
Mixed Discrete-Continuous Planning with Complex Behaviors

Enrique Fernandez-Gonzalez
Massachusetts Institute of Technology

Computer Science and Artificial Intelligence Laboratory
32 Vassar Street, Building 32-224, Cambridge, MA 02139

efernan@mit.edu

Abstract

Over the last few years, we have witnessed a tremen-
dous increase in the capabilities of robots. However,
robots are still largely teleoperated by humans or con-
trolled by scripts written by experts in advance, in a
time-consuming and costly manner. Many practical ap-
plications require more autonomous robots, but the cur-
rent state of the art in planning is not well suited for this
task.
This thesis aims to fulfill this need by developing a
mixed discrete-continuous temporal planner, Scotty, ca-
pable of reasoning with complex robot behaviors and
accepting high level temporally extended mission goals.
Scotty leverages the proven performance of heuristic
forward search for symbolic planning with the versa-
tility of trajectory optimization for resolving complex
non-linear robot behaviors.

Introduction
Our generation is witnessing a revolution in robotics. Over
the last decade we have seen tremendous improvements in
robot hardware, perception and control. Robots have tran-
sitioned from being, in general, expensive repetitive ma-
chines in automotive factories or relatively simple experi-
ments with limited capabilities in research labs, to sophis-
ticated machines able to walk, run, jump, fly or even drive
autonomously on highways.

All these recent achievements are due to advances in hard-
ware, perception, control, and the availability of small fac-
tor high performance computing power. However, as im-
pressive as these robots are, most of them are either com-
pletely scripted in advance, or teleoperated by humans. This
is works well for some applications. However, these ap-
proaches for operating robots will not be sufficient for many
important robotic applications, such as robotic exploration
of the Solar System. We need robots able to operate in re-
mote hostile environments in which the availability of di-
rect fast communication with human operators cannot be as-
sumed. Such missions will require a more advanced level of
autonomy than what we currently have.

To this day, we are largely not doing any automated plan-
ning with robots, as the current state of the art does not ful-
fill this need. The activity planning community has made
impressive advances in symbolic planning, especially since

the introduction of heuristic forward search. However, most
activity planners, only reason with discrete conditions and
effects. Some have been extended to consider limited forms
of continuous linear time-evolving effects (Coles et al. 2012;
2010), but still focus mainly on logistic or planning competi-
tion problems and are unable to handle the more complicated
non-linear effects required to model robot dynamics.

On the other hand, the AI community has expressed an
increasing interest in the joint problem of activity and mo-
tion planning. Many interesting approaches have emerged
over the last few years (Srivastava et al. 2014; Cambon,
Alami, and Gravot 2009; Garrett, Lozano-Pérez, and Kael-
bling 2014). However, most of these approaches focus on
the manipulation problem, which is hard and interesting but
requires specific assumptions, and often neglect dynamics,
as they are not needed to model common manipulation sce-
narios.

Finally, we have lately seen great advances in the con-
trol of complex underactuated robots, in part thanks to the
success of trajectory optimization. There are many exam-
ples of successful robot behaviors being implemented us-
ing this approach that were impractical to solve in a reason-
able amount of time just a few years ago (Fallon et al. 2015;
Dai, Valenzuela, and Tedrake 2014). To our knowledge there
are no planners able to reason with these complex behaviors.

This thesis aims to address this need by developing a
mixed discrete-continuous temporal planner, Scotty, able
to plan with complex robot behaviors. The Scotty plan-
ner leverages the proven performance of heuristic forward
search for symbolic planning and the recent advances in tra-
jectory optimization to reason with complex robot behaviors
requiring non-linear dynamics.

Problem Description
Scotty is a hybrid temporal planner and, as such, its prob-
lem description inherits the main elements from the activ-
ity planning literature. Scotty’s problem statement is simi-
lar to PDDL2.1(Fox and Long 2011) in that the state of the
system is given by true/false propositions and values to nu-
meric state variables, and that activities have preconditions
(at start, over all, at end) and effects (discrete at start and
at end and also continuous). Scotty’s problem statement dif-
fers from PDDL2.1 in that it allows more expressive goal
specifications and more complex activities with non-linear

dynamics and conditions that we call behaviors.
Scotty takes as inputs an initial state, a planning domain

and time-evolved goal representation and produces a plan.
The input to Scotty is a tuple 〈I, A,G〉 where

• I is the initial state of the system at t = 0. The state of the
system at time t, X(t) is given by:

– The set of propositions that hold at time t
– An assignment to all the continuous state variables of

the system, xi(t)

the initial state of the system is then X(0)

• D is the planning domain that defines the allowed activi-
ties and behaviors

• G is the temporally-extended goal specification

The output of Scotty is a temporal plan satisfying the goal
specification.

Temporally-extended goals
The goal specification in the classic temporal planning prob-
lem simply consists of the set of proposition that need to
hold at the end of the plan. This definition is static: it does
not matter what happens between the start and the end of the
plan as long as the objectives are satisfied at the end. How-
ever, in most real world problems objectives evolve over
time and there may be temporal restrictions between them.

We will use Qualitative State Plans (QSPs)(Li and
Williams 2011; Léauté and Williams 2005; Hofmann and
Williams 2006) to represent these temporally-extended
goals. QSPs use episodes and temporal constraints to spec-
ify the users’ objectives and requirements on states, re-
sources and time. Formally, a QSP is represented as a 3-tuple
< E,EP, TC >, where

• E is a set of events. Each event e ∈ E can be assigned a
non-negative real value which denotes a point in time.

• EP is a set of episodes. Each episode specifies an al-
lowed state trajectory between a starting and an ending
event. They are used to represent the state constraints. An
episode, ep, is a tuple < eS , eE , l, u, sc > where:

– eS and eE in ep are the start and end events of the state
trajectory.

– l and u are the lower and upper bounds on the temporal
duration of the episode.

– sc is a state constraint that must hold true over the dura-
tion of the episode. The state constraint sc can be either
a discrete predicate, or a condition over the state vari-
ables.

• TC is set of simple temporal constraints. It represents
the temporal requirement between events in E, and can
be viewed as a special type of episode without state con-
straint. A simple temporal constraint(Dechter, Meiri, and
Pearl 1991) is a tuple < eS , eE , lb, ub > where:

– eS and eE in E are the start and end events of the tem-
poral constraint.

– lb and ub represent the lower and upper bounds of
the duration between events eS and eE , where lb ≤
Time(eE) − Time(eS) ≤ ub, (lb ∈ R ∪ −∞, ub ∈
R ∪+∞).

Activities and composable behaviors
The domain of the planning problem is given by the durative
activities and the behaviors.

Durative activities are similar to the ones defined in the
temporal planning literature and have a bounded control-
lable duration, and a set of discrete effects and conditions
defined at start, over all and at end. The conditions can also
be continuous.

In Scotty we define a new type of activities that we call
behaviors. These behaviors preserve the main elements of
the durative activities but differ from these in that they also
encode continuous non-linear effects that can represent, for
example, the dynamics of a robot moving in an environment.
We will consider that durative activities are a special case of
behaviors with no continuous effects.

Consider for example a behavior collect-water-column-
data of an autonomous underwater vehicle. This behavior
represents the AUV taking measurements in a water col-
umn, and has the discrete effect at end of having collected
the data (data-collected). This behavior also has the discrete
over all conditions that the engine needs to be on and the
sensors activated while the behavior is being executed. It
also has continuous over all conditions that specify that the
AUV needs to stay within some coordinates while taking the
measurements (x, y ∈ Region). Finally, the depth before
collecting the data needs to be within 100 and 120 meters
(100 ≤ z ≤ 120), and the depth at the end has to be smaller
than 40 meters (z ≤ 40). These represent the continuous
conditions at start and at end.

Moreover, the AUV needs to move in an ascending spiral
of fixed radius while collecting the data. This is represented
by the non-linear dynamics of the behavior:

ẋ(t) = v · cos(θ) (1)
ẏ(t) = v · sin(θ) (2)
ż(t) = vz(t) (3)

θ̇(t) = ω (4)
v

ω
= R (5)

The dynamics of this behavior affect state variables x, y,
z and θ and their velocities. These dynamics are driven by
control variables vx, v and ω which are assumed to be con-
trollable within some bounds (actuation limits) during ex-
ecution. Additionally, there may be other state constraints
affecting the execution of this behavior. These constraints
can be user-specified as part of the input QSP (‘ensure the
battery level is always greater than 25%’ or ‘stay within the
high reception region’ for example), or imposed by other ac-
tivities or behaviors being executed at the same time.

An important property of behaviors is that they are com-
posable. That is, behaviors can be pieced together sequen-
tially one after another. Behaviors have inlet and outlet con-

nectors. In this example both the inlet and outlet of the
behavior are of type pose. That is, behavior collect-water-
column-data takes a starting pose and transforms it into a
different pose at the end of its execution. Behaviors with
compatible connectors can be connected together. For exam-
ple, in order to start the collect-water-column-data behavior,
the AUV first needs to reach the water column region at a
certain depth. A prior behavior navigate, also with pose con-
nectors, could be the one taking the AUV from it’s starting
pose to a valid starting pose for collect-water-column-data.
In the same way, collect-water-column-data could be fol-
lowed by an additional navigate behavior that could take the
AUV to its final rendezvous region. A third behavior surface
could have a position inlet requiring the AUV to be in the
rendezvous region before ascending to the surface. Because
the position connector (x, y, z) is less specific than the pose
connector (position and orientation), the navigate behavior
can connect to the surface behavior. Scotty ensures that the
connector constraints are satisfied in the solution plan. While
multiple durative activities can be executed simultaneously,
we only allow simultaneous execution of behaviors that do
not affect the same state variables.

Solution
Scotty returns a plan satisfying the temporally-extended
goals and conditions described in the input QSP. The so-
lution plan consists of a list of scheduled behaviors where
each behavior b has an execution start time tb, duration db,
and a trajectory of the value of each of its control variables
from tb to tb + db. The returned plan also needs to satisfy
all the behavior discrete and continuous conditions as well
as the connection constraints between behaviors.

Work so far
In the initial stage of this thesis we first approached the
problem of combining heuristic forward search symbolic
planning with trajectory optimization by solving a simpli-
fied problem. Instead of considering arbitrary dynamics, in
this stage continuous effects are assumed to be linear time
varying. While we allow full discrete activity planning, we
restrict the continuous effects to the ones described before,
and we assume the environment is obstacle free. Therefore
we do not use the robot behaviors defined earlier yet, but
durative activities with some modifications.

We solve this problem by combining heuristic forward
search and trajectory optimization through solving linear
programs that are used to resolve the continuous effects and
to test the consistency of partial plans.

This stage was completed in Spring 2015 and resulted in
an IJCAI-15 publication (Fernandez, Karpas, and Williams
2015).

Simplified Problem Statement
The simplified problem statement is framed as a standard
PDDL 2.1(Fox and Long 2011) planning problem with some
modifications that allow us to define activities with continu-
ous effects that depend on bounded control variables. These
bounded control variables represent, in general, velocities

(:durative-action navigate
:control-variables ((velX) (velY))
:duration (and (<= ?duration 5000))
:condition (and

(over all (>= (velX) -4)) (over all (<= (velX) 4))
(over all (>= (velY) -4)) (over all (<= (velY) 4))
(over all (<= (x) 700)) (over all (>= (x) 0))
(over all (<= (y) 700)) (over all (>= (y) 0))
(at start (AUV-ready)))

:effect (and
(at start (not (AUV-ready)))
(at end (AUV-ready))
(increase (x) (* 1.0 (velX) #t))
(increase (y) (* 1.0 (velY) #t))))

Figure 1: Navigate activity modified by continuous control
variables velX and velY.

that are bounded (the actuation limits of the system). Simi-
larly to PDDL 2.1, durative activities have a bounded con-
trollable duration, discrete effects and continuous and dis-
crete conditions defined at start, over all and at end. Con-
tinuous conditions are limited to linear inequalities over the
state variables according to:

cTx′ ≤ 0 (6)

, where x′ = (x1, . . . , xnx
, 1)T and c ∈ Rnx+1 is a vector

of coefficients, with nx being the number of state variables
of the system.

The simplified problem statement differs from PDDL 2.1
in the effects on continuous variables. Each activity has a
set of control variables, which can be seen as continuous
parameters — each of those constrained by lower and up-
per bounds. The continuous effects of the activity are sim-
ilar to those of PDDL 2.1, except they are affected by the
value chosen for the control variables. Here we restrict each
continuous effect to involve only a single control variable,
cvar, and thus each continuous effect can be defined by
〈x, cvar, k〉, where x is a state variable, cvar is a control vari-
able, and k is a constant.

In the simple case, where a single continuous effect
〈x, cvar, k〉 is active from time tstart to time tend with cvar
fixed to a constant value of c throughout the duration, then
x(t), the value of state variable x at time t is defined by
x(t) = x(tstart) + k · c · (t− tstart) with tstart ≤ t ≤ tend.

Multiple continuous effects on the same state variable are
additive, and thus x(t) is defined by:

x(t) = x(0) +

∫ t

0

Cx(τ)dτ (7)

where Cx(t) is the sum of the values of the control variables
in active continuous effects modifying x at time t (repre-
sented by the set E).

Cx(t) =
∑

〈x,cvar,k〉∈E

k · cvar(t) (8)

where cvar(t) denotes the value chosen for the control vari-
able cvar at time t. An example navigate activity for a robot
is shown in Figure 1. Note the bounded control variables
velX and velY.

In this stage the goal simply consists of the discrete
and continuous conditions that need to hold at the end.
Temporally-extended goals are not supported yet.

t

x(t)

tstart tend
tstart + dl tstart + du

x(tstart)

xe

t1

min(k cl, k cu)

max(k cl, k cu)

Figure 2: Flow tube with its reachable region (shaded area).
The solid blue line represents an example valid state trajec-
tory. The flow tube contains all valid state trajectories.

Approach
In order to solve this planning problem, we merge the power-
ful representation of continuous effects based on flow tubes
from Kongming (Li and Williams 2008; Li 2010) with the
efficient solving method based on heuristic forward search
and linear programs for consistency checking that COLIN
(Coles et al. 2009) uses.

Each continuous effect of an activity is represented by a
flow tube. Flow tubes represent the reachable state space re-
gion, that is, the values that the state variable can take after
the activity is started. Remember that here we restrict con-
tinuous effects to linear time varying effects.

If no other flow tubes affect state variable x between tstart
and tend, then the reachable region of x represented by the
flow tube f(dl, du, cvar, x, k) of an activity executed be-
tween tstart and tend is defined by the following equations:

x(tend) = x(tstart) + k ·
∫ tend

tstart

cvar(t) · dt (9)

with cl ≤ cvar(t) ≤ cu (10)
dl ≤ tend − tstart ≤ du (11)

where x(tstart) is the value of the state variable before
the activity is executed. Note that, if the value of the control
variable cvar is constant during the execution of the activity,
equation 9 reduces to x(tend) = x(tstart)+k ·cvar · (tend−
tstart).

Figure 2 shows a flow tube. Note that any point in the
shaded region (reachable region) can be reached at the end
of the activity by carefully choosing the appropriate activity
duration and control variable value. In the figure, we can see
how the state value xe can be reached as fast as in tend = t1
if the control variable cvar is constant and takes its maxi-
mum possible value (cu), or as late as tend = tstart + du if
cvar(t) takes smaller values.

An important characteristic of flow tubes, is that they pro-
vide a compact encoding of all feasible trajectories. In order
to find a feasible plan, we connect flow tubes forward using
heuristic forward search, as explained next.

We use a method based on heuristic forward search and
linear programs for consistency checking that is borrowed
from COLIN. The main difference is that in our formulation,
continuous effects support control variables and are repre-
sented by flow tubes and, therefore, the state evolution con-
straints are different from COLIN’s.

Activities are represented by their start and end events,
analogous to the start and end snap actions used by many
temporal planners (Long and Fox 2003; Coles et al. 2008).
The planner needs to find the ordered sequence of start and
end events that takes the system from the initial conditions
to the goal and the execution time of each event. We also
need to find a trajectory for the values of each activity con-
trol variable between the start and end events of the activity
(cvar(t) with tstart ≤ t ≤ tend).

As explained before, we use heuristic forward search to
find the sequence of start and end events that form a fixed
plan, and linear programs to check the consistency of partial
plans. The search uses Enforced Hill Climbing, which has
proven to be effective in this type of problems (Hoffmann
and Nebel 2001).

Search states contain the set of propositions that are
known to be true due to discrete effects, and are augmented
with the ongoing activities list and the bounds for all state
variables. The ongoing activities list keeps track of the ac-
tivities that have started but not finished at that state and is
needed to keep track of the active overall discrete and con-
tinuous constraints. The lower and upper bounds for the state
variables are used to prune sections of the search tree that are
necessarily not feasible.

Each search state defines a partial plan as the current se-
quence of start and end events, and is tested for consistency
with a linear program. The partial plan is feasible if the lin-
ear program has a solution. In this linear program the de-
cision variables are the event execution times and the val-
ues of the state variables at each event. The constraints in-
clude activity duration, start, end and overall conditions and
state evolution constraints that are built from the current se-
quence of events. These constraints are the same ones that
COLIN uses (Coles et al. 2012) except for the state evolu-
tion constraint, however, due to the presence of control vari-
ables. This constraint is given by the flow tube reachability
equation 9. Because the values of the control variables can
change during the activity execution, and the start and end
times of the activity are variables of the linear program, this
equation is not linear if control variables are decision vari-
ables of the linear program. However, we can redefine the
reachability region of the flow tube with the following linear
inequalities:

xend ≥ xstart +min(k · cl, k · cu) · (tend − tstart) (12)
xend ≤ xstart +max(k · cl, k · cu) · (tend − tstart) (13)

, where cl and cu are the bounds of the control variable.
Note that min(k · cl, k · cu) represents the minimum rate
of change of k · cvar and reduces to k · cl when k > 0. The
more complicated expression is needed to preserve gener-
ality when k < 0. The same applies to the maximum rate
of change. These linear inequalities represent the same flow
tube reachability region described by equation (9) if each of
the activity’s control variables appear in only one continuous
effect.

The consistency program is solved for each state in the
search tree to determine the feasibility of the partial plan,
and to extract the event times (t1 . . . t6), state variable values

(x1 . . .x6), and control variables. These values keep chang-
ing as more steps are added to the plan during search. In
order to find the state variable lower and upper bounds, the
LP is solved twice per state variable (to minimize and max-
imize its value).

If the current search state is determined to be consistent,
its heuristic value is computed and the state is added to the
queue. If the state satisfies the goal conditions, a valid fixed
plan has been found and Scotty proceeds to extract the flex-
ible plan next. The last linear program used to extract the
fixed plan tries to minimize the makespan of the plan, al-
though a different optimization objective could be chosen.

The heuristic function used by Scotty is essentially the
same used by COLIN, with minor modifications due to the
use of control variables. The heuristic value for a state is the
number of start or end events to reach the goal in the re-
laxed plan. The planning graph that COLIN expands keeps
track of the state variables lower and upper bounds for each
fact layer, with the caveat that activities can only grow these
bounds, in a similar fashion to Metric-FF (Hoffmann 2003).
COLIN calculates the positive gradient affecting each state
variable by adding the positive rates of change of each ongo-
ing activity (similarly with the negative gradient). In Scotty’s
case, these positive and negative gradients are found by
adding the maximum (and minimum) rates of change given
by the bounds of the control variables affecting each activity.

Future research
Currently, I am working on moving from the limited linear
action model to a more general non-linear model that sup-
ports more interesting robot behaviors.

In particular, I am working towards supporting the follow-
ing:

1. Advanced robot behaviors with non-linear dynamics

2. Temporally-extended goals and user-specified global con-
straints

3. Search heuristics through behavior approximations

Now instead of planning with durative activities, we plan
with behaviors. Behaviors still support the standard discrete
conditions and effects, but are extended to allow non-linear
dynamics and more expressive user-specified constraints.
Also, as described in the problem statement, behaviors are
composable elements that can be connected sequentially and
transform inlets to outlets. Behaviors that produce an out-
let of a certain kind can connect to a behavior accepting the
same kind of inlet.

As an example, imagine that the dynamics of a navigate
behavior are given by the following Dubin’s equations:

ẋ(t) = v · cos(θ) (14)
ẏ(t) = v · sin(θ) (15)

θ̇(t) = u(t) (16)

|u(t)| ≤ 1

ρ
(17)

, where v is the velocity, that can be fixed or not, and ρ is the
minimum turning radius.

Note that now we not only deal with much more com-
plex dynamics than before but we also need to handle switch
points: the connection states between subsequent behaviors.
These were trivial to handle in simplified case with the linear
program formulation, as they corresponded directly with the
decision variables of the LP (the state variables at the switch
points). However, this is harder to handle in this case. The
way we deal with this is by using the connector (inlets and
outlets) specification of behaviors. In effect, the navigate ac-
tivity has a pose (〈x, y, θ〉) inlet and a pose outlet, meaning
that it takes the robot from a starting pose to an ending pose.
When connecting the navigate behavior with a collect-data
behavior with analogous specification, the ending pose after
navigate becomes the start pose for collect-data. Another
deliver behavior may have an inlet of type position (〈x, y〉),
a subset of the pose type. Because the outlet of behavior nav-
igate is a pose which is more specific than a position inlet,
both behaviors can connect (navigate finishes at some posi-
tion and orientation, but deliver only enforces the position to
be inside the delivery region). We handle these relations by
framing a joint trajectory optimization program combining
sequential behaviors in which the connection constraints be-
tween them are added explicitly. Although one may think
that framing large optimization programs like this is not
practical, some combined task and motion planners have fol-
lowed this approach with good results (Toussaint 2015). As
Toussaint notes in his paper, this approach has the great ad-
vantage that it does not require discretizing the continuous
states in advance, and that it lets efficient solvers choose the
best switch poses, which would otherwise require very fine
discretization or many randomly sampled poses with many
combinatorial possibilities if done outside the trajectory op-
timization paradigm.

We now also consider global temporally extended goals
and user-specified constraints. This may be things such as
completing one of the objectives of a mission within a given
time or ensuring that the robot never leaves a certain safe re-
gion. This is represented by a Qualitative State Plan (QSP).
The nodes of the graph represent events, and the black
arcs in between them, episodes. Episodes denote conditions
that need to be satisfied between events. The temporal rela-
tions between events are specified with simple temporal con-
straints. These specifications will be modeled as additional
constraints in the global trajectory optimization program and
will affect the selection of the switch points.

Finally, recall that the heuristic that we used for the sim-
plified problem was based on the relaxed planning graph.
Unfortunately, this approach cannot be easily adapted to
complicated non-linear behaviors. In effect, computing the
bounds of the state variables after executing some non-linear
behavior is not only computationally expensive, but also, it
cannot be determined in general if any arbitrary value inside
those bounds can be reached (this was the case in the linear
effects case).

In this thesis we will try to optimize the forward search
by pruning options that cannot be feasible in order to avoid
wasting time on them. We will do so by using approxima-

x, y, θ

goal

Figure 3: An outer approximation for the Dubin’s smooth
path given by an infinite curvature (straight-line) path

tions to the non-linear behaviors that are faster to compute.
We want to use outer approximations that guarantee that if
no solution can be found using the approximation, no so-
lution exists for the more detailed model either. However,
some returned solutions using the approximated model may
not be feasible when checked with the more detailed model.

Figure 3 shows an example of an approximation for the
Dubin’s dynamics model that the navigate activity follows.
The smooth path resulting from Dubin’s equations (shown in
blue) can be approximated by a piece-wise straight-line path
(in red). The linear approximation is faster to compute and
it can be shown that if no linear path exists from the start-
ing conditions to the goal conditions, no Dubin’s path exists
either. On the other hand, there could exist an obstacle-free
linear path between the start and the goal poses but no Du-
bin’s equivalent path (curvature constraints may be violated,
for example). We can use this approximation to calculate
lower and upper bounds on duration (using minimum and
maximum velocities) and to prune search states leading to
infeasible outcomes.

References
Cambon, S.; Alami, R.; and Gravot, F. 2009. A Hybrid Approach
to Intricate Motion, Manipulation and Task Planning. The Interna-
tional Journal of Robotics Research 28(1):104–126.
Coles, A.; Fox, M.; Long, D.; and Smith, A. 2008. Planning with
Problems Requiring Temporal Coordination. In Proceedings of
the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI
2008, Chicago, Illinois, USA, July 13-17, 2008, 892–897.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2009. Temporal
Planning in Domains with Linear Processes. In IJCAI 2009, Pro-
ceedings of the 21st International Joint Conference on Artificial
Intelligence, Pasadena, California, USA, July 11-17, 2009, 1671–
1676.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2010. Forward-
Chaining Partial-Order Planning. In Proceedings of the 20th In-
ternational Conference on Automated Planning and Scheduling,
ICAPS 2010, Toronto, Ontario, Canada, May 12-16, 2010, 42–49.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2012. COLIN: Plan-
ning with continuous linear numeric change. Journal of Artificial
Intelligence Research (JAIR) 44:1–96.
Dai, H.; Valenzuela, A.; and Tedrake, R. 2014. Whole-body mo-
tion planning with centroidal dynamics and full kinematics. In Hu-

manoid Robots (Humanoids), 2014 14th IEEE-RAS International
Conference on, 295–302. IEEE.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal constraint
networks. Artificial Intelligence.
Fallon, M.; Kuindersma, S.; Karumanchi, S.; and Tedrake, R.
2015. An Architecture for Online Affordance-based Perception
and Whole-body Planning. Journal of Field
Fernandez, E.; Karpas, E.; and Williams, B. C. 2015. Mixed
Discrete-Continuous Heuristic Generative Planning Based on Flow
Tubes. In Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-31, 2015, 1565–1572.
Fox, M., and Long, D. 2011. PDDL2.1: An Extension to PDDL for
Expressing Temporal Planning Domains. CoRR abs/1106.4561.
Garrett, C. R.; Lozano-Pérez, T.; and Kaelbling, L. P. 2014.
FFRob: An efficient heuristic for task and motion planning.
lis.csail.mit.edu.
Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. Journal of Artificial In-
telligence Research 253–302.
Hoffmann, J. 2003. The Metric-FF Planning System: Translating
”Ignoring Delete Lists” to Numeric State Variables. J Artif Intell
Res(JAIR) 20:291–341.
Hofmann, A., and Williams, B. C. 2006. Robust Execution of
Temporally Flexible Plans for Bipedal Walking Devices. In Pro-
ceedings of the Sixteenth International Conference on Automated
Planning and Scheduling, ICAPS 2006, Cumbria, UK, June 6-10,
2006, 386–389.
Léauté, T., and Williams, B. C. 2005. Coordinating Agile Sys-
tems through the Model-based Execution of Temporal Plans. In
Proceedings, The Twentieth National Conference on Artificial In-
telligence and the Seventeenth Innovative Applications of Artificial
Intelligence Conference, July 9-13, 2005, Pittsburgh, Pennsylva-
nia, USA, 114–120.
Li, H. X., and Williams, B. C. 2008. Generative Planning
for Hybrid Systems Based on Flow Tubes. In Proceedings of
the Eighteenth International Conference on Automated Planning
and Scheduling, ICAPS 2008, Sydney, Australia, September 14-18,
2008, 206–213.
Li, H., and Williams, B. C. 2011. Hybrid Planning with Tempo-
rally Extended Goals for Sustainable Ocean Observing. In Pro-
ceedings of the Twenty-Fifth AAAI Conference on Artificial Intelli-
gence, AAAI 2011, San Francisco, California, USA, August 7-11,
2011.
Li, H. X. 2010. Kongming: a generative planner for hybrid systems
with temporally extended goals. Ph.D. Dissertation, Massachusetts
Institute of Technology.
Long, D., and Fox, M. 2003. Exploiting a Graphplan Framework in
Temporal Planning. In Proceedings of the Thirteenth International
Conference on Automated Planning and Scheduling (ICAPS 2003),
June 9-13, 2003, Trento, Italy, 52–61.
Srivastava, S.; Fang, E.; Riano, L.; and Chitnis, R. 2014. Com-
bined task and motion planning through an extensible planner-
independent interface layer. . . . (ICRA).
Toussaint, M. 2015. Logic-Geometric Programming: An
Optimization-Based Approach to Combined Task and Motion
Planning. In Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-31, 2015, 1930–1936.

