor affect
3 out of 4 elevators (floor f5 is shared between all agents).
Thus, the number of sent messages is not much smaller than
what MAFS sends.

These domains demonstrate that loose coupling of agents

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

111

is advantageous for MAFBS, while tightly coupled agents with
many almost public facts, makes MAFBS almost identical to
MAFS.

6 Conclusion
We describe the multi-agent forward-backward search al-
gorithm. This algorithm improves upon the state-of-the-art
MAFS algorithm in all parameters measured, but most sig-
nificantly, in the number of messages passed. This is not only
an important performance measure for distributed algorithms,
it might be that with fewer messages sent, less private infor-
mation is leaked. In future work, we will study this intuitive
relation between the amount of messages and the amount of
leaked information. Moreover, MAFBS is the first MA plan-
ning algorithm to provide agent privacy — hiding the exis-
tence of an agent from others that have no direct impact on it.
It is not difficult to see that forward-backward messages are
orthogonal to the changes made in secure-MAFS. Thus, in fu-
ture work hope to adapt MAFBS to display the same essential
property of secure-MAFS, namely, that an agent never sends
two states that differ only in the value of the private variables.

MAFBS is also interesting because it combines both for-
ward and backward reasoning, in a manner that is very differ-
ent from current single and multi-agent planning (and search)
algorithms. We believe that additional optimization that help
focus its message passing are possible, and could lead to fur-
ther improvements in performance.
Acknowledgments: We thank the reviewers for their useful
comments. This work was supported by ISF Grant 933/13, by
the Helmsley Charitable Trust through the Agricultural, Bio-
logical and Cognitive Robotics Center of Ben-Gurion Uni-
versity of the Negev, and by the Lynn and William Frankel
Center for Computer Science.

References
[Berman et al., 1992] Piotr Berman, Juan A Garay, and Ken-

neth J Perry. Optimal early stopping in distributed consen-
sus. Springer, 1992.

[Bonisoli et al., 2014] Andrea Bonisoli, Alfonso Emilio
Gerevini, Alessandro Saetti, and Ivan Serina. A privacy-
preserving model for the multi-agent propositional plan-
ning problem. In ECAI 2014 - 21st European Confer-
ence on Artificial Intelligence, 18-22 August 2014, Prague,
Czech Republic - Including Prestigious Applications of In-
telligent Systems (PAIS 2014), pages 973–974, 2014.

[Brafman and Domshlak, 2013] R. I. Brafman and
C. Domshlak. On the complexity of planning for
agent teams and its implications for single agent planning.
Artificial Intelligence, 198:52–71, 2013.

[Brafman, 2015] Ronen I. Brafman. A privacy preserving
algorithm for multi-agent planning and search. In the In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI), pages 1530–1536, 2015.

[Faltings et al., 2008] Boi Faltings, Thomas Léauté, and
Adrian Petcu. Privacy guarantees through distributed
constraint satisfaction. In Proceedings of the 2008

IEEE/WIC/ACM International Conference on Intelligent
Agent Technology, Sydney, NSW, Australia, December 9-
12, 2008, pages 350–358, 2008.

[Karpas and Domshlak, 2012] Erez Karpas and Carmel
Domshlak. Optimal search with inadmissible heuristics.
In Proceedings of the Twenty-Second International Con-
ference on Automated Planning and Scheduling, ICAPS
2012, Atibaia, São Paulo, Brazil, June 25-19, 2012, 2012.

[Maliah et al., 2014a] Shlomi Maliah, Guy Shani, and Roni
Stern. Privacy preserving landmark detection. In the Eu-
ropean Conference on Artificial Intelligence (ECAI), pages
597–602, 2014.

[Maliah et al., 2014b] Shlomi Maliah, Guy Shani, and Roni
Stern. Privacy preserving landmark detection. In ECAI
2014 - 21st European Conference on Artificial Intelli-
gence, 18-22 August 2014, Prague, Czech Republic - In-
cluding Prestigious Applications of Intelligent Systems
(PAIS 2014), pages 597–602, 2014.

[Maliah et al., 2015] Shlomi Maliah, Guy Shani, and Roni
Stern. Privacy preserving pattern databases. In
ICAPS workshop on Distributed and Multi-Agent Plan-
ning (DMAP), 2015.

[Nissim and Brafman, 2012] R. Nissim and R. I. Brafman.
Multi-agent A* for parallel and distributed systems. In
AAMAS, pages 1265–1266, 2012.

[Nissim and Brafman, 2014] Raz Nissim and Ronen I. Braf-
man. Distributed heuristic forward search for multi-
agent planning. Journal of Artificial Intelligence Research
(JAIR), 51:293–332, 2014.

[Pommerening and Helmert, 2015] Florian Pommerening
and Malte Helmert. A normal form for classical planning
tasks. In Proceedings of the Twenty-Fifth International
Conference on Automated Planning and Scheduling,
ICAPS 2015, Jerusalem, Israel, June 7-11, 2015., pages
188–192, 2015.

[Štolba and Komenda, 2014] Michal Štolba and Antonı́n
Komenda. Relaxation heuristics for multiagent planning.
In International Conference on Automated Planning and
Scheduling (ICAPS), 2014.

[Štolba et al., 2015a] Michal Štolba, Daniel Fišer, and An-
tonı́n Komenda. Admissible landmark heuristic for multi-
agent planning. In International Conference on Automated
Planning and Scheduling (ICAPS), 2015.

[Štolba et al., 2015b] Michal Štolba, Antonın Komenda, and
Daniel L Kovacs. Competition of distributed and multia-
gent planners (codmap). The International Planning Com-
petition (WIPC-15), page 24, 2015.

[Tate, 1977] Austin Tate. Generating project networks. In
Proceedings of the 5th International Joint Conference
on Artificial Intelligence. Cambridge, MA, August 1977,
pages 888–893, 1977.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

112

