
A Distributed Online Multi-Agent Planning System
(Dissertation Abstract)

Rafael C. Cardoso
{rafael.caue@acad.pucrs.br}

Supervisor: Rafael H. Bordini
FACIN-PUCRS

Porto Alegre - RS, Brazil

Abstract

The gap between planning and execution is still an open
problem that, despite several tries from members of
both automated planning and autonomous agents com-
munities, remains without a proper general-purpose so-
lution. We aim to tackle this problem by using a frame-
work for the development of multi-agent systems in
both the decentralised multi-agent planning stages, and
the execution stages, providing a multi-agent system
with capabilities to solve online multi-agent planning
problems.

1 Introduction
Multi-Agent Systems (MAS) are often situated in dynamic
environments where new plans of actions need to be con-
stantly devised in order to successfully achieve the sys-
tem goals. Therefore, employing planning techniques during
run-time of a MAS can be used to improve agent’s plans us-
ing knowledge that was not previously available, or even to
create new plans to achieve some goal for which there was
no known course of action at design time.

Research on automated planning has been largely focused
on single-agent planning over the years. Although it is pos-
sible to adapt centralised single-agent techniques to work in
a decentralised way, such as in (Crosby, Jonsson, and Rovat-
sos 2014), distributed computation is not the only advantage
of using Multi-Agent Planning (MAP). By allowing agents
to do their own individual planning the search space is effec-
tively pruned, which can potentially decrease planning time
on domains that are naturally distributed. This natural dis-
tribution also means that agents get to keep some (or even
full) privacy from other agents in the system, as they might
have beliefs, goals, and plans that they do not want to share
with other agents. Single-agent planning can have no pri-
vacy, since the planner needs all the information available.

MAS went through a similar process of transitioning from
single to multiple agents, albeit at a faster rate. Recent re-
search, as evidenced in (Boissier et al. 2011; Singh and
Chopra 2010), shows that considering other programming
dimensions such as environments and organisations as first-
class entities along with agents allow developers to create
more robust MAS.

Thus, in this dissertation abstract we introduce the de-
sign of our Distributed Online Multi-Agent Planning System

(DOMAPS). DOMAPS is composed of: i) a formalism for
the representation of decentralised domains and problems in
multi-agent planning, based on Hierarchical Task Network
(MA-HTN); ii) a contract net protocol mechanism for goal
allocation; iii) individual planning with the SHOP2 planner;
and iv) the use of social laws to coordinate the agents dur-
ing execution. Some preliminary results from initial experi-
ments in a novel scenario, the floods domain, are shown.

Although approaches to online single-agent planning usu-
ally involve some kind of interleaving planning and execu-
tion (e.g., lookahead planning), in our initial approach to
online multi-agent planning we focus on domains that al-
low agents some time to plan while the system is still in
execution. DOMAPS allows for the dynamic execution of
plans found during run-time, making it easy to transition
from planning into execution and vice-versa, while still per-
mitting agents to continue their execution, as long as their
actions are believed to not cause any conflict with actions
from a possible solution.

The remainder of the dissertation abstract is structured
as follows. In the next section a discussion on multi-agent
planning is presented. Section 3 introduces the initial de-
sign of the Distributed Online Multi-Agent Planning System
(DOMAPS). Next, in Section 4, we describe the implemen-
tation of DOMAPS in a MAS development framework. In
Section 5, we describe the floods domain, a novel domain
designed for heterogeneous multi-agent systems. Some ini-
tial experiments using DOMAPS in this domain are also
shown. We conclude with a discussion on related work and
some concluding remarks.

2 Multi-Agent Planning
Multi-Agent Planning (MAP) has often been interpreted as
two different things. Either the planning process is cen-
tralised and produces distributed plans that can be acted
upon by multiple agents, or the planning process itself is
multi-agent. Recently, the planning community has been
favouring the concept that MAP is actually both of these
things, that is, the planning process is done by multiple
agents, and the solution is for multiple agents.

When considering multiple agents, the planning process
gets increasingly more complicated, giving rise to several
problems (Durfee and Zilberstein 2013). Actions that agents
choose to make may cause an impact in future actions that



the other agents could take. Likewise, if an agent knows
which actions the other agents plan to take, it could change
its own current choices. When dealing with multiple agents,
concurrent actions are also a possibility that may require ad-
ditional care.

In Table 1 we characterise some differences between
single-agent planning and multi-agent planning. Although
computation can be distributed in single-agent planning it is
not commonplace, since the cases where it is actually useful
are too few we omitted it from the table. And while multi-
agent planning could have no privacy, even in fully cooper-
ative domains it is fairly trivial to allow at least some sort of
partial privacy. Full privacy on the other hand is quite diffi-
cult because of the coordination needs in multi-agent plan-
ning. Single-agent planning has no privacy, since the planner
needs all the information available. Agents in single-agent
problem formalisms are usually represented as any other ob-
ject or fact of the environment. Agents in multi-agent plan-
ning are treated as first-class entities, where each agent can
have its own domain and problem specification.

Table 1: Comparisons between single-agent planning (SAP)
and multi-agent planning (MAP).

computation privacy agent
abstraction

SAP centralised none objects

MAP decentralised partial or full first-class
entities

Durfee, in (Durfee 1999), establishes some stages of
multi-agent planning, that were further extended in (Weerdt,
Mors, and Witteveen 2005) and (de Weerdt and Clement
2009):

1. Global goal refinement: decomposition of the global
goal into subgoals.

2. Task allocation: use of task-sharing protocols to allocate
tasks (goals).

3. Coordination before planning: coordination mecha-
nisms that prevent conflicts during the individual planning
stage.

4. Individual planning: planning algorithms that search for
solutions.

5. Coordination after planning: coordination mechanisms
that correct conflicts during the individual planning stage.

6. Plan execution: the agents that participated in the plan-
ning process now carry out the plans.

Not all of these stages are necessary in MAP, some may
even be combined into one.

3 The Distributed Online Multi-Agent
Planning System

Our multi-agent planning system consists of several main
components: planning formalism – formally describes the
information from the planning domain and problem that will
be used during planning; goal allocation – set of techniques

used to allocate goals to agents; individual planning – the
planner used during each agent’s individual planning stage;
and coordination mechanism – used before or after plan-
ning to avoid possible conflicts that can be generated during
planning. DOMAPS was made to work as a general-purpose
domain-independent system, and as such we expect to turn
it into an open platform where many other alternatives for
main components can be added, allowing the MAS designer
to pick and choose the ones that work better for their partic-
ular distributed online multi-agent planning problem.

Currently, DOMAPS can be used in three different situa-
tions where agents have access to the following commands:

• plan: plan for a set of organisational goals in which there
are no know plans.

• replan: plan for a specific organisational goal, either be-
cause the known plan failed, or because the agent detected
a change in the environment that could potentially lead to
a better solution.

• replanall: drop all current organisational goals and their
related intentions, and start a new planning process for
the organisational goals that were dropped, using up-to-
date information about the environment. Useful in case
everything seems to be going wrong, though this construct
is slightly more difficult to automate than the other two.

Figure 1: DOMAPS design overview.

The design overview of DOMAPS is shown in Figure 1.
Multiple agents (a1, a2, ..., an) interact with an environment
to obtain information and carry out their actions. These
agents are part of an organisation, adopting roles and fol-
lowing norms and receiving missions that are related to their
roles, all the while pursuing the organisation’s goals.

The planning process in DOMAPS consists of the fol-
lowing: a mechanism is used to separate and allocate goals
to agents; up-to-date information is collected and translated
into a planning formalism that the planner can understand;
agents start their individual planner in the search for a so-
lution to the set of allocated goals; agents coordinate with
each other either before or after the planning process, in or-
der to prevent the generation of any conflicts or help solve
any dependencies; and finally, each agent translates the so-
lution found by their respective planners into plans that can
be added to their plan library.



3.1 Planning Formalism
We propose the Multi-Agent Hierarchical Task Network
(MA-HTN) formalism, which is an extension of the cen-
tralised single-agent HTN formalism used in the SHOP2
planner (Nau et al. 2003). MA-HTN is intended for online
multi-agent planning problems, since domain and problem
information have to be collected during execution. Agents
use a translator to parse their information about the world
into domain and problem specifications that is then passed
to their own individual planner.

Each agent has their own problem and domain specifi-
cation. This provides a decent level of privacy on its own,
since each planner only has access to their respective agent
problem and domain specifications. This means that, unlike
some of the other multi-agent planning formalisms, MA-
HTN does not need to have privacy or public blocks. Al-
though at some point it might be interesting to add the ca-
pability to include private goals into the planning considera-
tion, for now we are interested only on organisational goals.

Actions from other agents can cause conflicts, either at the
moment that action is executed (e.g., concurrent actions) or
in the future (e.g., durative actions). Actions that can cause
conflict have to be annotated by the MAS developer, in order
for the translator to identify them. Likewise, dependencies
between actions can also exist, either as a concurrent action
that requires another agent or as actions that depend on the
actions of other agents to happen first. These dependency
relations also have to be annotated by the MAS developer,
so that the translator can add them to the specification.

3.2 Goal Allocation
A Contract Net Protocol (CNP) mechanism is used to allo-
cate goals to agents in DOMAPS. Our CNP mechanism is
based on the original CNP design of Reid G. Smith (Smith
1980), with a few modifications in order to accommodate
our needs for a goal allocation mechanism in the context of
MAP. The initiator in our case will always be the organi-
sation. It is the organisation’s role to start new auctions for
organisational goals that do not have any known plans on
how to achieve them, or for organisational goals that have
plans, but needs to be re-planned. The bidders, then, are the
agents that are part of the organisation and participate during
planning.

The logic of the bid depends on the rest of the mechanisms
being used in DOMAPS and in the MAS development plat-
form, but it is fair to assume that agents have the ability of
checking their plan library for plans that are able to decom-
pose, at least at some level, the goal that is being auctioned.
Although domain-dependent procedures for determining the
bid will provide better results, we provide a simple domain-
independent general-purpose procedure that agents can use
to determine their bid, shown in Algorithm 1.

The agent checks if the announcement of the goal came
from the organisation and if he is eligible according to the
eligibility criteria provided in the announcement, or other-
wise decides not to bid. If the agent chooses to proceed with
the bid, then, he keeps decomposing the goal into subtasks
and incrementing the bid by 1 for each level that was suc-
cessfully decomposed, either until it is close to the deadline,

or it arrived in an action that could achieve the goal, or it
found a dead end (in which case the bet is null).

Algorithm 1 Domain-independent algorithm for determin-
ing an agent’s bid.

procedure bid (from, goal-name, goal-spec, eligibility,
deadline)
if from 6= organisation then return failure
else if I am not eligible then return failure
else

while ((close to deadline) or (no more levels available
to decompose)) do

decompose one level of one task from goal-spec
bid-value = bid-value++

end while
return bid-value
end if

By the end of the loop the bidder agent will have the value
of the bid to be sent to the initiator. The initiator allocates the
goal to the agent with the lowest (not null) bid. We assume
here that every goal will eventually be allocated, meaning
that there is at least one agent eligible for each organisational
goal.

3.3 Individual Planner
SHOP2 (Nau et al. 2003) is an HTN planner with support
for the sort of anytime planning that DOMAPS requires. No
modifications were made to the actual planning algorithm
and search techniques of SHOP2, as the multi-agent mecha-
nisms present in the other components proved to be enough
for our initial experiments. As long as we can keep the in-
dividual planners intact, DOMAPS benefits from its multi-
layered approach, making it easier to change components as
we see fit, with little to no modification required in the plan-
ners.

Many parameters can be used to tweak the SHOP2 plan-
ner. Perhaps the most relevant to DOMAPS is the parameter
that guides which kind of search that will be made, of which
the possible values are:
• first: depth-first search that stops at the first plan found.
• shallowest: depth-first search for the shallowest plan, or

the first such plan if there are more than one.
• id-first: iterative-deepening search that stops at the first

plan found.

3.4 Coordination Mechanism
Social laws can coordinate agents by placing restrictions on
the activities of the agents within the system. The purpose of
these restrictions is twofold: it can be used to prevent some
destructive interaction from taking place; or it can be used
to facilitate some constructive interaction.

The design of social laws is domain-dependent, and we
require them to be supplied by a designer offline. Thus,
while the social laws are provided before planning, we
do not directly use them during individual planning. In-
stead, we take advantage of the capabilities provided by the



MAS development framework, that we used to implement
DOMAPS, in order to apply social laws in coordination af-
ter planning.

In the original model of Shoham and Tennen-
holtz (Shoham and Tennenholtz 1995), social laws were
used to restrict the activities of agents so as to ensure that
all individual agents are able to accomplish their personal
goals. We follow a similar idea, although agents here aim
to achieve organisational goals, and thus, are naturally
compelled to follow the social laws that are present in the
system.

We formally define social laws in our model as:

Definition 1 Given a set of agents Ag, a set of actions
Ac, a set of states S, a set of preconditions P, and a set of
options Θ, a social law is a tuple (ag,ac,s,P,Θ) where ag
∈ Ag, ac ∈ Ac, and s ∈ S.

A social law sl constrains a specific action ac of agent
ag, considered to be a possible point of conflict (as estab-
lished in the operator description, as shown in the MA-HTN
formalism), when the state s satisfies each precondition ρi
∈ P, giving the agent all possible options θi ∈ Θ. Although
not explicitly present in this model, the null action (e.g., do
nothing) can be a possible option, but in order for it to be vi-
able it needs to have been established as an action (operator)
in the MAS.

4 Multi-Agent System Integration
DOMAPS is an online system, and, as mentioned before,
that implicates the use of planning techniques whilst the
MAS is running. Therefore, we need a MAS develop-
ment platform in order to properly implement and evaluate
DOMAPS. We chose to use the JaCaMo1 (Boissier et al.
2011) framework as the MAS development platform, since it
contains all of the programming abstractions that DOMAPS
requires – organisation, environment, and agent abstrac-
tions.

JaCaMo combines three separate technologies into a
framework for MAS programming that makes use of mul-
tiple levels of abstractions, enabling the development of ro-
bust MAS. Each technology (Jason, CArtAgO, and Moise)
was developed separately for a number of years and are
fairly established on their own when dealing with their re-
spective abstraction level (agent, environment, and organi-
sation).

To illustrate the run-time of DOMAPS when the
domaps.plan internal action is executed, consider the
overview provided in Figure 2. When an agent executes
domaps.plan, it goes through phase 1 and activates the
contract net protocol to allocate the organisational goals be-
tween the agents. Then, in phase 2, each agent knowledge
about the world is passed to a MA-HTN translator, that sends
the information needed to SHOP2 for the individual plan-
ning that takes place in phase 3. The solution found by each
agent’s planner goes back through the MA-HTN translator

1http://jacamo.sourceforge.net/.

again, translating the solution into AgentSpeak plans. Fi-
nally, the solution is carried out by the agents in accordance
to the social laws (phase 5) that are associated with actions
from the solution that can cause conflicts.

Figure 2: DOMAPS run-time overview of the
domaps.plan internal action.

5 The Floods Domain
The lack of robust and complex multi-agent domains led us
to design a new domain, in order to best exploit the advan-
tages of MAP and MAS. The inspiration for this specific
domain came from a real-world scenario, taken from another
project that we currently participate. It is a multidisciplinary
and inter-institutional project that focuses on using informa-
tion technology (e.g., a team of autonomous multi-robots) to
help mitigate and prevent natural disasters. This scenario is
specifically targeted at flood disasters, often caused by in-
tense hydro-meteorological hazards that can lead to severe
economic losses, and in some extreme cases even deaths.

Our domain, the Floods domain, is based on that real-
world scenario. In the floods domain, a team of autonomous
and heterogeneous robots are dispatched to monitor flood
activity in a region with multiple areas that are passive of
floods. All of the goals come from the Centre for Disas-
ter Management (CDM) that is located in the region being
monitored. The CDM is usually operated by humans, but in
our JaCaMo+DOMAPS implementation we simulate them
by using agents, capable of creating dynamic goals during
run-time.

In Figure 3, we show the elements that compose the
Floods domain. The domain takes place in a particular re-
gion, which is divided into several interconnected areas.
Movement through the region occurs from traversing these
areas. Flood events are common in the region, especially
during heavy-rain. These floods can be observed from spe-
cific areas in the region. The areas can be connected by a
water path, that can be traversed by naval units, and/or by
a ground path, that can be traversed by ground units. Water



sample can be requested to be collected from certain areas.
During flood events, victims may be detected and in need of
assistance. The CDM establishes a base of operations in one
of the areas in the region.

Finally, the naval units are composed of USVs that can
move through areas connected by water paths, collect water
samples, and take pictures of flood events. Meanwhile, the
UGVs are ground units that are able to move through areas
connected by ground paths, take pictures of flood events, and
provide assistance to victims by transporting first-aid kits to
first responders close by. The robots can only perceive other
robots that are in the same area.

Figure 3: Elements from the Floods domain.

5.1 Experiments
For these initial experiments, we maintained the number of
agents and focused on increasing the number of goals. It
seems that there is a relation between the number of goals
and the number of agents. For most domains, having the
number of goals equal to the number of agents, and assum-
ing that each agent is capable of solving its associated goal,
appears to result in faster planning times. As the number of
goals surpasses the number of agents, the planning time ap-
proximates to that of single-agent SHOP2. In Table 2 we
show the some initial experiments on this domain for small
problems with 4, 8, 16, and 32 goals.

The results are shown in regards to time spent planning,
and the number of state expansions and inferences that were
made during planning. These results do not depict any of the
run-time features of DOMAPS, as we are still investigating
how to evaluate it as a whole, and considering what evalua-
tion parameters that could be used both for planning and for
execution.

It is clear that our approach would be faster than regu-
lar SHOP2, since we are assigning goals to agents previ-
ously, while SHOP2 needs to expand states during planning
in order to try different assignments. The real advantage that
these initial experiments show relate to the number of expan-
sions and inferences, showing DOMAPS does much fewer,
even if adding all the agents, than SHOP2. The individual
planning approach taken in DOMAPS can discard many of
the predicates that are usually used to assign tasks between
different objects, remember that agents in SHOP2 are no dif-
ferent than any other object from the planning formalism. By

Table 2: Initial experiment results.
DOMAPS SHOP2usv1 usv2 ugv1

floods 4
pl. time 0.001 0.001 0.001 0.004

exp. 8 8 15 65
inf. 13 13 21 186

floods 8
pl. time 0.001 0.001 0.002 0.011

exp. 15 15 29 129
inf. 21 21 37 360

floods 16
pl. time 0.002 0.002 0.004 0.033

exp. 29 29 57 257
inf. 37 37 69 708

floods 32
pl. time 0.003 0.003 0.005 0.095

exp. 57 57 113 513
inf. 69 69 133 1404

using agents as first-class abstractions during planning we
are free of the use of these predicates. These results should
also be scalable, which we aim to prove in future experi-
ments. Experiments for increasing the number of agents, and
also for increasing the number of predicates, are already un-
derway.

6 Related Work
There has been several surveys over the years describing ad-
vancements in particular areas of planning. Of interest and
related to this research there are, for example: in (desJardins
et al. 1999), a survey on distributed online (continual) plan-
ning is presented, with the state of the art in distributed and
online planning at the time (1999), and a design for a dis-
tributed online planning paradigm; a survey (Meneguzzi and
De Silva 2013) that presents a collection of recent tech-
niques (2013) used to integrate single-agent planning in
BDI-based agent-oriented programming languages, focus-
ing mostly on efforts to generate new plans at run-time; and
two multi-agent planning surveys, in 2005 (Weerdt, Mors,
and Witteveen 2005) and 2009 (de Weerdt and Clement
2009), describing several approaches taken towards multi-
agent planning over the last few years.

In (Nissim and Brafman 2014), the authors propose a
heuristic forward search for classical multi-agent planning
that respects the natural distributed structure of the system,
preserving agent privacy. According to their experiments,
their system showed the best performance in regards to plan-
ning time and communication, as well as the quality of
the solution in most cases, when compared to other offline
multi-agent planning systems.

FLAP (Sapena, Onaindia, and Torreño 2015) is a hy-
brid planner that combines partial-order plans with forward
search and uses state-based heuristics. FLAP implements a
parallel search technique that diversifies the search. Unlike
the other planners, FLAP exploits delaying commitment to



the order in which actions are applicable. This is done to
achieve flexibility, reducing the need of backtracking and
minimizing the length of the plans by promoting the paral-
lel execution of actions. These changes come at an increase
in computational cost, though it allows FLAP to solve more
problems than other partial-order planners.

In (Clement, Durfee, and Barrett 2007), multi-agent plan-
ning algorithms and heuristics are proposed to exploit sum-
mary information during the coordination stage in order to
speed up planning. The authors claim that by associating
summary information with plans’ abstract operators it can
ensure plan correctness, even in multi-agent planning, while
still gaining efficiency and not leading to incorrect plans.
The key idea is to annotate each abstract operator with sum-
mary information about all of its potential needs and effects.
This process often resulted in an exponential reduction in
planning time compared to a flat representation. Their ap-
proach depends on some specific conditions and assump-
tions, and therefore cannot be used in all domains, i.e., it
is not a general-purpose system.

Kovacs proposed a recent extension for PDDL3.1 that en-
ables the description of multi-agent planning problems (Ko-
vacs 2012). It copes with many of the already discussed open
problems in multi-agent planning, such as the exponential
increase of the number of actions, but it also approaches new
problems such as the constructive and destructive synergies
of concurrent actions. Although only the formalism is pro-
vided (it is not yet implemented in any system), the ideas
expressed by Kovacs are enticing, making it an interesting
candidate to add to DOMAPS planning formalisms.

7 Conclusion
In this dissertation abstract we described the design of a Dis-
tributed Online Multi-Agent Planning System (DOMAPS).
Specifying each of its main components: i) the planning for-
malism – we introduced the MA-HTN formalism, a multi-
agent variation of the traditional single-agent HTN formal-
ism; ii) the goal allocation mechanism – by using a contract
net protocol, the agents that participate in the planning stage
can pre-select the goals that they believe to be more appro-
priate to them, this pre-planning can cut the planning time
considerably in domains with very heterogeneous agents; iii)
the individual planner – the SHOP2 planner is used in each
agent for individual planning, so as to make the most of the
HTN-like structure of the plan library in Jason agents; iv)
the coordination mechanism – employment of social laws
to coordinate the agents during run-time in order to avoid
possible conflicts made during planning.

Initial experiments and experience with DOMAPS has
presented enough positive incentives to pursue solutions for
the limitations and to provide improvements for the system
overall.

References
Boissier, O.; Bordini, R. H.; Hübner, J. F.; Ricci, A.; and
Santi, A. 2011. Multi-agent oriented programming with
JaCaMo. Science of Computer Programming.

Clement, B. J.; Durfee, E. H.; and Barrett, A. C. 2007. Ab-
stract reasoning for planning and coordination. Journal of
Artificial Intelligence Research (JAIR) 28:453–515.
Crosby, M.; Jonsson, A.; and Rovatsos, M. 2014. A single-
agent approach to multiagent planning. In 21st European
Conf. on Artificial Intelligence (ECAI’14).
de Weerdt, M., and Clement, B. 2009. Introduction to
Planning in Multiagent Systems. Multiagent Grid Syst.
5(4):345–355.
desJardins, M. E.; Durfee, E. H.; Ortiz, C. L.; and Wolver-
ton, M. J. 1999. A survey of research in distributed, contin-
ual planning. AI Magazine 20(4).
Durfee, E. H., and Zilberstein, S. 2013. Multiagent planning,
control, and execution. In Weiss, G., ed., Multiagent Systems
2nd Edition. MIT Press. chapter 11, 485–545.
Durfee, E. H. 1999. Distributed problem solving and plan-
ning. In Mutliagent systems. MIT Press. 121–164.
Kovacs, D. L. 2012. A multi-agent extension of pddl3.1. In
Proceedings of the 3rd Workshop on the International Plan-
ning Competition (IPC), ICAPS-2012, 19–27.
Meneguzzi, F., and De Silva, L. 2013. Planning in BDI
agents: a survey of the integration of planning algorithms
and agent reasoning. The Knowledge Engineering Review
FirstView:1–44.
Nau, D.; Ilghami, O.; Kuter, U.; Murdock, J. W.; Wu, D.; and
Yaman, F. 2003. Shop2: An htn planning system. Journal
of Artificial Intelligence Research 20:379–404.
Nissim, R., and Brafman, R. I. 2014. Distributed heuristic
forward search for multi-agent planning. J. Artif. Intell. Res.
(JAIR) 51:293–332.
Sapena, O.; Onaindia, E.; and Torreño, A. 2015. FLAP: ap-
plying least-commitment in forward-chaining planning. AI
Commun. 28(1):5–20.
Shoham, Y., and Tennenholtz, M. 1995. On social laws for
artificial agent societies: Off-line design. Artif. Intell. 73(1-
2):231–252.
Singh, M., and Chopra, A. 2010. Programming multia-
gent systems without programming agents. In Braubach, L.;
Briot, J.-P.; and Thangarajah, J., eds., Programming Multi-
Agent Systems, volume 5919 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg. 1–14.
Smith, R. G. 1980. The contract net protocol: High-level
communication and control in a distributed problem solver.
IEEE Trans. Comput. 29(12):1104–1113.
Weerdt, M. D.; Mors, A. T.; and Witteveen, C. 2005. Multi-
agent planning: An introduction to planning and coordina-
tion. Technical report, Handouts of the European Agent
Summer.


