Thesis Abstract: Constructing Heuristics for PDDL+ Planning Domains

Wiktor Piotrowski
Supervised by: Daniele Magazzeni and Maria Fox
Department of Informatics
King’s College London
United Kingdom

Abstract

Planning with hybrid domains modelled in PDDL+ has
been gaining research interest in the Automated Plan-
ning community in recent years. Hybrid domain mod-
els capture a more accurate representation of real world
problems, that involve continuous processes, than is
possible using discrete systems. However, solving prob-
lems represented as PDDL+ domains is very challeng-
ing due to the construction of complex system dynam-
ics, including non-linear processes and events, and vast
search spaces.

The main focus of my PhD is to mitigate these chal-
lenges by developing domain-independent heuristics for
planning in hybrid domains modelled in PDDL+. This
is a very real issue as only a handful of planners can
cope with hybrid domains and, fewer still with the full
set of PDDL+ features and non-linear behaviour.

1 Introduction

Over the years, Automated Planning research has been con-
tinuously attempting to solve the most advanced and com-
plex planning problems. The standard modelling language,
PDDL (McDermott et al. 1998), has been evolving to ac-
commodate new concepts and operations, enabling research
to tackle problems more accurately representing real-world
scenarios. Recent versions of the language, PDDL2.1 and
PDDL+ (Fox and Long 2003; 2006), enabled the most ac-
curate standardised way yet, of defining hybrid problems as
planning domains.

Planning with PDDL+ has been gaining research interest
in the Automated Planning community in recent years. Hy-
brid domains are models of systems which exhibit both con-
tinuous and discrete behaviour. They are amongst the most
advanced models of systems and the resulting problems are
notoriously difficult for planners to cope with due to non-
linear behaviour and immense search spaces.

My research aims mitigate these issues by developing
domain-independent heuristics able to reason with nonlin-
ear system dynamics and PDDL+ features such as processes
and events. These heuristics are being implemented in UP-
Murphi as a proof of concept.

Copyright (© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We begin by outlining the related work done in the area of
hybrid domains and PDDL+ planning in section 2. We dis-
cuss the relevance of the research problem and motivation
for tackling it in section 3. Section 4 describes our method-
ology for dealing with hybrid domains. We then outline the
contribution made and ongoing research in section 5. Sec-
tion 6 describes the future research. Section 7 concludes the
thesis summary.

2 Related Work

Various techniques and tools have been proposed to deal
with hybrid domains (Penberthy and Weld 1994; McDer-
mott 2003; Li and Williams 2008; Coles et al. 2012; Shin
and Davis 2005). Nevertheless, none of these approaches
are able to handle the full set of PDDL+ features, namely
non-linear domains with processes and events. More recent
approaches in this direction have been proposed by (Bogo-
molov et al. 2014), where the close relationship between
hybrid planning domains and hybrid automata is explored.
(Bryce et al. 2015) use dReach with a SMT solver to handle
hybrid domains. However, dReach does not use PDDL+,
and cannot handle exogenous events.

On the other hand, many works have been proposed in
the model checking and control communities to handle hy-
brid systems. Some examples include (Cimatti et al. 2015;
Cavada et al. 2014; Tabuada, Pappas, and Lima 2002; Maly
et al. 2013), sampling-based planners (Karaman et al. 2011;
Lahijanian, Kavraki, and Vardi 2014). Another related
direction is falsification of hybrid systems (i.e., guiding
the search towards the error states, that can be easily cast
as a planning problem) (Plaku, Kavraki, and Vardi 2013;
Cimatti et al. 1997). However, while all these works aim
to address a similar problem, they cannot be used to han-
dle PDDL+ models. Some recent works (Bogomolov et al.
2014; 2015) are trying to define a formal translation between
PDDL+ and standard hybrid automata, but so far only an
over-approximation has been defined, that allows the use of
those tools only for proving plan non-existence.

To date, the only viable approach in this direction is
PDDL+ planning via discretisation. UPMurphi (Della
Penna, Magazzeni, and Mercorio 2012), which implements
the discretise and validate approach, is able to deal with the
full range of PDDL+ features. The main drawback of UP-
Murphi is the lack of heuristics, and this strongly limits its

scalability. However, UPMurphi was successfully used in
the multiple-battery management domain (Fox, Long, and
Magazzeni 2012), and more recently for urban traffic con-
trol (Vallati et al. 2016). In both cases, a domain-specific
heuristic was used.

3 Problem Statement & Motivation

Automated Planning is a crucial part of a multitude of sys-
tems in almost every domain of science and technology.
However, in certain cases the complexity or scale of the
systems has outgrown the capabilities of the modelling lan-
guage rendering the planning domain either too inaccurate
or too cumbersome to express.

When first introduced, PDDL+ allowed new, more com-
plex problems, closely resembling real-world scenarios, to
be modelled. Though planning is now able to express com-
plex hybrid domains, solving these problems is very chal-
lenging due to nonlinear behaviour, state explosion and con-
tinuous variables rendering the reachability problem un-
decidable. As described in Section 2, various planning
tools using different approaches have been developed over
the past years to tackle problems set in hybrid domains.
However, the vast majority cannot deal with the full set
of PDDL+ features and/or nonlinear behaviour. This sig-
nificantly limits the relevance of Automated Planning for
a wide range of applications since only restricted and/or
downscaled hybrid models can be handled. As a result, some
classes of planning problems, relevant to today’s science and
technology, are being solved using domain-specific heuris-
tics or approaches from outside planning altogether (Mixed-
Integer Programming, Genetic Algorithms, etc.).

In addition to the inability to reason with some PDDL+
features and/or non-linearity, current planning tools scale
poorly when presented with larger problem instances. This
is due to the absence or poor performance of heuristics in
the presence of vast search space, exogenous processes and
events, and non-linearity. Currently, heuristics applied to hy-
brid systems have either been developed for a different sub-
class of problems (e.g. PDDL2.1), or to reason with only a
subset of the features expressible in PDDL+.

The main motivation of this research is to advance
PDDL+ planning to tackle larger and more complex prob-
lems by addressing the apparent lack of efficient domain-
independent heuristics devised specifically for hybrid do-
mains. To significantly increase the performance of planners
in hybrid domains, heuristics should be designed to directly
reason with the complex system dynamics, and PDDL+ fea-
tures, i.e. processes and events.

4 Methodology

Reasoning with PDDL+ features and complex, often non-
linear, system dynamics is a challenging objective for Au-
tomated Planning tools. As shown in Section 2, all current
approaches have drawbacks significantly limiting their per-
formance and capabilities, often rendering them inadequate
for the complex problems at hand.

Our approach of coping with PDDL+ domains combines
two successful paradigms, planning as model checking and

temporal formula goal

\G(p ->Fq) \ reach r \ no plan!

Model /
Checker Planner
a7 A ‘ /

e ,; o
iz (IR o
P % f
finite-state model q)
counterexample planning domain

(a) Model Checking (b) Planning

Figure 1: Similarity of Model Checking and Automated
Planning

Discretise & Validate.

Planning as model checking (Cimatti et al. 1997; Bogo-
molov et al. 2014) is an approach applying model check-
ing methods to finding the goal state in Automated Plan-
ning. Model checking and planning have striking similari-
ties meaning that methods from one field can be exploited
to improve performance in the other field. Searching for a
goal in planning (Fig.la) can be seen as searching for an
error state in model checking(Fig.1b). Analogously, the er-
ror trace in model checking corresponds to a trajectory to
the goal state in planning. Planning as model checking has
been successfully used in various scenarios, and is gaining
more research interest (multiple publications and workshops
at top conferences).

Specify
discretisation PDDL+
settings Domain

And

original |
Continous |
dynamics |

Problem
Discretise Validate

Discretised model

— e e — —

Figure 2: The Discretise & Validate process

As mentioned before, planning via discretisation is, to
date, the only viable approach to PDDL+ planning. Our
approach is based on the Discretise & Validate approach
(Della Penna, Magazzeni, and Mercorio 2012; Della Penna
et al. 2009). It approximates the continuous dynamics of
systems in a discretised model with uniform time steps and
step functions. Using a discretised model and a finite-time
horizon ensures a finite number of states in the search for a
solution. Solutions to the discretised problem are validated
against the original continuous model using VAL (Howey,
Long, and Fox 2004). If the plan at a certain discretisation
is not valid, the discretisation can be refined and the process
iterates. Discretise & Validate technique has been the basis
of UPMurphi’s success in the planning domain. An outline
of the Discretise & Validate process is shown in Fig. 2.

5 Contributions

This section describes my contribution to date. Our devel-
opment resulted in DiNo, a new heuristic planner designed
for PDDL+ domains equipped with informed search algo-
rithms and Staged Relaxed Planning Graph+ (SRPG+), a
new domain-independent heuristic based on the Temporal
Relaxed Planning Graph. Our publication describing DiNo
is currently under review for IJCAI 2016.

5.1 DiNo

We introduced DiNo, a new planner for PDDL+ problems
with mixed discrete-continuous non-linear dynamics. DiNo
is built on UPMurphi, and uses the planning-as-model-
checking paradigm and relies on the Discretise & Validate
approach to handle continuous change and non-linearity.
Though UPMurphi has been successful, it scales poorly due
to exhaustive uninformed search algorithm, DiNo compen-
sates for the lack of heuristics and shows significant im-
provement over its predecessor.

DiNo uses a novel relaxation-based domain-independent
heuristic for PDDL+, Staged Relaxed Planning Graph+
(SRPG+). The heuristic guides the Enforced Hill-Climbing
algorithm (Hoffmann and Nebel 2001). In DiNo we also ex-
ploit the deferred heuristic evaluation (Richter and Westphal
2010) for completeness (in a discretised search space with
a finite horizon). States generated through non-helpful ac-
tions are considered (inserted into the queue) but they are not
heuristically evaluated, instead they are assigned the heuris-
tic value of their parent state (i.e. the are deemed no better
than their parent state).

DiNo is currently the only heuristic planner capable of
handling non-linear system dynamics combined with the full
PDDL+ feature set.

5.2 SRPG+

This section describes the Staged Relaxed Planning
Graph+ (SRPG+) domain-independent heuristic designed
for PDDL+ domains and implemented in DiNo.

The SRPG+ heuristic follows from Propositional (Hoff-
mann and Nebel 2001), Numeric (Hoffmann 2003; 2002)
and Temporal RPGs (Coles et al. 2012; 2008; Coles and
Coles 2013). The original problem is relaxed and does not
account for the delete effects of actions on propositional
facts. Numeric variables are represented as upper and lower
bounds which are the theoretical highest and lowest values
each variable can take at the given fact layer. Each layer is
time-stamped to keep track of the time at which it occurs.

The Staged Relaxed Planning Graph+, however, extends
the capability of its RPG predecessors by tracking processes
and events to more accurately capture the continuous and
discrete evolution of the system.

Apart from the inclusion of processes and events, the
Staged RPG significantly differs from the Temporal RPG
in time-handling. The SRPG explicitly represents every fact
layer with the corresponding time clock, and in this sense the
RPG is ’staged”, as the finite set of fact layers are separated
by the discretised time step (At). In contrast, the TRPG
takes time constraints into account by time-stamping each

t=0 t=1 t=2 t=3 =0 t=1 t=2 t=3

usebattery A H use-battery A |

use-battery B !

(a) UPMurphi (b) DiNo
Figure 3: Branching of search trees (Blue states are explored, or-
ange are visited. Red edges correspond to helpful actions)

fact layer at the earliest possible occurrence of a happening.
Only fact layers where values are directly affected by actions
are contained in the TRPG.

Time Passing The time-passing action plays an important
role as it propagates the search in the discretised timeline.
During the normal expansion of the Staged Relaxed Plan-
ning Graph, the time-passing is one of the A-actions and is
applied at each fact layer. Time-passing can be recognised as
a helpful action (Hoffmann and Nebel 2001) when its effects
achieve some goal conditions (or intermediate goal facts).
However, if at a time ¢ there are no helpful actions available
to the planner, time-passing is assigned highest priority and
used as a helpful action. This allows the search to quickly
manage states at time ¢ where no happenings of interest are
likely to occur.

This is the key innovation with respect to the standard
search in the discretised timeline performed, e.g., by UP-
Murphi. Indeed, the main drawback of UPMurphi is in that
it needs to expand the states at each time step, even during
the idle periods, i.e., when no interesting interactions or ef-
fects can happen. Conversely, SRPG+ allows DiNo to iden-
tify time-passing as a helpful action during idle periods and
thus advance time, mitigating the state explosions.

An illustrative example is shown in Figure 3, that com-
pares the branching of the search in UPMurphi (Fig. 3a)
and DiNo (Fig. 3b) when planning with a Solar Rover do-
main. The domain is described in detail in Section 5. Here
we highlight that the planner can decide to use two batter-
ies, but the goal can only be achieved thanks to a Timed
Initial Literal ((Edelkamp and Hoffmann 2004)) that is trig-
gered only late in the plan. UPMurphi has no information
about the future TIL, therefore it tries to use the batteries at
each time step. On the contrary, DiNo recognises the time-
passing as a helpful action, and this prunes the state space
dramatically.

Processes and Events The SPRG+ heuristic improves on
the Temporal Relaxed Planning Graph and extends its func-
tionality to reason with information gained from PDDL+
features, namely the processes and events.

As the SRPG+ heuristic is tailored for PDDL+ domains,
it takes into account processes and events. In the SRPG,

the continuous effects of processes are handled in the same
manner as durative action effects, i.e. at each action layer,
the numeric variables upper and lower bounds are updated
based on the time-step functions used in the discretisation to
approximate the continuous dynamics of the domain.

Events are checked immediately after processes and their
effects are relaxed as for the instantaneous actions. The
events can be divided into “good” and “bad” categories.
“Good” events aid in finding the goal whereas “bad” events
either hinder or completely disallow reaching the goal. Cur-
rently, DiNo is agnostic about this distinction. However, as a
direct consequence of the SRPG+ behaviour, DiNo exploits
good events and ignores the bad ones. Future work will
explore the possibility of inferring more information about
good and bad events from the domain.

5.3 Evaluation of DiNo

In this section the performance of DiNo is evaluated on
PDDL+ benchmark domains. Note that the only planner
able to deal with the same class of problems is UPMurphi,
which is also the most interesting competitor as it can high-
light the benefits of the proposed heuristic. For sake of com-
pleteness, where possible, a comparison with other planners
able to handle (sub-class of) PDDL+ features is presented,
namely POPF (Coles et al. 2010; Coles and Coles 2013) and
dReach (Bryce et al. 2015).

For the experimental evaluation, two benchmark domains
were considered: generator and car. We also developed two
further domains for the evaluation to highlight specific as-
pects of DiNo: Solar Rover shows how DiNo handles TILs,
and Powered Descent further tests its non-linear capabilities.

Generator The domain models a diesel-powered generator
which has to be refueled to run for a given duration with-
out overflowing or running dry. We evaluate DiNo on both
the linear and non-linear versions of the problem. The non-
linear generator models fuel flow rate using Torricelli’s Law
which has been previously encoded in PDDL by (Howey
and Long 2003). In both variants, we increase the number
of tanks available to the planner while decreasing the initial
generator fuel level for each subsequent problem.

Solar Rover We developed the Solar Rover domain to test
the limits and potentially overwhelm discretisation-based
planners, as finding a solution to this problem relies on a
TIL that is triggered only late in the plan. The task revolves
around a planetary rover transmitting data which requires a
certain amount of energy. To generate enough energy the
rover can choose to use its batteries or gain energy through
its solar panels. The goal can only be reached through a
sunshine event which is triggered by a TIL at a certain time.
The set of problem instances for this domain has the trigger
fact become true at an increasingly further time point (50 to
1000 time units). In the non-linear variant of the domain,
the TIL triggers a process charging the rover’s battery at an
exponential rate.

Powered Descent We developed a new domain which mod-
els a powered spacecraft landing on a given celestial body.
The vehicle gains velocity due to the force of gravity. The
available action is to fire thrusters to decrease its velocity.

The thrust action duration is flexible and depends on the
available propellant mass. The force of thrust is calculated
via Tsiolkovsky rocket equation (Turner 2008). The goal is
to make a controlled landing from the initial altitude within
a given time-frame. The spacecraft has been modelled after
the Lunar Descent Module used in NASA’s Apollo missions.
Car The Car domain (Fox and Long 2006) shows that DiNo
does not perform well on all types of problems, the heuristic
cannot extract enough information from the domain and as
a result loses out to UPMurphi by approximately one order
of magnitude. This variant of the Car domain has its overall
duration and acceleration limited, and the problems are set
with increasing bounds on the acceleration (corresponding
to the problem number).

Due to lack of heuristic information extracted from the
domain, DiNo reverts to a blind Breadth-First search and, in
the end, explores the same number of states as UPMurphi.
The results for the Car domain in Table 1 show the overhead
generated by the SRPG+ heuristic in DiNo.

Overall, the results show that DiNo holds a significant ad-
vantage in performance over UPMurphi and other competi-
tors in most test domains.

6 Future Research

This section describes the ongoing research and future plans
for my PhD. The focus is on defining and developing new
heuristics as well as promoting the PDDL+ planning in the
Al community.

6.1 Temporal Pattern Database

After developing the Staged relaxed Planning Graph+, we
decided to examine another successful class of heuristics -
Pattern Databases (PDB). The pattern database is a look-up
table indexed by a subset of the state and containing a pre-
computed heuristic value that reflects the cost of solving the
corresponding subproblem. Each state explored during con-
crete search is assigned the abstract cost of its corresponding
abstract state in the PDB, as the heuristic value.

The key element to a high-performing PDB is the ab-
straction selection. In planning, PDBs have been applied
to propositional domains where the abstraction would ob-
scure part of each state’s variable set ((Edelkamp 2002;
Haslum et al. 2007; Edelkamp 2014)). On the other hand,
research in PDBs in model checking has concentrated on
abstracting continuous variables ((Bogomolov et al. 2013)).

We build on research conducted in both fields to de-
velop Temporal Pattern Database (TPDB), a new heuristic
method with novel features enabling tackling complex prob-
lems with non-linear dynamics and full PDDL+ feature set.
Our heuristic simultaneously handles full PDDL+ domains
and prunes a substantial part of the search space. Processes
and events are accounted for by default, their effects are au-
tomatically applied when building the TPDB.

The abstraction we devised is two fold: time abstraction
and state abstraction. Combining the two abstractions man-
ages to keep the TPDB efficient and reasonable in size.

Time abstraction is a function which increases the discre-
tised time step (At) for use in the abstract state space in the

LINEAR GENERATOR NON-LINEAR GENERATOR | LINEAR SOLAR ROVER | NON-LINEAR SOLAR ROVER | POWERED DESCENT CAR
PROBLEM DiNo POPF | dReach | UPMurphi DiNo UPMurphi DiNo UPMurphi DiNo UPMurphi DiNo UPMurphi DiNo UPMurphi
1 0.34 0.01 287 140.50 3.62 X 0.70 203.26 1.10 288.94 0.68 0.18 1.74 0.22
2 0.40 0.01 X X 0.78 X 0.92 X 2.58 X 1.04 0.74 4.56 0.30
3 0.50 0.05 X X 2.86 X 1.26 X 4.74 X 1.88 2.98 8.26 0.42
4 0.60 0.41 X X 59.62 X 1.52 X 7.10 X 352 7.18 10.28 0.54
5 0.74 6.25 X X 1051.84 X 1.80 X 9.58 X 2.88 30.08 14.16 0.66
6 0.88 120.49 X X X X 2.04 X 12.86 X 3.14 126.08 1578 0.68
7 1.00 X X X X X 228 X 16.48 X 5.26 322.16 17.08 0.72
8 1.16 X X X X X 2.64 X 21.38 X 382 879.52 18.90 0.72
9 1.38 X X X X X 2.98 X 26.74 X 1.58 974.60 19.30 0.76
10 2.00 X X X X X 3.30 X 29.90 X 2.26 X 19.50 0.78
11 1.84 X X X N/A N/A 3.50 X 35.96 X 11.24 X N/A N/A
12 2.06 X X X N/A N/A 3.74 X 42.54 X 42.24 X N/A N/A
13 2.32 X X X N/A N/A 4.00 X 48.06 X 14.90 X N/A N/A
14 2.46 X X X N/A N/A 438 X 55.46 X 61.94 X N/A N/A
15 2.88 X X X N/A N/A 5.20 X 62.84 X 19.86 X N/A N/A
16 294 X X X N/A N/A 5.40 X 74.50 X 80.28 X N/A N/A
17 3.42 X X X N/A N/A 5.08 X 86.96 X 2.94 X N/A N/A
18 3.54 X X X N/A N/A 5.64 X 95.66 X 2234.88 X N/A N/A
19 3.76 X X X N/A N/A 6.12 X 102.86 X X X N/A N/A
20 4.26 X X X N/A N/A 6.02 X 117.48 X X X N/A N/A

Table 1: Run time to find a valid solution (in seconds) ("X - planner ran out of memory, "N/A” - problem not tested)

TPDB. This allows the TPDB to store fewer states and keep
its size manageable. However, choosing the correct time ab-
straction has to be a compromise between the size of the
TPDB and the precision. Too coarse abstraction can miss
the adverse events occurring between the abstract state time
points and cause significant back-tracking.

State abstraction is a function which reduces the preci-
sion of states’ continuous variables. This method compen-
sates for the discrepancies between the values of continuous
variables in concrete and abstract states. Due to the varied
discretisation, real variables in abstract states in the TPDB
(generated using the abstracted time step) can differ from
their corresponding variables in concrete states (achieved
using the concrete time step At). Choosing the precision
for the state abstraction is crucial for the Temporal Pattern
Database. On the one hand, choosing a coarser precision for
real variables will shrink the size of the TPDB (each abstract
state will correspond to a larger number of concrete states).
On the other hand, choosing finer precision will make the
heuristic estimates more accurate. When choosing the pre-
cision value, one should aim to balance the two aspects.

The Temporal Pattern Database is a structure which maps
abstract state-action pairs to the length of the shortest trajec-
tory to an abstract goal state. A TPDB is built by executing
the applicable actions under time abstraction to generate the
subsequent abstract states until a the abstract goal state is
found, or the finite temporal horizon T is reached (meaning
the bounded abstract problem is unsolvable and the horizon
should be increased, or the discretisation refined). The ab-
stract distances stored in the TPDB are used in the concrete
search as the heuristic estimate for each considered state.

We are currently in the process of implementing the Tem-
poral Pattern Database into UPMurphi to evaluate our con-
cept. PDBs have proven to be a high performing approach
for both model checking and propositional planning. We be-
lieve that transforming this approach to reason with PDDL+
domains can generate a very efficient and powerful heuristic.

6.2 PDDL+ Benchmarks

Conducting novel research is obviously crucial to a PhD but
helping in identifying and mitigating the shortcomings of
one’s field of study is just as important.

One of the most pertinent inconsistencies in PDDL+ plan-
ning was the use of domains for evaluation. Using inconsis-

tent domains for empirical evaluation makes comparison of
planner performances difficult or impossible. To date, no
standardised set of benchmark domains exists. Despite the
Generator and Car domains being thought of as benchmark
domains, multiple variants of them exist and are being used
by different planning research groups around the world. We
concluded that a set of benchmark PDDL+ domains needs
to be readily available for the community to provide a fair,
unbiased comparison with competing planners, and began
compiling the test suite.

First, we collected the standard hybrid domains used in
planning and model checking literature. Examples of these
include Generator, Car,and Battery Management. To fur-
ther expand the suite, we began developing our own PDDL+
models. The top priority for our research is to diversify the
domains to account for various classes of problems that can
be encoded in PDDL+.

7 Conclusion

Efficient, high-performing heuristics are an integral and
essential part of Automated Planning. With the PDDL+
planning area increasingly gaining research interest, it is
very important to continue developing advanced heuristics
to match the requirements of emerging hybrid domains.
Heuristics need to mitigate vast search spaces but also rea-
son with complex system dynamics to estimate the evolution
of the system to a satisfactory extent. On the other hand, it is
crucial to continue inventing novel PDDL+ domains to fur-
ther test planning tools and set up a benchmark suite to allow
fair comparison between competitor planners.

We have presented the Staged Relaxed Planning Graph+,
a domain-independent heuristic developed entirely for
PDDL+ planning domains implemented in DiNo, the first
heuristic planner capable of handling the full PDDL+ fea-
ture set and non-linear system dynamics. We have shown
that reasoning directly with processes and events can pro-
duce advantages in performance of a planner.

Pattern Database heuristics proved successful in model
checking and classical planning. Our current research on the
Temporal Pattern Database is built upon these approaches
and shows promise for complex PDDL+ domains. The im-
mediate future will be dominated by our efforts to imple-
ment the TPDB heuristic into UPMurphi and empirically
evaluate its performance on PDDL+ domains.

References

Bogomolov, S.; Donzé, A.; Frehse, G.; Grosu, R.; Johnson, T. T.;
Ladan, H.; Podelski, A.; and Wehrle, M. 2013. Abstraction-based
guided search for hybrid systems. In Model Checking Software.
Springer. 117-134.

Bogomolov, S.; Magazzeni, D.; Podelski, A.; and Wehrle, M.
2014. Planning as Model Checking in Hybrid Domains. In AAAL
AAAI Press.

Bogomolov, S.; Magazzeni, D.; Minopoli, S.; and Wehrle, M.
2015. PDDL+ planning with hybrid automata: Foundations of
translating must behavior. In ICAPS, 42-46.

Bryce, D.; Gao, S.; Musliner, D. J.; and Goldman, R. P. 2015.
SMT-Based Nonlinear PDDL+ Planning. In AAAI, 3247-3253.
Cavada, R.; Cimatti, A.; Dorigatti, M.; Griggio, A.; Mariotti, A.;
Micheli, A.; Mover, S.; Roveri, M.; and Tonetta, S. 2014. The
nuXmv symbolic model checker. In CAV, 334-342.

Cimatti, A.; Giunchiglia, E.; Giunchiglia, F.; and Traverso, P. 1997.
Planning via model checking: A decision procedure for ar. In Re-
cent Advances in Al planning. Springer. 130-142.

Cimatti, A.; Griggio, A.; Mover, S.; and Tonetta, S. 2015. Hy-
Comp: An SMT-based model checker for hybrid systems. In
ETAPS, 52-67.

Coles, A., and Coles, A. 2013. PDDL+ Planning with Events and
Linear Processes. PCD 2013 35.

Coles, A.; Fox, M.; Long, D.; and Smith, A. 2008. Planning with
Problems Requiring Temporal Coordination. In AAAL 892-897.

Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2010. Forward-
Chaining Partial-Order Planning. In ICAPS, 42-49.

Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2012. COLIN:
Planning with Continuous Linear Numeric Change. J. Artif. Intell.
Res. 44:1-96.

Della Penna, G.; Magazzeni, D.; Mercorio, F.; and Intrigila, B.
2009. UPMurphi: A Tool for Universal Planning on PDDL+ Prob-
lems. In ICAPS. AAAL

Della Penna, G.; Magazzeni, D.; and Mercorio, F. 2012. A Univer-
sal Planning System for Hybrid Domains. Appl. Intell. 36(4):932—
959.

Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: The language
for the classical part of the 4th international planning competition.
IPC at ICAPS.

Edelkamp, S. 2002. Symbolic pattern databases in heuristic search
planning. In AIPS, 274-283.

Edelkamp, S. 2014. Planning with pattern databases. In Sixth
European Conference on Planning.

Fox, M., and Long, D. 2003. PDDL2.1: An Extension to PDDL
for Expressing Temporal Planning Domains. J. Artif. Intell. Res.
20:61-124.

Fox, M., and Long, D. 2006. Modelling Mixed Discrete-
Continuous Domains for Planning. J. Artif. Intell. Res. 27:235—
297.

Fox, M.; Long, D.; and Magazzeni, D. 2012. Plan-based Policies
for Efficient Multiple Battery Load Management. J. Artif. Intell.
Res. 44:335-382.

Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern database
heuristics for cost-optimal planning. In AAAI, volume 7, 1007-
1012.

Hoffmann, J., and Nebel, B. 2001. The FF Planning System: Fast
Plan Generation Through Heuristic Search. J. Artif. Intell. Res.
14:253-302.

Hoffmann, J. 2002. Extending FF to Numerical State Variables. In
ECAI, 571-575. Citeseer.

Hoffmann, J. 2003. The Metric-FF Planning System: Translat-
ing“Ignoring Delete Lists”to Numeric State Variables. J. Artif. In-
tell. Res. 20:291-341.

Howey, R., and Long, D. 2003. VAL’s progress: The automatic
validation tool for PDDL2. 1 used in the international planning
competition. In IPC at ICAPS.

Howey, R.; Long, D.; and Fox, M. 2004. VAL: Automatic Plan
Validation, Continuous Effects and Mixed Initiative Planning Us-
ing PDDL. In ICTAI 294-301. IEEE.

Karaman, S.; Walter, M. R.; Perez, A.; Frazzoli, E.; and Teller, S. J.
2011. Anytime motion planning using the RRT. In /IEEE-ICRA.

Lahijanian, M.; Kavraki, L. E.; and Vardi, M. Y. 2014. A sampling-
based strategy planner for nondeterministic hybrid systems. In
2014 IEEE International Conference on Robotics and Automation,
ICRA 2014, Hong Kong, China, May 31 - June 7, 2014, 3005—
3012.

Li, H. X., and Williams, B. C. 2008. Generative Planning for
Hybrid Systems Based on Flow Tubes. In ICAPS, 206-213.

Maly, M. R.; Lahijanian, M.; Kavraki, L. E.; Kress-Gazit, H.; and
Vardi, M. Y. 2013. Iterative temporal motion planning for hybrid
systems in partially unknown environments. In HSCC, 353-362.

McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram, A.;
Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL - The Planning
Domain Definition Language.

McDermott, D. V. 2003. Reasoning about Autonomous Processes
in an Estimated-Regression Planner. In ICAPS, 143-152.

Penberthy, J. S., and Weld, D. S. 1994. Temporal Planning with
Continuous Change. In AAAI, 1010-1015.

Plaku, E.; Kavraki, L. E.; and Vardi, M. Y. 2013. Falsification of
LTL safety properties in hybrid systems. STTT 15(4):305-320.

Richter, S., and Westphal, M. 2010. The LAMA Planner: Guiding
Cost-Based Anytime Planning with Landmarks. J. Artif. Intell. Res.
39(1):127-177.

Shin, J.-A., and Davis, E. 2005. Processes and Continuous Change
in a SAT-based Planner. Artif. Intell. 166(1-2):194-253.

Tabuada, P.; Pappas, G. J.; and Lima, P. U. 2002. Composing
abstractions of hybrid systems. In HSCC, 436-450.

Turner, M. J. 2008. Rocket and spacecraft propulsion: principles,
practice and new developments. Springer Science & Business Me-
dia.

Vallati, M.; Magazzeni, D.; Schutter, B. D.; Chrpa, L.; and Mc-
cluskey, T. L. 2016. Efficient Macroscopic Urban Traffic Models
for Reducing Congestion: A PDDL+ Planning Approach. In AAAIL
AAALI Press.

