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1 Introduction
My PhD thesis aims at developping new reinforcement

learning algorithms specifically designed to control model-
free stochastic systems. This thesis is supervised by Hugo
Gimbert and Olivier Ly from Bordeaux University, at the
LaBRI. The main targeted application is learning of bipedal
walking for low-cost humanoid robots, the experimental
platform used is Sigmaban (Passault et al. 2015). Modeling
such a task properly involves taking into account the back-
lash of the reduction gears, the bending of the parts as well
as the contact with the ground. Therefore, model-based ap-
proaches are not suited to learn such a task. We chose to
model this task as a Continuous State and Action Markov
Decision Process (CSA-MDP). Since it is hard to predict the
shape of the optimal policy, we use value iteration method
based on the q-value.

It has already been exhibited that RL algorithms could
bring improvements for dynamical tasks requiring a very
high accuracy such as the ball-in-a-cup task (Kober and Pe-
ters 2009) or hitting a baseball (Peters and Schaal 2008).
However most of the reinforcement learning involving
robots are based on policy gradient method. While those
methods are very effective, they present two major draw-
backs: the motor primitive has to be defined by the user and
they require the possibility of computing the gradient of the
reward with respect to the parameters of the motor primitive.
Therefore, applying those methods require a high repeatabil-
ity of the system and they are limited to a family of solutions
specified as a parameter of the algorithm.

Due to the lack of repeatability in low-cost robotics sys-
tems, it is quite common to represent them as CSA-MDP.
This field has known major breakthrough recently, such as
the possibility to find exact solutions when the model is
known and has discrete noise, piecewise linear transitions
and piecewise linear reward (Zamani, Sanner, and Fang
2012), based on the use of symbolic dynamic programming
and extended algebraic decision diagrams (Sanner, Delgado,
and de Barros 2012). Although these theorical results are
outstanding, they cannot be used to control low-cost robots
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because of the requirements on the transition and reward
functions.

Among the previous work on model-free solvers for MDP,
we can note the Least-Square Policy Iteration (LSPI) al-
gorithm (Lagoudakis 2003) which manage to learn hard
tasks on problems with continuous state and discrete ac-
tions. Although this algorithm lead to satisfying results, it
requires expert function approximators adapted to the prob-
lem. On the other hand, Fitted Q-Iteration (FQI) (Ernst,
Geurts, and Wehenkel 2005) grows regression forests from
gathered samples and achieve slightly lower performance
than LSPI without requiring custom function approxima-
tors. While both methods were initially designed for dis-
crete action choices, Binary Action Search (BAS) (Pazis and
Lagoudakis 2009) allows to use them on CSA-MDP.

In order to apply algorithms such as LSPI or FQI to high-
dimensional control problems, it is mandatory to use ef-
ficient exploration algorithm in order to reduce the num-
ber of samples required to learn a near-optimal policy. Op-
timistic algorithms such as Multi-Resolution Exploration
(MRE) (Nouri and Littman 2009) allows to improve the pro-
cess of collecting samples, while providing guarantees to
converge to a nearly-optimal solution.

2 Tools and Methods
As mentioned previously, there is a gap between model-

free CSA-MDP methods and robotic applications. Complex
tasks such as bipedal walking involves high-dimensional
spaces for state and actions. Therefore, it is hard to pre-
dict the time required to converge to a near-optimal strat-
egy. Moreover, running experiments directly on robots re-
quire human supervision and the manufacturing process is
costly and time consuming. In order to run realistic simula-
tions and to make our source code more easy to use, we de-
cided to use ROS1 and Gazebo2. Once learning algorithms
lead to satisfying results in simulation, it will be possible to
test them directly on the robots.

1http://www.ros.org
2http://www.gazebosim.org



We base our learning of the q-value on the FQI algo-
rithm (Ernst, Geurts, and Wehenkel 2005), which uses re-
gression forests. While our current implementation of re-
gression forest is based on Extra-Trees (Geurts, Ernst, and
Wehenkel 2006), we also plan to test and develop other al-
gorithms growing regression forests.

We compute an approximation of the greedy policy cor-
responding to the q-value calculated by FQI algorithm us-
ing regression forest. This process provides two advantages:
firstly, it allows to retrieve actions at a very low computa-
tional cost, secondly, by smoothing the discretization noise
on the q-value, it also improve the performance of the con-
troler. Real-time constraint is particularly important to en-
sure that closed-loop control is available.

Currently, exploration is ensured by an algorithm based
on MRE (Nouri and Littman 2009). This algorithm is based
on the optimistic approach which considers the the couple
state-actions which are unknown lead to a maximal reward.
It allows to build a knowledge function based on kd-trees,
this function provides a result in [0, 1], which is mainly
based on the ratio between the density inside the leaf and
inside the whole tree. Using this information, collected sam-
ples are modified in order to increase the reward if they use
an unknown transition or lead to an unknown state. In or-
der to obtain a smoother value function, we use a forest of
kd-trees.

While MRE update the policy at a fixed interval of step
(chosen by the user), this method leads to an increasing time
of update, even if the time required to compute the policy
grows linearly with respect to the number of samples, the
time required to collect n samples grow quadratically with
respect to n. On the other hand, if we wait too many steps
before updating the policy, there is a high risk of getting
stucked in attracting trajectories. In this case, the collected
samples will be redundant and will not improve quickly the
knowledge of the MDP. Moreover, on real robots, all the up-
dates to the policy have to be quick enough to ensure that the
control frequency can be maintained. In other words, there
are no ways to freeze the system in its state. In order to face
this issue we plan to develop an algorithm allowing to in-
sert dynamically new samples without needing to restart the
learning process from scratch. Another option allowing to
increase the space between two consecutive update of the
policy would be to detect attracting trajectories.

Another issue relative to solving CSA-MDP is long-term
reward. This problem is particularly strong for FQI, since
each iteration on the value update involves an approxima-
tion. While some problems such as stabilizing an inverted
pendulum are harder when the control frequency is lower, a
very high frequency can make intractable problems such as
inverted pendulum swing-up since it would require to com-
pute the q-value at a very high horizon. We plan to test the
effect of including the time during which an action should
be applied as one of the dimension of the action.
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