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Abstract 

In this work we are interested in Automating the 

process of Planning and Scheduling the operations 

of an Earth Observation constellation. To this 

respect, we represent the problem with a directed 

graph and use Ant Colony Optimization technique 

to find the optimal solution. In order to verify the 

quality of the solution, we employ a dynamical 

system. We check the scalability of the software 

system performing simulations. We discuss the next 

steps of this work which involve the coordination of 

multiple spacecraft by means of stigmergy and the 

consideration of more than one objectives that need 

to be optimized. 

Motivation and Scope 

The increasing interest in the design and 

development of space missions consisting of 

multiple coordinated spacecraft cannot be missed, in 

recent years. Ranging from low cost due to less 

system reliability requirements, to giving man the 

ability to perform concurrent scientific observations, 

the advantages of using constellations of spacecraft 

have attracted the complete attention of the Space 

community [T. A. Wagner et al.]. The Earth 

Observation market, in specific, is expected to grow 

at a rate of 16% per year over the next decade [N. 

Muscettola et al.]. The current trend is towards 

constellations consisting of many small satellites, 

with an increasing number of start-up companies 

aiming at launching such constellations of 20 

hundreds or more mini-satellites. [G. Richardson et 

al.][E. Buchen] 

The reduction of the satellites’ size and 

corresponding shrinking of their cost has allowed 

many end users to benefit from data coming from 

satellites. Since we are dealing with the cooperation 

of numerous miniaturized satellites of simple 

capabilities, which altogether form a very complex 

system, the need to automate its management arises. 

Traditional techniques have failed to cope with such 

a level of complexity. Planning and scheduling 

(P&S) the operations of an EO satellite is the process 

of determining the time when the satellite performs 

specific arranged tasks, as the available resources, 

images’ collection goals, weather condition and user 

requirements evolve. More specifically, the P& S 

system is responsible for coordinating a 

constellation’s satellites’ activities in order for the 

total value of the downlinked data to be maximized. 

The Earth observing satellites (EOSs) picture the 

Earth’s surface, in order to satisfy an assigned goal, 

which in our case will be the imaging of the Area of 

Interest (AoI). EOSs can acquire images, while 

moving on their usually low altitude orbits. The 

acquired data will then need to be transmitted to the 

ground station. Until that is possible, the data are 

stored in the limited on-board memory of the 

satellites, limiting the images that can be acquired 

before the downlink.  

There is a wide interest for automating the 

P&S process in the EO field, emanating not only 

from research organizations and universities [C. 

Iacopino et al], but also from commercial operators 

and agencies [S. A. Chien et al.]. The main benefit of 

autonomy in the planning & scheduling field is in 

being able to gain maximum value from the 

spacecraft by maximizing the use of on board 

resources and providing a greater level of 

responsiveness to sudden changes of priority, such 

as when natural disasters strike. Automating the 

P&S process of an Earth Observation mission 

involves optimization and coordination. It is a 

combinatorial optimization problem that takes place 

in an uncertain dynamic environment. The 

development of an automated P & S system also 

follows the needs of the upcoming missions. These 

employ dozens of agile satellites, where a change of 

attitude translates to a tilt of the imager. We consider 

agile EOSs that can be steered up to 45° off-nadir in 

the roll axis.  

An EO mission may have a single goal e.g. 

maximize the imaged area, and many constraints, 

e.g. resource or weather constraints. It could also 

have multiple goals which are conflicting e.g. 

maximize the imaged area, while minimizing the 

resource used, and again numerous constraints. In 

fact, the nature of the problem is such that it includes 

many constraints, when realistic scenarios are 

studied. In most of the studies, a single-objective 

optimization problem with numerous constraints is 

considered. This alone, means that our solution will 

be valid under several assumptions. In order to lift 

those assumptions we try to decrease the number of 

constraints and increase the number of goals. In this 

case, the P&S problem is a multi-objective 

optimization problem. In order for a mission to be 

successful, the trade-off among the several 

objectives needs to be studied and a solution 

depending on the user requirements needs to be 

produced.  



The main challenges that arise when 

developing a software system that is meant to be 

autonomous can be grouped in three main 

categories: Reliability, Scalability and Adaptability. 

When dealing with a continuously changing 

environment like space, a system must be able to 

quickly adapt to new circumstances and adjust its 

output correspondingly, not allowing the changes to 

interfere with the quality of the solution. The case is 

the same, when the users’ preferences or the 

platform’s characteristics change, e.g. increase in 

the dimensions of the Area of Interest for an EO 

satellite, or increase in the number of satellites 

available for a task in a constellation. In order to 

address these challenges we propose a self-

organising architecture for the software system and 

a dynamical system, by which we can analytically 

study the optimization method and guarantee the 

convergence to a solution. Furthermore, the method 

we employ can easily be extended to a study of the 

multi-objective nature of the problem. 

 

Novelty 

This Ph.D. seeks to make contributions in three 

areas: 

 

1. Development of a Self – organizing 

software tool as an Automated Mission 

Planning System. In our novel approach, 

we will employ a multi-agent system to 

manage the coordination among the 

constellation’s spacecraft. 

2. Modelling of a Probabilistic optimization 

technique with a nonlinear dynamical 

system. We formally verify the reliability 

of our algorithm employing a non-linear 

dynamical system to model its behaviour. 

3. Multi objective Optimization techniques 

using Swarm Intelligence methods. Ant 

Colony Optimization technique has not 

been widely employed for multiple 

objectives optimization purposes. 

 

Problem definition 

We consider a large area of polygon shape in the 

surface of the Earth that we are interested in 

imaging, within a specific time window. What is the 

best way to cover the Area of Interest (AoI) with the 

satellites’ swaths?  This is a coverage planning 

problem. Optimally planning the images’ 

acquisitions and assigning them to the satellites of a 

constellation is a combinatorial optimization 

problem. In order to quantify the level of optimality, 

we need to introduce an objective function. 

This problem is of highly dynamic nature. This is 

due to the constant changes regarding the user 

requests, the weather conditions, e.t.c. Hence, the 

challenge is to solve this problem in a way that these 

continuous environment changes do not interfere 

with the quality of the solution. In other words, we 

want a Planning and Scheduling system that is 

adaptable to the changes of the environment, while 

preserving its efficiency.  

Problem Representation 

In our research we assume that the satellites are 

agile. In other words, when passing over an area that 

we desire to image, a satellite has many options to 

choose from, regarding the angle in which the 

imager will tilt to capture an image. We represent the 

problem with a directed graph, which will form the 

common environment the ants will traverse and 

update to find a solution. In the graph: 

 

 Each Node represents an pass over the AoI 

 Each Edge represents a roll angle the 

imager can be tilt. 

 

Figure 1.1. Problem representation using a directed 

graph. 

The nodes are put in a chronological order, as the 

orbit of the satellite dictates. Each node is now 

connected to the next one with an arbitrary number 

of edges, each one representing an option of angle 

the imager will be tilt, and one representing the 

option of not taking a picture in this pass. Hence, 

each path starting from the first node, until the last 

one represents a sequence of choices of angles in 

which the imager should be tilt for each pass or a 

schedule that the satellite follows to complete the 

task of imaging the AoI. In order to quantify the 

differences among the strips available to be imaged, 

quality values (qij) are assigned to the edges, as 

functions of the area that they cover and the 

distortion of the image. Each strip is assumed to 

have a different quality and consume a certain 

amount of memory (mij). We assume to have a 

limited total on-board memory, M, that is only 

renewed when passing over a Ground Station. 

Formulating the problem, we assume the directed 

graph G = (V,E), where  

 

 V = set of Nodes 

 E = {E1,E2,..,EN} and Ei = set of incoming 

edges in Node i. 

 



 
 

Our goal is to find the path that visits all the Nodes 

and maximizes the objective function: 

𝑓 = ∑ 𝑞𝑖𝑗

𝑁

𝑖=1

, 

 𝑗 = {𝑒𝑑𝑔𝑒𝑠 𝑡ℎ𝑎𝑡 𝑏𝑒𝑙𝑜𝑛𝑔 𝑖𝑛 𝑎 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑃𝑎𝑡ℎ} 

Under the memory constraints: 

∑ 𝑚𝑖𝑗 ≤ 𝑀,

𝑁

𝑖=1

   

𝑀 = 𝑡𝑜𝑡𝑎𝑙 𝑜𝑛 𝑏𝑜𝑎𝑟𝑑 𝑚𝑒𝑚𝑜𝑟𝑦 

Ant Colony Optimization  

Ant Colony Optimization (ACO) meta-

heuristic is a probabilistic algorithm used to find the 

solution in Computer Science and Operations fields’ 

problems that can be reduced to finding optimal 

paths in graphs [M. Dorigo et al.] The method is 

summarized below: 

 

When the ants are searching for food, in the 

natural world, they first wander randomly. After 

finding a source of food, they return to their colony 

but lay down pheromone trails in the path that they 

follow. If other ants while also looking for food find 

such a trail, they will probably not continue their 

wandering, but follow the trail instead. In case it 

leads them to food, they will also reinforce it when 

they return to their colony. The pheromone trails, 

however, start to evaporate over time. Hence, the 

longer it takes for an ant to travel back to the colony 

through the path it chose, the more the pheromones 

will evaporate. Hence, with this mechanism the 

amount of pheromone will become higher on the 

shorter paths than the longer ones, since a short path 

will get marched over more frequently. 

 

The pheromone deposition helps the 

colony converge to an optimal solution. On the other 

hand, the pheromone evaporation is a means of 

helping the colony avoid convergence to a locally 

optimal solution. Were there no evaporation rate of 

the pheromone, the following ants would be more 

likely to choose the paths chosen by the first ones. 

This fact shows the importance of exploring for a 

sufficiently long time period and then converge to a 

solution. This way, the technique has higher chances 

of being successful.  

In our case, we model the problem as a 

graph, and search for the path that optimizes a 

specific objective function. Artificial ants will run 

through the graph and find the desired path. Since 

this behaviour is inspired by nature and real ants, the 

artificial ants will they lay pheromone on the edges 

of the graph and they choose their next step with 

respect to a probabilistic function of the previously 

laid pheromone, by ants that have already traversed 

the graph. 

 

𝑃(𝑒𝑖) =  
𝑔(𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒 𝑖𝑛 𝑒𝑖)

𝑔(𝑡𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒)
 

 

where P(ei) is the probability of choosing edge i, (ei), 

and g is a function of the pheromone amount. 

This is an indirect way of communication 

that aims at enhancing the environment (graph) with 

information about the quality of path components. 

This mechanism will lead following ants to the 

shortest path. The amount of pheromone an ant 

deposits depends on the quality of the path, which is 

evaluated by the objective function. This is a way to 

give feedback of the quality of the path an ant 

constructed. 

 

ACO verification using a dynamical 

system 

The ACO behaviour has been modelled 

using Ordinary Differential Equations previously, 

by Gutjahr [W. J. Gutjahr]. He studied the 

convergence speed of a number of problem 

representations using ODE. However, analyses are 

usually directed to specific algorithms, including no 

stability analysis. In our case, we aim at identifying 

the conditions of convergence. In order to apply the 

ACO technique to our problem, we need to 

understand and describe the dynamics of the long-

term behaviours of the ACO algorithm. This 

translates to the study of under which conditions the 

ACO technique has the property of convergence in 

a solution. Hence, we are interested in understanding 

which is the long-term behaviour that characterises 

the system. We can expect numerous possible 

pheromone distributions, but we have a solution to 

our optimization problem when the system 

converges to one path. In this section we will present 

the analytical model, for the basic problem size of 1 

node and M incoming edges. This translates to a 

choice among M roll angles in a single pass. In this 

way, we can easily show the basic structure of the 

system’s dynamics by looking into its phase portrait, 

and thus have a deeper understanding of how the 

system will behave when more nodes are added. The 

Μ−dimensional dynamical system is: 

 
 
 



𝜏1̇ = −𝜌𝜏1 + 𝑘𝛲1 

𝜏2̇ = −𝜌𝜏2 + 𝑘𝛲2 

⋮ 
𝜏�̇� = −𝜌𝜏𝛭 + 𝑘𝛲𝛭 

Where:  

 τi = amount of pheromone in edge i 

 ρ = pheromone evaporation rate 

 k = amount of pheromone deposited 

 Pi = 
𝜏𝑖

𝛼

∑ 𝜏𝑗
𝛼 , probabilistic rule based on 

which an edge will be chosen by an ant 

 

We study the stability of the system using Nonlinear 

Dynamical Systems Theory. First, we calculate the 

number of equilibrium points it has, their analytical 

form and then define the stability of each. The 

results are summarized in the following Table.  

 

 
By the study of this system, we concluded that there 

is a critical parameter that controls the stability of 

the system, which is α. In the table we identify three 

main system’s behaviors and highlight that none of 

them is perfect in terms of optimization. Thanks to 

these insight, a novel algorithm was developed in [C. 

Iacopino] that combines these behaviors to exploit 

their benefits. This algorithm is capable of 

regulating the trade-off of exploration vs 

convergence by oscillating alpha between the two 

areas.  

 

Self – organising software system 

In order to test the algorithm, a self 

contained component of software was designed, 

which wraps the entire system. It is written in Java 

and incorporates a fully open-source discrete-event 

agent-based modelling framework called MASON. 

The system’s parameters and the objective function 

are configurable. The planning problems are passed 

in input as lists of imaging opportunities with their 

quality values and consumed memory while the 

output is a list of solutions containing the set of 

planned tasks. Each entity of the problem is assumed 

to be one agent. They are divided in three main 

categories: Environment agents representing the 

graph, Ant agents representing the computational 

units that update the graph and check the memory 

constraints and a Master agent that checks the 

convergence of the colony and the evaluation of 

each path produced.   

We are considering the case of a single 

spacecraft. The planning problem is represented in a 

graph in each test, and the ant agents find the best 

sequence of actions.   

  

Simulations results 

We test the efficiency and the scalability of the 

system. The metrics to quantify the performance of 

the system in these two fields will be:  

 Quality value. We compare the system’s 

solution to the one given by a deterministic 

algorithm, performing an exhaustive 

search, and compute the error. 

 Convergence Time. We measure the 

number of ants it takes to converge to a 

solution for different graph topologies. 

 Computation Time. We check the change 

of the computation time, when increasing 

the dimensions of the problem. 

We perform two types of tests. First we assume a 

single Node and increase the number of incoming 

Edges. This corresponds to increasing the number of 

roll angle choices in one pass. Next, we fix the 

number of incoming Edges to 3 and increase the 

number of Nodes. This corresponds to having 3 roll 

angles to choose from in each pass, but increasing 

the number of passes. We note that in this type of 

test, each time we add a Node, we triple the search 

space.  

Efficiency tests 

Increasing the Edges 
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The above results show that the system is highly 

efficient to the increase of Edges in the graph. The 

error between the system’s output and the best 

solution is up to 1.75% with respect to the best, when 

having 30 Edges, or 30 roll angle choices.  

 

Increasing the Nodes 

 

When increasing the number of Nodes, the system 

becomes less efficient, with the error being up to 

15.8%. That is due to the fact that each Node 

addition results in a triple search space. 

 

Scalability tests 

Increasing the Edges 

 

 

 

Increasing the Nodes 

 

 

The Scalability tests, for both types of tests are very 

encouraging. The system’s convergence time 

increases either linearly, or logarithmically. Also, 

the computation time is increasing linearly, making 

the system very scalable.  

 

Future work 

SSTL Case Study 

 

The first case study we will consider in this 

research is the Disaster Monitor Constellation 

(DMC3) produced by Surrey Satellite Technology 

Ltd. It is an Earth Observation mission which was 

launched in July 2015 and is currently in 

commissioning phase. The platform consists of 3 

agile Earth Observation satellites at 1 m resolution. 
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They can change their attitude up to 45° off-nadir 

pointing in pitch and roll axes. This platform is the 

first Earth Observation constellation of low cost 

small satellites. It provides daily images for a wide 

range of applications, commercial or of public 

interest including disaster monitoring. This 

constellation offers multispectral imagery, wide 

swath (600km), 32m ground sample distance (GSD) 

and 4m panchromatic (PAN) resolution. Currently 

SSTL are given requests to image certain areas of 

the globe, and their operators manually determine 

how best to achieve this. We aim at using realistic 

data from this mission in order to test the tool that 

we designed. Furthermore, our goal is to integrate 

our method as one of SSTL’s Mission Planning 

Systems. 

 

ESA Case Study 

 

During the current Ph.D. we aim at 

integrating the single and multiple objectives 

methods, in ESA’s missions that employ agile 

constellations. A great Case Study would be the 

European Data Relay System (EDRS). It is a 

planned European constellation of state of the art 

GEO satellites that will relay information and data 

between satellites, spacecraft, UAVs, and ground 

stations. Given the complexity of the system, the 

scheduling of these activities would certainly be 

better performed if more than one objectives were 

able to be modelled and optimized. The trade-off 

among such objectives would definitely give an 

insight on the management of a system with such 

high level of complexity. 

 

Multi Objective Optimization 

 

In the Motivation and Scope section we 

stated the need for employing Multi-Objective 

optimization techniques to design MPS that are 

more adaptable and applied to a wider range of 

missions. We now need to understand the system’s 

characteristics that make one method more efficient 

than another, in order to decide which one we are 

going to include in our research. The visualization of 

the Pareto front seems like a more desirable way to 

solve the problem. It allows for the trade-off 

between each of the objectives to appear. The 

problem representation that we have employed 

allows for many additions to the algorithm. For 

example, having two values of quality per edge, one 

for each of the two objectives we have, can be very 

easily integrated and will result in the Pareto front 

visualization, with the use of just a little more system 

memory. Nevertheless, this is a decision we still 

have to make, comparing all the advantages and 

disadvantages that each method carries. 

 

 

Coordination Mechanism 

When it comes to having multiple spacecraft 

collaborating to achieve a task, without 

communicating with each other, or having an 

external central controller, the coordination needs to 

take place by means of stigmergy. The spacecraft 

will share a common environment, the graph. All the 

possible strips now need to be represented in the 

graph, in order for the ants to find the path that 

optimizes the shared objective function. The 

cooperation needs to take place using the pheromone 

trails in the environment that all the satellites will 

share.  
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