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Preface 
The areas of planning and scheduling in Artificial Intelligence have seen important advances thanks to the 
application of constraint satisfaction and optimization models and techniques. Especially solutions to real-world 
problems need to integrate plan synthesis capabilities with resource allocation, which can be efficiently 
managed by using constraint satisfaction techniques. The workshop will aim at providing a forum for 
researchers in the field of Artificial Intelligence to discuss novel issues on planning, scheduling, constraint 
programming/constraint satisfaction problems (CSPs) and many other common areas that exist among them. On 
the whole, the workshop will mainly focus on managing complex problems where planning, scheduling and 
constraint satisfaction must be combined and/or interrelated, which entails an enormous potential for practical 
applications and future research. 

In this edition, five papers were accepted. They represent an advance in the integration of constraint satisfaction 
techniques in planning and scheduling frameworks. These papers are distributed between theoretical papers and 
application papers.  

 

Miguel A. Salido 

Roman Barták 
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Mixed-Integer and Constraint Programming Techniques for Mobile Robot Task
Planning (Extended Abstract)*

Kyle E. C. Booth, Tony T. Tran, Goldie Nejat, and J. Christopher Beck
Department of Mechanical & Industrial Engineering

University of Toronto, Toronto, Ontario, Canada
{kbooth, tran, nejat, jcb}@mie.utoronto.ca

Mobile Robot Task Planning
Driven by the increased use of mobile robotics for everyday
applications, there has been a flurry of research activity in
the pursuit of computationally efficient techniques for au-
tonomous decision making (Gerkey and Matarić 2004). The
automated planning and scheduling of tasks is of particular
interest to the artificial intelligence (AI) and robotics com-
munities, and considered a core competency of intelligent
behavior. As such, the development and integration of solu-
tion techniques for such reasoning is fundamental to the suc-
cessful design of autonomous mobile robots (Ghallab, Nau,
and Traverso 2004).

Automated task planning and scheduling has been previ-
ously studied in mobile robotics applications such as ware-
house management (Kim et al. 2003), hospital assistance,
and human care (Cesta et al. 2011). There are a variety
of existing solution methods, including those using math-
ematical programming techniques (Coltin, Veloso, and Ven-
tura 2011), customized interval-algebra algorithms (Mu-
drova and Hawes 2015), and forward-chaining temporal
planners (Louie et al. 2014).

In this work we investigate the application of
optimization-based scheduling technologies to such
robot task planning problems. Namely, we develop and
apply mixed-integer programming (MIP) and constraint
programming (CP) methods to solve two mobile robot task
planning problems from the literature. Furthermore, for the
second robot task planning problem, we integrate our CP
task planning approach on the mobile social robot, Tangy.

In the first problem, a robot plans a set of tasks each with
different temporal constraints dictating when a task is avail-
able for execution and when task execution must be com-
pleted. For this particular problem, the task planner must
determine a feasible plan that minimizes the sum of task
completion times. In the second mobile robot task planning

*The work in this extended abstract is presented in detail in a 2016
IEEE Journal article (Booth et al. 2016). It accompanies an invited
talk given at the Workshop on Constraint Satisfaction Techniques
for Planning and Scheduling (COPLAS2016) as part of the 26th In-
ternational Conference on Planning and Scheduling (ICAPS2016)
on June 14, 2016.
This research has been funded by the Natural Sciences and En-
gineering Council of Canada (NSERC), Dr. Robot Inc., and the
Canada Research Chairs (CRC) Program.

problem, a socially-interacting robot must generate feasible
task plans while adhering to a number of restrictions, in-
cluding temporal constraints, the timetables of human users,
and robot energy levels. We model and solve each of these
problems with MIP and CP to find high-quality task plans.
For the second problem, we demonstrate the physicaly util-
ity of our methods by integrating our CP approach into a real
robot architecture. Eliminating the need for algorithmic de-
velopment, our model-and-solve techniques exploit ongoing
advances within MIP and CP and our experimental results
illustrate the promising nature of these general approaches
for mobile robot task planning problems.

Optimization Technologies

Combinatorial optimization problems have been historically
approached with a wide-range of methods including MIP
and CP. MIP is a mathematical programming approach that
models problems with continuous or integer variables whose
values are restricted by linear constraints and contribute to-
wards a global linear objective function. The approach com-
monly employs branch-and-bound tree search (Land and
Doig 1960) and often avoids worst-case exponential search
by solving the associated linear programming (LP) relax-
ation at each node to attain a bound on the objective and sys-
tematically prune subtrees. More sophisticated algorithmic
developments have been proposed over the years, resulting
in significant machine-independent speedups from the early
1990s to 2012 (Bixby 2012).

Conversely, CP is a rich approach that eschews structural
restrictions and is capable of modeling constraints and vari-
ables of a variety of forms. Developed primarily within the
AI community, CP focuses on the notation of global con-
straints to encapsulate frequently recurring combinatorial
substructure. Such global constraints are combined in CP
modeling and search effort is reduced through logical infer-
ence (Jaffar and Maher 1994) where each constraint has an
associated algorithm that performs domain filtering. Such
filtering removes values from variable domains that cannot
participate in global solutions, and is performed at each node
within the search. CP has also seen significant improvement
in recent decades and has established itself as a viable alter-
native to mathematical programming-based approaches.
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Robot Task Planning Problems
We study two mobile robot task planning problems, each
requiring the autonomous assignment of start times to a set
of tasks while adhering to problem constraints.

Task Planning Problem #1 Given a set of n tasks, j ∈ J ,
each with a release time, rj , deadline time, dj , and process-
ing time, pj , the robot must find a feasible task plan, or de-
termine that none exist, over a planning horizon, H . Using
standard scheduling terminology, this problem can be repre-
sented as 1|rj , dj , δjk|

∑
j Cj , where 1 represents the single

robot, δjk defines the robot travel time between tasks j and
k, and

∑
j Cj is the objective function which minimizes the

sum of task completion times. Robot travel times are asym-
metric such that δjk �= δkj may hold, and follow the triangle
inequality, namely δjl + δlk ≥ δjk. A solution task plan is
a set of start times for each task, {s1, s2, ..., sn}, such that
these times adhere to the temporal constraints of each task
(i.e. sj ∈ [rj , dj − pj ], ∀j ∈ J), travel times are satisfied,
and the objective is minimized.

We propose both MIP and CP models for this problem.
Our disjunctive MIP model is defined by Eqs. (1) through
(6), and uses decision variable xjk :={1 if task j precedes
task k, and 0 otherwise}. In this model, Eqn. (1) is the
minimization objective function, (2) defines task completion
time, Eqs. (3) and (4) ensure a disjunctive relationship be-
tween all pairs of tasks, such that they do not conflict tem-
porally, and the remainder of the model identifies variable
domains.

min
∑

j Cj (1)

s.t. Cj = sj + pj , ∀j (2)
Cj + δjk ≤ sk + (H + δjk)(1− xjk), ∀j, k (3)
Ck + δkj ≤ sj + (H + δkj)(xjk), ∀j, k (4)
xjk ∈ {0, 1}, ∀j, k (5)
sj ∈ [rj , dj − pj ] ∀j (6)

Our CP model is defined by Eqns. (7) through (10), mak-
ing use of the NoOverlap global constraint (Laborie 2009)
in Eqn. (9) to prevent tasks from conflicting temporally in-
cluding travel times, where Δ is the matrix of travel times
between all pairs of tasks, δjk. Eqn. (7) defines the objec-
tive function, Eqn. (8) completion time, and the remainder
identify varible domains.

min
∑

j Cj (7)

s.t. Cj = sj + pj , ∀j (8)
NoOverlap({s1, .., sn},{p1, .., pn},Δ), (9)
sj ∈ [rj , dj − pj ] ∀j (10)

There have been previously proposed methods for solv-
ing this problem within the literature. Specifically, dynamic
user task scheduling (DUTS) (Coltin, Veloso, and Ventura
2011) introduces a pre-processing step that determines pairs
of tasks with overlapping time windows and adds constraints

similar to Eqs. (3) and (4) to a mathematical model be-
fore assigning start times via a MIP solver. An alternative
method uses task scheduling with interval algebra (TSIA)
(Mudrova and Hawes 2015) to heuristically order all pairs
of tasks before using also using MIP to solve the problem.
We note that each of these proposed methods are incom-
plete and not guaranteed to find a feasible solution if such
a task plan exists. For larger optimization problems, global
optimality may be unachievable within reasonable time, and
thus heuristic methods may be preferred. As such, within
our experimental analysis, we evaluate the solution-quality
vs. run-time tradeoff of the different methods.

Task Planning Problem #2 Given a single-day planning
horizon from 8:00AM to 7:00PM, the social robot Tangy
must plan and facilitate a set of activities (tasks) involv-
ing human users while reasoning about temporal constraints,
user timetables, and robot energy levels (Louie et al. 2014).
The activities consist of bingo games (involving multiple
users), bingo game reminders (involving a single user), and
robot recharge tasks. The participants, location, and pro-
cessing time of each task are known a priori, and the prob-
lem requires the robot to autonomously determine task start
times and, in the case of optional robot recharge tasks, task
presence and duration.

Each user has a timetable dictating when he/she is avail-
able, including mandatory breaks for meals from 8:00-
9:00AM, 12:00-1:00PM, and 5:00-6:00PM. The set of bingo
games and participants are parameters to the problem, and
the robot must perform a reminder task with each user prior
to his/her game. Robot travel times between any two lo-
cations are known, and a feasible task plan must account for
these required transitions. Instantaneous battery level for the
robot is available and must stay within pre-specified bounds.
Each task type has a unique energy consumption rate, and
optional robot recharge tasks allow for energy replenish-
ment; an upper bound of these is supplied to the model, and
they do not need to be utilized.

We solve this problem using both MIP and CP technolo-
gies, making use of continuous, integer, and binary deci-
sion variables within MIP and optional interval variables
(Laborie 2009) within CP to properly model task optional-
ity, in addition to a number of global constraints. Due to
space limitations, these models, as well as a more compre-
hensive problem description, are detailed elsewhere (Booth
et al. 2016). Prior to this work we proposed an approach
for solving this problem using a forward chaining temporal
planner (Louie et al. 2014), and we compare the results of
our proposed models to this temporal planner.

Implementation & Experimental Analysis
Due to the application-driven focus on quickly finding fea-
sible, high-quality task plans, we define algorithm perfor-
mance based on run-time and optimality gap (%). Our meth-
ods are implemented in C++ on a hexacore machine with a
Xeon processor and 12GB of RAM running Linux Ubuntu
14.04. We use the IBM ILOG CPLEX V12.6.2 Optimiza-
tion Studio, which includes both MIP and CP solvers.

Benchmark problem sets are generated as identified in the
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journal version of this work (Booth et al. 2016), and the task
plan solutions for the second problem are simulated using
the Robot Operating System (ROS) (Quigley et al. 2009)
on custom-developed visualization software. To validate the
physical utility of our methods, the CP approach (best per-
forming) is implemented within a ROS-based architecture
on the mobile robot Tangy, using the GMapping technique
in OpenSlam (openslam.org) to create an environment map
via simultaneous localization and mapping.

Table 1 illustrates the MRE of the various approaches
over time for Problem #1. These values are calculated ac-
cording to the following expression: MRE(CP,P40,0.1) =

1
| ¯P40|

∑
p∈ ¯P40

c(CP,p,0.1)−c∗(p)
c∗(p) ×100, which would yield the

average MRE for the CP approach for all five problems with
40 tasks, P40, at a run-time duration of 0.1 seconds. In this
expression p ∈ ¯P40 is the set of 40 task instances where
feasible solutions were found at 0.1 seconds using CP. The
value c(CP, p, 0.1) is the best solution found by CP at this
run-time for problem instance p, and c∗(p) is the optimal so-
lution, if known, or best known bound attained by running
the MIP model for 18,000 seconds. If an approach failed to
find any feasible plans at a specified run-time, a value of ‘-’
is used. Values with a ‘†’ indicate that MRE was calculated
from the subset of instances for which the method found a
feasible plan at the associated run-time. ‘# Inf.’ identifies,
for a technique, the number of instances for which no feasi-
ble plan was found after 100 seconds.

The proposed CP approach is able to find better solutions
in shorter run-times than all other methods at nearly all time
points, and our proposed MIP model generally outperforms
existing MIP-based approaches. Furthermore, our methods
do not sacrifice algorithmic completeness like the DUTS and
TSIA methods, in part illustrated by the inability for the
TSIA method to improve upon its initial heuristic solution
and, in some cases, inability to find any feasible solutions.

Table 1: Problem #1: Mean relative error (%) over time
Run-time (s)

# Tasks Technique 0.1 1 10 100 # Inf.

40 CP 0.08 0.00 0.00 0.00 0
MIP 7.93 0.13 0.00 0.00 0
DUTS 13.10 0.06 0.02 0.02 0
TSIA 0.98 0.98 0.98 0.98 0

80 CP 0.32 0.15 0.10 0.10 0
MIP 9.02 1.38 0.11 0.11 0
DUTS 10.23 4.49 0.15 0.12 0
TSIA 0.45† 0.45† 0.45† 0.45† 2

120 CP 0.37 0.34 0.25 0.24 0
MIP 6.60† 3.67 0.25 0.25 0
DUTS 7.06† 4.48 0.28 0.25 0
TSIA 0.40† 0.40† 0.40† 0.40† 4

160 CP 0.33 0.30 0.23 0.22 0
MIP - 4.07 1.13 0.23 0
DUTS 4.74† 3.08 0.85 0.23 0
TSIA 0.33† 0.33† 0.33† 0.33† 4

200 CP 0.26 0.25 0.20 0.18 0
MIP - 3.56 1.63 0.18 0
DUTS 4.77 3.83 1.93 0.18 0
TSIA - - - - 5

Experimental results for the simulation of our proposed
methods for the second problem are illustrated in Table
2. Again, CP is the dominant performing algorithm, find-
ing feasible solutions much faster than the alternate meth-
ods. We note that though CP is by far the best approach
for this problem, both the CP and MIP optimization-based
technologies outperform the previously proposed forward-
chaining temporal planning approach that uses OPTIC (Ben-
ton, Coles, and Coles 2012), even though the feasibility-
focus of the problem favours the planning method over its
optimization-based counterparts.

Table 2: Problem #2: Time to first feasible plan
Scenario Technique

Users Bingo Games CP MIP OPTIC

4 1 < 0.01 0.01 0.54
8 2 < 0.01 0.36 9.13
12 3 0.04 1.30 13.09
16 4 0.01 - -
20 5 0.08 - -

As a proof of concept, we implement our CP-approach
in a real-world environment on the social robot, Tangy. We
used the first scenario for this physical implementation, con-
sisting of four users, one bingo game activity, and the as-
sociated reminder tasks. The results of this physical im-
plementation are detailed within (Booth et al. 2016). This
real-world experimentation is significant as it validates the
physical utility of our task planning methods in realistic en-
vironments.

Conclusions & Future Work

We explored the modeling and solving of two robot task
planning problems using optimization-based formalisms
mixed-integer programming (MIP) and constraint program-
ming (CP). The first problem involved the automated gen-
eration of feasible task plans that adhere to temporal con-
straints surrounding task release and deadline times. The
second problem required reasoning about task precedence
relationships, human user timetables, and robot energy con-
sumption and replenishment. We implemented our models
within simulated and real environments, comparing them
with previous methods and concluding that, for the problems
studied, the inference-based search of CP is the superior ap-
proach. Additionally, we implemented our CP approach for
the second problem on the social robot Tangy to validate the
physical utility of our methods.

Overall, our results indicate that these optimization-based
techniques are promising for solving mobile robot task plan-
ning problems, and a main direction for our future research
involves exploring the role of these methods for the devel-
opment of re-planning and plan repair techniques. We also
plan to further investigate robot task planning problems in
order to understand the point at which such problems will re-
quire more sophisticated methods, including problem-based
search manipulations and decompositions.

COPLAS’2016

3



Acknowledgment
We would like to thank M. Schwenk for the design of the
simulation environment and S. Mohamed for the robot nav-
igation and mapping modules utilized in the experiments.

References
Benton, J.; Coles, A. J.; and Coles, A. 2012. Temporal
planning with preferences and time-dependent continuous
costs. In ICAPS, volume 77, 78.
Bixby, R. E. 2012. A brief history of linear and mixed-
integer programming computation. Documenta Mathemat-
ica, Extra Volume: Optimization Stories 107–121.
Booth, K. E.; Tran, T. T.; Nejat, G.; and Beck, J. C. 2016.
Mixed-integer and constraint programming techniques for
mobile robot task planning. Robotics and Automation Let-
ters, IEEE 1(1):500–507.
Cesta, A.; Cortellessa, G.; Rasconi, R.; Pecora, F.; Scopel-
liti, M.; and Tiberio, L. 2011. Monitoring elderly peo-
ple with the robocare domestic environment: Interaction
synthesis and user evaluation. Computational Intelligence
27(1):60–82.
Coltin, B.; Veloso, M. M.; and Ventura, R. 2011. Dynamic
user task scheduling for mobile robots. In Automated Action
Planning for Autonomous Mobile Robots, AAAI Workshops,
volume WS-11-09.
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Abstract

PDDL+ is an extension of PDDL that makes it pos-
sible to model planning domains with mixed discrete-
continuous dynamics. In this paper we present a new
approach to PDDL+ planning based on the paradigm of
Constraint Answer Set Programming (CASP), an exten-
sion of Answer Set Programming that supports efficient
reasoning on numerical constraints. We provide an en-
coding of PDDL+ models into CASP problems. The en-
coding can handle non-linear hybrid domains, and rep-
resents a solid basis for applying logic programming
to PDDL+ planning. As a case study, we consider an
implementation of our approach based on CASP solver
EZCSP and present very promising results on a set of
PDDL+ benchmark problems.

1 Introduction

Planning in hybrid domains is a challenging prob-
lem that has found increasing attention in the planning
community, mainly motivated by the need to model
real-world domains. Indeed, in addition to classical
planning, hybrid domains allow for modeling continu-
ous behavior with continuous variables that evolve over
time. PDDL+ (Fox and Long 2006) is the extension of
PDDL that allows for modelling domains with mixed
discrete-continuous dynamics, through continuous pro-
cesses and exogenous events.

Various techniques and tools have been proposed to
deal with hybrid domains (Penberthy and Weld 1994;
McDermott 2003; Li and Williams 2008; Coles et al.
2012; Shin and Davis 2005). More recent works include
(Bryce et al. 2015), which presents an approach based
on Satisfiability Modulo Theory (SMT) and restricted
to a subset of the PDDL+ features, and (Bogomolov et
al. 2014; Bogomolov et al. 2015) that combines hybrid
system model checking and planning, but is only lim-
ited to proving plan non-existence.

To date, the only approach able to handle the full
PDDL+ is the discretise and validate approach imple-
mented in UPMurphi (Della Penna et al. 2009). There,
the continuous model is discretised and forward search
Copyright © 2015, Association for the Advancement of Arti-
ficial Intelligence (www.aaai.org). All rights reserved.

is used to find a solution, which is then validated against
the continuous model using VAL (Fox, Howey, and
Long 2004). If the solution is not valid, the discretisa-
tion is refined and the process iterates. The main draw-
back of UPMurphi, though, is the lack of heuristics that
strongly limits its scalability, and hence its applicability
to real case studies.

This motivates the need for finding new ways to han-
dle PDDL+. To this aim, in this paper we present a new
approach to PDDL+ planning based on Constraint An-
swer Set Programming (CASP) (Baselice, Bonatti, and
Gelfond 2005), an extension of Answer Set Program-
ming (ASP) (Gelfond and Lifschitz 1991) supporting
efficient reasoning on numerical constraints. We pro-
vide an encoding of PDDL+ models into CASP prob-
lems, which can handle linear and non-linear domains,
and can deal with PDDL+ processes and events. This
contribution represents a solid basis for applying logic
programming to PDDL+ planning, and opens up the use
of CASP solvers for planning in hybrid domains.

We describe how the different components of a
PDDL+ domain can be encoded into CASP. In our en-
coding, continuous invariants are checked at discretised
timepoints, and following the discretise and validate ap-
proach (Della Penna et al. 2009), VAL is used to check
whether the found solutions are valid or whether more
timepoints need to be considered. As a case study, we
use the CASP solver EZCSP (Balduccini 2009). Experi-
ments performed on PDDL+ benchmarks show that our
approach outperforms the state-of-the-art PDDL+ plan-
ners dReal and UPMurphi.

The paper is structured as follows. We begin with
preliminaries on PDDL+ planning and CASP. In Sec-
tion 3, we present our encoding, followed by a discus-
sion of the results of our experiments. Finally, in Sec-
tion 6, we draw conclusions and discuss future direc-
tions of work.

2 Background

In this section, we provide background on the main top-
ics covered by the paper. We first introduce PDDL+
planning, and then ASP and CASP.

COPLAS’2016

5



Hybrid systems can be described as hybrid au-
tomata (Henzinger 1996), that are finite state automata
extended with continuous variables that evolve over
time. More formally, we have the following:

Definition 1 (Hybrid Automaton) A hybrid automa-
ton is a tuple H = (Loc,Var, Init,Flow,Trans, I),
where
• Loc is a finite set of locations, Var = {x1, . . . ,xn} is a
set of real-valued variables, Init(�) ⊆ Rn is the set of
initial values for x1, . . . ,xn for all locations �.

• For each location �, Flow(�) is a relation over the
variables in Var and their derivatives of the form

ẋ(t) = Ax(t)+u(t),u(t) ∈ U ,

where x(t) ∈ Rn, A is a real-valued nxn matrix and
U ⊆ Rn is a closed and bounded convex set.

• Trans is a set of discrete transitions. A discrete tran-
sition t ∈ Trans is defined as a tuple (�,g,ξ , �′) where
� and �′ are the source and the target locations, re-
spectively, g is the guard of t (given as a linear con-
straint), and ξ is the update of t (given by an affine
mapping).

• I(�) ⊆ Rn is an invariant for all locations �.

An illustrative example is given by the hybrid au-
tomaton for a thermostat depicted in Figure 1. Here,
the temperature is represented by the continuous vari-
able x. In the discrete location corresponding to the
heater being off, the temperature falls according to the
flow condition ẋ = −0.1x, while when the heater is on,
the temperature increases according to the flow condi-
tion ẋ = 5−0.1x. The discrete transitions state that the
heater may be switched on when the temperature falls
below 19 degrees, and switched off when the tempera-
ture is greater than 21 degrees. Finally, the invariants
state that the heater can be on (off) only if the temper-
ature is not greater than 22 degrees (not less than 18
degrees).

Off
ẋ = −0.1x
x≥ 18

On
ẋ = 5−0.1x

x≤ 22
x > 21

x < 19
x = 20

Figure 1: Thermostat hybrid automaton

Planning is an AI technology that seeks to select
and organise activities in order to achieve specific goals
(Nau, Ghallab, and Traverso 2004). A planner uses a
domain model, describing the actions through their pre-
and post-conditions, and an initial state together with a
goal condition. It then searches for a trajectory through
the induced state space, starting at the initial state and
ending in a state satisfying the goal condition. In richer
models, such as hybrid systems, the induced state space

can be given a formal semantics as a timed hybrid au-
tomaton, which means that a plan can synchronise ac-
tivities between controlled devices and external events.

2.1 PDDL+ Planning
Definition 2 (Planning Instance) A planning instance
is a pair I = (Dom,Prob), where Dom = (Fs,Rs,As,
Es,Ps,arity) is a tuple consisting of a finite set of func-
tion symbols Fs, a finite set of relation symbols Rs, a fi-
nite set of (durative) actions As, a finite set of events Es,
a finite set of processes Ps, and a function arity map-
ping all symbols in Fs∪Rs to their respective arities.
The triple Prob = (Os, Init,G) consists of a finite set

of domain objects Os, the initial state Init, and the goal
specification G.

Following (Bogomolov et al. 2014), for a given plan-
ning instance I, a state of I consists of a discrete compo-
nent, described as a set of propositions P called Boolean
fluents, and a numerical component, described as a
set of real variables v called numerical fluents. In-
stantaneous actions are described through preconditions
(which are conjunctions of propositions in P and/or nu-
merical constraints over v, and define when an action
can be applied) and effects (which define how the ac-
tion modifies the current state). Instantaneous actions
and events are restricted to the expression of discrete
change. Events have preconditions as for actions, but
they are used to model exogenous change in the world,
therefore they are triggered as soon as the preconditions
are true. A process is responsible for the continuous
change of variables, and is active as long as its precon-
ditions are true. Durative actions have three sets of pre-
conditions, representing the conditions that must hold
when it starts, the invariant that must hold throughout
its execution and the conditions that must hold at the
end of the action. Similarly, a durative action has three
sets of effects: effects that are applied when the action
starts, effects that are applied when the action ends and
a set of continuous numeric effects which are applied
continuously while the action is executing.

Definition 3 (Plan) A plan for a planning instance I =
((Fs,Rs,As,Es,Ps,arity),(Os, Init,G)) is a finite set of
triples (t,a,d) ∈ R∗ × As × R∗, where t is a timepoint,
a is an action and d is the action duration.

Note that processes and events do not appear in a plan,
as they are not under the direct control of the planner.

2.2 Answer Set Programming
Let Σ be a signature containing constant, function and

predicate symbols. Terms and atoms are formed as in
first-order logic. A literal is an atom a or its classical
negation ¬a. A rule is a statement of the form:

h← l1, . . . , lm,not lm+1, . . . ,not ln (1)

where h and li’s are literals and not is the so-called
default negation. The intuitive meaning of the rule is
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that a reasoner who believes {l1, . . . , lm} and has no rea-
son to believe {lm+1, . . . , ln}, has to believe h. The for-
mal semantics, defined in terms of models of a set of
rules, is given later. We call h the head of the rule,
and {l1, . . . , lm,not lm+1, . . . ,not ln} the body of the rule.
Given a rule r, we denote its head and body by head(r)
and body(r), respectively. A rule with an empty body is
called a fact, and indicates that the head is always true.
In that case, the connective ← is often dropped.

A program is a pair 〈Σ,Π〉, where Σ is a signature and
Π is a set of rules over Σ. Often we denote programs by
just the second element of the pair, and let the signature
be defined implicitly.

A set A of literals is consistent if no two complemen-
tary literals, a and ¬a, belong to A. A literal l is satis-
fied by a consistent set of literals A (denoted by A |= l)
if l ∈ A. If l is not satisfied by A, we write A �|= l. A
set {l1, . . . , lk} of literals is satisfied by a set of literals A
(A |= {l1, . . . , lk}) if each li is satisfied by A.

Programs not containing default negation are called
definite. A consistent set of literals A is closed under
a definite program Π if, for every rule of the form (1)
such that the body of the rule is satisfied by A, the head
belongs to A. This allows us to state the semantics of
definite programs.

Definition 4 A consistent set of literals A is an answer
set of definite program Π if A is closed under all the
rules of Π and A is set-theoretically minimal among the
sets closed under all the rules of Π.

To define answer sets of arbitrary programs, we in-
troduce the reduct of a program Π with respect to a set
of literals A, denoted by ΠA. The reduct is obtained
from Π by: (1) deleting every rule r such that l ∈ A for
some expression of the form not l from the body of r,
and (2) removing all expressions of the form not l from
the bodies of the remaining rules. The semantics of ar-
bitrary ASP programs can thus be defined as follows.

Definition 5 A consistent set of literals A is an answer
set of program Π if it is an answer set of ΠA.

To simplify the programming task, variables (identi-
fiers with an uppercase initial) are allowed in ASP pro-
grams. A rule containing variables (a non-ground rule)
is viewed as a shorthand for the set of its ground in-
stances, obtained by replacing the variables by all pos-
sible ground terms. Similarly, a non-ground program is
viewed as a shorthand for the program consisting of the
ground instances of its rules.

There are also shorthands, which we introduce infor-
mally to save space. A rule whose head is empty is
called denial, and states that its body must not be satis-
fied. A choice rule has a head of the form

λ{m(�X) : Γ(�X)}μ

where �X is a list of variables, λ , μ are non-negative
integers, and Γ(�X) is a set of literals that may include
variables from �X . A choice rule intuitively states that,
in every answer set, the number of literals of the form
m(�X) such that Γ(�X) is satisfied must be between λ and
μ . If not specified, λ , μ default, respectively, to 0, ∞.
For example, given a relation q defined by {q(a),q(b)},
the rule:

1{p(X) : q(X)}2.

intuitively identifies three possible sets of conclusions:
{p(a)}, {p(b)}, and {p(a), p(b)}.

2.3 Constraint ASP
CASP integrates ASP and Constraint Programming

(CP) in order to deal with continuous dynamics. In this
section we provide an overview of CP and of its inte-
gration in CASP.

The central concept of CP is the Constraint Satisfac-
tion Problem (CSP) (Rossi, van Beek, and Walsh 2006),
which is formally defined as a triple 〈X ,D,C〉, where
X = {x1, . . . ,xn} is a set of variables, D = {D1, . . . ,Dn}
is a set of domains, such that Di is the domain of vari-
able xi, andC is a set of constraints. A solution to a CSP
〈X ,D,C〉 is a complete assignment (i.e. where a value
from the respective domain is assigned to each variable)
satisfying every constraint from C.

There is currently no widely accepted, standard-
ized definition of CASP. Multiple definitions have been
given in the literature (Ostrowski and Schaub 2012a;
Mellarkod, Gelfond, and Zhang 2008a; Baselice, Bon-
atti, and Gelfond 2005; Balduccini 2009). Although
largely overlapping, these definitions are all somewhat
distinct from each other.

To ensure generality of our results, we introduce a
simplified definition of CASP, defined next, which cap-
tures the common traits of the above approaches. The
main results of this paper will be given using our sim-
plified definition of CASP. Later, in Section 4, we intro-
duce a specific CASP language to discuss the use case
and the experimental results.
Syntax. In order to accommodate CP constructs, the

language of CASP extends ASP by allowing numeri-
cal constraints of the form x �� y, where ��∈ {<,≤,
=, �=,≥,>}, and x and y are numerical variables1 or
standard arithmetic terms possibly containing numeri-
cal variables, numerical constants, and ASP variables.
Numerical constraints are only allowed in the head of
rules.
Semantics. Given a numerical constraint c, let τ(c)

be a function that maps c to a syntactically legal ASP
atom and τ−1 be its inverse. We say that an ASP atom
a denotes a constraint c if a = τ(c). Function τ is ex-
tended in a natural way to CASP rules and programs.
Note that, for every CASP program Π, τ(Π) is an ASP
program.

1Numerical variables are distinct from ASP variables.
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Finally, given a set A of ASP literals, let γ(A) be the
set of ASP atoms from A that denote numerical con-
straints. The semantics of a CASP program can thus
be given by defining the notion of CASP solution, as
follows.

Definition 6 A pair 〈A,α〉 is a CASP solution of a
CASP program Π if-and-only-if A is an answer set of
τ(Π) and α is a solution to τ−1(γ(A)).

3 Encoding PDDL+ Models into CASP
Problems

In this section we describe our encoding of PDDL+
problems in CASP. Our approach is based on research
on reasoning about actions and change, and action
languages (Gelfond and Lifschitz 1993; Reiter 2001;
Chintabathina, Gelfond, and Watson 2005). It builds
upon the existing SAT-based (Kautz and Selman 1992)
and ASP-based planning approaches (Lifschitz 1999),
and extends them to hybrid domains.

In reasoning about actions and change, the evolution
of a domain over time is often represented by a transi-
tion diagram (or transition system) that represents states
and transitions between states through actions. Tra-
ditionally, in transition diagrams, actions are instanta-
neous, and states have no duration and are described by
sets of Boolean fluents. Sequences of states character-
izing the evolutions of the domain are represented as
a sequence of discrete time steps, identified by integer
numbers, so that step 0 corresponds to the initial state
in the sequence. We extend this view to hybrid domains
according to the following principles:
• Similarly to PDDL+, a state is characterized by

Boolean fluents and numerical fluents.
• The flow of actual time is captured by the notion

of global time (Chintabathina, Gelfond, and Watson
2005). States have a duration, given by the global
time at which a state begins and ends. Intuitively,
this conveys the intuition that time flows “within” the
state.

• The truth value of Boolean fluents only changes upon
state transitions. That is, it is unaffected by the flow
of time “within” a state. On the other hand, the value
of a numerical fluent may change within a state.

• The global time at which an action occurs is identi-
fied with the end time of the state in which the action
occurs.

• Invariants are checked at the beginning and at the end
of every state in which durative actions and processes
are in execution. Thus, in order to guarantee sound-
ness we exploit a discretize and validate approach.
Next, we describe the CASP formalization of

PDDL+ models. We begin by discussing the correspon-
dence between global time and states, and the repre-
sentation of the values of fluents and of occurrences of
actions.

The global time at which the state at step i begins is
represented by numerical variable start(i). Similarly,
the end time is represented by end(i). The truth value
of Boolean fluent f at discrete time step i is represented
by literal holds( f , i) if f is true and by ¬holds( f , i) oth-
erwise. For every numerical fluent n, we introduce two
numerical variables, representing its value at the begin-
ning and at the end of time step i. The variables are
v initial(n, i) and v f inal(n, i), respectively. The occur-
rence of an action a at time step i is represented by an
atom occurs(a, i).

Additive fluents, whose value is affected by in-
crease and decrease statements of PDDL+, are repre-
sented by introducing numerical variables of the form
v(contrib(n,s), i), where n is a numerical fluent, s is a
constant denoting a source (e.g., the action that causes
the increase or decrease), and i is a time step. The ex-
pression denotes the amount of the contribution to flu-
ent n from source s at step i. Intuitively, the value of
n at the end of step i (encoded by numerical variable
v f inal(n, i)) is calculated from the values of the indi-
vidual contributions. Next, we discuss the encoding of
the domain portion of a PDDL+ problem.

3.1 Domain Encoding
In the following discussion, ASP variables I, I1, I2

denotes time steps.
Actions. The encoding of the preconditions of ac-

tions varies depending on their type. Preconditions on
Boolean fluents are encoded by means of denials. For
example, a denial:

← holds(unavail(tk1), I),occurs(re f uel with(tk1), I).

states that refuel tank tk1 must be available for the cor-
responding refuel action to occur. Preconditions on nu-
merical fluents are encoded by means of numerical con-
straints on the corresponding numerical variables. For
example, a rule

v f inal(height(ball), I) > 0 ←
occurs(drop(ball), I).

states that, if drop(ball) is selected to occur, then the
height of the ball is required to be greater than 0 in the
preceding state.

The effects of instantaneous actions on Boolean flu-
ents are captured by rules of the form:

holds( f , I+1) ← occurs(a, I).

where f is a fluent and a is an action. The rule states
that f is true at the next time step I + 1 if the action
occurs at (the end of) step I. The effects on numerical
fluents are represented similarly, but the head of the rule
is replaced by a numerical constraint. For example, the
rule:
v initial(height(ball), I+1) = 10 ←

occurs(li f t(ball), I).

states the action of lifting the ball causes its height to be
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10 at the beginning of the state following the occurrence
of the action. If the action increases or decreases the
value of a numerical fluent, rather than setting it, then
a corresponding variable of the form v(contrib(n,s), i)
is used in the numerical constraint. The link between
contributions and numerical fluent values is established
by axioms described later in this section.

Durative actions. A durative action d is encoded as
two instantaneous actions, start(d) and end(d). The
start (end) preconditions of d are mapped to precon-
ditions of start(d) (end(d)). The overall conditions
are encoded with denials and constraints, as described
above in the context of preconditions. Start (end) ef-
fects are mapped to effects of start(d) and end(d) ac-
tions. Additionally, start(d) makes fluent inprogr(d)
true. The continuous effects of d are made to hold in
any state in which inprogr(d) holds. For example, if
a re f uel action causes the level of fuel in a tank to in-
crease linearly with the flow of time, its effect may be
encoded by:

v(contrib( f level,re f uel), I) = end(I)− start(I) ←
holds(inprogr(d), I).

The above rule intuitively states that, at the end of any
state in which d is in progress, the fuel level increases
proportionally to the duration of the state. The value
of the fluent is updated from its set of contributions S
by the general constraint, shown next, which applies to
every fluent F :

v f inal(F, I) = v initial(F, I)+∑s∈S v(contrib(F,s), I).

The fact that the value of numerical fluents stays the
same by default throughout the time interval associated
with a state is modeled by a rule:

v f inal(F, I) = v initial(F, I) ← not ab(F, I).

which applies to every numerical fluent F . Intuitively,
this rule must not be applicable when the value of F is
being changed by an action, process, or event. This is
enforced by adding a rule that makes ab(F, I) true. For
example, for a durative action d that affects a numerical
fluent f , the encoding includes a rule:

ab( f , I) ← holds(inprogr(d), I).

In a similar way, the contribution to a numerical fluent
by every source is assumed to be 0 by default. This is
guaranteed by the rule:

v(contrib(F,S), I) = 0) ← not ab(F, I).

To keep track of the duration of a durative action when
the action spans multiple time steps, a rule records the
global time at which d begun:

stime(d) = end(I) ← occurs(start(d), I).

Action end(d) is modeled so that it is automatically
triggered after start(d). Finding the time at which the
end action occurs, both in terms of time step and global

time, is part of the constraint problem to be solved. The
following rule:

1{occurs(end(d), I2) : I2 > I1}1 ←
occurs(start(d), I1).

ensures that end(d) will be triggered at some timepoint
following start(d). Finally, requirements on the du-
ration of durative actions are encoded using numerical
constraints: if the PDDL+ problem specifies that the du-
ration of d is δ , the requirement is encoded by a rule:

end(I)− stime(d) = δ ← occurs(end(d), I).

Intuitively, any CASP solution of the corresponding
program will include a specification of when end(d)
must occur, both in terms of time step and global time.

Processes and Events. The encoding of processes
and events follows the approach outlined earlier, respec-
tively, for durative and instantaneous actions. However,
their triggering is defined by PDDL+’s must semantics,
which prescribes that they are triggered as soon as their
preconditions are true. In CASP, this is captured by a
choice rule combined with numerical constraints. Intu-
itively, when the Boolean conditions of the process are
satisfied, the choice rule states the process will start un-
less it is inhibited by unsatisfied numerical conditions.
Constraints enforced on the numerical conditions cap-
ture the latter case. Consider a process correspond-
ing to a falling object, with preconditions ¬held and
height > 0. The choice rule:

1{occurs(start( f alling), I),
is f alse(height > 0, I)}1 ← holds(¬held, I).

entails two possible, equally likely, outcomes: the ob-
ject will either start falling, or be prevented from doing
so by the fact that condition height > 0 is false. The
second outcome is possible only if the height is indeed
not greater than 0, which is enforced by the constraint:

v f inal(height, I) ≤ 0 ← is f alse(height > 0, I).

Given an arbitrary process, the corresponding choice
rule lists an atom is f alse(·, I) for every numerical con-
dition, and the encoding includes a constraint on the
value of v f inal(n, I) corresponding to the complement
of that condition. The treatment of events is similar.
The encoding is completed by the following statements:

start(I+1) = end(I).

v initial(F, I+1) = v f inal(F, I).

holds(F, I+1) ← holds(F, I),not holds(¬F, I+1).
holds(¬F, I+1) ← holds(¬F, I),not holds(F, I+1).

The first rule ensures that there are no gaps between the
time intervals associated with consecutive states. The
others handle fluent propagation from a state to the next.
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3.2 Problem Encoding
The problem portion of the PDDL+ problem is en-

coded as follows.
Initial state. The encoding of the initial state consists

of a set of rules specifying the values of fluents in P∪ v
at step 0.
Goals. The encoding of a goal consists of a set of de-

nials on Boolean fluents and of constraints on numerical
fluents, obtained similarly to the encoding of precondi-
tions of actions, discussed earlier.

Given a PDDL+ planning instance I, by Π(I) we de-
note the CASP encoding of I. Next, we turn our atten-
tion to the planning task.

3.3 Planning Task
Our approach to planning leverages techniques from

ASP-based planning (Lifschitz 2002; Balduccini, Gel-
fond, and Nogueira 2006). The planning task is speci-
fied by the planning module, M, which consists of the
single rule:

{occurs(A, I),occurs(start(D), I)}.
where A,D are variables ranging over instantaneous ac-
tions and durative actions, respectively. The rule intu-
itively states that any action may occur (or start) at any
time step.

It can be shown that the plans for a given maximum
time step for a PDDL+ planning instance I are in one-to-
one correspondence with the CASP solutions of Π(I)∪
M. The plan encoded by a CASP solution A can be
easily obtained from the atoms of the form occurs(a, i)
and from the value assignments to numerical variables
start(i) and end(i).

It is also worth noting the level of modularity of our
approach. In particular, it is straightforward to perform
other reasoning tasks besides planning (e.g., a hybrid
of planning and diagnostics is often useful for applica-
tions) by replacing the planning module by a different
one, as demonstrated for example in (Balduccini and
Gelfond 2003b).

4 Case Study

For our case study, we have focused on a spe-
cific instance of CASP, called EZCSP (Balduccini 2009;
Balduccini and Lierler 2013). In EZCSP, numerical con-
straints are encoded as arguments of the special relation
required, e.g. required(start(I+ 1) = end(I)). Encod-
ings of the generator (Bogomolov et al. 2014) and car
domains (Bryce et al. 2015) were created as described
above, and the architecture of the EZCSP solver was ex-
panded to ensure soundness of the algorithm (see be-
low). The complete encodings are omitted due to space
considerations. Rather, to illustrate our approach, we
present a fragment of the encoding of process generate
from the generator domain, whose PDDL+ representa-
tion is shown in Figure 2. The fragment captures the
invariants and the change of fuel level. The process has

two continuous effects: it decreases the fuel level (the
expression (* #t 1) states that the change is con-
tinuous and linear with respect to time) and increases
the value of variable generator time, which keeps
track of how long the generator ran. The choice of gen-
erate was motivated by the fact that the representation
of processes is arguably one of the most challenging as-
pects of encoding PDDL+ in CASP. The invariant on
the maximum fuel level is encoded by two EZCSP rules
(atom tankcap(·) determines the capacity of the tank):

required(v initial( f uel level, I) ≤ TC) ←
tankcap(TC).

required(v f inal( f uel level, I) ≤ TC) ←
tankcap(TC).

The (negative) contribution to the generator’s fuel level
is modeled by:

required(v(contrib( f uel level,generate), I) =
−1∗ (end(I)− start(I))

) ← holds(inprogr(generate), I).

From an algorithmic perspective, the EZCSP solver

(:process generate
:parameters (?g - generator)
:condition
(and
(over all
(>= (fuelLevel ?g) 0)
)
(over all
(<= (fuelLevel ?g) (capacity ?g))
)
)
:effect
(and
(decrease (fuelLevel ?g) (* #t 1))
(increase (generator_time ?g)

(* #t 1))
)

)

Figure 2: PDDL+ process from the Generator domain

computes CASP solutions of a program Π by iteratively
(1) using an ASP solver to find an answer set A of Π,
and (2) using a constraint solver to find the solutions of
the CSP encoded by A. To account for the discretize and
validate approach mentioned earlier, we have extended
the EZCSP solver with a validation step. In the extended
architecture, shown in Figure 3, if step (2) is successful,
the tool VAL is called to validate the plan before return-
ing it. If VAL finds the plan not to be valid, it returns
which invariant was violated and at which timepoint. If
that happens, the expansion process occurs, where the
encoding is expanded with (1) new numerical variables
that represent the value of the involved numerical flu-
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ents at that timepoint, and (2) numerical constraints en-
forcing the invariant on them. The CASP solutions for
the new encoding are computed again2, and the process
is iterated until no invariants are violated.

To illustrate the expansion process, let us consider a
durative action d causing fluent f to increase by ι(Δ),
where Δ is elapsed time. Suppose invariant f < c is vi-
olated at a timepoint t that falls within the time interval
associated with time step i. The encoding is then ex-
panded by:

required(v′(F, i) =
v initial(F, i)+ v′(contrib(F,s), i)).

required(
v′(contrib(F,s), i)) = ι(t− start(i))

) ← holds(inprog(d), i).

required(v′(F, i) < c).

5 Experimental Results

We performed an empirical evaluation of the perfor-
mance achieved with our approach. The comparison
was with the state-of-the-art PDDL+ planners dReal
(Bryce et al. 2015) and UPMurphi. Although SpaceEx
(Bogomolov et al. 2014) is indeed a related approach,
it was not included in the preliminary comparison be-
cause it is focused on proving only plan non-existence.
The experimental setup used a virtual machine running
in VMWare Workstation 12 on a computer with an i7-
4790K CPU at 4.00GHz. The virtual machine was
assigned a single core and 4GB RAM. The operating
system was Fedora 22 64 bit. The version of EZCSP
used was 1.7.43, with gringo 3.0.54 and clasp 3.1.35

as grounding tool and ASP solver, and B-Prolog 7.56

and GAMS 24.5.77 as constraint solvers. The former
was used for all linear problems and the latter for the
non-linear ones. The other systems used were dReal
2.15.118, configured as suggested by its authors, and
UPMurphi 3.0.29.

The experiments were conducted on the linear and
non-linear versions of the generator and car domains.

The comparison with dReal was based on finding a
single plan with a given maximum time step, as dis-
cussed in (Bryce et al. 2015). The results are sum-
marized in Table 1. The comparison with UPMurphi

2Only the solutions of the CSP need to be recomputed.
3http://mbal.tk/ezcsp/
4http://sourceforge.net/projects/

potassco/files/gringo/
5https://sourceforge.net/projects/

potassco/files/clasp/
6http://www.picat-lang.org/bprolog/
7http://www.gams.com/
8http://dreal.github.io/
9https://github.com/gdellapenna/

UPMurphi/

was based on the cumulative times for finding a sin-
gle plan by progressively increasing the maximum time
step. The results are reported in Table 2. In the ta-
bles, entries marked “-” indicate a timeout (threshold
600 sec). Entries marked “*” indicate missing entries
due to licensing limitations (see below). It should be
noted that none of the instances triggered the expansion
process described in the previous section, given that all
plans were found to be valid by VAL. Next, we discuss
the experimental results obtained for each domain.

Generator. Our encoding uses Torricelli’s law (v =√
2gh) to model the transfer of liquid. This is a more

complex model than the one used in the dReal encod-
ing, but is more physically accurate. The instances were
generated by increasing the number of refuel tanks from
1 to 8. The CASP encoding was as discussed above, and
included a single, encoding-level heuristic stating that
action start(generate) must occur during the first state
transition and at timepoint 0. (dReal includes multiple
heuristics that are hard-coded in the solver.)

The execution times for EZCSP for a fixed maximum
time step (Table 1) ranged between 0.28 sec and 261.89
sec for the linear variant, and between 0.72 sec and
256.59 sec for the non-linear one. The non-linear vari-
ant was only tested up to instance 7 because of limita-
tions of the free version of GAMS. In both the linear
and non-linear case, the EZCSP encoding was substan-
tially faster than dReal. Especially remarkable is the
fact that, in both cases, dReal timed out on all instances
except for the first one.

The cumulative times for EZCSP (Table 2) ranged be-
tween 0.89 sec and 292.22 sec for the linear case, with
no timeouts. In the non-linear case, the times were be-
tween 1.44 sec and 267.11 sec, with a timeout in in-
stance 8. UPMurphi did not scale as well. In the lin-
ear case, only instances 1-3 were solved, and resulted
in times ranging between 2.02 sec and 91.80 sec. The
speedup yielded by EZCSP reached about one order of
magnitude before UPMurphi began to time out. In the
non-linear case, UPMurphi timed out in all instances.

Car. The version of the car domain we used is the
same that was adopted in (Bryce et al. 2015). In this
domain, a vehicle needs to travel a certain goal distance
from its start position. The vehicle is initially at rest.
Two actions allow the vehicle to accelerate and to decel-
erate. The goal is achieved when the vehicle reaches the
desired distance and its speed is 0. In the linear variant,
accelerating increases the velocity by 1 and decelerating
decreases it by 1. In the non-linear variant, accelerating
increases the acceleration by 1, and similarly for decel-
erating. The velocity is influenced by the acceleration
according to the usual laws of physics. The calculation
also takes into account a drag factor equal to 0.1 · v2.
The instances were obtained by progressively increas-
ing the range of allowed accelerations (velocities in the
linear version) from [−1,1] to [−8,8]. The CASP en-
coding leveraged no heuristics and, as discussed earlier,
the underlying solvers are completely general-purpose.
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Figure 3: Extended Solver Architecture

Domain Solver 1 2 3 4 5 6 7 8
Gen linear EZCSP 0.28 1.03 4.21 7.25 27.08 43.42 54.83 261.89

dReal 3.73 - - - - - - -
Gen non-linear EZCSP 0.72 1.62 0.68 1.05 87.95 256.59 238.93 *

dReal 8.18 - - - - - - -
Car linear EZCSP 0.32 0.31 0.32 0.32 0.32 0.30 0.31 0.31

dReal 1.11 1.11 1.15 1.14 1.19 1.13 1.14 1.19
Car non-linear EZCSP 0.71 0.68 0.29 0.39 0.25 0.25 0.26 0.84

dReal 58.21 162.60 - - - - - -

Table 1: Fixed time step. Results in seconds. Problem instances refer to number of tanks (generator) and max
acceleration (car).

Domain Solver 1 2 3 4 5 6 7 8
Gen linear EZCSP 0.89 1.92 5.46 9.93 30.79 50.25 67.97 292.22

UPMurphi 2.02 12.75 91.80 - - - - -
Gen non-linear EZCSP 1.44 2.44 13.10 53.70 88.58 267.11 250.03 -

UPMurphi - - - - - - - -
Car linear EZCSP 1.01 0.98 1.04 0.99 0.91 0.85 0.88 0.83

UPMurphi 0.40 0.38 0.38 0.38 0.41 0.39 0.40 0.41
Car non-linear EZCSP 2.32 1.49 1.14 1.85 1.14 1.18 1.06 2.13

UPMurphi 184.88 - - - - - - -

Table 2: Cumulative times. Results in seconds. Problem instances refer to number of tanks (generator) and max
acceleration (car).

As shown in Table 1, the execution times for EZCSP
were around 0.30 sec for the linear case, and between
0.25 sec and 0.84 sec for the non-linear one. These
times are about 3 times faster than dReal in the linear
case and orders of magnitude better in the non-linear
case, where dReal times out in instances 3-8. The scal-

ability of EZCSP appears to be excellent, with no signif-
icant growth.

The comparison with UPMurphi on cumulative times
shows some interesting behavior. In the linear case,
EZCSP is, in fact, about 2.5 times slower than UPMur-
phi. The former has times ranging between 0.83 sec
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and 1.04 sec, while UPMurphi’s times are between 0.38
sec and 0.41 sec. On the other hand, EZCSP outper-
forms UPMurphi in the non-linear case, with all in-
stances solved in times between 1.06 sec and 2.32 sec,
while UPMurphi only solves the first instance with a
time of 184.88 sec, i.e., nearly 2 orders of magnitude
slower than EZCSP.

We believe the empirical results demonstrate the
promise of our approach. From the perspective of the
underlying solving algorithms, it is worth stressing that
the better results of EZCSP over dReal are especially re-
markable given that the latter employs planning-specific
heuristics, while the EZCSP solver and its components
are not specialized for a given reasoning task.

6 Conclusions

In this paper we have presented a new approach to
PDDL+ planning based on CASP languages that pro-
vides a solid basis for applying logic programming to
PDDL+ planning. Experiments on well-known do-
mains, some involving non-linear continuous change,
have shown that our approach outperforms comparable
state-of-the-art PDDL+ planners.

Although other CASP solvers exist, EZCSP is, to the
best of our knowledge, the only one supporting both
non-linear constraints, required for modeling non-linear
continuous change, and real numbers.

ACSOLVER (Mellarkod, Gelfond, and Zhang 2008b)
implements an eager approach to CASP solving, where
(in contrast to the lazy approach of EZCSP) ASP and
CSP solving are tightly coupled and interleaved. It does
not support non-linear or global constraints, but allows
for real numbers.

CLINGON (Ostrowski and Schaub 2012b) is another
tightly coupled CASP solver. The available implemen-
tation, however, is not broadly applicable to the kinds
of problems considered in this paper. In fact, CLINGON
does not support non-linear constraints and real num-
bers. On the other hand, differently from EZCSP, it al-
lows for numerical constraints both in the head of rules
and in their bodies.

A high level view of the languages and solving tech-
niques employed by these solvers can be found in (Lier-
ler 2014).

Finally, it is also worth noting that basing our ap-
proach on CASP makes it amenable to be expanded
to handle uncertainty about the initial situation or the
effects of actions (e.g., (Morales, Tu, and Son 2007)).
Another interesting possibility is the use of PDDL+ do-
main descriptions, translated to CASP, for both plan-
ning and diagnosis, along the lines of the approach ap-
plied in (Balduccini and Gelfond 2003a) to ASP domain
descriptions.
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Abstract
In this work, we tackle a bi-objective version of the
job shop scheduling problem where the objectives to
be minimized are the total weighted tardiness and the
energy cost. Taking into account energy costs in the
schedules is very interesting in real production envi-
ronments, as the increasing energy prices and require-
ments to reduce carbon footprint are an important issue
nowadays for sustainable manufacturing. We propose
a multi-objective memetic algorithm that hybridizes
an enhanced version of the NSGA-II dominance-based
evolutionary algorithm with a multi-objective local
search based on hill-climbing. Given the non-regularity
of the energy consumption objective function, we de-
sign a low-polynomial energy post-optimization proce-
dure which attempts to reduce the energy cost of a so-
lution without increasing its total weighted tardiness.
We report results from an experimental study where we
analyse our method and demonstrate that the proposed
post-optimization procedure adds a significant improve-
ment in its performance, obtaining results that outper-
form those of the state-of-the-art.

1 Introduction
The Job Shop Scheduling Problem (JSP) has been a research
topic over the last decades due to the fact that it is a simple
model of many real production processes.

The importance of due date related performance criteria
has been widely recognized in many real production envi-
ronments. A survey reported in (Panwalkar, Dudek, and
Smith 1973) has found that meeting due dates is identified as
the most important scheduling objective in competitive mar-
kets. The total weighted tardiness (TWT) is a due date re-
lated objective that can assign different priorities to different
operations, and because of its usefulness, its minimization is
the subject of a large amount of literature in scheduling.

In particular, the JSP with TWT minimization was first
considered in (Singer and Pinedo 1998), (Singer and Pinedo
1999) and (Kreipl 2000). The first paper proposes an exact
branch and bound algorithm, the second proposes a shifting
bottleneck algorithm and the third one proposes a large step
random walk heuristic. Other approaches include the ge-
netic local search given in (Essafi, Mati, and Dauzère-Pérès

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2008), the local search proposed in (Mati, Dauzere-Peres,
and Lahlou 2011), the hybrid shifting bottleneck-tabu search
heuristic found in (Bülbül 2011), or the genetic algorithm
combined with tabu search of (González et al. 2012). Also,
in (Kuhpfahl and Bierwirth 2016) some sophisticated and
time-consuming neighborhood structures are proposed.

The increasing price of energy, as well as the emission re-
duction needs, are forcing manufacturing enterprises to put
more and more efforts towards the reduction of consumption
and the study of energy-saving opportunities and best prac-
tices. In particular, the job shop with energy considerations
is receiving an increasing attention. Existing approaches in-
clude the genetic algorithm proposed in (Liu et al. 2014)
which tries to minimize both the weighted tardiness and the
energy consumption in a job shop, or the genetic-simulated
annealing method of (Dai et al. 2013), that solves a flexible
flow shop scheduling problem with energy considerations.

Clearly, when the improvement in energy consumption
must not be obtained at the cost of losing performance qual-
ity in the solutions, we face a bi-objective scheduling prob-
lem. There is a growing interest in multi-objective optimiza-
tion for scheduling and, given its complexity, in the use of
metaheuristic techniques to solve these problems (Dabia et
al. 2013).

In the single-objective case, it is common to hy-
bridize evolutionary algorithms with local search to pro-
duce memetic algorithms, which benefit from the synergy
between their components to provide a better search capac-
ity. It is possible to find various multi-objective memetic al-
gorithms in the literature, some of them applied to manufac-
turing problems (Ishibuchi et al. 2009). However, according
to (Liefooghe et al. 2012), the number of multi-objective lo-
cal search algorithms proposed so far is still reduced. In fact,
the main difficulty in designing multi-objective memetic al-
gorithms is the implementation of the local search, which
essentially is a single-objective optimization technique.

In this paper we propose a memetic algorithm to minimize
both the TWT and the energy consumption in a job shop.
Our proposal hybridizes several techniques:

• A version of the NSGA-II dominance-based evolutionary
algorithm with a mechanism to penalize repeated individ-
uals in the population.

• A multi-objective local search based on hill-climbing.
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• A low-polynomial energy post-optimization procedure
which attempts to reduce the energy cost of a solution.

• An optimal linear programming approach to further re-
duce the energy cost of a solution.

The effectiveness of our method is analysed in the exper-
imental study, and its results are compared with those of
the state-of-the-art in this problem, which is the NSGA-
II proposed in (Liu et al. 2014). We have to remark that,
even though our proposal is also a NSGA-II algorithm, its
crossover operator and replacement strategy are different,
and moreover it is hybridized with additional components
that lead to a much better performance, as we will see in the
experimental study.

The remainder of the paper is organized as follows. In
Section 2 we formulate the problem. In Section 3 we define
the proposed multi-objective memetic algorithm. In Section
4 we report the results of the experimental study, and finally
Section 5 summarizes the main conclusions of this paper.

2 Problem formulation
In the job shop scheduling problem, a set of N jobs, J =
{J1, . . . , JN}, are to be processed on a set of M machines
or resources, R = {R1, . . . , RM}. Each job Ji consists
of a sequence of ni operations (θi1, . . . , θini

), where each
operation requires the uninterrupted and exclusive use of a
given resource during all its processing time. The objective
is to minimize some function of the completion times of the
jobs, subject to the following constraints: (i) the sequence of
machines for each job is prescribed, and (ii) each machine
can process at most one operation at a time. Jobs may also
have a due date, that is, a time before which all operations of
the job should be completed, and a weight, which represents
its relevance. In order to simplify expressions, instead of
using θij , in the following we are denoting operations by a
single letter whenever possible. We denote by:
• Ω the set of operations
• di the due-date of job Ji

• wi the weight of job Ji

• P idle
k the idle power level of machine Rk

• pu the processing time of operation u

• su the starting time of operation u that needs to be deter-
mined
The JSP has two binary constraints: precedence and ca-

pacity. Precedence constraints, defined by the sequential
routings of the operations within a job, translate into lin-
ear inequalities of the type: su + pu ≤ sv , where v is the
next operation to u in the job sequence. Capacity constraints
that restrict the use of each resource to only one operation
at a time translate into disjunctive constraints of the form:
su + pu ≤ sv ∨ sv + pv ≤ su, where u and v are operations
requiring the same machine.

The objective here is to obtain a feasible schedule, i.e.
a starting time for each one of the operations such that all
constraints are satisfied.

We are minimizing two objective functions: the total
weighted tardiness (TWT) and the energy consumption.

The TWT is the weighted cost of the jobs exceeding its
due-dates, and is defined as follows∑

i=1,...,N

wiTi (1)

Ti is the tardiness of the job i, given by

Ti = max{Ci − di, 0} (2)

where Ci is the completion time of job i.
The energy consumption model is taken from (Liu et al.

2014), where it is proven that the objective to reduce the total
electricity consumption of a job shop can be converted to re-
duce the total non-processing energy (NPE), i.e. the amount
of time a machine is on and not executing a job. Notice that
each machine must process a fixed set of operations, and all
these operations have fixed durations, and therefore for any
schedule the processing energy must be equal.

Hence, the objective function can be set as the sum of all
the NPE consumed by all the machines in a job shop to carry
out a given job schedule. Then, the total NPE is defined as∑

k=1,...,M

TEMk (3)

where TEMk is the NPE of machine Rk, given by

TEMk = P idle
k × (sωk

+ pωk
− sαk

−
∑

u∈Mk

(pu)) (4)

where Mk is the set of operations that must be executed in
the resource Rk, and αk and ωk are the first and the last op-
eration respectively on machine Rk in the considered sched-
ule.

The TWT is a regular performance measure (Baker 1974),
which means that its value can be increased only by increas-
ing the completion time of a job. To minimize a regular
measure, it is sufficient to only consider “left-shift sched-
ules”; i.e. schedules built from a partial ordering of the op-
erations, so that each operation starts as soon as possible
after all the preceding operations in the partial ordering. On
the other hand, the NPE is a non-regular performance mea-
sure. Notice that, given a schedule, the NPE of a machine
Rk is reduced if we are able to delay the starting time of its
first operation (sαk

) without increasing the starting time of
its last operation (sωk

).

2.1 The disjunctive graph model representation
The disjunctive graph is a common representation in
scheduling, its exact definition depending on the particu-
lar problem. For our problem we use a similar represen-
tation as other papers in the literature (see (Kreipl 2000;
Mati, Dauzere-Peres, and Lahlou 2011; Essafi, Mati, and
Dauzère-Pérès 2008; González et al. 2012; Kuhpfahl and
Bierwirth 2016)). In particular, we propose a directed graph
G = (V,A ∪ E). Each node in set V represents an op-
eration of the problem, with the exception of the dummy
nodes start and endi 1 ≤ i ≤ N , which represent fictitious
operations that do not require any machine. Arcs in A are
called conjunctive arcs and represent the precedence con-
straints between the operations of each job. Additionally,
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Figure 1: A feasible schedule to a problem with 3 jobs and
3 machines

there are arcs from node start to the first operation of each
job, and also arcs from the last operation of each job i to its
corresponding node endi. Arcs in E are called disjunctive
arcs and represent capacity constraints. Set E is partitioned
into subsets Ei, with E = ∪j=1,...,MEj , where Ej corre-
sponds to resource Rj and includes two directed arcs (v, w)
and (w, v) for each pair v, w of operations requiring that re-
source. Each arc (v, w) in A and in E is weighted with the
processing time of the operation at the source node, pv (note
that pstart = 0 and pendi

= 0).

A feasible schedule S is represented by an acyclic sub-
graph of G: GS = (V,A ∪ H), where H = ∪j=1...MHj ,
Hj being a minimal subset of arcs of Ej defining a process-
ing order for all operations requiring Rj . Finding a solution
can thus be reduced to discovering compatible orderings Hj ,
or partial schedules, that translate into a solution graph GS

without cycles. Given a feasible schedule, PJv and SJv de-
note respectively the predecessor and successor of v in the
job sequence, and PMv and SMv the predecessor and suc-
cessor of v in its machine sequence. Figure 1 shows a so-
lution to a problem with 3 jobs and 3 machines; dotted arcs
belong to H , while continuous arcs belong to A.

The TWT of a schedule S is determined by a set of crit-
ical paths in GS . A critical path is defined as a largest cost
path from node start to a node endi 1 ≤ i ≤ N . The length
of this path is the completion time of the operation endi and
so it determines the contribution of job Ji to the solution
cost. Nodes and arcs in a critical path are also termed crit-
ical. A critical path may be represented as a sequence of
the form start, B1, . . . , Br, endi, 1 ≤ i ≤ N , where each
Bk, 1 ≤ k ≤ r, is a critical block, a maximal subsequence of
consecutive operations in the critical path requiring the same
machine. These concepts are of major importance for job
scheduling problems due to the fact that most formal prop-
erties, solution methods and neighborhood structures rely on
them. The neighborhood structure used in this paper relies
on reversing the processing order of operations in a criti-
cal block, as similarly done in (Van Laarhoven, Aarts, and
Lenstra 1992).

On the other hand, notice that this disjunctive graph rep-
resentation is not that useful for NPE minimization, as this
measure does not directly depend on finding largest cost
paths in a graph representation.

3 The multi-objective approach
To optimize the two objective functions defined in Section
2, we shall use a dominance-based approach. In general,
for a minimization problem with fi, i = 1, . . . , n objective
functions, a solution S is said to be dominated by another
solution S′, denoted S′ 	 S if and only if for each objec-
tive function fi, fi(S′) ≤ fi(S) and there exists at least
one objective function such that fi(S′) < fi(S). Our goal
will then be to find non-dominated solutions to our prob-
lem with respect to TWT and NPE. To achieve this, we pro-
pose a dominance-based hybrid method, combining a multi-
objective evolutionary algorithm with a multi-objective hill
climbing local search and a linear programming approach.

We have seen that the NPE is a non-regular objective
function. Some papers have already considered minimiz-
ing non-regular objectives in a job shop. As an example,
(Brandimarte and Maiocco 1999) tackles a single-objective
case and proposes to decompose the overall problem into
sequencing and timing subproblems. We follow a similar
approach, in the sense that we represent the solutions as per-
mutations in the genetic algorithm and in the local search
in order to solve the sequencing subproblem. To solve the
timing subproblem we introduce a low-polynomial energy
post-optimization procedure when evaluating each solution,
and also a more computationally expensive optimal linear
programming approach to further improve the NPE of the
final set of non-dominated solutions.

3.1 Multi-objective evolutionary algorithm
Our proposal is based on the well-known NSGA-II template
for a dominance-based evolutionary algorithm (Deb et al.
2002). Roughly speaking, an initial population Pop0 of
size populationSize is randomly created and evaluated and
then the algorithm iterates over numGenerations genera-
tions, keeping a set of non-dominated solutions. At each
iteration i a new population Off(Popi) is built from the cur-
rent one Popi by applying the genetic operators of selection,
crossover and mutation, and finally a replacement strategy is
applied to obtain the next generation Popi+1.

Representation Solutions are codified into chromosomes
using permutations with repetition, as introduced in (Bier-
wirth 1995) for the JSP. This is a permutation of the set of
operations, each being represented by its job number, which
represents a linear ordering compatible with precedence
constraints. For example, if we have a problem instance
with 3 jobs: J1 = {θ11, θ12}, J2 = {θ21, θ22, θ23, θ24},
J3 = {θ31, θ32, θ33}, then the ordering of operations π =
{θ21, θ11, θ22, θ31, θ23, θ32, θ33, θ24, θ12} is represented by
the chromosome v = (2 1 2 3 2 3 3 2 1).

Evaluating a chromosome A given chromosome is evalu-
ated by generating an associated schedule and then comput-
ing its TWT and NPE. To do this, each operation is sched-
uled using an insertion strategy following the sequence given
by the chromosome, which is a method commonly used
(Palacios et al. 2014). More precisely, given an operation u
that is to be scheduled, we define a feasible insertion inter-
val as a time interval [tS , tE ] in which its required machine
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Algorithm 1 The energy post-optimization procedure
Require: A problem instance Ins and a feasible schedule

(an ordering O and a set of starting times s)
k ← |Ω|
while k ≥ 1 do

a = O[k];
if a is the last operation processed in a machine then

s′a = sa;
else

if a is the last operation of its job then
j ← job of operation a;
s′a = min{max{dj , sa + pa}, s′SMa

} − pa;
else

s′a = min{s′SJa
, s′SMa

} − pa;
end if

end if
k ← k − 1;

end while
return The new set of starting times s′ for the ordering
O (the TWT is the same and the NPE is lower or equal)

is idle and such that u can be processed within that time in-
terval without violating precedence constraints. In our case,
this means that tS + pu ≤ tE , and tS ≥ sPJu

+ pPJu
(if u

is the first operation of its job, then sPJu
and pPJu

are taken
to be 0). Then, su is given the tS value of the earliest feasi-
ble insertion interval for u, and hence its completion time is
su + pu.

Energy post-optimization procedure The procedure de-
scribed before for evaluating a chromosome would be able
to produce a Pareto optimal schedule if the objective func-
tions were regular. However, as we have pointed in Section
2, the NPE is a non-regular objective function, and therefore
scheduling each operation as soon as possible may not be
the best option. For this reason, we propose an additional
energy post-optimization procedure that, given a schedule,
is able to reduce the NPE while not increasing the TWT.

Basically, the idea of this procedure is to delay all the
operations of each machine as much as possible, with the
exception of the last one, increasing the tardiness of none of
the jobs. The procedure is detailed in Algorithm 1. Notice
that, by not increasing the starting times of the last opera-
tion of each machine, we ensure that the resulting NPE after
applying the procedure is lower than or equal to the original
one. Furthermore, the TWT of the resulting solution is not
increased either, as the completion time of the last operation
of a job may only be delayed if it is lower than the due date,
and in this case it is at most delayed up to this due date.

This procedure is executed inside the solution evaluation
method, just after the schedule is built. Therefore, it is ap-
plied to evaluate every chromosome generated in the genetic
algorithm and every neighbor considered in the local search.

The time taken by adding this procedure to the scheduler
is quite reasonable; it increases by 25% the execution time
of the memetic algorithm, but at the same time the results
significantly improve, as we will see in Section 4.

Genetic operators The selection phase selects the chro-
mosomes that will undergo crossover and mutation, and is
based on a tournament strategy. In particular, we select
tournamentSize chromosomes at random and choose the
best one to be the first parent, according to non-domination
rank and crowding distance (see next section). Then, we se-
lect another tournamentSize chromosomes at random and
choose the best one to be the second parent. Finally, the
crossover operator is applied to these two parents with prob-
ability crossoverProb to obtain two offspring solutions.

For chromosome mating we have considered the Job Or-
der Crossover (JOX) (Bierwirth 1995). Given two parents,
JOX selects a random subset of jobs and copies their genes
to the offspring in the same positions as they are in the first
parent, then the remaining genes are taken from the second
parent so as to maintain their relative ordering. A second
offspring is generated inverting the role of the parents.

In order to preserve the diversity of individuals and pre-
vent the algorithm from getting stuck in local optima, a mu-
tation strategy is also introduced. Just after the crossover,
each offspring is mutated with probability mutationProb.
In particular we use the swap mutation operator, which
swaps two positions of the chromosome chosen at random.

Replacement strategy The replacement strategy estab-
lishes how population Popi of size populationSize and
population Off(Popi) that results from applying selection,
crossover and mutation to Popi are combined to generate
the new population Popi+1 for the next iteration of the
algorithm. Here we adopt a strategy based on the non-
dominated sorting approach with diversity preservation from
(Deb et al. 2002). Initially, for each individual j in the pool
Popi ∪ Off(Popi) a non-domination rank (rank(j)) and
a crowding distance (dist(j)) are calculated. The former
sorts the pool into different non-domination levels while the
latter estimates the density of solutions in the area of the
non-domination level where the individual lies. Population
Popi+1 is then formed by the best populationSize indi-
viduals from the pool Popi ∪ Off(Popi) according to the
lexicographical order defined by (rank, dist). That is, so-
lutions belonging to a lower (better) non-domination rank
are preferred and, between two solutions in the same non-
dominance level, we prefer the solution located in the less
crowded region.

In order to provide greater diversity to the algorithm,
we have included an additional step in the above strategy.
Specifically, we propose to start by removing from the pool
of individuals Popi ∪ Off(Popi) those which are repeated,
in the sense that there exists in the pool at least another indi-
vidual having identical values for all objective functions.

Only after this elimination is the above strategy based
on (rank, dist) applied. In the case that such elimination
causes the pool to contain less than populationSize indi-
viduals, all the non-repeated individuals pass onto the next
generation Popi+1, which is later completed with some of
the repeated individuals. To do that, we first remove the
repeated individuals that are in the pool of repeated indi-
viduals, and then the remaining ones are sorted again into
non-domination ranks and crowding distance, and the best
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repeated individuals according to (rank, dist) are selected.
If needed, these procedure is repeated until the pool contains
at least populationSize individuals.

3.2 Local search
Local search is often used in combination with other meta-
heuristics in such a way that the local search provides
exploitation while the other metaheuristic provides explo-
ration. As we have already mentioned in Section 1, one
of the most common problems when designing a multi-
objective memetic algorithm is choosing a suitable local
search method. There are some Pareto-based local searchers
in the literature, as for example PAES (Pareto Archived Evo-
lution Strategy) proposed in (Knowles and Corne 2000),
which starts from a single initial solution and performs the
selection based on dominance, keeping and returning an
archive of limited size of non-dominated solutions. The
Pareto Local Search proposed in (Paquete, Schiavinotto, and
Stützle 2007) is also an interesting alternative.

One inconvenience of these local searchers is that they
are too computationally costly to be combined with a genetic
algorithm (notice that the local search will be launched many
times during a single run). For this reason, we propose a
less time-consuming local search procedure that provides a
single (hopefully improved) output solution, what is called
“one-point iteration” in (Lara et al. 2010).

Another issue when applying local search to a multi-
objective setting is how to establish a selection criterion for
the best neighbor. In general, there is not a single “best”
neighbor, since the dominance relation 	 defines a partial
order. In the literature we can find different approaches
to this issue. For instance, in (Ishibuchi et al. 2009) and
(Jaszkiewicz 2003) the authors propose to scalarise the ob-
jective function vector to guide the search. Other authors
propose instead to define acceptance criteria based on a
dominance relation; for instance, in (Knowles and Corne
2000) the local search provides a set of candidate solutions
by keeping an archive of non-dominated ones.

In this paper we actually need a local search as fast and ef-
ficient as possible so it can be applied to every chromosome
generated by the genetic algorithm. To this end, we propose
a local search based on hill climbing in which the selection
of the neighbor is based on dominance but, at the same time,
considers the solutions in the current non-dominated set of
solutions of the genetic algorithm. Therefore, a number of
neighbors may be chosen, even if they do not dominate the
current solution, as long as they are actually interesting. In
particular, our procedure starts with a solution provided by
the genetic algorithm, and generates neighbors of the solu-
tion one by one, until it finds one neighbor that fulfills one
of the following conditions:

1. The neighbor dominates the current solution.

2. The neighbor would enter in the current set of non-
dominated solutions of the genetic algorithm (i.e. no so-
lution of the population dominates the neighbor and also
no solution has the exact same fitness values as the neigh-
bor), while the current solution would not enter.

Algorithm 2 Multi-objective hill climbing local search
Require: A problem instance Ins and a feasible schedule

S
S′ ← S;
continue ← True;
while continue = True do

NeighborSelected ← False;
N(S′) ← neighborhood of S′;
k ← 1;
while NeighborSelected = False and k ≤ |N(S′)|
do

S′′ ← N(S′)[k];
Evaluate S′′;
if S′′ dominates S′, or S′′ would enter in the current
set of non-dominated solutions of the genetic algo-
rithm and S′ would not then

NeighborSelected ← True;
end if
k ← k + 1;

end while
if NeighborSelected = False then

continue ← False
else

S′ ← S′′

end if
end while
return The (hopefully) improved solution S′ for Ins;

As soon as one such neighbor is found, the procedure
swaps the current solution for the newly found solution and
repeats the process. On the other hand, if no such neighbor
exists the procedure ends, returning the current solution.

Notice that the second condition is very useful so we can
select very interesting neighbors that may not dominate the
current solution. However, if the current solution already
would enter in the non-dominated set of solutions of the ge-
netic algorithm, we prefer to not deviate the search and limit
ourselves to dominating solutions.

The local search is detailed in Algorithm 2. We propose
combining it with the genetic algorithm described in Section
3.1. As this local search is actually not very time consuming,
it may be applied to all initial chromosomes and to all gen-
erated offsprings. Notice that this would not be reasonable
for other alternatives such as the Pareto Local Search (Pa-
quete, Schiavinotto, and Stützle 2007), given their greater
computational load.

After the local search is applied, the chromosome is re-
built from the improved schedule obtained by the local
search, so its characteristics can be transferred to subsequent
offsprings. This effect is known as Lamarckian evolution.

Neighborhood structure Several neighborhoods have
been proposed in the literature for the JSP, and most of them
rely on the concepts of critical path and critical block (see
Section 2.1). Here we adopt the neighborhood structure ini-
tially proposed in (Van Laarhoven, Aarts, and Lenstra 1992).
This structure is based on reversing critical arcs in a graph
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representation of a schedule S and exhibits some nice prop-
erties, in particular, it always generates feasible neighbors,
avoiding the need of repairing procedures.

In TWT minimization there is an added difficulty, as the
cost of a solution can be given by up to N critical paths. For
each node endi, a critical path from start to endi is consid-
ered whenever its cost is greater than the due date of job Ji,
di (González et al. 2012). The most computationally expen-
sive part of a local search is usually the neighbor evaluation.
In order to limit the computational burden of the local search
we opted to limit the number of neighbors, considering only
the critical path of the job Ji that contributes the most to the
TWT of the overall schedule. A similar idea was proposed in
(González et al. 2012). In summary, in our structure we con-
sider the neighbors created by reversing single critical arcs
in the critical path that contributes the most to the TWT.

Even if this structure is mainly designed to minimize the
TWT, we have empirically seen that most neighbors that im-
prove the TWT also improve the NPE at the same time.

3.3 The linear programming approach
The solution returned by the energy optimization procedure
described in Section 3.1 could be further improved in the
following way: keeping the processing ordering of the op-
erations on the machines, delaying the starting time of the
last operation of some machine may allow the first opera-
tion of another machine to be delayed as well, giving rise to
a reduction in the overall energy consumption. Of course,
checking for all these possibilities becomes computationally
expensive and so such procedure could not be applied after
each chromosome evaluation. However, it can be applied,
for example, to the solutions in the Pareto set approximation
returned by the memetic algorithm. With this purpose, given
the problem definition of Section 2 and an input solution S,
we consider the following relaxed Linear Programming (LP)
problem.

min NPE =
∑

k=1,...,M

TEMk

s.t. sv + pv ≤ sSJv
v ∈ Ω (5a)

sv + pv ≤ sSMv

v ∈ Mk − {ωk}, k = 1, . . . ,M (5b)

start ≤ sv v is the first operation of job Ji
i = 1, . . . , N (5c)

endi − start ≤ max{Ci, di} i = 1, . . . , N (5d)

start = 0 (5e)

Decision variables are the starting times of the operations
sv ∈ Ω extended with the fictitious operations start and
endi, i = 1, . . . , N . Constraints (5a) represent the linear

orderings imposed on the set of operations Ω by the jobs J ,
note that we assume SJv = endi when v is the last oper-
ation of job Ji. The processing orderings on the machines
in S are represented by constraints (5b). Constraints (5c)
impose to the first operation of each job Ji to start after the
reference operation start. The imposed time bounds (5d)
guarantee that the final value of the TWT is less than or
equal to that of the input solution S. Finally, (5e) sets the
starting time of the schedule to 0. As it is easy to verify, all
the imposed temporal constraints are of the kind x− y ≤ c.
So in accordance with (Papadimitriou and Steiglitz 1982;
Sakkout and Wallace 2000) the coefficient matrix of the
above LP is totally unimodular (TU), and therefore all the
optimal solutions of the LP problem remain discrete values
and they provide the optimal NPE given the processing or-
dering established by the input solution S. Similar consid-
erations are proposed in (Brandimarte and Maiocco 1999),
where the optimal timing problem for non-regular single ob-
jectives in a job-shop are reduced to a minimum cost flow
problem.

We propose to apply this linear programming approach in
all solutions of the Pareto front obtained in the last genera-
tion of the memetic algorithm, in order to further improve
its final results.

4 Experimental results
In this section we provide an empirical evaluation of the pro-
posed algorithms, showing how they outperform the results
of the state-of-the-art, in terms of improvement of both TWT
and total NPE of the obtained solutions.

4.1 Test instances
Experiments were made on instances available in the liter-
ature (Liu et al. 2014). Specifically we considered one in-
stance that was generated based on the well-known FT10
instance of the JSP, of size 10 × 10, adding due dates, job
weights and the idle power consumption of each machine.
The due dates were assigned using the following expression:

di = k ×
M∑
j=1

pij , (6)

where M is the number of machines, that coincides with the
number of operations per job. k is a parameter that controls
the tightness of the due dates, being 1.5, 1.6, 1.7 and 1.8 in
our work. Therefore, there are 4 instances in all. See (Liu et
al. 2014) for more details on these instances.

The memetic algorithm (including the post-optimization
procedure) is implemented in C++ using a single thread,
while the Linear Programming step is implemented with
IBM CPLEX Optimizer 12.6. Our experiments were car-
ried out on a Intel Core i5-2450M CPU at 2.5 GHz with 4
GB of RAM, running on Windows 10 Pro.

4.2 Parameter tuning
As a result of a preliminary parametric analysis, the param-
eter setup for our proposal is as follows: populationSize =
1000, numGenerations = 2000, tournamentSize = 2,
crossoverProb = 1.0 and mutationProb = 0.2.
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Figure 2: Pareto fronts obtained with k = 1.5
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Figure 3: Pareto fronts obtained with k = 1.6

Using this configuration, the running time is reasonable,
with an average of 4 minutes per run. The time spent in each
part of the algorithm is roughly 73% for the local search,
27% for the genetic algorithm, and less than 1% for the lin-
ear programming approach. Even if the time spent by the
linear programming approach is less than 1 second, it would
be too computationally expensive to apply it in every gener-
ation of the algorithm.

4.3 Results and comparison with the
state-of-the-art

Figures 2, 3, 4 and 5 show the Pareto fronts obtained with
the presented methods, and compared with those obtained
in (Liu et al. 2014), for all values of the due date tightness
parameter k = 1.5, 1.6, 1.7 and 1.8.

The proposal of (Liu et al. 2014) (labelled LIU in
all figures) is a standard NSGA-II algorithm, using OOX
crossover operator and swap mutation. The crossover prob-
ability is set at 1.0 and the mutation probability at 0.6. The
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Figure 4: Pareto fronts obtained with k = 1.7
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Figure 5: Pareto fronts obtained with k = 1.8

population size varies between 800 and 1000 depending on
the instance, and the total number of generations vary be-
tween 25000 and 40000. As the authors do not report the
computational time used in their runs, we have implemented
a version of their method and concluded that the running
time used in their experiments is considerably higher than
that of our approach, about 15 minutes per run.

To have a reference value for weighted tardiness, in (Liu
et al. 2014) the authors also report results using the soft-
ware LEKIN. In particular, they use the Shifting Bottleneck
and Local Search heuristics, both provided by that software.
These metaheuristics are used to perform a single-objective
optimization of the weighted tardiness, and therefore the re-
sult in this case is a single solution instead of a Pareto front.
It is labelled LEKIN in all figures.

The plot labelled Memetic depicts the Pareto front ob-
tained through the presented memetic algorithm (NSGA-II +
multi-objective hill-climbing local search procedure), while
the plot labelled Memetic+PO represents the Pareto front
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Table 1: Hypervolumes computed for all procedures.
Genetic Memetic Memetic + PO Memetic + PO + LP Liu

k = 1.5 0.6272 0.6238 0.6654 0.6656 0.3862
k = 1.6 0.6801 0.6964 0.7364 0.7366 0.4553
k = 1.7 0.7237 0.7620 0.7635 0.7637 0.5264
k = 1.8 0.7842 0.7941 0.8203 0.8206 0.6038

obtained with the memetic algorithm enhanced with the low-
polynomial Post-Optimization procedure. The plot labelled
Genetic depicts the Pareto front obtained through the ge-
netic algorithm alone, without any local search. Lastly, the
plot labelled Memetic+PO+LP depicts the Pareto front
obtained by further post-processing the final solutions ob-
tained from the Memetic + PO approach by means of the
Linear Programming step described in Section 3.3.

We adjusted the stopping condition of our methods so that
running times are similar (about 4 minutes per run), in order
to achieve a comparison as fair as possible. For instance,
when the energy optimization procedure is not used (plot
labelled Memetic), we have increased numGenerations
to 2500, and when the local search is not used (plot labelled
Genetic) we set numGenerations = 8000.

Despite all the plots demonstrate that the Memetic
algorithm significantly outperforms the NSGA-II multi-
objective optimization algorithm used in (Liu et al. 2014),
we would like to stress how the post-optimization proce-
dure introduced in this paper (Memetic + PO plots) rep-
resents a further and remarkable performance boost. In fact,
it should be underscored at this point that the results ob-
tained with the post-optimization step are indeed extremely
close to those that can be obtained by applying the optimal
Linear Programming approach (the two respective plots are
almost completely coincident in all figures), thus proving
the effectiveness of the post-optimization (PO) procedure.
It can also be seen that the hybridization with local search
improves the performance of the genetic algorithm, as the
results improve in most cases.

Figure 6 shows two different solutions, respectively be-
fore and after the application of the post-optimization algo-
rithm presented in Section 3.1, in the k = 1.5 case. By
visual inspection, it is clear that the post-optimization pro-
cedure does not increase the TWT value, as the end times
of the last operations on every machine are constrained to
their original values in both solutions 6(a) and 6(b). On the
contrary, the NPE value is significantly improved by the ap-
plication of the post-optimization algorithm, whose aim is to
produce a different timing on the operations by introducing
delays on the start times of the initial operations of the ma-
chines (e.g., the most evident delays in Figure 6 are those
related to machines R4, R5, and R9), with a consequent
readjustment of the idle times of every machine caused by
the time compression.

Finally, Table 1 summarizes the hypervolume values of
all Pareto fronts shown in Figures 2, 3, 4 and 5. The
values in the table numerically confirm the superiority of
the memetic algorithm presented in this paper over the re-

sults obtained in (Liu et al. 2014), and they also confirm
the effectiveness of the post-optimization procedure. It is
also very remarkable how close the hypervolumes obtained
with the Memetic + PO approach are with those obtained
with LP . However, despite the total hypervolume improve-
ment is very small, the Linear Programming procedure was
able to improve a significant number of solutions w.r.t. the
Memetic+PO approach (23 solutions on 76 in the k = 1.5
case, 31 solutions on 74 in the k = 1.6 case, 31 solutions on
68 in the k = 1.7 case, and 35 solutions on 73 with k = 1.8).

5 Conclusions

We have considered the problem of minimizing both the to-
tal weighted tardiness and the energy consumption in a job
shop. To this end, we have proposed a multi-objective ap-
proach that hybridizes a NSGA-II based evolutionary algo-
rithm with a multi-objective local search. As we have dis-
cussed, the energy consumption is a non-regular objective
function, and to optimize it we have designed two methods,
a fast, low-polynomial procedure to be included in the chro-
mosome evaluation algorithm, and a linear programming ap-
proach which is more costly and applied only to the final set
of non-dominated solutions, to further improve them. In the
experimental study we have proven the efficiency of the pro-
posed energy-optimization procedures and we have seen that
our approach improves the results of the state-of-the-art.

In our opinion, the remarkable performance of our algo-
rithm is due to the combination of the diversification pro-
vided by the NSGA-II combined with the intensification
provided by the local search. The fast local search and the
reduction of the neighborhood allowed us to apply it to ev-
ery solution in a reasonable computational time. Addition-
ally, the proposed energy optimization methods significantly
improved the quality of the solutions.

For future work we will try different multi-objective algo-
rithms, as for example MOEA-D, PAES or multi-objective
scatter search, as well as constraint programming tech-
niques. The design of neighborhoods for local search aimed
at reducing the energy consumption is also a subject of fur-
ther study. Additionally, we plan to design a benchmark with
more instances. Another very interesting possibility is to
consider more realistic energy consumption models. For ex-
ample models that consider non-uniform energy costs, mod-
els that allow varying the energy consumed by varying the
processing mode of operations, or the model described in
(Mouzon, Yildirim, and Twomey 2007), where the machines
can be Turn off/Turn on.
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Figure 6: Improvement of the NPE value as a consequence of the application of the post-optimization procedure (Algorithm 1).

COPLAS’2016

23



Acknowledgements
We would like to thank Ying Liu for providing us with
the detailed results of his work. This research has
been supported by the Spanish Government under research
project TIN2013-46511-C2-2-P. ISTC-CNR authors were
supported by the ESA Contract No. 4000112300/14/D/MRP
“Mars Express Data Planning Tool MEXAR2 Mainte-
nance”.

References
Baker, K. 1974. Introduction to Sequencing and Scheduling.
Wiley.
Bierwirth, C. 1995. A generalized permutation approach to
jobshop scheduling with genetic algorithms. OR Spectrum
17:87–92.
Brandimarte, P., and Maiocco, M. 1999. Job shop schedul-
ing with a non-regular objective: a comparison of neigh-
bourhood structures based on a sequencing/timing decom-
position. International Journal of Production Research
37(8):1697–1715.
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optima in multiobjective combinatorial optimization prob-
lems. Annals of Operations Research 156:83–97.
Sakkout, H., and Wallace, M. 2000. Probe backtrack search
for minimal perturbation in dynamic scheduling. Con-
straints 5(4):359–388.
Singer, M., and Pinedo, M. 1998. A computational study
of branch and bound techniques for minimizing the total
weighted tardiness in job shops. IIE Transactions 30:109–
118.
Singer, M., and Pinedo, M. 1999. A shifting bottleneck
heuristic for minimizing the total weighted tardiness in a job
shop. Naval Research Logistics 46(1):1–17.
Van Laarhoven, P.; Aarts, E.; and Lenstra, K. 1992. Job shop
scheduling by simulated annealing. Operations Research
40:113–125.

COPLAS’2016

24



Job-Shop Scheduling Solver Based on Quantum Annealing
Davide Venturelli

Quantum Artificial Intelligence Laboratory (QuAIL), NASA Ames
U.S.R.A. Research Institute for Advanced Computer Science (RIACS)

Dominic J.J. Marchand
1QB Information Technologies (1QBit)

Galo Rojo
1QB Information Technologies (1QBit)

Abstract

Quantum annealing is emerging as a promising near-
term quantum computing approach to solving combina-
torial optimization problems. A solver for the job-shop
scheduling problem that makes use of a quantum an-
nealer is presented in detail. Inspired by methods used
for constraint satisfaction problem (CSP) formulations,
we first define the makespan-minimization problem as
a series of decision instances before casting each in-
stance into a time-indexed quadratic unconstrained bi-
nary optimization. Several pre-processing and graph-
embedding strategies are employed to compile opti-
mally parametrized families of problems for scheduling
instances on the D-Wave Systems’ Vesuvius quantum
annealer (D-Wave Two). Problem simplifications and
partitioning algorithms, including variable pruning, are
discussed and the results from the processor are com-
pared against classical global-optimum solvers.

I. Introduction
The commercialization and independent benchmarking
(Johnson et al. (2010); Boixo et al. (2014a); Rønnow et al.
(2014); McGeoch and Wang (2013)) of quantum annealers
based on superconducting qubits has sparked a surge of in-
terest for near-term practical applications of quantum analog
computation in the optimization research community. Many
of the early proposals for running useful problems arising in
space science (Smelyanskiy et al. (2012)) have been adapted
and have seen small-scale testing on the D-Wave Two pro-
cessor (Rieffel et al. (2015)). The best procedure for com-
parison of quantum analog performance with traditional dig-
ital methods is still under debate (Rønnow et al. (2014); Hen
et al. (2015); Katzgraber et al. (2015)) and remains mostly
speculative due to the limited number of qubits on the cur-
rently available hardware. While waiting for the technol-
ogy to scale up to more significant sizes, there is an increas-
ing interest in the identification of small problems which are
nevertheless computationally challenging and useful. One
approach in this direction has been pursued in Rieffel et al.
(2014), and consisted in identifying parametrized ensembles
of random instances of operational planning problems of in-
creasing sizes that can be shown to be on the verge of a

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

solvable-unsolvable phase transition. This condition should
be sufficient to observe an asymptotic exponential scaling of
runtimes, even for instances of relatively small size, poten-
tially testable on current- or next-generation D-Wave hard-
ware. An empirical takeaway from Rieffel et al. (2015)
(validated also by experimental results in O’Gorman et al.
(2015b); Venturelli et al. (2015)) was that the established
programming and program running techniques for quantum
annealers seem to be particularly amenable to scheduling
problems, allowing for an efficient mapping and good per-
formance compared to other applied problem classes like au-
tomated navigation and Bayesian-network structure learning
(O’Gorman et al. (2015a)).

Motivated by these first results, and with the intention to
challenge current technologies on hard problems of practi-
cal value, we herein formulate a quantum annealing version
of the job-shop scheduling problem (JSP). The JSP is essen-
tially a general paradigmatic constraint satisfaction problem
(CSP) framework for the problem of optimizing the alloca-
tion of resources required for the execution of sequences of
operations with constraints on location and time. We provide
compilation and running strategies for this problem using
original and traditional techniques for parametrizing ensem-
bles of instances. Results from the D-Wave Two are com-
pared with classical exact solvers. The JSP has earned a rep-
utation for being especially intractable, a claim supported
by the fact that the best general-purpose solvers (CPLEX,
Gurobi Optimizer, SCIP) struggle with instances as small as
10 machines and 10 jobs (10 x 10) (Ku and Beck (2016)).
Indeed, some known 20 x 15 instances often used for bench-
marking still have not been solved to optimality even by the
best special-purpose solvers (Jain and Meeran (1999)), and
20 x 20 instances are typically completely intractable. We
note that this early work constitutes a wide-ranging survey
of possible techniques and research directions and leave a
more in-depth exploration of these topics for future work.

Problem definition and conventions
Typically the JSP consists of a set of jobs J = {j1, . . . , jN}
that must be scheduled on a set of machines M =
{m1, . . . ,mM}. Each job consists of a sequence of oper-
ations that must be performed in a predefined order

jn = {On1 → On2 → · · · → OnLn
}.
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Job jn is assumed to have Ln operations. Each operation
Onj has an integer execution time pnj (a value of zero is
allowed) and has to be executed by an assigned machine
mqnj

∈ M, where qnj is the index of the assigned ma-
chine. There can only be one operation running on any given
machine at any given point in time and each operation of a
job needs to complete before the following one can start.
The usual objective is to schedule all operations in a valid
sequence while minimizing the makespan (i.e., the comple-
tion time of the last running job), although other objective
functions can be used. In what follows, we will denote with
T the minimum possible makespan associated with a given
JSP instance.

As defined above, the JSP variant we consider is denoted
JM

∣∣pnj ∈ [pmin, . . . , pmax]
∣∣Cmax in the well-known α|β|γ

notation, where pmin and pmax are the smallest and largest
execution times allowed, respectively. In this notation, JM
stands for job-shop type on M machines, and Cmax means
we are optimizing the makespan.

For notational convenience, we enumerate the operations
in a lexicographical order in such a way that

j1 = {O1 → · · · → Ok1
},

j2 = {Ok1+1 → · · · → Ok2},
. . .

jN = {OkN−1+1 → · · · → OkN
}. (1)

Given the running index over all operations i ∈
{1, . . . , kN}, we let qi be the index of the machine mqi re-
sponsible for executing operation Oi. We define Im to be
the set of indices of all of the operations that have to be ex-
ecuted on machine mm, that is, Im = {i : qi = m}. The
execution time of operation Oi is now simply denoted pi.

A priori, a job can use the same machine more than once,
or use only a fraction of the M available machines. For
benchmarking purposes, it is customary to restrict a study to
the problems of a specific family. In this work, we define
a ratio θ that specifies the fraction of the total number of
machines that is used by each job, assuming no repetition
when θ ≤ 1. For example, a ratio of 0.5 means that each job
uses only 0.5M distinct machines.

Quantum annealing formulation
In this work, we seek a suitable formulation of the JSP
for a quantum annealing optimizer (such as the D-Wave
Two). The optimizer is best described as an oracle that
solves an Ising problem with a given probability (Boros
and Hammer (2002)). This Ising problem is equivalent to a
quadratic unconstrained binary optimization (QUBO) prob-
lem (O’Gorman et al. (2015b)). The binary polynomial as-
sociated with a QUBO problem can be depicted as a graph,
with nodes representing variables and values attached to
nodes and edges representing linear and quadratic terms, re-
spectively. The QUBO solver can similarly be represented
as a graph where nodes represents qubits and edges repre-
sent the allowed connectivity. The optimizer is expected to
find the global minimum with some probability which it-
self depends on the problem and the device’s parameters.
The device is not an ideal oracle: its limitations, with regard

to precision, connectivity, and number of variables, must be
considered to achieve the best possible results. As is custom-
ary, we rely on the classical procedure known as embedding
to adapt the connectivity of the solver to the problem at hand.
This procedure is described in a number of quantum anneal-
ing papers (Rieffel et al. (2015); Venturelli et al. (2015)).
During this procedure, two or more variables can be forced
to take on the same value by including additional constraints
in the model. In the underlying Ising model, this is achieved
by introducing a large ferromagnetic (negative) coupling JF
between two spins. The embedding process modifies the
QUBO problem accordingly and one should not confuse the
logical QUBO problem value, which depends on the QUBO
problem and the state considered, with the Ising problem en-
ergy seen by the optimizer (which additionally depends on
the extra constraints and the solver’s parameters, such as JF).

We distinguish between the optimization version of the
JSP, in which we seek a valid schedule with a minimal
makespan, and the decision version, which is limited to val-
idating whether or not a solution exists with a makespan
smaller than or equal to a user-specified timespan T . We
focus exclusively on the decision version and later describe
how to implement a full optimization version based on a bi-
nary search. We note that the decision formulation where
jobs are constrained to fixed time windows is sometimes
referred in the literature as the job-shop CSP formulation
(Cheng and Smith (1997); Garrido et al. (2000)), and our
study will refer to those instances where the jobs share a
common deadline T .

II. QUBO problem formulation
While there are several ways the JSP can be formulated,
such as the rank-based formulation (Wagner (1959)) or the
disjunctive formulation (Manne (1960)), our formulation
is based on a straightforward time-indexed representation
particularly amenable to quantum annealers (a comparative
study of mappings for planning and scheduling problems
can be found in O’Gorman et al. (2015b)). We assign a
set of binary variables for each operation, corresponding to
the various possible discrete starting times the operation can
have:

xi,t =

{
1 : operation Oi starts at time t,
0 : otherwise. (2)

Here t is bounded from above by the timespan T , which rep-
resents the maximum time we allow for the jobs to complete.
The timespan itself is bounded from above by the total work
of the problem, that is, the sum of the execution times of all
operations.

Constraints
We account for the various constraints by adding penalty
terms to the QUBO problem. For example, an operation
must start once and only once, leading to the constraint and
associated penalty function(∑

t

xi,t = 1 for each i

)
→

∑
i

(∑
t

xi,t − 1

)2

. (3)
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Figure 1: a) Table representation of an example 3 x 3 in-
stance whose execution times have been randomly selected
to be either 1 or 2 time units. b) Pictorial view of the QUBO
mapping of the above example for HT=6. Green, purple,
and cyan edges refer respectively to h1, h2, and h3 quadratic
coupling terms (Eqs. 7–9). Each circle represents a bit with
its i, t index as in Eq. 2. c) The same QUBO problem as in
(b) after the variable pruning procedure detailed in the sec-
tion on QUBO formulation refinements. Isolated qubits are
bits with fixed assignments that can be eliminated from the
final QUBO problem. d) The same QUBO problem as in (b)
for HT=7. Previously displayed edges in the above figure
are omitted. Red edges/circles represent the variations with
respect to HT=6. Yellow stars indicate the bits which are
penalized with local fields for timespan discrimination.

There can only be one job running on each machine at any
given point in time, which expressed as quadratic constraints
yields ∑

(i,t,k,t′)∈Rm

xi,txk,t′ = 0 for each m, (4)

where Rm = Am ∪Bm and

Am = {(i, t, k, t′) : (i, k) ∈ Im × Im,

i �= k, 0 ≤ t, t′ ≤ T, 0 < t′ − t < pi},
Bm = {(i, t, k, t′) : (i, k) ∈ Im × Im,

i < k, t′ = t, pi > 0, pj > 0}.
The set Am is defined so that the constraint forbids opera-
tion Oj from starting at t′ if there is another operation Oi

still running, which happens if Oi started at time t and t′− t
is less than pi. The set Bm is defined so that two jobs cannot
start at the same time, unless at least one of them has an exe-
cution time equal to zero. Finally, the order of the operations
within a job are enforced with∑

kn−1<i<kn

t+pi>t′

xi,txi+1,t′ for each n, (5)

which counts the number of precedence violations between
consecutive operations only.

The resulting classical objective function (Hamiltonian) is
given by

HT (x̄) = ηh1(x̄) + αh2(x̄) + βh3(x̄), (6)

where

h1(x̄) =
∑
n

⎛
⎜⎜⎝ ∑

kn−1<i<kn

t+pi>t′

xi,txi+1,t′

⎞
⎟⎟⎠ , (7)

h2(x̄) =
∑
m

⎛
⎝ ∑

(i,t,k,t′)∈Rm

xi,txk,t′

⎞
⎠ , (8)

h3(x̄) =
∑
i

(∑
t

xi,t − 1

)2

, (9)

and the penalty constants η, α, and β are required to be
larger than 0 to ensure that unfeasible solutions do not have
a lower energy than the ground state(s). As expected for
a decision problem, we note that the minimum of HT is
0 and it is only reached if a schedule satisfies all of the
constraints. The index of HT explicitly shows the depen-
dence of the Hamiltonian on the timespan T , which affects
the number of variables involved. Figure 1-b illustrates the
QUBO problem mapping for HT=6 for a particular 3 x 3
example (Figure 1-a).

Simple variable pruning
Figure 1-b also reveals that a significant number of the
NMT binary variables required for the mapping can be
pruned by applying simple restrictions on the time index t
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(whose computation is polynomial as the system size in-
creases and therefore trivial here). Namely, we can define
an effective release time for each operation corresponding
to the sum of the execution times of the preceding opera-
tions in the same job. A similar upper bound correspond-
ing to the timespan minus all of the execution times of the
subsequent operations of the same job can be set. The bits
corresponding to these invalid starting times can be elimi-
nated from the QUBO problem altogether since any valid
solution would require them to be strictly zero. This simpli-
fication eliminates an estimated number of variables equal
to NM (M 〈p〉 − 1), where 〈p〉 represents the average exe-
cution time of the operations. This result can be generalized
to consider the previously defined ratio θ, such that the total
number of variables required after this simple QUBO prob-
lem pre-processing is θNM [T − θM〈p〉+ 1].

III. QUBO formulation refinements
Although the above formulation proves sufficient for run-
ning JSPs on the D-Wave machine, we explore a few poten-
tial refinements. The first pushes the limit of simple variable
pruning by considering more advanced criteria for reducing
the possible execution window of each task. The second re-
finement proposes a compromise between the decision ver-
sion of the JSP and a full optimization version.

Window shaving
In the time-index formalism, reducing the execution win-
dows of operations (i.e., shaving) (Martin and Shmoys
(1996)), or in the disjunctive approach, adjusting the heads
and tails of operations (Carlier and Pinson (1994); Péridy
and Rivreau (2005)), or more generally, by applying con-
straints propagation techniques (e.g., Caseau and Laburthe
(1994)), together constitute the basis for a number of clas-
sical approaches to solving the JSP. Shaving is sometimes
used as a pre-processing step or as a way to obtain a lower
bound on the makespan before applying other methods. The
interest from our perspective is to showcase how such clas-
sical techniques remain relevant, without straying from our
quantum annealing approach, when applied to the problem
of pruning as many variables as possible. This enables larger
problems to be considered and improves the success rate
of embeddability in general (see Figure 3), without signif-
icantly affecting the order of magnitude of the overall time
to solution in the asymptotic regime. Further immediate ad-
vantages of reducing the required number of qubits become
apparent during the compilation of JSP instances for the D-
Wave device due to the associated embedding overhead that
depends directly on the number of variables. The shaving
process is typically handled by a classical algorithm whose
worst-case complexity remains polynomial. While this does
not negatively impact the fundamental complexity of solv-
ing JSP instances, for pragmatic benchmarking the execu-
tion time needs to be taken into account and added to the
quantum annealing runtime to properly report the time to
solution of the whole algorithm.

Different elimination rules can be applied. We fo-
cus herein on the iterated Carlier and Pinson (ICP) pro-

cedure (Carlier and Pinson (1994)) reviewed in the sup-
plemental material with worst-case complexity given by
O(N2M2T log(N)). Instead of looking at the one-job sub-
problems and their constraints to eliminate variables, as we
did for the simple pruning, we look at the one-machine sub-
problems and their associated constraints to further prune
variables. An example of the resulting QUBO problem is
presented in Figure 1-c.

Timespan discrimination
We explore a method of extracting more information regard-
ing the actual optimal makespan of a problem within a single
call to the solver by breaking the degeneracy of the ground
states and spreading them over some finite energy scale, dis-
tinguishing the energy of valid schedules on the basis of
their makespan. Taken to the extreme, this approach would
amount to solving the full optimization problem. We find
that the resulting QUBO problem is poorly suited to a solver
with limited precision, so a balance must be struck between
extra information and the precision requirement. A system-
atic study of how best to balance the amount of information
obtained versus the extra cost will be the subject of future
work.

We propose to add a number of linear terms, or lo-
cal fields, to the QUBO problem to slightly penalize valid
solutions with larger makespans. We do this by adding
a cost to the last operation of each job, that is, the set
{Ok1

, . . . , OkN
}. At the same time, we require that the

new range of energy over which the feasible solutions are
spread stays within the minimum logical QUBO problem’s
gap given by ΔE = min{η, α, β}. If the solver’s preci-
sion can accomodate K distinguishable energy bins, then
makespans within [T − K, T ] can be immediately identi-
fied from their energy values. The procedure is illustrated
in Figure 1-d and some implications are discussed in the
supplemental material appended to a longer version of this
work (Venturelli, Marchand, and Rojo (2015)).

IV. Ensemble pre-characterization and
compilation

We now turn to a few important elements of our compu-
tational strategy for solving JSP instances. We first show
how a careful pre-characterization of classes of random JSP
instances, representative of the problems to be run on the
quantum optimizer, provides very useful information regard-
ing the shape of the search space for T . We then describe
how instances are compiled to run on the actual hardware.

Makespan Estimation
In Figure 2, we show the distributions of the opti-
mal makespans T for different ensembles of instances
parametrized by their size N = M , by the possible val-
ues of task durations Pp = {pmin, . . . , pmax}, and by the
ratio θ ≤ 1 of the number of machines used by each job.
Instances are generated randomly by selecting θM distinct
machines for each job and assigning an execution time to
each operation randomly. For each set of parameters, we can
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compute solutions with a classical exhaustive solver in or-
der to identify the median of the distribution 〈T 〉(N,Pp, θ)
as well as the other quantiles. These could also be inferred
from previously solved instances with the proposed anneal-
ing solver. The resulting information can be used to guide
the binary search required to solve the optimization prob-
lem. Figure 2 indicates that a normal distribution is an ad-
equate approximation, so we need only to estimate its av-
erage 〈T 〉 and variance σ2. Interestingly, from the char-
acterization of the families of instances up to N = 10 we
find that, at least in the region explored, the average min-
imum makespan 〈T 〉 is proportional to the average execu-
tion time of a job 〈p〉θN , where 〈p〉 is the mean of Pp.
This linear ansatz allows for the extrapolation of approxi-
mate resource requirements for classes of problems which
have not yet been pre-characterized, and it constitutes an ed-
ucated guess for classes of problems which cannot be pre-
characterized due to their difficulty or size. The accuracy
of these functional forms was verified by computing the rel-
ative error of the prediction versus the fit of the makespan
distribution of each parametrized family up to N = M = 9
and pmax = 20 using 200 instances to compute the makespan
histogram. The prediction for 〈T 〉 results are consistently at
least 95% accurate, while the one for σ has at worst a 30%
error margin, a very approximate but sufficient model for the
current purpose of guiding the binary search.
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Figure 2: a) Normalized histograms of optimal makespans
T for parametrized families of JSP instances with N = M ,
Pp on the y-axis, θ = 1 (yellow), and θ = 0.5 (pur-
ple). The distributions are histograms of occurrences for
1000 random instances, fitted with a Gaussian function of
mean 〈T 〉. We note that the width of the distributions in-
creases as the range of the execution times Pp increases,
for fixed 〈p〉. The mean and the variance are well fit-
ted respectively by 〈T 〉 = AT Npmin + BT Npmax and
σ = σ0 + Cσ〈T 〉 + Aσpmin + Bσpmax, with AT = 0.67,
BT = 0.82, σ0 = 0.7, Aσ = −0.03, Bσ = 0.43, and
Cσ = 0.003.

Compilation
The graph-minor embedding technique (abbreviated simply
“embedding”) represents the de facto method of recasting
the Ising problems to a form compatible with the layout
of the annealer’s architecture (Kaminsky and Lloyd (2004);
Choi (2011)), which for the D-Wave Two is a Chimera
graph (Johnson et al. (2010)). Formally, we seek an iso-
morphism between the problem’s QUBO graph and a graph
minor of the solver. This procedure has become a standard
in solving applied problems using quantum annealing (Rief-
fel et al. (2015); Venturelli et al. (2015)) and can be thought
of as the analogue of compilation in a digital computer pro-
gramming framework during which variables are assigned
to hardware registers and memory locations. A more de-
tailed version of this work with supplemental material cov-
ering this process is available in (Venturelli, Marchand, and
Rojo (2015)). An example of embedding for a 5 x 5 JSP in-
stance with θ = 1 and T = 7 is shown in Figure 3-a, where
the 72 logical variables of the QUBO problem are embed-
ded using 257 qubits of the Chimera graph. Finding the op-
timal tiling that uses the fewest qubits is NP-hard (Adler et
al. (2010)), and the standard approach is to employ heuristic
algorithms (Cai, Macready, and Roy (2014)). In general, for
the embedding of time-indexed mixed-integer programming
QUBO problems of size N into a graph of degree k, one
should expect a quadratic overhead in the number of binary
variables on the order of aN2, with a ≤ (k − 2)−1 de-
pending on the embedding algorithm and the hardware con-
nectivity (Venturelli et al. (2015)). This quadratic scaling is
apparent in Figure 3-b where we report on the compilation
attempts using the algorithm in Cai, Macready, and Roy
(2014). Results are presented for the D-Wave chip installed
at NASA Ames at the time of this study, for a larger chip
with the same size of Chimera block and connectivity pat-
tern (like the latest chip currently being manufactured by D-
Wave Systems), and for a speculative yet-larger chip where
the Chimera block is twice as large. We deem a JSP instance
embeddable when the respective HT=T is embeddable, so
the decrease in probability of embedding with increasing
system size is closely related to the shift and spreading of
the optimal makespan distributions for ensembles of increas-
ing size (see Figure 2). What we observe is that, with the
available algorithms, the current architecture admits embed-
ded JSP instances whose total execution time NMθ〈p〉 is
around 20 time units, while near-future (we estimate 2 years)
D-Wave chip architectures could potentially double that. As
noted in similar studies (e.g., Rieffel et al. (2015)), graph
connectivity has a much more dramatic impact on embed-
dability than qubit count.

Once the topological aspect of embedding has been
solved, we set the ferromagnetic interactions needed to adapt
the connectivity of the solver to the problem at hand. For the
purpose of this work, this should be regarded as a technical-
ity necessary to tune the performance of the experimental
analog device and we include the results for completeness.
Introductory details about the procedure can be found in (Ri-
effel et al. (2015); Venturelli et al. (2015)). In Figure 3-c we
show a characterization of the ensemble of JSP instances
(parametrized by N , M , θ, and Pp, as described at the be-
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Figure 3: a) Example of an embedded JSP instance on
NASA’s D-Wave Two chip. Each chain of qubits is col-
ored to represent a logical binary variable determined by
the embedding. For clarity, active connections between the
qubits are not shown. b) Embedding probability as a func-
tion of N = M for θ = 1 (similar results are observed for
θ = 0.5). Solid lines refer to Pp = [1, 1] and dashed lines
refer to Pp = [0, 2]. 1000 random instances have been gen-
erated for each point, and a cutoff of 2 minutes has been set
for the heuristic algorithm to find a valid topological em-
bedding. Results for different sizes of Chimera are shown.
c) Optimal parameter-setting analysis for the ensembles of
JSP instances we studied. Each point corresponds to the
number of qubits and the optimal JF (see main text) of a
random instance, and each color represents a parametrized
ensemble (green: 3 x 3, purple: 4 x 4, yellow: 5 x 5, blue:
6 x 6; darker colors represent ensembles with Pp = [1, 1] as
opposed to lighter colors which indicate Pp = [0, 2]). Distri-
butions on the right of scatter plots represent Gaussian fits of
the histogram of the optimal JF for each ensemble. Runtime
results are averaged over an ungauged run and 4 additional
runs with random gauges (Perdomo-Ortiz et al. (2015a)).

ginning of this section). We present the best ferromagnetic
couplings found by runs on the D-Wave machine under the
simplification of a uniform ferromagnetic coupling by solv-
ing the embedded problems with values of JF from 0.4 to
1.8 in relative energy units of the largest coupling of the
original Ising problem. The run parameters used to deter-
mine the best JF are the same as we report in the following
sections, and the problem sets tested correspond to Hamil-
tonians whose timespan is equal to the sought makespan
HT=T . This parameter-setting approach is similar to the
one followed in Rieffel et al. (2015) for operational plan-
ning problems, where the instance ensembles were classified
by problem size before compilation. What emerges from
this preliminary analysis is that each parametrized ensemble
can be associated to a distribution of optimal JF that can be
quite wide, especially for the ensembles with pmin = 0 and
large pmax. This spread might discourage the use of the mean
value of such a distribution as a predictor of the best JF to
use for the embedding of new untested instances. However,
the results from this predictor appear to be better than the
more intuitive prediction obtained by correlating the num-
ber of qubits after compilation with the optimal JF . This
means that for the D-Wave machine to achieve optimal per-
formance on structured problems, it seems to be beneficial
to use the information contained in the structure of the logi-
cal problem to determine the best parameters. We note that
this “offline” parameter-setting could be used in combina-
tion with “online” performance estimation methods such as
the ones described in Perdomo-Ortiz et al. (2015a) in order
to reach the best possible instance-specific JF with a series
of quick experimental runs. The application of these tech-
niques, together with the testing of alternative offline pre-
dictors, will be the subject of future work.

V. Results of test runs and discussion
A complete quantum annealing JSP solver designed to solve
an instance to optimality using our proposed formulation
will require the independent solution of several embedded
instances {HT }, each corresponding to a different timespan
T . Assuming that the embedding time, the machine setup
time, and the latency between subsequent operations can
all be neglected, due to their being non-fundamental, the
running time T of the approach for a specific JSP instance
reduces to the expected total annealing time necessary to
find the optimal solution of each embedded instance with a
specified minimum target probability 	 1. The probabil-
ity of ending the annealing cycle in a desired ground state
depends, in an essentially unknown way, on the embedded
Ising Hamiltonian spectrum, the relaxation properties of the
environment, the effect of noise, and the annealing profile.
Understanding through an ab initio approach what is the best
computational strategy appears to be a formidable undertak-
ing that would require theoretical breakthroughs in the un-
derstanding of open-system quantum annealing (Boixo et al.
(2014b); Smelyanskiy et al. (2015)), as well as a tailored al-
gorithmic analysis that could take advantage of the problem
structure that the annealer needs to solve. For the time be-
ing, and for the purposes of this work, it seems much more
practical to limit these early investigations to the most rel-
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evant instances, and to lay out empirical procedures that
work under some general assumptions. More specifically,
we focus on solving the CSP version of JSP, not the full op-
timization problem, and we therefore only benchmark the
Hamiltonians with T = T with the D-Wave machine. We
note however that a full optimization solver can be realized
by leveraging data analysis of past results on parametrized
ensembles and by implementing an adaptive binary search.
Full details can be found in a longer version of this work
(Venturelli, Marchand, and Rojo (2015)).

On the quantum annealer installed at NASA Ames (it
has 509 working qubits; details are presented in Perdomo-
Ortiz et al. (2015b)), we run hundreds of instances, sam-
pling the ensembles N = M ∈ {3, 4, 5, 6}, θ ∈ {0.5, 1},
and Pp ∈ {[1, 1], [0, 2]}. For each instance, we report re-
sults, such as runtimes, at the most optimal JF among those
tested, assuming the application of an optimized parameter-
setting procedure along the lines of that described in the
previous section. Figure 4-a displays the total annealing
repetitions required to achieve a 99% probability of suc-
cess on the ground state of HT , with each repetition lasting
tA = 20 μs, as a function of the number of qubits in the em-
bedded (and pruned) Hamiltonian. We observe an exponen-
tial increase in complexity with increasing Hamiltonian size,
for both classes of problems studied. This likely means that
while the problems tested are small, the analog optimiza-
tion procedure intrinsic to the D-Wave device’s operation is
already subject to the fundamental complexity bottlenecks
of the JSP. It is, however, premature to draw conclusions
about performance scaling of the technology given the cur-
rent constraints on calibration procedures, annealing time,
etc. Many of these problems are expected to be either over-
come or nearly so with the next generation of D-Wave chip,
at which point more extensive experimentation will be war-
ranted.

In Figure 4-b, we compare the performance of the
D-Wave device to two exhaustive classical algorithms in or-
der to gain insight on how current quantum annealing tech-
nology compares with paradigmatic classical optimization
methods. Leaving the performance of approximate solutions
for future work, we chose not to explore the plethora of pos-
sible heuristic methods as we operate the D-Wave machine,
seeking the global optimum.

The first algorithm, B, detailed in Brucker, Jurisch, and
Sievers (1994), exploits the disjunctive graph representation
and a branch-and-bound strategy that very effectively com-
bines a branching scheme based on selecting the direction of
a single disjunctive edge (according to some single-machine
constraints), and a technique introduced in Carlier and Pin-
son (1991) for fixing additional disjunctions (based on a pre-
emptive relaxation). It has publicly available code and is
considered a well-performing complete solver for the small
instances currently accessible to us, while remaining com-
petitive for larger ones even if other classical approaches be-
come more favorable (Beck, Feng, and Watson (2011)). B
has been used in Streeter and Smith (2006) to discuss the
possibility of a phase transition in the JSP, demonstrating
that the random instances with N = M are particularly hard
families of problems, not unlike what is observed for the
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Figure 4: a) Number of repetitions required to solve HT
with the D-Wave Two with a 99% probability of success (see
the supplemental material (Venturelli, Marchand, and Rojo
(2015))). The blue points indicate instances with θ = 1
and yellow points correspond to θ = 0.5 (they are the same
instances and runtimes used for Figure 3-c). The number
of qubits on the x-axis represents the qubits used after em-
bedding. b) Correlation plot between classical solvers and
the D-Wave optimizer. Gray and violet points represent run-
times compared with algorithm B, and cyan and red are com-
pared to the MS algorithm, respectively, with θ = 1 and
θ = 0.5. All results presented correspond to the best out
of 5 gauges selected randomly for every instance. In case
the machine returns embedding components whose values
are discordant, we apply a majority voting rule to recover a
solution within the logical subspace (Venturelli et al. (2015);
Rieffel et al. (2015); Perdomo-Ortiz et al. (2015a); King and
McGeoch (2014); Pudenz, Albash, and Lidar (2014)). We
observe a deviation of about an order of magnitude on the
annealing time if we average over 5 gauges instead of pick-
ing the best one, indicating that there is considerable room
for improvement if we were to apply more-advanced cali-
bration techniques (Perdomo-Ortiz et al. (2015b)).

quantum annealing implementation of planning problems
based on graph vertex coloring (Rieffel et al. (2014)).

The second algorithm, MS, introduced in Martin and
Shmoys (1996), proposes a time-based branching scheme
where a decision is made at each node to either schedule or
delay one of the available operations at the current time. The
authors then rely on a series of shaving procedures such as
those proposed by Carlier and Pinson (1994) to determine
the new bound and whether the choice leads to valid sched-
ules. This algorithm is a natural comparison with the present
quantum annealing approach as it solves the decision ver-
sion of the JSP in a very similar fashion to the time-indexed
formulation we have implemented on the D-Wave machine,
and it makes use of the same shaving technique that we
adapted as a pre-processing step for variable pruning. How-
ever, we should mention that the variable pruning that we
implemented to simplify HT is employed at each node of the
classical branch and bound algorithm, so the overall compu-
tational time of MS is usually much more important than our
one-pass pre-processing step, and in general its runtime does
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not scale polynomially with the problem size.
What is apparent from the correlation plot in Figure 4-b is

that the D-Wave machine is easily outperformed by a clas-
sical algorithm run on a modern single-core processor, and
that the problem sizes tested in this study are still too small
for the asymptotic behavior of the classical algorithms to
be clearly demonstrated and measured. The comparison be-
tween the D-Wave machine’s solution time for HT and the
full optimization provided by B is confronting two very dif-
ferent algorithms, and shows that B solves all of the full op-
timization problems that have been tested within millisec-
onds, whereas D-Wave’s machine can sometimes take tenths
of a second (before applying the multiplier factor 	 2, due to
the binary search; see the supplemental material (Venturelli,
Marchand, and Rojo (2015))). When larger chips become
available, however, it will be interesting to compare B to a
quantum annealing solver for sizes considered B-intractable
due to increasing memory and time requirements.

The comparison with the MS method has a promising
signature even now, with roughly half of the instances be-
ing solved by D-Wave’s hardware faster than the MS al-
gorithm (with the caveat that our straightforward imple-
mentation is not fully optimized). Interestingly, the dif-
ferent parametrized ensembles of problems have distinc-
tively different computational complexity characterized by
well-recognizable average computational time to solution
for MS (i.e., the points are “stacked around horizontal lines”
in Figure 4-b), whereas the D-Wave machine’s complexity
seems to be sensitive mostly to the total qubit count (see
Figure 4-a) irrespective of the problem class. We emphasize
again that conclusions on speedup and asymptotic advan-
tage still cannot be confirmed until improved hardware with
more qubits and less noise becomes available for empirical
testing.

VI. Conclusions
Although it is probable that the quantum annealing-based
JSP solver proposed herein will not prove competitive un-
til the arrival of an annealer a few generations away, the
implementation of a provably tough application from top
to bottom was missing in the literature, and our work has
led to noteworthy outcomes we expect will pave the way for
more advanced applications of quantum annealing. Whereas
part of the attraction of quantum annealing is the possibil-
ity of applying the method irrespective of the structure of
the QUBO problem, we have shown how to design a quan-
tum annealing solver, mindful of many of the peculiarities
of the annealing hardware and the problem at hand, for im-
proved performance. Figure 5 shows a schematic view of
the streamlined solving process describing a full JSP opti-
mization solver. The pictured scheme is not intended to be
complete, for example, the solving framework can benefit
from other concepts such as performance tuning techniques
(Perdomo-Ortiz et al. (2015a)) and error-correction repeti-
tion lattices (Vinci et al. (2015)). The use of the decision
version of the problem can be combined with a properly de-
signed search strategy (the simplest being a binary search) in
order to be able to seek the minimum value of the common

I.�Problem / 	nstance parametriza�on

II.�Ensemble �re-characteriza�on
(so�ware) 

V.�Ensemble �re-characteriza�on
(hardware) 

���� Choice of mapping

��� �re-processing 

VI. Embedding strategy

VII. Running strategy

VIII. Decoding and analysis

Figure 5: I–II) Appropriate choice of benchmarking and
classical simulations is discussed in Section IV. III–IV)
Mapping to QUBO problems is discussed in Sections II and
III. V–VI) Pre-characterization for parameter setting is de-
scribed in Section VI. VII) Structured run strategies adapted
to specific problems have not to our knowledge been dis-
cussed before. We discuss a prescription in the supplemen-
tary material in (Venturelli, Marchand, and Rojo (2015)).
VIII) The only decoding required in our work is majority
voting within embedding components to recover error-free
logical solutions. The time-indexed formulation then pro-
vides QUBO problem solutions that can straightforwardly
be represented as Gantt charts of the schedules.

deadline of feasible schedules. The proposed timespan dis-
crimination further provides an adjustable compromise be-
tween the full optimization and decision formulations of the
problems, allowing for instant benefits from future improve-
ments in precision without the need for a new formulation
or additional binary variables to implement the makespan
minimization as a term in the objective function. As will be
explored further in future work, we found that instance pre-
characterization performed to fine tune the solver parameters
can also be used to improve the search strategy, and that it
constitutes a tool whose use we expect to become common
practice in problems amenable to CSP formulations as the
ones proposed for the JSP. Additionally, we have shown that
there is great potential in adapting classical algorithms with
favorable polynomial scaling as pre-processing techniques
to either prune variables or reduce the search space. Hy-
brid approaches and metaheuristics are already fruitful areas
of research and ones that are likely to see promising devel-
opments with the advent of these new quantum heuristics
algorithms.
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Abstract

State-of-the-art approaches to energy aware scheduling can
be centralized or decentralized, predictive or reactive, and
they can use methods ranging from optimal to heuristic. In
this paper an agent-based distributed model is proposed for
off-line scheduling in energy intensive manufacturing sys-
tems, by using a real industrial case, specifically manufac-
turing by injection moulding. A multi-objective scheduling
problem requiring the minimization of the total job tardiness,
total setup times and energy consumption is faced. The multi-
agent approach is evaluated respect to its internal solving
strategy (optimal or heuristic) and compared with a central-
ized approach. Advantages and drawbacks are pointed out for
off-line energy-aware scheduling, giving useful reflection on
how to face the field with new techniques.

1 Introduction
Nowadays, industrial sustainability plays a fundamental role
within manufacturing systems. Accordingly, energy effi-
ciency (EE) interventions are increasingly gaining practi-
cal interest as a component of sustainability strategy (Seow
and Rahimifard 2011; Tonelli, Evans, and Taticchi 2013).
Energy aware scheduling is considered a fundamental is-
sue for sustainable manufacturing implementation in or-
der to improve efficiency of input energy usage and en-
ergy consumption (Bruzzone et al. 2012; Dai et al. 2013;
Salido et al. 2015).

Current and emergent state-of-the-art approaches to en-
ergy aware scheduling can be centralized or decentral-
ized, predictive or reactive, and they can use optimal or
heuristic methods (Paolucci, Anghinolfi, and Tonelli 2015;
Pach et al. 2014; Tang et al. 2015).

In this paper, an agent-based distributed model is eval-
uated for off-line scheduling through its application to en-
ergy intensive manufacturing systems by using a real indus-
trial case. In particular, one of the most widespread manu-
facturing industry, plastic production by injection moulding,
which is also one of the greatest industrial energy consumer
(2.06 · 108 GJ per year only in USA) is considered.

The faced problem consists in scheduling off-line a set of
orders on a set of parallel injection moulding presses, where
each order is characterized by a product type and a penalty

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

cost for late delivery. A set of alternative presses is avail-
able for each order and both the processing time and the en-
ergy consumption depend on the order-machine pair. Since
mould change and cleaning are required between two suc-
cessive operations on the same injection press, also setup
times must be considered.

Accordingly, the examined case is a multi-objective
scheduling problem in which the total tardiness, total setup
time and total energy consumption must be minimized (Lu
et al. 2012). Incidentally, the structure of the studied case
is analogous to other manufacturing optimization problems
characterized by the scheduling of independent jobs on un-
related parallel machines with sequence and machine depen-
dent setups (Allahverdi 2015). Since this problem includes
as a special case well-known computational intractable
problems, such as the single machine total weighted tardi-
ness problem (Lawler 1977), the discussed case belongs to
the class of NP-hard problems.

Among the possible alternative methods to face multi-
objective scheduling problems, a distributed approach ex-
ploiting a multi-agent system (MAS) is proposed and evalu-
ated in terms of his internal solving strategy. From that eval-
uation, a comparison with a centralized approach, based on
mixed integer programming (MIP) proposed in (Paolucci,
Anghinolfi, and Tonelli 2015), is done in order to assess their
peculiarities and establish criteria for a thorough choice be-
tween the two approaches. This paper provides an experi-
mental evaluation, considering efficiency, scalability and so-
lution quality, applied to the off-line energy aware schedul-
ing problem.

2 Problem description
The presented problem consists in scheduling a set of or-
ders, each corresponding to a job, on a set of unrelated par-
allel machines (injection moulding presses). Each job has a
release date, namely, the earliest start date for processing,
and a due date. The jobs have different priority, expressed
by weights that are used to penalize the jobs tardiness, i.e.
the delay of the orders after their due date. The jobs are pro-
cessed by the machines selected from a set of alternative
ones. The processing time and energy consumption of the
jobs depend on the selected machine, specifically different
presses may need different quantities of energy to carry out
the same job: a new machine can be faster and can require
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less energy than an older. In order to process a job the ma-
chines must be setup by changing the mould, cleaning the
machinery etc. A setup time between two successive jobs
producing different products on the same machine is con-
sidered; setup times may also depend on the kind and pecu-
liarities of the machine; consequently setup time depends on
the machine and job sequence.

The problem is multi-objective since three different ob-
jective functions must be simultaneously optimized: the to-
tal weighted tardiness of the jobs TT (s), the total energy
consumption EN(s) and the total setup time ST (s). The
solution s∗ can be obtained by minimizing a 3-dimensional
objective function:

s∗ = arg min
s∈S

[TT (s), EN(s), ST (s)] (1)

where S denotes the feasibility space for the problem so-
lutions.

To represent the model and the three components of the
objective function to optimize(TT (s), EN(s) and ST (s)),
a list of notations used for sets, constant parameters and vari-
ables used along the paper is presented.

Sets:

• J = {1, . . . , n} the set of jobs, indexes 0 and n+1 denote
two fictious jobs corresponding to the first and last jobs on
each machine

• M = {1, . . . ,m} the set of machines (i.e. the presses)

• Mj , ∀j ∈ J , the set of machines that can execute job j

• Jk, ∀k ∈ M , the set of jobs that can be executed by ma-
chine k

Parameters:

• B a suffiently large constant

• Dj , ∀j ∈ J , the due date of job j

• Rj , ∀j ∈ J , the release date of job j

• Wj , ∀j ∈ J , the tardiness penalty of job j

• Pjk, ∀j ∈ J , ∀k ∈ Mj , the processing time of job j on
the eligible machine k

• Ejk, ∀j ∈ J , ∀k ∈ Mj , the energy consumption for pro-
cessing job j on the eligible machine k

• Sijk, ∀i, j ∈ J , ∀k ∈ Mj ,, i 6= j the setup time on ma-
chine k between the completion of job i and the start of
the subsequent job j

• Πg , g = 1, 2, 3 the weights of the objective function com-
ponents (i.e. total weighted tardiness, total energy con-
sumption and total setup time)

Variables:

• cj , ∀j ∈ J ∪ {0}, the completion time of job j

• tj , ∀j ∈ J , the tardiness of job j with respect to its due
date

• xijk ∈ {0, 1}, ∀i, j ∈ J ∪ {0, n + 1}, k ∈Mi ∩Mj , i 6=
j binary sequencing variables (i.e. xijk = 1 denotes that
job i immediately precedes job j on machine k)

• yjk ∈ {0, 1}, ∀j ∈ J , k ∈ Mj , binary assignment vari-
ables (i.e. yjk = 1 denotes that job j is processed by ma-
chine k)
Following the approach proposed in (Paolucci, Anghi-

nolfi, and Tonelli 2015), the three objective functions in
(1) are aggregated into a scalar function. Since the ob-
jective components in (1) have different dimensions (time
and energy) their conversion to a common dimension (e.g.
cost) may not always be practical. Moreover, decision mak-
ers may have difficulties to express preference information
through numerical weights, considering the original dimen-
sion of the objective function components. Thereby, a min-
imum deviation method is adopted to aggregate the three
components in the following normalized scalar objective
function F:

F (s) =
3∑

g=1

Πg ·
fg(s)− f−g

f+
g − f−g

(2)

where fg(s), g ∈ {1, 2, 3}, represents the three objective
function components, TT (s), EN(s) and ST (s) that are ex-
pressed as a function of the model variables as follows:

TT (s) =
∑
j∈J

Wj · tj (3)

EN(s) =
∑
j∈J

∑
k∈Mj

Ejk

∑
i∈Jk
i6=j

xijk (4)

ST (s) =
∑
k∈M

∑
i∈Jk

∑
j∈Jk
i6=j

Sijk · xijk (5)

The quantity f−g in (2) represents the best (i.e. minimum)
value for the g-th component when it is optimized individ-
ually; f+

g is an estimation of the worse value for fg(s) that
can be fixed as f+

g = maxh6=g fg(s∗h), where (s∗h) is the
optimal solution found when the objective fh(s) is individ-
ually optimized. The weights Πg , g ∈ {1, 2, 3}, in (2) ex-
press the relative importance given by the decision maker to
the different objective components and are selected such that∑

g Πg = 1.

3 Multi-agent system model
To find a solution to the proposed multi-objective function
(1) for the problem under observation, a multi-agent system
is introduced as a decentralized approach for the solution
searching.

The overall idea under the proposed MAS model is to use
an intelligent master agent to decompose the problem into
sub-problems and delegate to intelligent agents (i.e. solver
agent) the solving of each sub-problem. Then, the master
agent composes a global solution from the partial solutions
provided by each solver agents.

In the following, the architecture of the MAS is specified;
the interaction sequence to solve the problem is described to-
gether with the detailed set of messages exchanged between
the agents, and the internal functions of the agents to com-
pute the solutions is explained.
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3.1 MAS architecture
The proposed multi-agent system follows a standard archi-
tecture where is possible to identify two different type of
agents: master and solver.

The number of master agents is fixed a priori to one,
while, the number of solver agents depends on the prob-
lem instance and is duty of the master to instantiate the right
number of solver agents for the system.

Solver agent. Each solver agent a ∈ A = {1, . . . ,m}
is committed to solve a partial problem by scheduling all
jobs assigned to an individual machine m ∈ M . A solver
agent receives its partial problem (DataSetJm

) and build
the partial solution choosing between two type of strategies:
• use an optimal approach implementing the MIP model

proposed in the section 4.5 (adapting the description of
the global problem to the partial one straightforwardly).

• use an heuristic approach from one of the greedy heuris-
tics described in section 4.

To reach a fair evaluation between solving strategies, the
strategy to follow for each solver agent is fixed to be the
same for all agents at the beginning of the execution.

Master agent. Master agent is an agent committed to dis-
tribute the problem into sub-problems and carry out the co-
ordination among the solver agents to compose the global
solution. To this end, the master agent receives the problem
instance specification and generates as many solver agents
as parallel machines are involved in the problem. Then, it
assigns to solver agent k ∈ A all jobs Jk that can only be
executed in machine k ∈ M . Every job j that can be pro-
cessed by different machines Mj is analyzed in terms of pro-
cessing time PT , energy consumption EN and balance con-
straints to each available machine m ∈ Mj in order to de-
cide which machine (solver agent) will manage it. Thus, the
master agent selects for each job j that can be managed by
different machines Mj the machine/solver agent that mini-
mizes the following expression:

m′ = arg min
m∈Mj

[
Pjm

maxm∈Mj
(Pjm)

+
Ejm

maxm∈Mj
(Ejm)

]
(6)

Moreover, the master agent is able to balance the workload
of solver agents to avoid a bottleneck or energy constraint
in a given solver agent. Once all jobs are distributed among
the solver agents, the master agent is able to determine the
total energy consumption of the resultant solution. This is
due to the fact that all jobs have been distributed and thus
the energy consumption of each job is assigned. This feature
is fundamental for the MAS model since the user knows in
advance the total energy consumption required by each ma-
chine. Thus, if there are energy constraints for the machines,
these constraints can be included in the master agent knowl-
edge.

3.2 Distributed solving sequence
Figure 1 depicts the interaction sequence among the agents.
The list of exchanged message and their sequence are over-
viewed in this figure. The vertical line (from each agent) in

BuildSharedJobList()

SolverAgent:: 
agent1

SolverAgent:: 
agent2

SolverAgent:: 
agent m

Master Agent

RequestPartialInstanceSolving(1, DataSetJ1, strategy)

SolvingByStrategy(DataSetJ1, strategy)

RequestPartialInstanceSolving(2, DataSetJ2, strategy)

InformPartialSolution(1, ScheduleJ1, strategy)

RequestPartialInstanceSolving(m, DataSetJm, strategy)

SolvingByStrategy(DataSetJ2, strategy)

InformPartialSolution(2, ScheduleJ2, strategy)

SolvingByStrategy(DataSetJm, strategy)

InformPartialSolution(m, ScheduleJm, strategy)

Concurrently and Asynchronous

AssignSharedJobs()

BuildDataSetOfNonSharedJobsPerMachine()

BuildGlobalSolution()

Figure 1: Interaction sequence to solve the distributed
scheduling problem

the diagram represents time and the execution thread of each
agent. An arrow between two agents represents a message
passing from one agent to the other (i.e. the sending agent is
requesting the execution of a given function from the receiv-
ing agent, or the sending agent is informing the receiving
agent a given data is ready).

The solving sequence is initiated by
the master agent executing the function
BuildDataSetOfNonSharedJobsPerMachine(),
in order to compose a partial problem (DataSetJm

) for
each machine m,
DataSetJm

= {j,Dj , Rj , Tj , Pjm, Ejm, Sijm,Πg}
∀j ∈ Jm

When building the partial problem only the jobs that can
just be executed in the given machine are considered.

In a second step the master agent executes the
BuildSharedJobsList() function to compose a list of the
shared jobs: the jobs that can be processed on alternative
machines:

SharedList = {< j,Mj >}∀j ∈ J, |Mj | > 1
In the third step, the master agent executes the function

AssignSharedJobs(). This function operates as follow:
1. For each shared job in SharedList, it analyses the pro-

cessing time and energy consumption of the pair <
job,machine > according to equation 6 and selects the
machine with the best performance.

2. This shared job is assigned to the selected machine, ap-
pending the job to the DataSetJm

with its corresponding
processing time and energy consumption.
The following steps in the distributed sequence are a set of

concurrent and asynchronous message exchanged between
the master and solver agents:

1. The master agent sends to ev-
ery solver agent m the message
RequestPartialInstanceSolving(m,DataSetJm

,
strategy) asking to solve the partial problem with a
predefined strategy.

COPLAS’2016

37



2. The solver agents react to the previous masters message
executing the required solving strategy and returning val-
ues to their local variables (ScheduleJm

).
3. Every solver agent m returns to the master agent the

computed schedule (an assignment of its local vari-
ables) for the partial problem by means of the message
InformPartialSolution(m,ScheduleJm

, strategy).
Once all the partial solutions are received by the mas-

ter agent, the function BuildGlobalSolution() generates
the global schedule s from the different partial schedules
ScheduleJm

and the global multi-objective function F is
calculated according to formula 2.

4 Solving strategies
As described in the sub-section (3.1), the possible strategies
that a solver agent can use to solve his assigned DataSetJm

are divided in two category: optimal and heuristic.
Different heuristic strategies are proposed, mostly based

on a greedy procedure that evaluates a best choice at each
searching step with no guarantee to found an optimal solu-
tion, but with an efficient time consumption proportional to
the size of the problem. In contrast to the previous, the used
optimal method is based on mathematical integer program-
ming (Paolucci, Anghinolfi, and Tonelli 2015), a method
that guarantee to find an optimal solution in a time that could
be exponential in the size of the problem.

In the following each solving strategy is described and
where possible, an illustrative pseudo-code is listed.

4.1 Naive heuristic

This naive heuristic follows a different approach from the
standards, because rather than focusing on the objective
function to minimize, takes under analysis a problem fea-
ture, the idle time of the machines, and try to minimize its
value and evaluate how the solution quality will be affected.

At the operational level, after analyzed the DataSetJm ,
the solver agent executes a greedy algorithm that creates the
scheduling solution [job1, . . . , job|Jm|] iteratively, deciding
at each step the jobx, from the Jm, that will be assigned at
the position i-th of the solution. The decision step follows
the rule of choosing, from the remaining jobs to schedule,
the one with the earliest release time.

In the following, the pseudo-code for the naive heuristic
is reported:

Data: list of JobToSchedule Jm
Result: ScheduleJm

J ′m = Jm;
while J ′m 6= EmptyList do

find jx = minj∈J′
m
Rj ;

add jx to ScheduleJm
;

remove jx from J ′m;
end

Algorithm 1: Naive heuristic.

4.2 Completion time greedy heuristic
This greedy heuristic has a similar behavior to the naive
one, but rather than considering a problem feature, it focus
its analysis on the possible completion time of the jobs to
schedule.

At the operational level, this heuristic follows the same
approach of the previous (iteratively creates the scheduling
solution), changing the rule in the decision step. In this case,
for each job in the list of remaining jobs to schedule, it is cal-
culated the starting time of execution as the maximum value
between the completion time of the previously scheduled job
and the release time of the job under examination. Then, it’s
calculated the possible completion time for each remaining
job as the sum of the starting time of execution plus the pro-
cessing time (a constant value from the problem data). After
that, the job with the minimum value of completion time is
selected.

In the following, the pseudo-code for the completion time
heuristic is reported:

Data: list of JobToSchedule Jm
Result: ScheduleJm

J ′m = Jm;
while J ′m 6= EmptyList do

find jx = minj∈J′
m
cj ;

add jx to ScheduleJm
;

remove jx from J ′m;
end

Algorithm 2: Greedy heuristic based on completion time.

4.3 Weighted tardiness greedy heuristic
This greedy heuristic, differently from the others, tries to
minimize the multi-objective function 1, focusing on the to-
tal weighted tardiness objective function 3 and aiming to
minimize it at each decision step. To do so, it chooses as
the jobx to schedule, the one with the maximum calculated
weighted tardiness. This decision is made on the assumption
that postponing the schedule of the chosen jobx will lead to
a highest worsening for the total weighted tardiness objec-
tive function.

At the operational level, this heuristic follows the same
approach of the previous ones (iteratively create the schedul-
ing solution), changing the rule for the decision step. Sim-
ilarly to the heuristic in section 4.2, for each job in the list
of remaining jobs to schedule, it is calculated the starting
time of execution and the possible completion time. Then,
the tardiness value, respect to the job due date, is calculated
and weighted with the weight cost (a constant value from the
problem data). After that, the job with the maximum value
of weighted tardiness is chosen, if there is a tie, the job with
the earliest release time is chosen.

In the following, the pseudo-code for the weighted tardi-
ness heuristic is reported:

After a brief reflection, it is possible to note that this
heuristic can lead to a large idle time for the machine (e.g. it
is selected to schedule as jobi, a job with a starting execution
time far away from the last job completion time). To improve
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Data: list of JobToSchedule Jm
Result: ScheduleJm

J ′m = Jm;
while J ′m 6= EmptyList do

find jx = maxj∈J′
m
Wj · tj ;

add jx to ScheduleJm ;
remove jx from J ′m;

end
Algorithm 3: Greedy heuristic based on the weighted tar-
diness.

this, an extended version of this heuristic is presented in the
next section.

4.4 Weighted tardiness greedy heuristic with
backward searching

This greedy heuristic extends the previous one (section 4.3)
using a backward search, after the greedy decision step, aim-
ing at reducing large idle times for the machines.

At operational level, the backward search tries to find a
jobi′ that can be scheduled before the jobi chosen from the
previous decision step. This jobi′ has to fulfill a new tempo-
ral constraint that ensures the starting time of the previous
fixed job (jobi) does not change, due to the new setup cost
between jobi′ and jobi. If there are more than one job that
satisfy the temporal constraint, the job with the maximum
weighted tardiness is chosen. The backward search is recur-
sively invoked till it’s possible to find a job that fulfill the
new temporal constraint. Otherwise the heuristic moves for-
ward to find a new job to schedule after the previously fixed
job, jobi.

In the following, the pseudo-code for the weighted tardi-
ness heuristic with backward search is reported:

Data: list of JobToSchedule Jm
Result: ScheduleJm

J ′m = Jm;
while J ′m 6= EmptyList do

find jx = maxj∈J′
m
Wj · tj ;

TC(jx) = temporal constraint for jx;
remove jx from J ′m;
s′ = BackwardSearch(J ′m,TC(jx));
add s′ to ScheduleJm

;
add jx to ScheduleJm

;
end

Algorithm 4: Greedy heuristic based on the weighted tar-
diness with backward search.

4.5 Mathematical programming model

The mixed integer programming (MIP) model uses the
mathematical formulation described in section 2 extending
it with the mathematical definition of the objective functions
(7) and their constraint (8-17) as follow:

Data: remaining JobToSchedule J ′m, temporal
constraint TC(jx)

Result: sub-scheduling solution s′

while J ′m 6= EmptyList ∧ ∃j′|satisfy(j′, TC(jbx)) do
find j′x = maxj′∈J′

m
Wj′ · tj′ ;

TC(j′x) = temporal constraint for j′x;
remove j′x from J ′m;
s′ = BackwardSearch(J ′m,TC(j′x));
add s′ to s;
add jx to s;

end
Algorithm 5: Backward search.

min Π1 ·

∑
j∈J

Wj · tj − f−1

f+
1 − f−1

+ Π2 ·

∑
j∈J

∑
k∈Mj

Ejk

∑
i∈Jk
i6=j

xijk

f+
2 − f−2

+

Π3 ·

∑
k∈M

∑
i∈Jk

∑
j∈Jk
i6=j

Sijk · xijk

f+
3 − f−3

(7)

subject to

∑
i∈Jk
i6=j

xijk = yjk ∀j ∈ J, k ∈Mj (8)

∑
j∈Jk
j 6=i

xijk = yik ∀i ∈ J, k ∈Mi (9)

∑
k∈Jk

yjk = 1 ∀j ∈ J (10)

∑
j∈Jk

x0jk ≤ 1 ∀k ∈M (11)

cj ≥ Rj +
∑
k∈Mj

Pjkyjk ∀j ∈ J (12)

tj ≥ cj −Dj ∀j ∈ J (13)
cj ≥ ci + Pjk + Sijk −B · (1− xijk)

∀k ∈M, ∀i, j ∈ Jk, i 6= j
(14)

c0 = 0 (15)
cj ≥ 0, tj ≥ 0 (16)
xijk ∈ {0, 1} ∀i, j ∈ J, i 6= j, k ∈Mi ∩Mj ,

yjk ∈ {0, 1} ∀j ∈ J, k ∈Mj
(17)

Constraints (8) and (9) impose that each job, assigned to
a machine, must be sequenced on that machine, precisely it
must have a predecessor and a successor on the machine.
The job preceded by the fictitious job 0 is the first job on a
machine, whereas the job followed by job n+1 is the last one
on the machine. Constraints (10) guarantee that each job is
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Table 1: Average multi-objective values reached in the dif-
ferent classes of instances.

Instances Multi-objective value

n m MAS Centralized MIPNaive CT WT WT+BT MIP
30 4 0.09782 0.06984 0.40928 0.16874 0.02642 0.01978
50 6 0.07509 0.06043 0.30887 0.12797 0.02056 0.01672
100 10 0.06299 0.05182 0.18418 0.08604 0.01781 0.01531
250 20 0.03963 0.03754 0.16438 0.03575 0.03982 0.03987

Table 2: Average runtime measurement in the different
classes of instances.

Instances Runtime [s]

n m MAS Centralized MIPNaive CT WT WT+BT MIP
30 4 0.0001 0.0005 0.0006 0.0003 12.2094 319.7636
50 6 0.0009 0.0003 0.0016 0.0013 17.4823 766.4818
100 10 0.0024 0.0062 0.0049 0.0048 56.6454 1957.126
250 20 0.0155 0.0348 0.0308 0.0687 41.8345 2647.119

assigned to a single machine among the ones eligible to pro-
cess it. Constraints (11) impose that, at most, a single job is
the first scheduled on each machine. Constraints (12) define
the lower bound for the job completion time, and (13) define
the job tardiness. Constraints (14) control the job comple-
tion times ensuring that each machine processes one job at
a time and that the setup time between two successive jobs
is satisfied. Constraints (15) fix the completion time for the
dummy job0 and (16) and (17) define the problem variables.

5 Experimental comparison
In order to evaluate the solving strategy in terms of ef-
ficiency, scalability and solution quality, a set of random
instances were generated starting from real data acquired
by studying a large plastic injection moulding factory of
a company leader in supplying plastic trigger sprayers and
pump dispensers (Salido, Barber, and Nicoló 2016). For
each moulding cycle, the injection presses produce multiple
pieces, according to the selected stamp tool, with electrical
power between 46 and 69 kW. These instances are grouped
by the number of jobs n and involved machines m. Four dif-
ferent sets of 125 instances were generated and run for all
the proposed solving strategies of the distributed model on
a 2.4 GHz Intel Core 2 Duo. The calculated average values
for each instances run are compared with the values from the
centralized MIP system (Paolucci, Anghinolfi, and Tonelli
2015) and shown in Tables 1, 2, 3, 4, 5 and 6. As a facilita-
tion to read the values, each cell that present the best value
for an instance set, has been colored with shaded gray.

Tables 1 and 2 summarizes the average multi-objective

Table 3: Reached timeouts in the different classes of in-
stances.

Instances Timeouts
n mn MAS* Centralized MIP

30 4 0 9
50 6 0 22
100 10 0 64
250 20 0 86

Table 4: Percentage variation from the centralized system of
the average total weighted tardiness objective function.

Instances MAS vs Centralized MIP [%TT ]
n m Naive CT WT WT+BT MIP

30 4 -29.34% -2.03% 119.91% 25.41% 4.46%
50 6 -39.97% -53.82% 23.62% -29.2% -32.31%
100 10 -29.20% -41.04% 50.76% -17.03% -24.23%
250 20 -80.49% -80.92% -58.73% -75.40% -71.84%

Table 5: Percentage variation from the centralized system of
the average total energy consuption objective function.

Instances MAS vs Centralized MIP [%EN ]
n m Naive CT WT WT+BT MIP

30 4 -0.08% -0.08% -0.08% -0.08% -0.08%
50 6 -0.13% -0.13% -0.13% -0.13% -0.13%
100 10 -0.08% -0.08% -0.08% -0.08% -0.08%
250 20 -5.66% -5.66% -5.66% -5.66% -5.66%

value (dimensionless) and the runtime. The weights express-
ing the relative importance of the objectives in (2) were fixed
to Π1 = 0.6, Π2 = 0.35 and Π3 = 0.05 according to
the preference elicitation method introduced in (Paolucci,
Anghinolfi, and Tonelli 2015).

Both MIP solving strategy for the distributed and central-
ized system obtained a similar multi-objective value for all
instances (both were set with a similar timeout of 3600 sec-
onds). It must be observed that the values were close to 0,
since (7) uses a minimum deviation method, i.e. each of
the three single objectives is compared with the best so-
lution found by solving them individually. However, due
to the complexity of the problem, the runtime for the cen-
tralized system had an exponential behavior, whereas the
MAS model with MIP solving strategy had a lower value
of two magnitude orders. The distributed system indeed
solved all instances in less than 290 seconds, whereas cen-
tralized system aborted the execution in a significant number
of instances (Timeouts in Table 3). The centralized system
achieved the optimal solution in 63, 8% of the total instances
within the established timeout.

Tables 4, 5 and 6 show the percentage variation of the
different objectives (tardiness, setup time and energy con-
sumption) of the distributed MAS model against centralized
MIP approach. The MAS model was able to obtain a bet-
ter behavior in total tardiness and energy consumption in
almost all instances, whereas the centralized MIP model re-
turned better values for the setup times. This is due to the
fact that the master agent selects the jobs that can be as-
signed to different machines (shared jobs) according to the

Table 6: Percentage variation from the centralized system of
the average total setup time objective function.

Instances MAS vs Centralized MIP [%ST ]
n m Naive CT WT WT+BT MIP

30 4 166.6% 162.3% 159.99% 161.96% 7.31%
50 6 206.94% 206.78% 205.70% 205.76% 11.24%
100 10 274.85% 273.75% 271.16% 273.45% 12.93%
250 20 230.71% 230.07% 232.77% 229.08% 31.66%
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energy consumption and processing time. However the mas-
ter agent cannot consider the setup time because the machine
sequence is not known in advance. In any case, the improve-
ment is mainly significant in tardiness values.

6 Conclusion
While several approaches for off-line energy-aware schedul-
ing have been presented in literature, the lack of a bench-
mark prevents a sound comparison of alternative methods.
In this paper the availability of a set of instances match-
ing the statistics computed for a real industry, specifically
the production of plastic components by injection mould-
ing, permitted to evaluate a multi-agent approach with dif-
ferent solving strategies and compare it with a centralized
approach using a mixed integer programming model.

The comparative analysis of the experimental results of
these approaches allows to decide under which conditions,
such as problem size, temporal constraints, etc., one ap-
proach is better than the other. Actually the multi-agent ap-
proach shows a better performance when obtaining opti-
mized solutions for large-scale instances in a given execu-
tion time. Anyway new heuristic and metaheuristic solving
strategy (GRASP, Genetic Algorithms, etc) can be embed-
ded in the proposed multi agent system. They are incomplete
techniques but they achieve good solutions in an efficiency
way. Moreover, these techniques can also be designed into a
centralized system giving the possibility to compare a single
technique under both centralized and distributed perspective.

To conclude, MAS model seems to be a suitable approach
with interesting potentialities to be used for energy aware
off-line scheduling in addition to their well-known ability to
react in real-time.
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