Solver Paramter Tuning and Runtime Predictions of Flexible
Hybrid Mathematical models.

Michael Barry
University of Basel / HES-SO
m.barry @unibas.ch / michael.barry @hevs.ch
Universitt Basel Petersplatz 1, 4001 Basel / Techno-Ple 1, 3960 Sierre
Switzerland

Abstract

In this research we consider the problems faced when
using hybrid mathematical models to solve optimisa-
tion models. Such models can be configured to have
different structures and can exert different behaviour
and therefore can have a volatile search space, mak-
ing runtime predictions and solver tuning a more com-
plex problem. We propose an optimization configu-
ration method that exploits the hybrid mathematical
model structure for solver parameter tuning and runtime
prediction.

Optimisation problems is active field of research and has
been approached from several research communities, in-
cluding the Artificial intelligence community as well as op-
erations research community, each developing their own
methods. All communities have had a steady contribution,
yet most commonly compete rather than collaborate. Partly
due to this rift and partially due to a difference on a concep-
tual level, many methods used in operation research have
a distinct lack of influence from the Artificial intelligence
or the wider computer science field of research despite be-
ing used heavily in industry. As a result, issues with main-
tenance and deployability are all to common and could be
addressed by lessons learnt in the history of computer sci-
ence.

Furthermore, these problems lead to highly inflexible
models. As an example from industry, mathematical mod-
els of Hydro power stations are the dominant tool for plan-
ning their operation, optimising the return in profit based
on the market prices (1) (5). This problem is well under-
stood and any company operating such power stations use
a mathematical model. Yet it has been noted that modifying
these highly specialised models to new market environments
have become difficult and many even choose to redevelop
the model instead.

The inherent problem is the design of the models. Figure
1 dissects the common methods in operations research for
solving an optimisation problem such as the Hydro power
problem mentioned above into its separate components. The
solvers are now considered to be separate from the mod-
elling language, allowing a single model to be easily tested

Copyright (© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

by different solvers. Software such as the general algebraic
modelling system (GAMS) allows a user to develop a model
in a single language and let it be solved by several different
solvers. Similarly the input to the model is interchangeable,
allowing a user to use data from, for example, a different
year.

However, the model structure itself is considered to be
static and never changing. More modern Hybrid models may
incorporate a more flexible design and may have the poten-
tial to alter the actual behaviour of a model. For example,
a more flexible Hydro power plant model could not be spe-
cific to just one existing plant, but could be flexible allow-
ing a user to tailor it to any existing plant. This would re-
quire the model to simulate different types of turbines, each
with different functions to define its behaviour. However, a
model with changing behaviour presents a new problem for
any methods for configuring the solver or for predicting the
runtime of the solver.

Current methods in configuration focus on optimizing a
solvers parameters for a specific problem. In such a case, the
parameters are expected to improve the solvers efficiency in
average over a selection of different input scenarios. How-
ever, if more flexible models are being developed that also
change the behaviour of the model, solvers would show a
more drastic change in performance for different scenarios.
Therefore the configuration of the solvers parameters should
take into consideration the design of the model itself, al-
lowing the system to adjust the solvers parameters based on
how the models behaviour has been configured. Similarly,
the prediction of the solvers runtime becomes more com-
plex. Changing the behaviour of the model also changes the
complexity of the problem greatly, increasing both the need
and the difficulty of an accurate prediction.

Therefore, the following three research questions arise.

e How can a mathematical model be implemented to allow
a large degree of flexibility in it’s behaviour?

e How can the parameters best be configured for a flexible
and dynamic mathematical model?

e How can the runtime of a solver be accurately predicted
for a flexible mathematical model?

Data Model Structure

: Model Language

. Model Instance

Solver

Figure 1: Graphical representation of how a problem is
solved using a mathematical language and solver. Data and
a model structure is input using a model language, creating a
model instance. This instance can then be solved by a solver
and the results are returned.

Proposed Method

Implementing software in a way that allows continues de-
velopment and maintenance is well understood in computer
science. One tool used to prevent it is Object Orientated de-
sign, which splits the system into several classes (module)
and allows each module address another aspect of the soft-
ware. Modular approaches to mathematical modelling has
been used before and many new modelling languages be-
ing developed use this concept. However, this is a strong
contradiction to the standard in industry, where the more
classical modelling languages dominate the field. For a suc-
cessful adaptation of a modular design, the concept must be
usable with classical modelling languages such as GAMS.
Only once a modular approach is more widely accepted will
new modelling language that assists in a modular approach
be more widely accepted. It also eases the integration of new
models with currently used models.

A modular approach allows each aspect to be easily re-
placed by reimplementing the specific class. This concept
can also be used in mathematical models, by separating each
component into separate modules. As an example for the
Hydro power plant model, it can be separated into modules
each presenting an aspect of the model, such as the intra-
day market, a type of turbine or an environmental constraint.
How this is achieved in a mathematical language is demon-
strated in Figure 1 and Listing 2.

Listing 1 shows the implementation of a module con-
taining a function describing the storage level in a Hydro
power station. A further constraint on the storage variable
is contained in a separate module, described in the Stor-
ageMax.gms file shown in Listing 2. By simply importing

the file storageMax.gms, the module and its constraint is in-
cluded in the model. A main file containing these import
statements can then be used to easily modify the structure of
the model by simply including or excluding modules.

Listing 1: Storage.gms

Equation
storage (i)

storage (i)..

storage (i) =e=
storage (i—1)

+ inflow (1)

— release (i);

$import storageMax .gms

Listing 2: Storage.gms

Equation
storage (i)

storage (i)..

storage (i) =l= max_storage;

The same principle can be used for aggregate functions as
shown in Listing 3 to 5 and for several versions of the same
constraint as shown in Listing 6.

Listing 3: Income.gms

Equation
income _total (1)

b}

income _total(i)..

income_total (1) =e=
sum(m, income (i ,m))

Listing 4: Marketl.gms

Equation
income (1)

)

income (i)..

income (i) =e=
price(i,l) % production(i,l)

Listing 5: Market2.gms

Equation
income (i)

9
income (i)..

income (i) =e=
price (i ,2) x production(i,?2)

As shown in Listing 3, the total income is calculated by
summing the income from each market. The income for each
market is calculated in separate modules. By including or
excluding the module market] and market2, the market can
be added or removed.

Listing 6: storagel.oss.gms

Equation
storage (i)

storage (i)..

storage (i) =e=
storage (i—1)

+ inflow (i)

— sum(m, release (i,m))
— loss (i)

Listing 6 shows an alternative implementation of the stor-
age module described in Listing 1 and can be used to replace
the previous implementation. Altogether, these methods can
be used to create a model, which allows its behaviour to be
modified by simple import statements.

Instances off each module can be used to model multi-
ple occurrences of physical objects. For example, there may
be different modules for different type of turbines, such as a
Pelton turbine or a Francis turbine. However, a Hydro power
station may contain several turbines of the same type. There-
fore several instances of a turbine may exist. The concept of
instantiation is fairly simple though and can be implemented
in a functional language through a set of functions and a ta-
ble containing the parameters for each instance. In a similar
manor, it is possible for a mathematical language.

Modules depend on others and some common sense re-
strictions must be respected. For example, the Hydro power
model must contain a type of turbine to allow power pro-
duction and a market must be available to sell the energy

produced. However, it is also possible to operate on sev-
eral markets at the same time. Similarly, modules that im-
plement the same aspect and therefore the same constraint
but in a different may can only be selected once within a
model, effectively creating an exclusive or relationship. In-
stances themselves are subject to restrictions, as a reservoir
must be connected to a turbine or river to allow water to exit
again to avoid flooding. The relationship between different
modules and different instances can be captured in predicate
logic and used as a validation method to determine a models
validity before passing it to the solver.

As this approach combines a top down model, consisting
of the mathematical model, and a bottom up model model,
consisting of the validity logic, it would be considered a Hy-
brid model within the Operations Research community (4).
Within the computer science community, this method is con-
ceptually different and would be recognised as dependency
injection or inversion of control, as the module with the de-
sired behaviour is selected at runtime. Despite different ways
of looking at it, such a design is understood and accepted by
both communities.

The benefit of such an implementation is similar to those
of Object orientated design, including reusability and main-
tainability. In addition, a new developer does not require
knowledge of the entire system to update one aspect of the
system. Furthermore, a model can then be configured by se-
lecting which modules to use in a simulation (3) (2). This
can allow a model to behave differently in each configura-
tion as shown in Figure 2.

max, y " P Qi
Qi = R mar
Si=Siat b3 A _}
5; % Sux

Si Z Swin

!

3 i = Qo

Figure 2: Graphical representation of how modules can be
combined to create different configurations with different
behaviours. The functions defining the model are separated
into modules, which are then combined to create a model
configuration.

The ability to configure the behaviour of a model sets
it apart from most other model designs. Such functionality
is sometime implemented to some extent utilising simple if
statements throughout the model, such as shown in

Listing 7.

Listing 7: storageLoss.gms

Equation
storage (i)

)

storage (i)..

storage (1) =e=

storage (i—1)

+ inflow (i)

— sum(m, release(i,m))
— loss(i)$(include eq 1)

However, it is limited. Extensive use of such statements
result in the model being riddled with if statements making
it unreadable. In addition, each flexible aspect must be im-
plemented manually rather than being inherently flexible by
design. By using a modular approach instead it separates this
logic from the functions, adding a layer of abstraction.

The resulting model would result in a large degree of flex-
ibility, but will also result in varying complexity. Based on
which and how many modules are selected at runtime, the
runtime of the solver can vary greatly. Predicting the run-
time of the solver can be done using machine learning meth-
ods (6). However, predicting the runtime of the solver be-
comes more difficult when using a model with changing be-
haviour. In a standard model, the search space is relatively
stable compared to the proposed model. Different inputs will
only modify the search space to some degree, while chang-
ing the the number of constraints and the constraints them-
selves changes the search space drastically.

However, there is some knowledge that can be extracted
from the model structure itself and can then be used to more
accurately predict the runtime. Simply using the number of
modules can already help in estimating the complexity of
the model as shown in Figure 3 and further information on
how each module depends on the other and the validity logic
contains useful knowledge of the models structure. Overall,
there are many candidate features which may prove to be a
good indication of the models runtime.

Using methods from machine learning such as a correla-
tion matrix and a neural network, the best features could be
selected and their relationship to the models runtime could
be learned. Depending on which features are the most vi-
able, this method could potentially also be viable for more
modules or even entire models that the neural network has
not been trained on. This could possibly be used as a global
tool rather than being limited to a specific model. The fea-
tures to be selected and their relationship to the runtime must
be examined in a set of experiments. Additionally, how well
the relationship can be learned and the extent to which this
method can be used for unknown modules must also be in-
vestigated.

Most solvers such as the IBM CPLEX solver have several
parameters that can be fine tuned by the user to boost the
solvers performance for a specific problem. Parameters can
modify the heuristics, probing, cutting and much more (7).
Automatic configuration of these parameters has been stud-
ied to a great extent (7) and is even included in some solvers
functionality. However, they do not considered a flexible
model structure.

Therefore, a tuning process would have to be applied each
time the structure changes. Again, knowledge from the mod-

els structure could be used to help tune the parameters for
a specific structure. How much the optimal parameters for
each structure vary, the performance increase and which pa-
rameters to modify must be tested in a set of experiments.
Additionally, the correlation between models structure and
the parameters as well as how well this relationship can be
learned will have to be investigated.

The resulting system would allow a model to be config-
ured for many different scenarios and can generate an ideal
parameter configuration and runtime prediction for that sce-
nario before being executed.

Experiments

A fully functioning prototype demonstrating the feasibility
and the benefits of a model developed though a modular de-
sign will be developed. As a case study, a model of a Hydro
power station is developed that has the flexibility to simulate
several market and investment scenarios. Due to its flexibil-
ity, it will not be tied to a specific power plant but rather be
general and can be configured for any hydro power plant.
It is hoped that such a model can be used as a example for
modular design and can be continuously updated and inte-
grated with other models.

The results of the previously mentioned experiments will
demonstrate how such a design can assist in predicting the
runtime of a flexible model. In addition, they will determine
which features of the model structure is best suited for an
accurate prediction for the solvers runtime. Knowledge can
be extracted from the modules themselves, such as in the
most simple case the number of functions within the model,
as well as their relationship with other modules, such as how
many variables are shared between the modules. It is hoped
that a set of features can be selected that are easily extracted
from a model to allow this method be applied to modules or
entire models that are not contained in the training set.

Final Results: Scale vs. Runtime
25000

20000
15000

10000 ™

Runtime (CPLEX ticks)

5000 L]
]

6.5 7 75 8 85 9 9.5 10 10.5 11 115

Scale (number of modules)

Figure 3: Initial results of running different model configu-
rations. It shows how a simple parameter such as the number
of modules has a correlation to the runtime of the model.

Therefore, it would allow this method be used on any
model that follows the same design pattern. The success of
this experiment relies on if general features for each mod-
ule can be used, or whether the system has to learn the im-
pact that each module has on the complexity of the model.
If the latter is the case, the system would have to train on

each new module that was added before making a predic-
tion. Although still useful, it would limit its reusability for
other models.

The experiments concerning the parameter tuning of the
solver will determine which parameters should be tuned for
different structures to produce a performance boost. As a
first step, the experiments must determine whether different
configurations of the model require different parameter con-
figurations. If this is the case, a performance boost is viable.
In this case, experiments will determine which parameters
are best suited for configuration and to what extent the re-
lationship between structure configuration and optimal pa-
rameter configuration can be learned.

Evaluation

The evaluation of these methods are important in demon-
strating their viability. It allows comparison to existing
methods and is important for determining whether it is not
only novel, but also useful to the research community.

The success of the model design will be evaluated in two
case studies involving a hydro power station model. It will
be compared to the current state of the art in industry and
will also be evaluated on the bases of what further function-
ality is achieved through a modular design. The extent of its
flexibility, such as whether it can simulate different type of
Hydro power plants, whether it can be used to investigate
investment opportunities and how well it can compete with
other models in terms of accuracy in real scenarios will be
tested.

The runtime prediction can be tested for accuracy by com-
paring the predicted runtime with actual runtime prediction.
In addition, a comparison can be made with prediction meth-
ods that work with a static model structure. Although an un-
fair comparison, it can show the feasibility of predicting the
runtime for flexible models.

The methods used for tuning the solvers parameters for
different structures can be evaluated by comparing it to a
base case parameter configuration. This base case can be
created by choosing a configuration that is optimal in aver-
age over different model structures. Through a comparison
of the solvers runtime to such a base case, the benefit of us-
ing methods based on the models structure can be measured.

Contributions

Successful investigation of the previously stated research
questions would result in a fully functional system, that is
adaptable, automatically configurable and predictable. How-
ever, apart from the system itself, it is expected that several
scientific insights are gained. It will extend our model de-
velopment methods, our knowledge of automatic parameter
tuning and our understanding of what elements in a model
affects its complexity.

The model design will help the efforts to transition form
classical modelling methods to more agile methods similar
to what is commonly used now in computer science as well
as reduce the gap between the computer science and oper-
ations research communities. The model itself will be use-
ful as an experiment base allowing the study of how small

changes to a module affects its complexity. This understand-
ing can then be used to better understand the runtime of our
solvers and how best to tune the solver to minimise these
effects.

Conclusions

In conclusion, a change in design of mathematical model
both requires and assists in developing methods for auto-
matic solver tuning and runtime predictions. Current meth-
ods are limited by the assumption that the structure remains
static and the search space only shifts due to different in-
puts, rather than different model behaviours. Changing be-
haviours makes the tuning of the solver and the prediction of
its performance more difficult, but may also deepen our un-
derstanding of this relationship, further improving the state
of the art.

Acknowledgements

This work has been done in the context of the SNSF funded
project Hydro Power Operation and Economic Performance
in a Changing Market Environment. The project is part
of the National Research Programme Energy Transition
(NRP70).

References

[1] Alfieri, L.; Perona, P.; and Burlando, P. 2006. Op-
timal water allocation for an alpine hydropower system
under changing scenarios. Water resources management
20(5):761-778.

[2] Barry, M., and Schumann, R. 2015. Dynamic and con-
figurable mathematical modelling of a hydropower plant
research in progress paper. In Presented at the 29. Work-
shop ”Planen, Scheduling und Konfigurieren, Entwer-
fen” (Puk 2015).

[3] Barry, M.; Schillinger, M.; Weigt, H.; and Schumann, R.
2015. Configuration of hydro power plant mathematical
models. In Energy Informatics: Proceedings of the En-
ergieinformatik 2015, volume 9424 of Lecture Notes in
Computer Sciences. Springer.

[4] Bohringer, C. 1998. The synthesis of bottom-up and
top-down in energy policy modeling. Energy economics
20(3):233-248.

[5] Guo, S.; Chen, J.; Li, Y.; Liu, P; and Li, T. 2011.
Joint operation of the multi-reservoir system of the three
gorges and the qingjiang cascade reservoirs. Energies
4(7):1036-1050.

[6] Hutter, F.; Xu, L.; Hoos, H. H.; and Leyton-Brown, K.

2014. Algorithm runtime prediction: Methods & evalua-
tion. Artificial Intelligence 206:79—-111.

[7] Klotz, E., and Newman, A. M. 2013. Practical guide-
lines for solving difficult mixed integer linear programs.
Surveys in Operations Research and Management Sci-
ence 18(1):18-32.

