
The 26th International Conference on Automated
Planning and Scheduling

	
	

Proceedings of the 10th

Scheduling and Planning Applications
woRKshop (SPARK)

Edited by:

Sara Bernardini, Steve Chien, Shirin Sohrabi, Simon Parkinson

London, UK, 13-14/06/2016

Organising Committee
Sara Bernardini, Royal Holloway University of London, UK.

Steve Chien, NASA Jet Propulsion Laboratory, USA

Shirin Sohrabi, IBM, USA

Simon Parkinson, University of Huddersfield, UK

Program Committee
Bram Ridder, King's College London

Riccardo De Benedictis, CNR - National Research Council o Italy

Riccardo Rasconi, ISTC-CNR

Mark Johnston, JPL/California Inst. of Technology

Minh Do, NASA Ames Research Center

Simone Fratini, European Space Agency - ESA/ESOC

Adrien Maillard, ONERA

Angelo Oddi, ISTC-CNR, Italian National Research Council

Tiago Stegun Vaquero, MIT and Caltech

Alexandre Albore, Onera & INRA

Kartik Talamadupula, IBM Research, USA

Christophe Guettier, SAGEM

Ramiro Varela, University of Oviedo

Patrik Haslum, ANU

Nicola Policella, ESA/ESOC

Bryan O’gorman, NASA Ames Research Center

Foreword
Application domains that entail planning and scheduling (P&S) problems
present a set of compelling challenges to the AI planning and scheduling
community that from modeling to technological to institutional issues.
New real-world domains and problems are becoming more and more
frequently affordable challenges for AI. The international Scheduling and
Planning Applications woRKshop (SPARK) was established to foster the
practical application of advances made in the AI P&S community.
Building on antecedent events, SPARK'16 is the tenth edition of a
workshop series designed to provide a stable, long-term forum where
researchers and practitioners can discuss the applications of planning and
scheduling techniques to real-world problems. The series webpage is at
http://decsai.ugr.es/~lcv/SPARK/ We are once more very pleased to
continue the tradition of representing more applied aspects of the planning
and scheduling community and to perhaps present a pipeline that will
enable increased representation of applied papers in the main ICAPS
conference. We thank the Program Committee for their commitment in
reviewing. We thank the ICAPS'16 workshop and publication chairs for
their support.

The SPARK’16 Organizers

SPARK 2016 Table of Contents

Table of Contents

Planning Autonomous Underwater Reconnaissance Operations . 1
Sara Bernardini, Maria Fox, Derek Long and Bram Ridder

Evaluating Scientific Coverage Strategies for A Heterogeneous Fleet of Marine Assets
Using a Predictive Model of Ocean Currents. 10
Andrew Branch, Martina Troesch, Steve Chien, Yi Chao, John Farrara and Andrew
Thompson

Search Challenges in Natural Language Generation with Complex Optimization
Objectives . 20

Vera Demberg, Joerg Ho↵mann, David M. Howcroft, Dietrich Klakow and Álvaro
Torralba

TIAGO – Tool for Intelligent Allocation of Ground Operations on Cluster-II. 26
Simone Fratini, Nicolas Faerber, Nicola Policella and Bruno Teixeira De Sousa

Automatic Resolution of Policy Conflicts in IoT Environments Through Planning. 35
Emre Goynugur, Kartik Talamadupula, Geeth De Mel and Murat Sensoy

Deploying a Schedule Optimization Tool for Vehicle Testing . 44
Jeremy Ludwig, Annaka Kalton, Robert Richards, Brian Bautsch, Craig Markusic and
Cyndi Jones

Exploring Organic Synthesis with State-of-the-Art Planning Techniques 52
Rami Matloob and Mikhail Soutchanski

Planning Machine Activity Between Manufacturing Operations: Maintaining Accuracy
While Reducing Energy Consumption . 62
Simon Parkinson, Andrew Longsta↵, Simon Fletcher, Mauro Vallati and Lukas Chrpa

Managing Spacecraft Memory Bu↵ers with Overlapping Store and Dump Operations 69
Gregg Rabideau, Steve Chien, Federico Nespoli and Marc Costa

E�cient High Quality Plan Exploration for Network Security . 76
Anton Riabov, Shirin Sohrabi, Octavian Udrea and Oktie Hassanzadeh

Using Operations Scheduling to Optimize Constellation Design . 82
Steve Scha↵er, Andrew Branch, Steve Chien, Stephen Broschart, Sonia Hernandez,
Konstantin Belov, Joseph Lazio, Loren Clare, Philip Tsao, Julie Castillo-Rogez and
E. Jay Wyatt

Constructing Plan Trees for Simulated Penetration Testing . 88
Guy Shani, Joerg Ho↵mann, Dorin Shmaryahu and Marcel Steinmetz

Prioritization and Oversubscribed Scheduling for NASA’s Deep Space Network 95
Caroline Shouraboura, Mark Johnston and Daniel Tran

Using Hierarchical Models for Requirement Analysis of Real World Problems in
Automated Planning . 101
Rosimarci Tonaco-Basbaum, Javier Silva and Reinaldo Silva

Planning Autonomous Underwater Reconnaissance Operations⇤

Sara Bernardini
Department of Computer Science

Royal Holloway, University of London
Egham, Surrey, UK, TW20 0EX

sara.bernardini@rhul.ac.uk

Maria Fox and Derek Long and Bram Ridder
Department of Informatics

King’s College London
London, UK, WC2R 2LS

firstname.lastname@kcl.ac.uk

Abstract

In this paper, we focus on the task of reconnaissance in an
underwater setting. The objective is to efficiently search a
large area in order to identify safe passages for ships. A path
is considered safe if there are no rocky regions within it as
these can conceal hazards such as mines. Our approach is
to decompose the area into regions which can then be al-
located for seach to individual vehicles. An initial, coarse,
lawnmower survey gives some indication of the make-up of
the area to be searched, and the next step is to use this survey
to hypothesise about the structure of the unseen areas. It is
hypothesised that any as-yet unseen areas are rocky and the
task of the AUVs is to disprove this hypothesis by planning
efficient paths to investigate these unseen areas. We have de-
veloped a plan-based approach that searches a large area very
efficiently by reasoning about the structure of the seabed as
the planned search progresses. To demonstrate the potential
of our technique, we have developed a simulation based on
ROS and integrated our system into the commercial “SeeByte
Neptune” simulator.

1 Underwater Reconnaissance Problem
The current state of the art is that underwater operations are
typically scripted or remotely operated. The successful pro-
prietary SeeByte Neptune system (SeeByte 2013), for exam-
ple, offers a way to support human planning of underwater
missions at a level of abstraction, but remains demanding of
human planners and offers limited opportunities for dynamic
replanning on-board as missions unfold. There is a lim-
ited application of automated planning in multi-domain un-
manned platforms, see for example (Cashmore et al. 2013)
and (Faria et al. 2014). The first paper concerns the use of
autonomous AUVs to perform inspection and maintenance
tasks in underwater installations, while the second paper ex-
plores the role of planning technologies in underwater mis-
sions and considers broader-based missions with mixed plat-
forms including UAVs and AUVs.

In this paper, we describe our approach to use generic
planning technology to underpin fully autonomous recon-
naissance missions in an underwater setting. In particular,
we consider an underwater area A, which is initially com-
pletely unknown and where mines might be present. The

⇤The authors gratefully acknowledge support from ASUR,
MOD Contract Number: DSTLX-1000079686.

seabed in this area can be: flat (F), rippled (R), mixed (M)
and complex (C). We assume that the AUVs available for
the reconnaissance missions are capable of detecting these
features with some probability error, which is given for each
feature. When a region in A is directly observed as flat is
classified as F1, if a region is adjacent to an F1 region is clas-
sified as F2. The same holds for the other types of seabed.
The probability of spotting a mine is different depending on
the seabed quality and these probabilities are given. Flat re-
gions offer the best visibility. Let us know call corridor a
passage in the area A from two given points. The goal of a
reconnaissance mission is to find a safe corridor, i.e. a pas-
sage with the lowest probability of having mines in it (see
Figure 1). The ideal outcome would be to find a corridor
where the seabed is flat and no mines are spotted. Mission
time needs to be minimised so, although multiple observa-
tions of the same locations are possible, the information that
is acquired in doing that must be balanced against the time
used for those additional observations.

Figure 1: Underwater Reconnaissance Problem: finding a
safe passage from two given locations.

Currently, in real applications (SeeByte 2013), the prob-
lem is solved as follows. First, the AUV proceeds along one
diagonal d1 in the quadrangular area A and, in doing so,
classifies n quads that can be identified within A and whose
diagonals overlap d1. The classes are: F1, F2, R1, R2, M1,
M2, C1 and C2. Then, the AUV does the same along one
side of A and along the other diagonal d2 (see Figure 2).
This procedure is repeated until the entire area A has been
classified. After classification, a corridor is identified. This
method works, but is inefficient since it requires that the en-

 1

tire area is classified in order to find a corridor, although this
is not a requirement of the reconnaissance problem itself.Behavior:&AdapLve&mulLXresoluLon&REA&

1 vehicle
2h10m

1 vehicle
1h40m

Figure 2: Classification of the underwater area to find a safe
corridor. This solution is currently adopted in real-world
operations, for example by SeeByte Inc.

We propose a new approach to underwater reconnaissance
that is based on the use of automated planning techniques.
Our approach allows one to minimise the resources used by
the AUV during the inspection tasks since it does not require
a complete classification of the seabed in the area of opera-
tion in order to find a passage. At the same time, planning
tools provide solutions that maximise the likelihood of dis-
covering safe passages.

As a first step towards solving the general underwater re-
connaissance problem, we have focused on one particular
instance, which has been devised in consultation with our in-
dustrial collaborators at SeeByte Inc. We consider an under-
water quadrangular area Q (around 2 Km x 2 Km), which is
initially completely unknown. When inspected by the AUV,
regions in this area can be classified as flat (F) or non-flat.
We call complex (C) any region that is non-flat. We call safe
corridor (or passage) in the area Q, a sequence of segments
that connects the left side to the right side, where each seg-
ment traverses flat regions only.

1.1 Search as a Planning Problem
The approach we adopt in tackling underwater reconnais-
sance is based on our previous work on search-and-track (i.e.
the problem of finding and following a mobile target) using
an unmanned aerial vehicle (UAV) (Bernardini et al. 2013;
Bernardini, Fox, and Long 2014; 2015; Bernardini et al.
2016). That work exploits generic technology: modelling
tools, a temporal planner and an execution architecture,
which have been redeployed in the underwater environment.
There is no domain-specific behaviour in either application,
but the work presented here for the reconnaissance problem
changes the focus of search from a single mobile target to
finding a structured static area on the seabed. This change
has led to interesting further developments in our ideas, al-
though still using the same underlying paradigm.

The paradigm we use in all of these application areas re-
lies on a hypothesise-and-test approach. In search, the hard
decisions have to be made when considering what to do
when the target of search is not found: once the target is
found, then behaviour changes (to a following behaviour in

search-and-track missions, or to an exploitation phase when
searching for safe passage for ships). This leads to the ob-
servation that one can usefully plan those hard decisions in
advance, to optimise search, based on the hypothesis that
each search attempt will fail to find the target. That is, by
anticipating failure in each search, we can focus on the de-
cisions about what to do next in order to continue the search.
Therefore, we plan searches and hypothesise that they will
fail to discover the target of search, making it useful to plan
to continue to search further.

Although we use a deterministic planner to perform the
planning, we do not ignore probability. We assume that
the actions of the searching agent are predictable, but that
the outcome of search is not. However, as noted above, a
successful search will cause a change in behaviour, so we
can plan purely on the assumption that each search will fail.
In that case, we can use this anticipated failure to deter-
mine how the probability mass describing the expected out-
come of searches moves around (exploiting correlations in
the properties of locations). This is reflected in changing re-
wards for different locations and allows the planner to trade
between resource efficiency and expected benefits in its di-
rection of search.

1.2 Assumptions
In this work we make several assumptions. Some of these
are simplifying assumptions but others reflect our limited
knowledge in some specialised areas related to the domain.
In general, these assumptions are not fundamental to the way
we solve the problem, because we can extend and modify
our models to reflect a refined understanding of the domain
without changing the underlying technology. This is a key
benefit in the use of our generic technology.

We have ignored the problem of localisation accuracy in
the AUVs, which simplifies the problem of navigation when
there are multiple vehicles in the area. We have ignored
the issue of use of sonar in locations where there might be
wildlife that prevents us from using sonar safely. We have
also ignored the question of the accuracy of the identification
of subsea terrain structures based on sonar data. We have
also ignored the potential uncertainty in navigation caused
by currents.

2 Three Phase Approach
We adopt a three phase approach to tackle the underwater re-
connaissance problem. First, the vehicle performs a coarse
survey of the area, which is simply a big lawnmower(that
is, the vehicle passes backward and forward over the search
area) search pattern to acquire initial, coarse-grained infor-
mation about the area of operation. This pattern is not a
classic lawnmower pattern (which comprises tightly adja-
cent paths to cover the entire region), but a simple crossing
path to give an initial view of the space (see Figure 4). Then,
a cycle of planning and replanning rounds generate plans for
the AUV to efficiently explore the area of operation in more
depth. During this cycle, the vehicle discards as many paths
that contain complex surfaces as possible and accumulates
information about flat areas. When it has acquired sufficient

 2

confidence that several flat regions can be linked together in
a clear path, the AUV switches to the last phase, in which it
goes along this hypothetical path to confirm that it is a safe
passage. If this confirmation phase is successful, the prob-
lem is solved; if not, the planning and replanning cycle starts
again until a clear path is found. The three phase approach
is illustrated in Figure 3.

Path%Confirma,on%

Candidate%Path%

Plan%
Plan%Execu,on%

Lawnmower%

Path%not%
found%

Planning%
Domain%

Path%found%

End%of%Mission%

Start%of%Mission%

Planning%and%
Replanning% Plan%Failure%

Ini,al%State%
Data%

Clear%Path%

Figure 3: Three Phase Approach to the Underwater Recon-
naissance Problem

3 Phase 1: Lawnmower
During the first phase, the AUV executes the initial survey
pattern with three vertical legs and two horizontal legs over
the area of operation Q (see Figure 4). In order to structure
and store the information regarding the area of operation,
we lay a grid over the area Q, where the cells have sides of
100 meters (see Figure 4). Since the AUV uses one sonar
per side with a range of 50 m, we assume that the AUV is
capable of observing an entire cell when it passes over it
and can classify the seabed of the observed cell as flat or
complex. Hence, once the lawnmower has been executed,
the nature of all the cells traversed by the vehicle are known,
whereas the other remain unknown (see Figure 5).

Figure 4: Grid over the area of operation and initial lawn-
mower (Phase 1).

F C C C C C C C C C

C C F

C C C

C C C

C F C

C C C

C C C

C C C

C C C

C C C

C C F

C C C

C C C

C F C

C C C

C C C

F C C C C C C C C C

Figure 5: Initial information

4 Phase 2: Planning and Replanning Cycle
The planning and replanning cycle works in four steps:
1. Hypothesis generation;
2. Planning task formulation and planning;
3. Plan execution;
4. Replanning.

During the first step, based on the information collected
during Phase 1 (see flat cells in Figure 5), we hypothesise
potential clear segments in the area of operation by connect-
ing together flat cells (see red arrows in Figure 6). These
segments, appropriately combined, could form a clear pas-
sage from one side to the other side of the area of operation.
Then, we ask the planner to check these hypotheses and dis-
card the segments that contain complex surfaces since they
are not suitable components of clear paths. In order to do
that, we formulate the problem of disproving hypotheses as a
planning task and we feed this task into an high-performing
planner, called POPF-TIF (Piacentini et al. 2015). We then
execute the plan provided by the planner until completion
or until a plan failure occurs. In this context, a plan failure
happens when the planner cannot discard a segment since,
when checking it, it has not found complex cells in it. At
this point, we abandon the current plan and generate a new
planning problem based on the new information that we have
acquired during the previous plan execution step. This re-
planning step provides a new plan that is in turn executed.
This cycle of planning and replanning continues until we
conclude that no passage exits or until we have gained suffi-
cient information about a potential clear path, which is then
validated in Phase 3. We will now describe all these four
steps in more detail.

4.1 Hypothesis Generation
Considering a grid of n⇥n, the initial lawnmower identifies
flat cells in column 0, n/2, and n � 1. Let us call these
three sets of cells C0, C1 and C2. We generate hypothetical
clear segments by connecting every flat cell in C0 with every
flat cell in C1 and then the same for cells in C1 and C2 (see
red arrows in Figure 6). We refer to these segments as our
hypotheses.

Given these hypotheses with their corresponding initial
and final cells, we also store information about other cells in

 3

F

F

F

F

F

F

Figure 6: Hypothesis Generation

the grid (shown in orange colour in Figure 7), which will be
useful to validate or discard hypotheses in the next steps of
the procedure. In particular, for each hypothesis hi, we iden-
tify the cells that contain the intersection points between hi

and each other hypothesis hj (see, for example, cells 7 and
15 in Figure 7) and the cells that contain the middle points
between the initial or final cell of hi and the intersection cell
(see, for example, cells 3, 4, 8 and 9 in Figure 7). Finally,
if the hypothesis hi does not intersect other hypotheses, we
take the cell that contains its middle point (see, for exam-
ple, cells 5 and 6 in Figure 7). The intersection and middle
cells are interesting because, if the AUV inspects one of such
cells and finds complex seabed in it, the hypotheses that pass
through that cell can be discarded since they cannot repre-
sent valid components of clear passages. In what follows,
we identify each cell with its corresponding central point
and use the terms waypoints and cells interchangeably.

1
19

5 14

10 17

3

8 12

15

7
18

13 20

4 9 16

11

6

2

0: (doleg wp1 wp5)
145: (doleg wp5 wp7)
262: (doleg wp7 wp6)
332: (doleg wp6 wp16)
402: (doleg wp16 wp15)
487: (doleg wp15 wp14)

Figure 7: The waypoints of interest (in orange) and the ini-
tial plan (green segments and blue box).

4.2 Formulation of Planning Tasks
We use the language PDDL2.2 (Planning Domain Definition
Language) (Edelkamp and Hoffmann 2004; Fox and Long
2003) to model the reconnaissance problem, taking advan-
tage of several sophisticated features of this language to ex-
press all the properties of our domains.

We model all the relevant waypoints in our problem
and their distances. As discussed in Section 3, they are

the known flat waypoints identified during the lawnmower,
the intersection points between hypotheses and the middle
points of the hypotheses. We then associate a reward with
each waypoint that represents an estimate of how many hy-
potheses can be disproved if that waypoint is found to be
complex. These rewards guide the planner to explore the
regions where the highest number of candidate paths can
be discarded. By iteratively discarding more and more hy-
potheses, the search can then be directed towards the most
promising regions where a clear passage can be found. The
rewards are updated over time so that no hypothesis is
checked more than once. A total reward keeps track of the
accumulated capacity of the plan to be effective in discard-
ing hypotheses.

The basic structure of the domain for the reconnaissance
problem is simple: there is a navigation action that allows
the vehicle to move from one waypoint to another. It has
an entry waypoint and an exit waypoint. The effect, other
than to move the vehicle from the entry to the exit point, is
to increase the total reward by a quantity that represents the
specific reward associated with the exit point discounted by
the distance of such point from the entry point. This way of
calculating the total reward allows us to maximise the op-
portunities of discarding unsafe hypotheses and also to min-
imise the total distance traversed by the AUV. The actions
are durative and their duration is fixed in the problem in-
stance to be the correct (computed) value for the traversal of
the distance from the entry to the exit point.

Figure 8 displays the definition of the reconnaissance
problem in PDDL2.2.

4.3 Planning Mechanism and Plans
We use POPF-TIF (Piacentini et al. 2015) to build plans for
the observer. POPF-TIF is an advanced version of the plan-
ner OPTIC (Benton, Coles, and Coles 2012) (Optimizing
Preferences and TIme-dependent Costs) and POPF (Coles
et al. 2010), that allows us to handle complex temporal in-
teractions. POPF-TIF is a temporal planner for use in prob-
lems where the cost function is not directly linked to the
plan make-span, as it usually happens, but can be expressed
as a continuous function. It combines grounded forward
search with linear programming to handle continuous lin-
ear numeric change. POPF-TIF performs anytime, cost-
improving search: it finds a first solution very quickly, since
the empty plan is already a feasible solution, but it then
spends the additional time improving on this solution by
adding further manoeuvres to the plan or by trying different
collections of manoeuvres. The search uses a weighted-A?

scheme with steadily changing weights in a tiered fashion.
The plans produced are monotonically improving, so the fi-
nal plan is selected for execution. We use a time-bounded
search limited to 10 seconds because we are in a time-critical
situation (this value is a configurable parameter). We use
POPF-TIF because it is very fast at producing its first solu-
tion and provides an any-time improvement behaviour.

Figure 7 shows an example of a plan generated by POPF-
TIFs for the single vehicle reconnaissance domain. Plans
for this domain look like sequences of waypoints to visit.
In particular, the planner chooses waypoint sequences that

 4

(define (domain recon)
 (:requirements :typing :durative-actions :fluents :timed-initial-literals :conditional-effects)
 (:types waypoint hypothesis)
 (:predicates (at ?p - waypoint) (notVisited ?p - waypoint))
 (:functions (reward) (rewardof ?w - waypoint) (distance ?p1 ?p2 - waypoint) (mf ?w1 ?w2 - waypoint))

 (:durative-action doLeg
 :parameters (?from ?to - waypoint)
 :duration (= ?duration (distance ?from ?to))
 :condition (and (at start (at ?from)) (over all (not (= ?from ?to))) (at start (notVisited ?to)))
 :effect (and (at end (at ?to)) (at start (not (at ?from))) (at start (not (notVisited ?to)))
 (at end (increase (reward) (- (rewardof ?to) (distance ?from ?to))))
 (forall (?w - waypoint) (at end (assign (rewardof ?w) (* (rewardof ?w) (mf ?to ?w))))))
)
)

Figure 8: Navigation action in PDDL2.2

maximise the opportunity to discard unsafe passages and, at
the same time, minimise the use of resources. In Figure 7,
for example, the planner chooses the path wp1 ! wp5 !
wp7 ! wp6 ! wp16 ! wp15 ! wp14, which is the
optimal route to inspect all the hypotheses while minimising
the traversed distance. We call this plan ⇡1.

4.4 Plan Failure and Replanning
Plans are generated under the assumption that every way-
point that is checked by the AUV is found to be complex
and that the corresponding hypotheses can be consequently
discarded. However, there might be cases in which the AUV
visits a waypoint to find that it is characterised by a flat sur-
face. When this happens, the plan ceases to be valid and is
abandoned. At this point, replanning is triggered. A new
problem is formulated based on the information acquired
during Phase 1, as before, and also during the execution
of the plan until its failure. In particular, a new flat way-
point is added to the problem, which is the waypoint that
has provoked the failure of the previous plan, and its corre-
sponding new hypotheses. In addition, hypotheses relating
to waypoints that have been found complex are removed. To
continue with our example, let us assume that during the ex-
ecution of plan ⇡1 the AUV finds that the cell corresponding
to wp7 has a flat surface (see Figure 9). At this point, the
plan ⇡1 is abandoned and a new plan ⇡2 is generated. As it
can be seen in Figure 9, the hypothesis from wp1 to wp10
and its corresponding middle point have been removed from
the planning task formulation, while the flat wp7 and its cor-
responding hypotheses and middle points have been added.
It is interesting to notice that the new plan focuses on check-
ing waypoints that are around wp7 since this now looks like
a promising area to find a clear passage. During the prob-
lem formulation, waypoints wp3, wp4, wp8 and wp9 receive
an higher rewards than the other points since disproving hy-
potheses in a promising area is more important than disprov-
ing hypotheses in unknown areas. This is why the planner
now prioritises these waypoints with respect to others.

5 Phase 3: Path Confirmation
Both during Phase 1 and 2, the AUV accumulates informa-
tion concerning flat cells in the area of operation. At regular

1
19

14

10 17

3

8 12

15

7
18

13 20

4 9 16

11

6

2

0: (doleg wp7 wp8)
30: (doleg wp8 wp3)
75: (doleg wp3 wp4)
160: (doleg wp4 wp6)
190: (doleg wp6 wp9)
240: (doleg wp9 wp16)
300: (doleg wp16 wp15)
350: (doleg wp15 wp14)

Figure 9: New plan after plan failure.

intervals, the AUV checks whether the waypoints at the cen-
tre of these cells can be connected in such a way to create a
path from left to right in the search area. If the AUV finds
a potential path and is sufficiently confident that this path
might be clear, which depends on how many cells in the path
are known to be flat, the AUV exits the planning and replan-
ning cycle and enters Phase 3, i.e. path confirmation. This
phase simply consists in the AUV traversing the hypotheti-
cal clear path, which is composed of a sequence of segments
that connect flat cells between each other. If the AUV con-
firms that a path has been found, it outputs such a path and
the problem is solved. If not, it goes back to Phase 2 and
a new task planning problem is formulated that encodes all
the new information that has been acquired during the path
confirmation phase.

The path confirmation phase is illustrated in Figures
10 and 11. Let us consider the figure on the left first
and assume that the AUV already knows that waypoints
wp1, wp3, wp7, wp9, wp11 and wp20 are all flat. Let us also
assume that the AUV now traverses the leg from wp11 to
wp20 and verifies that wp16 is flat as well. At this point,
starting from wp20, the AUV traverses the path indicated by
the green arrows in Figure 11 that goes through wp20 !
wp16 ! wp11 ! wp9 ! wp7 ! wp3 ! wp1. If we
assume that the vehicle finds flat in all the cells along this
path, then a clear passage is found and the algorithm exits.

 5

1
19

14

10 17

3
12

15

7
18

13 20

9 16

11

2

16

Figure 10: Phase 3: Path Confirmation

1
19

14

10 17

3
12

15

7
18

13 20

9 16

11

2

16

Figure 11: Clear path confirmed

6 Implementation
To demonstrate the viability of our approach to underwa-
ter reconnaissance, we have developed a simulation in con-
sultation with our industrial collaborators at SeeByte. The
simulation is intended to provide an appropriately abstracted
view of the problem. The main abstraction is that we assume
the control problem for the underwater vehicles solved. Our
implementation can simulate the sea bed and multiple ve-
hicles exploring it and performing reconnaissance tasks. In
the next section, we will provide a detailed description of
our simulator, while in Section 6.2, we will discuss our ini-
tial effort to integrate our plan-based approach to reconnais-
sance into the SeeByte’s proprietary AUV simulator, called
SeeTrack, and its relating planning system, called Neptune.

6.1 Architecture of the System
Our simulator, which is based on the DPE (Dreaded Portal
Engine) 3D engine, is a cross-platform 3D engine that uses
OpenGL 4.4. The AUV is modelled based on the “Girona
500” vehicle and the controller interface uses ROS to com-
municate with the vehicle. ROS, the Robot Operating Sys-
tem (Quigley et al. 2009), is a set of software libraries and
tools used in building robotic systems, which has become in-
creasingly popular both in industry and academia. Sensors,
such as sonar and cameras, are simulated in the engine and
use ROS topics, services, and actions to send and receive
messages. This choice makes it very easy to decouple the
simulator from the physical vehicle. Our 3D engine builds
on a similar one, which we previously developed and suc-
cessfully used in the context of the EU project PANDORA
(Cashmore et al. 2013) to simulate a multi-AUV environ-
ment with sea life.

The general architecture of the system is shown in Figure
12. This is a two-layer architecture, in which the high-level
layer (in blue) takes care of the deliberation capabilities of
the system and provides an interface towards the bottom-
level layer (in green), which corresponds to the control and
execution capabilities of the system.

The high-level layer is completely generic and can be
reused to embed a generic task planner in any ROS-based
execution system. The planner node corresponds to an ex-
ecutable of our planner POPF-TIF (Piacentini et al. 2015)

Mongo%DB% ROSPlan% Planner%
(POPF2TIF)%

MineSweeper%
Interface%

Seabed% Ac?on%
Controller%

Waypoint%
Controller%

Figure 12: An high-level view of the architecture of our sim-
ulation for underwater reconnaissance missions.

(described in Section 4.3). Although we use POPF-TIF be-
cause of its high performance, any other PDDL planner can
be embedded in this node. ROSPlan (Cashmore et al. 2015)
is at the core of the high-level layer. ROSPlan is a framework
for embedding a generic task planner in a ROS system. To-
gether with the planner, ROSPlan is the crucial element of
our architecture and provides tools to:
• automatically generate the initial state for the planner

from the knowledge parsed from sensor data and stored
in a knowledge base;

• automate calls to the planner, then post-process and vali-
date the plan;

• handle the main dispatch loop, taking into account chang-
ing environment and action failure;

• match planned actions to ROS action messages for lower
level controllers.
Figure 13 presents a general overview of the ROSPlan

framework (red box), consisting of the Knowledge Base and
Planning System ROS nodes. Sensor data is passed continu-
ously to ROSPlan and is used to construct planning problem
instances as well as to inform the dispatch of the plan (blue
boxes). Actions are dispatched as ROS actions and executed
by lower-level controllers (green box), which respond reac-
tively to immediate events and provide feedback.

 6

an interface between task and motion planning, reasoning
about geometric constraints and communicating those to a
task planner; and Gaschler et al. (2013) use a knowledge-
of-volumes approach, which treats volumes as an interme-
diary representation between continuous-valued robot mo-
tions and discrete symbolic actions. Tennorth et al have
explored the connection between planning, execution and
knowledge management in a significant body of work, in-
cluding (Tenorth, Bartels, and Beetz 2014; Tenorth and
Beetz 2009). There is also considerable work exploring
the planning-execution connection, including RAP (Firby
1987), work of Beetz and McDemott (1994), PRS (Ingrand
et al. 1996), Simmon’s Task Description Language (1992)
and subsequent work (Kortenkamp and Simmons 2008), the
IxTeT-Exec system (Lemai-Chenevier and Ingrand 2004)
and IDEA (Muscettola et al. 2002). Although these systems
all confront similar problems in mediating between sensor-
actuator level behaviour and the symbolic representations
and causal reasoning used in planning, they present different
approaches to managing the levels of abstraction, the dele-
gation of executive control from planner to lower levels, the
handling of uncertainty and the precise mix of planned and
reactive behaviour.

This paper describes a framework for linking generic
task-planning with an execution interface provided by ROS.
While T-REX, and other plan execution frameworks devel-
oped to date, are powerful and effective, they exploit individ-
ual and specific methods and languages that are not widely
adopted standards. By contrast, our approach links two stan-
dards together: PDDL2.1, the temporal and numeric stan-
dard planning domain description language, and the Robot
Operating System (ROS). Our objective is to provide a mod-
ular architecture into which different temporal planners can
easily be plugged: for example, POPF (Coles et al. 2010)
(used in the case study described in this paper) can be re-
placed by Temporal Fast Downward (Eyerich, Mattmüller,
and Röger 2012), LPG (Gerevini and Serina 2002), UPMur-
phi (Della Penna, Magazzeni, and Mercorio 2012), or any
other planner capable of reasoning with PDDL2.1. With
an appropriately implemented plan dispatcher, even non-
temporal planners and planning models can be exploited.
A new robotics application requiring planning can then be
achieved simply by providing the relevant ROS action mes-
sages for the controllers of the robotic system. We see our
main contribution to be the provision of an open standard
and implementation of an integrated task planning and exe-
cution framework that brings together all of these standard-
ised components.

We demonstrate our approach with a case study plan-
ning inspection and valve-turning missions for autonomous
underwater vehicles (AUVs). In these missions an AUV
equipped with a manipulator is placed in an underwater
structure, with the task to inspect certain areas and to ensure
that valves are turned to correct angles. The AUV has no
initial knowledge of the structure, the location of the valve
panel, or the angles of the valves. We run the mission in
both simulation and live trials with an instantiation of ROS-
PLAN. To illustrate its generality, we point out that the same
architecture has been instantiated to control two different

physical AUVs and one simulated AUV, each performing
a different variety of missions with different PDDL domain
descriptions. ROSPlan is also used with the Festo Robotino
platform in the EU FP7 Squirrel project2.

2 Architecture
The ROSPLAN framework is intended to run with any
PDDL 2.1 (Fox and Long 2003) domain and planner, and to
automate the planning process in ROS, coordinating the ac-
tivities of lower level controllers. An overview of the ROS-
PLAN framework is shown in figure 1.

Figure 1: General overview of the ROSPLAN framework
(red box), consisting of the Knowledge Base and Planning
System ROS nodes. Sensor data is passed continuously to
ROSPlan, used to construct planning problem instances and
inform the dispatch of the plan (blue boxes). Actions are
dispatched as ROS actions and executed by lower-level con-
trollers (green box) which respond reactively to immediate
events and provide feedback.

ROSPLAN includes two ROS nodes, the Knowledge Base
and the Planning System. The Knowledge Base is simply a
collection of interfaces, and is intended to collate the up-to-
date model of the environment. The Planning System acts as
a wrapper for the planner, and also dispatches the plan. The
Planning System:
• builds the initial state automatically – as a PDDL problem

instance – from the knowledge stored in the Knowledge
Base;

• passes the PDDL problem instance to the planner and
post-processes, then validates the plan; and

• dispatches each action, deciding when to reformulate and
re-plan.
The architecture can be described in three parts: knowl-

edge gathering, planning, and dispatch.
Knowledge gathering refers to the process of populating

the Knowledge Base, generally from sensor data, parsed
to correspond to the domain (such as waypoints generated
from a geometric map) and as real information used to di-
rect the low-level planners (such as the real coordinates of

2The authors acknowledge support for this research from EU
FP7 projects PANDORA (288273) and Squirrel (610532) and from
the UK Engineering and Physical Sciences Research Council.

334

Figure 13: General overview of the ROSPlan framework.

Mongo DB implements the knowledge base of our sys-
tem. It is a collection of interfaces and is intended to col-
late the up-to-date model of the environment. The knowl-
edge base is updated as soon as new information becomes
available and is used by the planning system to generate the
PDDL problem instance by supplying an initial state and
goals. This is done through an interface comprised of ROS
services.

Let us now consider the bottom layer. The green mod-
ules and the MineSweeper module are application specific
and take care of simulating the seabed and one or multiple
AUVs exploring such a seabed in the context of reconnais-
sance missions. The Seabed node represents the model of
the seabed and stores the knowledge that the AUVs acquire
during their explorations. The model is a grid and, for each
cell, we record whether the cell is flat or complex and if an
AUV has observed it. As discussed in Sections 3 and 4, we
use this model to create the initial state for the planner and
update it based on the outcome of the exploration. During
execution, the Action Controller node listens to the action
dispatch topic of ROSPlan and translates each dispatched
action to a command for a controller. It also monitors all
the active controllers and provides feedback to ROSPlan. In
our case, there is a single controller, the Waypoint Controller
node. This controller receives 3D coordinates that are trans-
lated by the Action Controller and handles the movement
of the AUVs toward the given coordinate during execution.
The MineSweeper node sets up ROSPlan for our specific
application.

Figures 14 and 15 concern a one vehicle mission and show
the vehicle that performs the initial lawnmower and executes
the plan initial respectively. In Figure 15, the plan is shown
at the bottom and the path followed by the vehicle is high-
lighted in yellow.

6.2 Integration with SeeByte Neptune
SeeByte, our industrial collaborator, has provided us with
details and specifications for modelling problems in the un-
derwater domain and has given us access to their hardware
and software products for integrating high-level planning be-
haviour in them. In particular, SeeByte has developed two
main pieces of software:

Figure 14: One vehicle performing a lawnmower.

Figure 15: One vehicle executing the plan.

• SeeTrack: this is the overall infrastructure to directly con-
trol and monitor the AUVs. It has a graphical interface
that allows the operator to send commands to the vehicle
and to receive updates. It contains maps of the area of the
operation, one window for each AUV with many parame-
ters to set and observe.

• Neptune: this is the software in charge of autonomy. It
has a graphical interface, more sophisticated than See-
Track, through which a human operator can plan a high-
level mission. Planning a mission means specifying the
number of vehicles available, the area that needs to be
surveyed, the targets that need to be inspected, what poly-
gons to use around the targets to analyse them and what
exclusion zones are present in the area of operation, which
are regions that the AUVs cannot enter. Upon the descrip-
tion of a mission, Neptune creates a sequence of actions
to execute the mission and push it to the AUVs. Neptune
supports a limited form of autonomy based on the human
operator’s input and is domain-dependent (Patrón, Lane,
and Petillot 2009).

SeeByte has also built a physical AUV simulator. It can
simulate up to two unmanned maritime platforms (surface
and underwater), sensors detections, communication links,
environmental injects, time clocks and temporal events. It
also supports combination of real and virtual platforms and
sensors. The core Neptune modules are the same as run on
real assets. The simulator is very useful as it allows the oper-
ator to experiment with a mission in simulation before run-
ning the same mission file on real assets.

The long-term goal of our work is to integrate our plan-

 7

Figure 16: Screenshot of SeeTrack with a vehicle perform-
ing a reconnaissance mission. Commands are sent from
ROSPlan to the vehicle simulator directly.

based reconnaissance behaviour in the SeeByte AUV simu-
lator, which involves linking ROSPlan with Neptune. The
integration between Neptune and ROSPlan is facilitated by
the use of ROS in both systems. So far, we have demon-
strated that is possible to connect ROSPlan with the SeeByte
vehicle simulator by directly dispatching actions from ROS-
Plan to the vehicle controllers (see screenshot in Figure 16).
The next step is to create an interface between ROSPlan and
Neptune. Although this is feasible, there are engineering
challenges involved in this since both Neptune and ROS-
Plan have been built to handle the dispatch loop. In order to
function together, a hierarchy of command needs to be estab-
lished that will decide when one must cede to the other. This
will require that the protocol between them for determining
precedence and the points at which control is devolved must
be defined, which will require technical input from SeeByte.

7 Next Steps
We have already extended our work to deal with reconnais-
sance missions that employ multiple heterogenous assets
that need to cooperate with each other during the search for
a path. A search plan is devised centrally, decomposed into
the sub-plans for individual vehicles and distributed to them
for execution. Assuming that these vehicles can only com-
municate on the surface, the plan contains a number of com-
munication activities which require all AUVs to surface in
the same time windows in order to share information about
the developing path. However, poor communications can
lead to plan failure during plan execution, which force re-
planning by individual AUVs. We have devised a method
for resolving failures within the sub-plans in such a way
that, when replanning, the single AUVs do not violate the
planned commitments that they have already made with the
other assets to cooperate and to communicate during the task
at hand.

In future work, we intend to perform a broad experimen-
tation of our plan-based approach, both in simulation and
in real sea trials. We aim to complete the integration be-

tween our planning system with Neptune, with the goal of
managing command-and-control loop for plan dispatch and
hand-over between plan execution and replanning phases.

In addition, we will extend initial work on sea-bed models
to allow exploitation of probabilistic initial state construc-
tion in the deterministic planning models and explore the
problem of deployment on larger fleets of cooperating as-
sets across multiple modes (UAVs, USVs and AUVs).

References
Benton, J.; Coles, A.; and Coles, A. 2012. Temporal
Planning with Preferences and Time-Dependent Continu-
ous Costs. In Proceedings of the Twenty Second Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-12).
Bernardini, S.; Fox, M.; Long, D.; and Bookless, J. 2013.
Autonomous Search and Tracking via Temporal Planning.
In Proceedings of the 23st International Conference on Au-
tomated Planning and Scheduling (ICAPS-13).
Bernardini, S.; Fox, M.; Long, D.; and Piacentini, C. 2016.
Leveraging Probabilistic Reasoning in Deterministic Plan-
ning for Large-Scale Autonomous Search-and-Tracking. In
Proceedings of the 26st International Conference on Auto-
mated Planning and Scheduling (ICAPS-16).
Bernardini, S.; Fox, M.; and Long, D. 2014. Planning the
Behaviour of Low-Cost Quadcopters for Surveillance Mis-
sions. In Proceedings of the 24st International Conference
on Automated Planning and Scheduling (ICAPS-14).
Bernardini, S.; Fox, M.; and Long, D. 2015. Combin-
ing Temporal Planning with Probabilistic Reasoning for Au-
tonomous Surveillance Missions. Autonomous Robots 1–23.
Cashmore, M.; Fox, M.; Larkworthy, T.; Long, D.; and
Magazzeni, D. 2013. Planning inspection tasks for auvs.
In In Proceedings of OCEANS’13 MTS/IEEE.
Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder,
B.; Carrera, A.; Palomeras, N.; Hurtos, N.; and Carreras, M.
2015. ROSPlan: Planning in the Robot Operating System.
In In Proceedings of the 25th International Conference on
Automated Planning and Scheduling (ICAPS-15).
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2010.
Forward-Chaining Partial-Order Planning. In Proceedings
of the 20th International Conference on Automated Planning
and Scheduling (ICAPS-10).
Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: The lan-
guage for the classical part of the 4th international planning
competition. In Proceedings of the 4th International Plan-
ning Competition (IPC-04).
Faria, M.; Pinto, J.; Py, F.; Fortuna, J.; Dias, H.; Martins, R.;
Leira, F.; Johansen, T. A.; Sousa, J.; and Rajan, K. 2014.
Coordinating uavs and auvs for oceanographic field experi-
ments: Challenges and lessons learned. In Robotics and Au-
tomation (ICRA), 2014 IEEE International Conference on,
6606–6611.
Fox, M., and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. Journal
of Artificial Intelligence Research 20.

 8

Patrón, P.; Lane, D. M.; and Petillot, Y. R. 2009. Continuous
mission plan adaptation for autonomous vehicles: balancing
effort and reward. In 4th Workshop on Planning and Plan
Execution for Real-World Systems, 19th International Con-
ference on Automated Planning and Scheduling (ICAPS’09),
50–57.
Piacentini, C.; Alimisis, V.; Fox, M.; and Long, D. 2015.
An extension of metric temporal planning with application
to AC voltage control. Artificial Intelligence 229:210–245.
Quigley, M.; Gerkey, B.; Conley, K.; Faust, J.; Foote, T.;
Leibs, J.; Berger, E.; Wheeler, R.; and Ng, A. 2009. ROS:
an open-source Robot Operating System. In Proceedings of
the International Conference on Robotics and Automation
(IJCAI).
SeeByte. 2013. Seetrack neptune - user manual.

 9

Evaluating Scientific Coverage Strategies for A Heterogeneous Fleet of
Marine Assets Using a Predictive Model of Ocean Currents

Andrew Branch1, Martina Troesch1, Selina Chu1, Steve Chien1,
Yi Chao2, John Farrara2, Andrew Thompson3

1Jet Propulsion Laboratory, California Institute of Technology
2Remote Sensing Solutions

3California Institute of Technology
Correspondence Author: steve.a.chien@jpl.nasa.gov

Abstract
Planning for marine asset deployments is a challenging task.
Determining the location to where the assets will be deployed
involves considerations of (1) location, extent, and evolution
of the science phenomena being studied; (2) deployment lo-
gistics (distances and costs), and (3) ability of the available
vehicles to acquire the measurements desired by science.
 This paper describes the use of mission planning tools to
evaluate science coverage capability for planned deploy-
ments. In this approach, designed coverage strategies are
evaluated against ocean model data to see how they would
perform in a range of locations. Feedback from these runs is
then used to refine the coverage strategies to perform more
robustly in the presence of a wider range of ocean current
settings.

Introduction
Study of the ocean is of paramount importance in under-
standing the Earth’s environment in which we live. Oceans
cover the majority of the Earth’s surface and play a domi-
nant role in climate and the Earth’s ecosystems.
 Space based remote sensing provides great information
about ocean dynamics. However, remote sensing infor-
mation is generally limited to measuring the ocean surface
or the upper layer of the ocean. Ocean models can further
augment this information. However, in order to probe the
immense volume of the ocean most accurately generally re-
quires marine vehicles such as autonomous underwater ve-
hicles (AUVs), Seagliders, profiling buoys, and surface ve-
hicles sampling in-situ. Deploying and operating these as-
sets is very expensive. This means there is a very limited
number of marine vehicles compared to the massive size of
the ocean. Knowing where the assets should be deployed
and operated is very difficult. One strategy is to deploy in-

Copyright © 2016, All rights reserved.

situ assets to study specific scientific features such as fronts,
eddies, upwellings, harmful algal blooms, or other features
of interest. A typical strategy would be to deploy marine
assets to measure transects across the feature of interest at a
scale that covers the feature, as well as a baseline signal
around the feature. However, asset capabilities (e.g. mobil-
ity, endurance) and prevailing ocean currents may render
these science goals unachievable. Our project targets auto-
matic generation of mission plans for assets to follow these
science derived templates. This paper specifically describes
the use of this planning technology to assess feasibility of
achieving these science templates to support both: deploy-
ment design (number of assets, where, which templates to
follow) and science template design (how to adjust designed
templates to be feasible in settings where they are not likely
to succeed in original form).
 The remainder of this paper is organized as follows. First,
we discuss the problem that we are trying to solve and the
inputs to that problem that we use, including the predictive
ocean model and the types of assets. Then we discuss the
approach that we took to solve the problem and the results
of that approach. Finally, we discuss what needs to be done
next to continue to develop a solution to this problem.

Problem Definition
The goal of the path planning software is to develop a plan
of control directives that when executed by a marine asset in
an actual ocean current field will cause the marine asset to
follow a template path relative to an ocean feature of science
interest, where a template path is a series of edges between
waypoints. An example of a template path can be seen in
figure 4. In this case, the templates in the figure are going

 10

from one corner of a 15km x 15km box to the opposite cor-
ner. Nominally this path should take 24 hours to complete.
Ideally the asset would perfectly follow the line but in reality
the asset should follow the line as closely as possible and
achieve the endpoint within 0.5 km.
 There are really two related problems that have differing
inputs and outputs but use much of the same search-based
algorithm. First, before an actual deployment, it is useful to
assess a range of deployment locations and science template
coverage strategies. Second, during an actual deployment,
we have an actual set of asset locations and the goal is to
develop asset directives using a current model that will fol-
low the template directed paths in reality.

The Template Assessment and Feasibility Problem
 The focus of this paper is the pre-deployment assessment
of locations and science templates for feasibility. The inputs
to this are: (1) a set of template paths, (2) a set of asset mod-
els, (3) a planning ocean current model, (4) a nature ocean
current model, and (5) a set of evaluation locations. The first
template waypoint in this path is the start location for the
asset. The asset model determines how the asset will behave
when simulating actions in a current model. The planning
and nature current models specify ocean currents for x, y, z,
and over the relevant proposed deployment domains. The
planning and nature models are used to simulate the inaccu-
racies of an ocean model with respect to the actual ocean.
The planner constructs a set of control actions for the asset
that when executed in the lower fidelity model i.e., the plan-
ning model, should follow the desired science template.
These control actions are then evaluated in the higher fidel-
ity model i.e., the nature model, to simulate planning model
inaccuracies. This process is repeated over a set of evalua-
tion locations.
 A few assumptions are made in this problem. First, we
assume that the discrepancies between the planning and na-
ture ocean models are similar to the inaccuracies present be-
tween a planning model and the actual ocean during a de-
ployment. If this is not the case, then the results are not help-
ful when preparing for an actual operational deployment.
We also assume a number of things about the asset, namely
that the asset motion model is accurate. We also do not
model hardware issues such communication failures, GPS
failures, and navigation inaccuracies.

Operational Deployment
 A second related problem is an actual deployment usage
problem. In this case we are given a set of template paths
asset models, asset locations, and a single ocean current
model. The templates and asset models are defined in the
same manner as before. In our current approach only one
current model is used and we do not evaluate, predict, or
model the inaccuracies of the predictive ocean models (see

future work on ensemble modelling). The output produced
by the planner will be a series of control actions in the form
of directed waypoints called command points, which are
distinct from the waypoints that make up the template path.
The command points are then used by the assets to navigate.
 Many of the same assumptions are made in this problem
as with the previous one. We assume that the ocean model
currents reflect the actual ocean currents. When running the
planner, we still assume that there will be no future hardware
failures and that the properties for the assets are accurate.

Ocean Model
Any cell-based, predictive model with information about
ocean currents over multiple depths and an extended period
of time could be used for the path planning. Some widely
spread ocean models include the Harvard Ocean Prediction
System (HOPS) (Robinson 1999), the Princeton Ocean
Model (POM) (Mellor 2004), the Regional Ocean Model-
ling System (ROMS) (Li et al. 2006), and the Hybrid Coor-
dinate Ocean Model (HYCOM) (Chassignet et al. 2007).
 For our ocean model, we used the Regional Ocean Mod-
elling System (ROMS) (Chao et al. 2009; Li el al. 2006; Far-
rara et al. 2015). The grid spacing used for our experiment
was approximately 3km x 3km and had 14 depths ranging
from 0 to 1000m in non-uniform levels. Data was available
at 1 hour intervals for a 72-hour period.
 As stated previously, two different ocean models are used
to represent the inaccuracies in predictive ocean models.
The ROMS model with the best representation is used as the
ocean, this is referred to as the nature model. The second
model that is used does 6 days of advanced prediction. This
is referred to as the planning model. Fewer days of ad-
vanced predication mean a higher fidelity model and thus
the planning model is closer to the nature model. The list of
inputs used for the planning and nature model can be found
in (Troesch et al. 2016b).
 When simulating the movement of an asset, the closest
grid point in the latitude, longitude, and depth dimensions is
used. Whenever the asset crosses into the next depth dimen-
sion the latitude and longitude information is updated. The
time used is the previous hour. For example, in the first hour
of operation the information at time index 0 is used. No in-
terpolation is done in any dimension.

Assets
Three different assets are used for this experiment, Seaglid-
ers, AUVs, and Wave Gliders. The Seagliders repeatedly
profile between the surface and some depth, with a specific
bearing (Eriksen et al. 2001). It is only during these profiles
where they have any forward movement. If the ocean floor
or an obstacle is reached before the profile depth, the asset

 11

will abort that profile and start to ascend. When the Sea-
glider is at the surface it is able to update its location using
GPS and communicate with the shore. This allows the asset
to receive new commands. The dive profile can be seen in
figure 1.

 The AUVs are much more flexible than the Seagliders in
how they move through the water. However, for this exper-
iment, they are treated very similar to the Seagliders. They
repeatedly profile between the surface and some depth, only
moving forward when profiling. The AUV will also avoid
the ocean floor by ascending before the profiling depth has
been reached. When at the surface, the AUV is able to up-
date its location. Communication is done through an acous-
tic modem.
 The final asset is the Wave Glider. The Wave Glider has
two components, a float and a set of submerged fins, con-
nected by a cable (Manley 2010). As such, the current that
affects the asset is not at one single depth. For the purposes
of this experiment, the current that the Wave Glider experi-
ences is two-thirds the current at the surface and one-third
the current at 10m.

 Next State Generators
Next state generators are used to discretize the problem
space. The generators use the properties of each asset, hori-
zontal and vertical speed and maximum depth, a planning
model, and different heuristics to generate the next states by
simulating different actions that the asset can take in the
planning model.

Baseline
This next state generator serves as the baseline for the ex-
periment. Each time an asset is at the surface, the asset ad-
justs its heading to the direction of the next template way-
point. This is the simplest approach that will allow the asset

to reach the waypoints along the path. As each state only has
one neighbor, there is no actual search involved. This ap-
proach simulates commanding the assets with only the tem-
plate waypoints.
 This approach has the benefit of not needing an ocean
model for an operational deployment. If there is poor corre-
lation between the ocean model currents and the actual
ocean currents, then this approach would be superior to oth-
ers. In addition, there is very little in the way of operator
intervention when deployed. Once the waypoints are given
to the asset there is no need send any re-commands. The ma-
jor downside is the affect the currents can have on the asset.
If it is important to precisely follow the template path, then
this approach may perform poorly in the presence of cross-
currents. This approach was chosen as the baseline for two
reasons, the lack of a need for a planning model and the sim-
ilarity to the default behavior of the assets when given the
list of template points.

Beam Search
The beam search next state generator can be seen in algo-
rithm 3. This algorithm limits the number of possible next
states to N bearings that are selected over some search angle
theta. This search angle is centered on the bearing that
points to the next template waypoint. For example, with a
beam size of 5 and a search angle size of 30 degrees centered
at 0 degrees, the bearings used to determine the next states
would be -15, -7.5, 0, 7.5, and 15 degrees. The command
point that is selected for each next state is set at a distance
from the assets current location equal to the distance that as-
set would travel before the next time that it could be com-
manded, or the distance to the next waypoint on the template
path, whichever is closer. Figure 2 shows the next states

Figure 1: Graph of Seaglider and AUV
movement with surface activities labelled.

Algorithm 3: Beam Search Next State
Note: Uses Planning Model
function BeamSearchNextState(node, templatePath)
 curWaypoint ← next waypoint in templatePath
 bearing ← bearing from node to curWaypoint
 curBearing ← bearing – search angle
 while curBearing < bearing + search angle do
 if distance to curWaypoint > command time * speed
then
 point ← distance to curWaypoint at curBearing
 else
 point ← command time * speed at curBearing
 newNode ← simulate movement from current loca-
tion to point
 newNode.planningPoints add point
 neighbors ← neighbors + newNode
 curBearing += search angle / (branching factor – 1)
 return neighbors
end function

 12

produced by beam search. The green arc is the valid angle
that the bearings are chosen from, notice that it is centered
on the bearing from the asset to the next template waypoint.
N bearings are selected uniformly over this arc. In the case
of the figure, N is 3. Note that this is different from a stand-
ard beam search. Normally every possible next state would
be judged by a heuristic, then the top N would be used (Rus-
sell and Norvig 2009). In this case we calculate a fixed delta
angle between the bearings as follows

∆	#$%&' = #
($ − 1)

where a is the size of the search angle and n is the beam size.
This is similar to using the top scoring heuristic with no cur-
rents, as the optimal bearing would be directly toward the
next template waypoint.
 The beam search approach has the benefit of using the
predictive ocean model currents to better predict the trajec-
tory that an asset will take. When the planning model is ac-
curate then this helps to keep the asset on course and arrive
at the next template waypoint more quickly and reliably.
However, when the planning model is not accurate this ap-
proach can actually make the situation worse.
 The approach was chosen as a way to discretize the pos-
sible command points that the asset could be commanded
with. The set of possible bearings is limited to some search
angle toward the next waypoint as it is very unlikely that the
optimal direction of travel is going to be significantly differ-
ent from the direction that the waypoint is in. The search
angle is then discretized into N bearings as a small different
in the angle is unlikely to have a large effect on the end re-
sult. This discretization greatly simplifies the search process
by taking it out of the continuous space.

Algorithms
For this experiment, a continuous planner is used. A graph-
ical representation of this algorithm is shown in figure 3.
This algorithm runs a best-first search, using the planning
model, starting from the assets current location, and with a
template path that contains the waypoints that have not yet
been visited. The best-first search algorithm generates a list
of command points that are then given to continuous plan-
ner. Note that these command points are distinct from those
that make up the template path. The blue lines in the figure
represent that path that the best-first search finds and the red
points are the command points that the are returned to the

continuous planner. These points are used to simulate the
movement of the asset with the nature model. The bearing
of the asset is set so that it is heading toward the next com-
mand point. Every time the asset is able to update its loca-
tion, this bearing is updated. How often the location can be
updated depends on the asset being used.
 The asset is simulated for an amount of time equal to the
time between re-commanding the asset, this also depends on
the asset being used. If the command point is reached before
this re-command time, then the next command point in the
list is used. A command point is considered to be reached if
the asset passes within a certain threshold distance from it.
 Each time an asset can be re-commanded the best-first
search is run again, starting at the updated location of the
asset. The old command points are discarded and the new
ones from the best-first search are used until the next re-
command. This process repeats until the goal is reached. In
this case the goal state is successfully visiting every template
waypoint in order. This process of repeated planning and
simulation emulates the actual deployment of these assets.
The best-first search also stores the best result seen so far.
This is returned after a fixed number of iterations to prevent
the search from attempting to exhaust every path when it is
not possible to reach the goal state before the mission length
has been exceeded, as this is impractical even for small

Figure 2: Graphic representation of the
beam search next state generator. The

search angle is the green arc and the next
command points are labelled.

Algorithm 1: Continuous Planner
Note: Uses Nature Model for simulating movement
function ContinuousPlanner(startLocation, template-
Path)

curPath ← startLocation
curWaypoint ← second waypoint on templatePath
while true do
 endNode ← last node in curPath

planPoints ← BestFirstSearch(endNode, template-
Path)

point ← first point in planPoints
while time till re-command > 0 do
 newNode ← simulate movement to planPoint

curPath ← curPath + newNode
if newNode distance to point <= threshold then
 point ← next point in planPoints

 if newNode distance to curWaypoint <= threshold
then

 if curWaypoint is final waypoint in template-
Path then

 return success
 curWaypoint ← next waypoint on template

path
if curPath duration > mission length then
 return failure

end function

 13

branching factors. Increasing this threshold will improve the
results at the cost of extended runtime.

Best-First Search

 The objective function that was used for best-first search
combines distance travelled and time taken. The equation is

-. ∗
01
02
+ -2 ∗ 	

41
42

where wd and wt are weighting factors for the distance and
time portions of the equation respectively, dp is distance
travelled thus far by the asset, dt is the total distance of the
template path, tp is the total time taken by the asset so far,
and tt is the target time to complete the template path. The
larger the ratio of wd to wt the more the algorithm will favor
shorter distance paths over shorter time paths. By reducing
the distance travelled the resulting path will stay closer to
the template path even though the average distance from the
template path is not included in the calculation.
 The objective function takes into account the two metrics
that we are using to evaluate the quality of the paths, time

and distance. As these two metrics have completely sepa-
rate units the ratio of distance travelled to expected total dis-
tance and the ratio of current time to target time are used
instead. This allows them to be equated more easily.
 The heuristic function used by the best-first search is the
following equation

-2 ∗
05
67
∗ 142

+ 		-. ∗
05
02

where wd and wt are weighting factors for the distance and
time portions of the equation respectively, sa is the horizon-
tal speed of the asset, dl is distance left to travel, tt is the
target time to complete to template path, and dt is the total
distance of the template path. As the asset is further along
in the template path this number will decrease. In practice,
this heuristic is only a measure of the distance left to travel,
as the time left has a linear relationship with the distance.
The two terms are calculated separately so the heuristic is
weighted appropriately with respect to the objective func-
tion.
 An approach similar to the one used for the objective
function is used for the heuristic function. The ratio of the
estimated distance left to the total distance of the template
path and the ratio of the estimated time left to the total target
time is used.

Experiment Setup

Seaglider
The Seagliders were given a speed of 0.266 m/s, a glide
slope of 20 degrees, and a maximum depth of 500 meters.
They were commanded every 3 hours. This is equivalent to
one complete profile. At each surface from a profile the Sea-
glider location is updated. This allows the asset to adjust its
bearing to point toward the next command point it is travel-
ling to. The template path was from one corner of a 15km x
15km box to the opposite corner. This was done for the two
diagonal pairs in each direction, for a total of 4 runs per lo-
cation. Each run has a target completion time of 24 hours.
The template waypoints have a threshold distance of 0.5 km.
This is the distance that the Seaglider can be from the way-
point while still be considered to have visited it. During a
deployment there would be two Seagliders operating con-
currently, one for each diagonal. This pattern can been see
in figure 4.

Figure 3: Graphic representation of the continuous
planning process.

Algorithm 2: Best-First Search
Note: Uses Planning Model
function BestFirstSearch(startNode, templatePath)

Q ← startNode
best ← startNode
while Q not empty do
 curNode ← lowest score node in Q
 if best score < curNode score then
 best ← curNode
 if curNode is a goal state then
 return curNode.planningPoints
 if node expansion limit reached then
 return best.planningPoints
 neighbors ← next-state-generator(curNode, template-
Path)
 for each neighbor in neighbors do
 Q ← neighbor

end function

 14

AUV
The AUVs were given a speed of 2.0 m/s, a glide slope of
25 degrees, and a maximum dive depth of 100 meters. They
were commanded every hour. The AUVs also update their
location whenever they surface. The template path is a
“bowtie” pattern on a 3km by 3km box. The target comple-
tion time for a single bowtie is 1 hour. The template way-
points had a threshold of 0.1 km. This distance is smaller
than that used for the Seagliders because of the shallower
dive depth, which allows the AUVs to change bearings more
often and be more precise. Similar to the Seagliders, during
a deployment there would be 2 assets operating concur-
rently. They would be travelling in opposite directions on
the path. This pattern can been see in figure 5.

Wave Glider
The Wave Gliders were given a speed of 2.0 m/s. As they
only operate on the surface they do not have a glide slope or
a maximum depth. They are also commanded every hour.
The Wave Gliders updated their location every 10 minutes.
The template path is the same bowtie pattern that is used for
the AUVs, with the same target completion time. A way-
point threshold of 0.1 is also used for the Wave Gliders.

Test Locations

The testing was done in the model of Monterey Bay. Each
test was executed at 100 different locations. The locations
represent the center of the box that defines the template

paths specific to each asset. Note that some of the locations
are very close to shore or even located on land. These loca-
tions are discarded in testing as it is not possible to complete
the template path starting from them. The locations can be
seen in figure 6.

Results in Simulation

Seaglider
Figure 7 shows the feasibility analysis for the Seagliders
when using the baseline. For each location there are 4 icons,
1 for each run. White diamond shaped icons represent loca-
tions that are invalid because they are too close to land or
the Seaglider could not navigate the sea floor. The green
icons represent the runs where the template path is possible
to complete in a 36-hour window. The red icons with the dot
show the runs where the path was not possible in the 36-
hour window. Forty-seven locations for the Seaglider con-
tain invalid runs. These runs are not included in any calcu-
lations.

 For each next state generator, the number of successful
runs, the average time to complete the runs, and the average
distance from the template path weighted by time are used
as metrics. Only the successful runs were considered when
calculating the distance and time metrics. The results for the
Seagliders tests can be seen in figure 10 and figure 11. In the
time and distance metrics a 95% confidence interval is
shown. Using the beam search approach reduced the aver-
age distance from the template path, but increased the aver-
age time taken. As a result, a lower percentage of the runs
finished successfully in the 36-hour window.
 A scatter plot comparing the results of the baseline and
beam search can be seen in figure 12. Each data point repre-
sents a single run of the planner. We selected the best per-
forming parameters for the beam search, a search angle of

Figure 4: Template paths for
the Seaglider experiments.

Figure 5: Template paths for
the AUV and Wave Glider

experiments.

Figure 6: The 100 test lo-
cations for each of the

experiments in the Mon-
terey Bay model. The lat-
itude and longitude la-

bels represent the bound-
aries.

Figure 7: Seaglider feasibility analysis using the baseline. The
result of 4 runs at each location are shown. White diamonds

are invalid, green markers are successful, and red markers with
a dot are failures.

 15

20 degrees and a beam size of 7. In order to better under-
stand the results, we filter the data in two different ways,
when the currents are too strong for the Seaglider to com-
plete the path in a reasonable amount of time and when the
planning model is extremely inaccurate. In order to filter the
case where the currents are too strong, we employed beam
search using a planning model that is identical to the nature
model, as this is the best performing search. If this was un-
able to complete the template path in 36 hours, then we re-
moved the data point due to current strength. In order to
filter out the cases where the planning model is inaccurate,
we used the root-mean-square error of the currents along the
template path. If the error is greater than 0.10 then we re-
move the data point due to error in the planning model. This
number was selected by taking the average error of the cases
in which beam search performed worse than the baseline in
both the time and distance metrics. The averages of the data
are also marked on the plot. From this scatter plot we can
see that the beam search improves the distance to the tem-
plate path, similar to what we saw in figure 10. The time to
complete the template path does not change much between
the baseline and the beam search next state generators.
 Two paths are shown in figure 8 and figure 9. Figure 8 is
an example of a failed path using the the baseline next state
generator. The strong currents pushed the Seaglider signif-
icantly off course, preventing it from reaching its goal in
time. Figure 9 shows an example from the beam search next
state generator. The green line is the template path, the yel-
low line with yellow icons containing circles is the results
from using the beam search next state generator, and the red
path is from using the baseline next state generator. By hav-
ing some information on the currents, the beam search next
state generator is able to counteract them to stay closer to
the template path.

AUV
Figure 13 shows the feasibility analysis for the AUVs. The
icons represent the same outcomes as with the Seaglider,
however there is only 1 icon per location. Eighteen locations
are invalid when using the template path for the AUVs. In

all other locations, the AUVs are successful in completing
the bowtie paths within 36 hours. This was expected because
of the short template path lengths and high speed of the
AUVs compared to the currents.
 The same metrics that were used with the Seaglider tests
were used with the AUV tests. The results of the test can be

Figure 10: Seaglider distance results for the baseline and beam
search next state generators with various search angles and beam

sizes.

Figure 11: Seaglider time results for the baseline and beam
search next state generators with various search angles and beam

sizes.

Figure 12: Seaglider baseline vs. beam search with a search
angle of 20 and beam size of 7, comparing the distance and

time metrics.
Figure 8: Seaglider example of a
failed path when using the base-

line.

Figure 9: Seaglider example
where beam search performs

better than the baseline.

 16

seen in figure 14 and figure 15. Using the beam search ap-
proach did not result in an improved path over the baseline.
The quality of the paths actually decreased. The currents do
not have as large of an affect on the AUVs because of the
relatively large speed compared to the current speed, reduc-
ing the gain from using the planning model.

Wave Glider
The feasibility analysis for the Wave Glider is similar to that
of the AUVs as they have the same template path. There are
a few additional invalid locations because the Wave Gliders
have a float and a submerged component. This means that
they need slightly deeper waters to operate. There are 20
invalid locations. As with the AUVs, the feasibility analysis
is the same for both next state generators.

 The results for the Wave Glider test were very similar to
that of the AUV. They can be seen in figure 16 and figure
17. The beam search next state generator did not improve
the paths in either the average distance from the template or
the average time to complete the path. The Wave Gliders
are slightly slower than the AUVs, but not enough as to
where to currents drastically affect them.

Related Work
A significant amount of work has been done in regards to
path planning for underwater vehicles. However, there has
been little work done on planning over short distances and
following a given path. (Rao and Williams 2009) does plan-
ning for gliders over long distance, minimizing the energy
used to reach some location, while we are planning over rel-
atively short distances following some template path.
(Thompson et al. 2010) uses the ROMS model to do path
planning, but minimizes the time taken from the start loca-
tion to the goal location. (Pereira et al. 2013) prevents glid-
ers from surfacing in dangerous areas, such as shipping
lanes, while travelling to a goal location, while we focus on

Figure 13: AUV feasibil-
ity analysis. White is an

invalid location and
green is a location where
every run was successful.

Figure 14: AUV distance results for the baseline and beam
search next state generators with various search angles and

beam sizes.

Figure 15: AUV time results for the baseline and beam search
next state generators with various search angles and beam sizes.

Figure 16: Wave Glider distance results for the baseline and
beam search next state generators with various search angles

and beam sizes.

Figure 17:Wave Glider time result for the baseline and beam search
next state generators with various search angles and beam sizes.

 17

following a specific path. (Cashmore et al. 2014) uses AUVs
to inspect features at a site efficiently. No ocean model sim-
ilar to ROMS was used. (Alvarez, Garau, and Caiti 2007)
also does not use an ocean model, but instead uses synthetic
data with general algorithms to control a set of floats and
gliders. (Dahl et al. 2011) and (Troesch et al. 2016a,
Troesch et al. 2016b) address the control of vertically pro-
filing floats using a current model but do not address other
types of marine vehicles.
 Continuous planning has become more prevalent in re-
cent years and the evolution of this planning technique, with
respect to multiple assets, is clearly described in (Durfee et
al. 1999). (Myers 1999) describes a Continuous Planning
and Execution Framework (CPEF), which integrates plan-
ning and execution through plan generation, monitoring, ex-
ecution, and repair. Using an iterative repair process, as well
as user interaction, CPEF is able to plan in unpredictable and
dynamic environments, which is shown through tests in a
simulation of an air-campaign for dominance. (Chien et al.
2000) presents Continuous Activity Scheduling Planning
Execution and Replanning (CASPER), which also uses iter-
ative repair as part of continuous planning, specifically for
autonomous spacecraft control.

Future Work
There are a number of different possible extensions to this
experiment. Different next state generators and heuristics
could be developed that focus on the assets that did not ben-
efit from the approach in this work. More research into the
performance characteristics of beam search and the associ-
ated heuristics could be done. The beam search next state
generator could be improved to select the next states more
intelligently. Tests could be performed in different areas,
such as those with stronger currents and different template
paths could be used to better understand the behavior of the
planner. The drop off location of the asset could be included
in the planning. Ocean models with different fidelity could
be used to understand the performance of the planner with
more or less accurate models. A range of methods for inter-
polating the current model information between data points
could be explored. Additionally, ROMS provides ensemble
information from multiple runs with varying conditions, the
planner could use search in the ensemble space and/or use
ensembles to predict execution uncertainty and incorporate
this to inform the generation process. Multi-agent planning
could be used for multiple assets to achieve a goal. The us-
age of the model could be improved to include interpolation
between the grid points.

Conclusion
This experiment has shown the benefits of using a predictive
ocean model to do planning in order for an underwater ve-
hicle to follow a template path. With the Seaglider, the
beam search next state generator improved how well the as-
set could follow the template path compared to the baseline.
However, with this result came a slight increase on the time
taken to complete the template path.
 However, this benefit does not extend to every type of as-
set. The baseline performed better than beam search when
using Wave Gliders and AUVs in both how well the tem-
plate path was followed and the time to complete the path.
It is clear that the amount of benefit from this approach de-
pends heavily on the vehicle and path in question. As such,
a single approach may not be applicable to a wide variety of
assets.
 More research needs to be done in order to fully under-
stand the behavior of the beam search next state generator
and the associated objective and heuristic functions.

Acknowledgements
Portions of this work were performed at the Jet Propulsion
Laboratory, California Institute of Technology, under con-
tract with the National Aeronautics and Space Administra-
tion.

References
Alvarez, A.; Garau, B.; and Caiti, A. 2007. Combining networks
of drifting profiling floats and gliders for adaptive sampling of the
ocean. In Robotics and Automation, 2007 IEEE International Con-
ference on, 157–162. IEEE.
Cashmore, M.; Fox, M.; Larkworthy, T.; Long, D.; and Mag-
azzeni, D. 2014. Auv mission control via temporal planning. In Ro-
botics and Automation (ICRA), 2014 IEEE International Confer-
ence on, 6535–6541. IEEE.
Chao, Y.; Li, Z.; Farrara, J.; McWilliams, J. C.; Bellingham, J.;
Capet, X.; Chavez, F.; Choi, J.-K.; Davis, R.; Doyle, J.; et al. 2009.
Development, implementation and evaluation of a data-assimila-
tive ocean forecasting system off the central california coast. Deep
Sea Research Part II: Topical Studies in Oceanography
56(3):100–126.
Chassignet, E. P.; Hurlburt, H. E.; Smedstad, O. M.; Halliwell, G.
R.; Hogan, P. J.; Wallcraft, A. J.; Baraille, R.; and Bleck, R. 2007.
The hycom (hybrid coordinate ocean model) data assimilative sys-
tem. Journal of Marine Systems 65(1):60–83.
Chien, S. A.; Knight, R.; Stechert, A.; Sherwood, R.; and
Rabideau, G. 2000. Using iterative repair to improve the respon-
siveness of planning and scheduling. In AIPS, 300– 307.
Dahl, K. P.; Thompson, D. R.; McLaren, D.; Chao, Y.; and Chien,
S. 2011. Current-sensitive path planning for an un- deractuated
free-floating ocean sensorweb. In Intelligent Robots and Systems
(IROS), 2011 IEEE/RSJ International Conference on, 3140–3146.
IEEE.

 18

Durfee, E. H.; Ortiz Jr, C. L.; Wolverton, M. J.; et al. 1999. A sur-
vey of research in distributed, continual planning. Ai magazine
20(4):13–22.
Eriksen, C. C.; Osse, T. J.; Light, R. D.; Wen, T.; Lehman, T. W.;
Sabin, P. L.; Ballard, J. W.; and Chiodi, A. M. 2001. Seaglider: A
long-range autonomous underwater vehicle for oceanographic re-
search. Oceanic Engineering, IEEE Journal of 26(4):424–436.
Farrara, J. D.; Chao, Y.; Zhang, H.; Seegers, B. N.; Teel, E. N.;
Caron, D. A.; Howard, M.; Jones, B. H.; Robertson, G.; Rogowski,
P.; and Terrill, E. 2015. Oceanographic conditions during the or-
ange county sanitation district diversion experiment as revealed by
observations and model simulations. Submitted to Estuarine,
Coastal and Shelf Science.
Li, P.; Chao, Y.; Vu, Q.; Li, Z.; Farrara, J.; Zhang, H.; and Wang,
X. 2006. Ourocean-an integrated solution to ocean monitoring and
forecasting. In OCEANS 2006, 1–6. IEEE.
Manley J. 2010. The Wave Glider: A persistent platform for ocean
science. In OCEANS 2010, 1-5. IEEE-Sydney.
Mellor, G. L. 2004. Users guide for a three dimensional, primitive
equation, numerical ocean model. Princeton, NJ: Princeton Uni-
versity.
Myers, K. L. 1999. Cpef: A continuous planning and exe- cution
framework. AI Magazine 20(4):63–69.
Pereira, A. A.; Binney, J.; Hollinger, G. A.; and Sukhatme, G. S.
2013. Risk-aware path planning for autonomous underwater vehi-
cles using predictive ocean models. Journal of Field Robotics
30(5):741–762.
Rao, D., and Williams, S. B. 2009. Large-scale path planning for
underwater gliders in ocean currents. In Australasian Conference
on Robotics and Automation (ACRA), Sydney. Citeseer.
Robinson, A. R. 1999. Forecasting and simulating coastal ocean
processes and variabilities with the Harvard Ocean Prediction Sys-
tem. In Mooers, C. N. K., ed., Coastal Ocean Prediction, AGU
Coastal and Estuarine Studies Se- ries. Washington, DC: American
Geophysical Union. 77– 100.
Russell S.; Norvig P. Artificial Intelligence: A Modern Approach
(Third Edition), Prentice Hall, 2009
Thompson, D. R.; Chien, S.; Chao, Y.; Li, P.; Cahill, B.; Levin, J.;
Schofield, O.; Balasuriya, A.; Petillo, S.; Arrott, M.; et al. 2010.
Spatiotemporal path planning in strong, dynamic, uncertain cur-
rents. In Robotics and Automation (ICRA), 2010 IEEE Interna-
tional Conference on, 4778– 4783. IEEE.
Troesch M.; Chien S.; Chao Y.; and Farrara J. 2016 Planning and
control of marine floats in the presence of dynamic, uncertain cur-
rents . International Conference on Automated Planning and
Scheduling (ICAPS) 2016.
Troesch M.; Chien S.; Chao Y.; and Farrara J. 2016 Evaluating the
Impact of Model Accuracy in Batch and Continuous Planning for
Control of Marine Floats. Scheduling and Planning Applications
Workshop, International Conference on Automated Planning and
Scheduling (ICAPS) 2016. (under review)
YSI Systems. “EcoMapper AUV”. http://www.ysisystems.com.
Accessed February, 2016.

 19

Search Challenges in Natural Language Generation with Complex Optimization
Objectives

Vera Demberg and Jörg Hoffmann and David M. Howcroft
Dietrich Klakow and Álvaro Torralba

Saarland University
Saarbrücken, Germany

{vera, howcroft}@coli.uni-saarland.de, {torralba, hoffmann}@cs.uni-saarland.de, dietrich.klakow@lsv.uni-saarland.de

Abstract

Automatic natural language generation (NLG) is a difficult
problem already when merely trying to come up with natural-
sounding utterances. Ubiquituous applications, in particular
companion technologies, pose the additional challenge of
flexible adaptation to a user or a situation. This requires op-
timizing complex objectives such as information density, in
combinatorial search spaces described using declarative input
languages. We believe that AI search and planning is a natural
match for these problems, and could substantially contribute
to solving them effectively. We illustrate this using a concrete
example NLG framework, give a summary of the relevant op-
timization objectives, and provide an initial list of research
challenges.

Introduction
As mobile devices are getting more and more ubiquitous,
and speech recognition and synthesis have seen large per-
formance improvements in recent years, NLG is necessary
in an increasingly large number of applications and sit-
uations. Highly domain-specific template-based NLG ap-
proaches are becoming less viable, due to a lack of ability
to adapt the generated utterances flexibly to a user or a situ-
ation, as would be especially important in companion tech-
nologies. For instance, a dialog system should generate ut-
terances that are easier to comprehend and more redundant
when a user is concentrating on another task (such as driv-
ing a car), but should generate concise utterances (which are
often more complex) when the user can fully concentrate on
the interaction with the dialog system (Demberg and Sayeed
2011).

Achieving flexible situation-adaptive NLG is a major
challenge to, and an active research area in, Computational
Linguistics, requiring the identification of suitable objec-
tives and measures for controlling utterance complexity. It is
also a major challenge to the design of search algorithms, for
optimizing (combinations of) such objectives. We believe
that the AI search community could make major contribu-
tions towards the latter. AI planning in particular is relevant
given its focus on automation and powerful declarative mod-
els. Our mission in this paper is to provide a concise sum-
mary of the problem and the challenges ahead, in terminol-
ogy accessible to the AI community, as a first step towards
bringing the two communities together in this endeavor.

NLG traditionally proceeds in a pipeline comprising three
phases: document planning, microplanning, and surface re-
alization. During document planning, the system decides
on the content to be conveyed, and what rhetorical struc-
ture connects said content. Microplanning then lexicalizes
this content, choosing which words should be used to ex-
press it, and performs aggregation and referring expression
generation. This results in a syntactico-semantic representa-
tion, forming the input to the surface realization component
which generates the final natural language utterances from
that input.

The boundary between microplanning and surface real-
ization is fluid, varying the granularity of the microplanning
output and, accordingly, the degrees of freedom assigned
to the surface realization grammar. The surface realization
process can include: lexical choice (e.g., restaurant vs. bar);
structural choice (e.g., active vs. passive voice: “restaurant
serves food” or “food is served by restaurant”); and choos-
ing among adjective, prepositional phrase, or relative clause
options as in “Almaz is an Eritrean restaurant”, “Almaz is a
restaurant with Eritrean food”, or “Almaz, which is an Er-
itrean restaurant, . . . ”.

The desired situation-adaptivity in NLG is a function not
of what to say, but how to say it, and as such is naturally
associated with the microplanning and surface realization
phases. We here focus on the surface realization problem,
the understanding being that, in applications, the surface re-
alization grammar (and therewith the search) will be given
sufficient freedom to encompass the relevant formulation
differences.

Traditional optimization objectives for surface realization
are to generate grammatically correct, natural-sounding sen-
tences. Effectively optimizing these objectives is, already,
not a solved problem, and could potentially benefit from AI
search algorithms expertise. This is even more true for the
complex optimization objectives required to achieve intel-
ligent behavior in companion technologies and other ubiq-
uitous applications. In what follows, to make matters con-
crete, we first consider a particular search-based surface re-
alization framework, OpenCCG, overviewing its search al-
gorithm in AI terms and in relation to AI search algorithms.
We then summarize current research issus in the design of
more complex NLG objectives & measures, towards the de-
sired flexibility. We conclude the paper with a discussion

 20

[Almaz]
[have]

[good food][Eritrean]

[be]

hrestauranti

Figure 1: Example input for the realization algorithm
representing the propositions be(Almaz, Eritrean) and
have(Almaz, good food).

of challenges to search algorithms, as well as possible ap-
proaches to address these.

A Concrete Example: OpenCCG
OpenCCG is a prominent state-of-the-art method for sur-
face realization via search (White 2006, White and Rajku-
mar 2012). As our purpose is to illustrate basic aspects of
the search, we do not provide a comprehensive summary
and present a simplified version only. OpenCCG is based on
combinatory categorial grammars (CCG). It uses a so-called
chart realization algorithm (e. g. (Kay 1996, Cahill and van
Genabith 2006, Carroll and Oepen 2005)). Chart realization
is a dynamic programming approach to language generation
that performs a best-first search in the space of (partial) sen-
tences, storing partial results in a chart table, and generating
new search nodes by combining expanded nodes with entries
from that table.

The input to surface realization is a labeled directed
graph, representing the so-called semantics, i. e., the con-
tent we wish to convey: objects, properties, activity, and how
they are connected. The target is to find a valid sentence that
contains all the semantics in the input. Figure 1 illustrates
an example input. Valid sentences containing this semantics
are, e. g.:
(a) Almaz has good food and is an Eritrean restaurant.
(b) The Eritrean restaurant Almaz has good food.

Search nodes in OpenCCG consist of a string, i. e. the par-
tial sentence contained in the node, as well as a grammar
category that determines how the node can be combined
with other nodes. A category may be a grammar item (S
stands for sentence, N for noun, NP for noun phrase, and so
on), or a function that composes several atomic expressions
with forward concatenation (/) or backward concatenation
(\). For example, NP/N means that, if concatenated with
another item of type N , we get an item of type NP ; and NP
concatenated with S\NP yields an item of type S .

We denote nodes as ↵(X), where ↵ is the string and X

the category. Nodes can be transformed and combined us-
ing different types of rules. Two strings can be concate-
nated via application, forward [↵(X/Y) �(Y) ! ↵�(X)]
or backward [↵(Y) �(X\Y) ! ↵�(X)]. For example,
we may concatenate “Eritrean” (NP/N) and “restaurant”
(N) to obtain “Eritrean restaurant” (NP). Two strings can
also be concatenated via composition, forward [↵(X/Y)
�(Y/Z) ! ↵�(X/Z)] or backward [↵(Y \Z) �(X\Y) !
↵�(X\Z)]. Additionally, there are unary rules changing the
grammar type of a string in order to enable new combina-
tions, e. g. “restaurant” (N) ! “restaurant” NP\(NP/N).

Importantly, rules combining two strings only ever allow to
concatenate these, in either order – i. e., we can not insert
another string later on in between the two. This is a design
decision intended to keep the branching factor feasible.

In addition to the string and category ↵(X), search nodes
are associated with information regarding how much of the
input semantics is being conveyed, i. e., which parts of the
input graph are covered. This is simply a bitvector that,
for every element in the input, maintains the information
whether or not a word covering that element has already
been added to ↵.

The target of the search is to find a complete sentence, i. e.
a node of category S covering the entire input semantics,
maximizing the score with respect to the desired optimiza-
tion metric (discussed further below).

To initialize the search space, a pre-process performs a
lookup in a dictionary: a collection of all words – lexical
items – that may be used, each associated with its gram-
mar category and with the semantics it can cover. The pre-
process retrieves all lexical items relevant to the input se-
mantics at hand. For example, the semantics hrestauranti
may be covered by the lexical items “restaurant”(N),
“bistro”(N), and “café” (NP/N); the semantics hwini may
be covered by different variants of that verb, differing with
respect to tense, as well as the number of objects to be as-
sociated with the verb (intransitive, transitive, ditransitive
verb). All these lexical items are inserted into (what the
AI search community would refer to as) the open list, and
search begins.

In the search, the chart serves as a dynamic programming
cache. It stores the nodes that have already been expanded.
Whenever a new node is expanded, successors are generated
by combining the node with every compatible node in the
chart. Two nodes are compatible if their semantics cover-
ages are disjoint (we must not cover the same input element
with more than one lexical entry), and the grammar cate-
gories can be concatenated by application or composition.
Additional successors are generated as the result of apply-
ing unary rules, and adding connective words such as “that”,
“to”, etc.

Duplicate elimination prunes nodes with the same seman-
tics and category, even if their strings differ. However, in
order to increase diversity, not all duplicates are pruned. In-
stead, the chart is divided into equivalence classes of same
semantics and category, and the K-best nodes in each equiv-
alence class are preserved, where “best” is according to op-
timization criterion score (see below), and K is a parame-
ter that controls the trade-off between search efficiency and
quality of the result.

The search is best-first, ordered by a scoring func-
tion. Contrary to heuristic search methods in AI, current
OpenCCG scoring functions do not attempt to estimate
“goal distance” (the number of steps until a complete sen-
tence), nor the quality of the best completion of the partial
solution at hand. The scoring functions do not attempt to pre-
dict the future at all, instead computing the optimization ob-
jective score solely on the content of the search node itself.
In this sense, the use of scoring functions is akin to the use of
evaluation functions in local search optimization methods,

 21

despite the fact that search nodes are not feasible solutions
(i. e., do not correspond to grammatically valid sentences).
This is a simple and feasible solution, but may obviously be
detrimental to the search. One research challenge is to find
remedies based on the methods devised for the generation of
heuristic functions in AI.

A common optimization objective – a means of measur-
ing “how natural-sounding” a sentence is – is based on n-
grams, measures of how common particular word tuples
(e. g. triples, trigrams) are in natural language. For each
word tuple, we get a probability measure for this word tu-
ple occuring in a natural language text. The score of a par-
tial sentence ↵ is the sum of the negative logarithms of these
probabilities, over all word tuples contained in ↵ (we get
back to this in the next section). Note that, applied to partial
sentences during search, this creates a strong bias towards
longer strings, simply because these contain more word tu-
ples. Note furthermore the crucial difference to optimiza-
tion criteria commonly considered in AI search problems:
these are typically described declaratively as a function of
the solution structure, and satisfy particular decomposition
properties such as additivity. In contrast, n-grams are defined
outside the input grammar, and behave in irregular ways
gleaned from natural language text bodies. This gap be-
tween search model and optimization objective is intended
and necessary, as the objective – a “natural-sounding” sen-
tence – is difficult to capture in terms of a formal sentence-
generation model.

The algorithm has an anytime flavor: When a valid solu-
tion, i. e. a complete sentence, is found, we continue look-
ing for other sentences of better quality; the search stops
only when the state space is exhausted, or a time limit is
reached. Then, all complete sentences are extracted from the
chart, and are evaluated by a refined quality objective for the
final ranking, such as a neural network trained with more
features than the n-grams used during the search (Nakatsu
and White 2006, White and Rajkumar 2009, Rajkumar
and White 2010, White and Rajkumar 2012, Rajkumar and
White 2014).

One characteristic of OpenCCG search spaces, and a
huge source of performance difficulties, are dead ends, i. e.,
search nodes that cannot be completed into valid sentences.
There are at least two major sources of dead-ends: (a) wrong
grammar categories that cannot anymore be completed into a
sentence conveying the desired semantics; (b) applying com-
bination rules in the wrong order. The former arises, e. g.,
when selecting an intransitive verb, with a category allowing
no direct object, for a sentence that requires such an object.
An example for the latter is the partial sentence “this restau-
rant has”, which is a dead-end in our example as we cannot
concatenate it with anything expressing that the restaurant is
Eritrean – recall that we cannot insert new strings within the
partial sentence.

Difficulty (a) is inherent to surface realization, and poses
an interesting challenge to dead-end detection (we get back
to this later). Difficulty (b) is more harmless, in the sense
that it is an artifact of the way the combination rules are
designed. Chunking has been designed as an optimization
to counter-act this artifact (amongst other things) (White

2004, White 2006). It identifies sub-sentences in a prepro-
cessing stage, and forbids combining nodes that refer to dif-
ferent sub-sentences until the semantics within each sub-
sentence have been fully covered. For example, chunking
avoids combining “restaurant” with “has” until it has been
combined with “Eritrean”.

New Complex Optimization Objectives in
Natural Language Generation

Traditionally, natural language generation systems have
mostly focussed on generating text for some fixed qual-
ity objective (e.g., grammaticality). More recently however,
there is an increased interest in more flexible types of gen-
eration targets. In particular, how to automatically generate
utterances with an optimal trade-off between complexity and
conciseness for a specific user in a given situation? An ex-
ample use case would be an in-car spoken dialog system. In
this kind of setting, what is “optimal” changes based on the
driving situation. Passengers adapt to the difficulty of driv-
ing conditions, speaking less overall, using less complex ut-
terances, and speaking more about traffic when drivers face
a challenging task (Crundall et al. 2005, Drews, Pasupathi,
and Strayer 2008). Remote conversation partners, e. g. on a
cell phone, do not adapt to the driver’s cognitive load (as
they can’t directly observe it), and are therefore more likely
to exceed the driver’s channel capacity, increasing the like-
lihood of an accident. Balancing communicative efficiency
against, e.g., safety concerns therefore requires the develop-
ment of adaptive natural language generation systems which
can target different levels of information density in different
contexts.

In psycholinguistics, (Hale 2001) has suggested the
information-theoretic notion of surprisal for quantifying the
processing difficulty caused by a word. Surprisal is defined
as the Shannon Information (Shannon 1948), i. e., the nega-
tive log probability of a word in context (Equation 1), where
context is usually operationalized as the preceding sequence
of words (Equation 2):

surprisal(wn) = �logP (wn|CONTEXT) (1)
= �logP (wn|w1w2...wn�1) (2)

Here, wi denotes the i

th word in the sentence. In this formu-
lation, a word carries more information, and is more difficult
to process, when it is less predictable based on the preceding
words. Likewise, a word that is totally predictable carries no
new information, and is easy to process. This formulation
of surprisal has been shown to correlate with reading times
(Levy 2008, Demberg and Keller 2008) and the N400 com-
ponent of electroencephalographic (EEG) event-related po-
tentials (ERPs) (Frank et al. 2015), suggesting that surprisal
is a valid measure of comprehension difficulty.

On the production side, the task of the producer is to
distribute information across the utterance. Human speak-
ers appear to be sensitive to information density, altering
their use of optional linguistic markers in a way that avoids
large peaks in surprisal (Levy and Jaeger 2007). The uniform
information density hypothesis (UID; (Jaeger 2006, Jaeger

 22

 22

2010)) observes that rational speakers should want to com-
municate as much information as possible without over-
whelming their listener, leading speakers to use a relatively
uniform information distribution near the channel capac-
ity, the maximum amount of information comprehensible
to their listener. Initial evidence suggests that NLG sys-
tems sensitive to information density produce outputs more
highly rated by humans (Rajkumar and White 2011, Deth-
lefs et al. 2012).

For example, consider the case where we want to convey
the message shown in Figure 1; the two alternative verbal-
izations shown in (a) and (b) differ in information density1:
(a) has an average surprisal of 7.15 bits per word while (b)
has 7.84 bits per word, meaning that (b) is more information-
ally dense than (a). This suggests that (a) should be preferred
over (b) in situations where the user cannot give their full at-
tention to the linguistic task. Note however, that utterance
(b) is the one that conveys information more uniformly, with
an average change in surprisal from word to word of 2.44
bits, versus 3.31 bits in (a).

More detailed information on UID and surprisal may be
found in (Crocker, Demberg, and Teich 2015), published in
this same issue.

Another measure is propositional idea density, which has
been shown to affect reading times and recall (Keenan and
Kintsch 1973). The semantic representation can then be used
to calculate the number of words used to convey a propo-
sition. For example, (a) and (b) contain 9 and 7 words re-
spectively though they encode the same 5 propositions from
Fig. 1, resulting in idea densities of 0.555 and 0.714, respec-
tively. On this analysis, therefore, (a) is less informationally
dense and may be easier to read.

Another possible objective is minimizing the length of
syntactic dependencies (Gibson 1998, Gildea and Temperley
2010): in a nutshell, how far apart related words are placed
in the sentence. Such features have been shown to improve
surface realization quality in a generate-and-rank approach
(Rajkumar and White 2011) where complete solutions are
first generated and then ranked. But they have yet to see use
during the generation process coming up with the solutions
in the first place.

Challenges for AI Search Algorithms
Current surface realizers do, generally speaking, exhibit rea-
sonable performance, yet significant deficiencies remain to
be overcome. In particular, they often do not succeed in gen-
erating grammatically valid sentences within the given run-
time limit, which in practice is typically small, in the order
of one second. In such cases, they have to resort to other
approximate methods that relax the grammar rules. Apart
from these basic issues relevant to sentence realization as it
stands, new challenges are posed by the more complex opti-
mization objectives as just discussed. We list some concrete
challenges and ideas in what follows.

1Surprisal values based on (Demberg, Keller, and Koller 2013)
obtained from http://tinyurl.com/pltagdemo

Dead-end detection. As we have outlined, dead-ends are
a major issue in OpenCCG (and related) search spaces.
The same can be said of the search spaces in manifold AI
problems, and there is a wealth of ideas whose potential
in sentence realization is worth exploring. The AI Plan-
ning literature in particular has recently considered a vari-
ety of approaches towards dead-end detection. In particu-
lar, many known heuristic functions (critical paths (Haslum
and Geffner 2000), abstraction (Edelkamp 2001, Helmert et
al. 2014, Hoffmann, Kissmann, and Torralba 2014), partial
delete-relaxation (Keyder, Hoffmann, and Haslum 2014))
have this capability, and could be useful in sentence real-
ization problems. Planning languages are powerful enough
to capture the category (as well as semantic) aspects of CCG
search nodes and node combination rules, so a compilation
approach could be feasible in principle. In practice, imple-
menting the techniques natively, and exploiting the particu-
lar structure of CCG specifications, seems more promising.

Partial-order reduction. As in many other search prob-
lems, surface realization search spaces may contain per-
mutative transition paths leading to identical search states.
Partial-order reduction techniques (e. g. (Valmari 1989,
McMillan 1993, Bonet et al. 2008, Wehrle and Helmert
2014)), originating in Verification and well established also
in AI Planning, are a possible remedy which, to our knowl-
edge, remains unexplored in NLG.

Predictive scoring functions. Scoring functions in
OpenCCG evaluate search nodes based solely on their
partial-solution content, without any predicition of possible
completions. This can (obviously) be detrimental. For
example, if we want to keep information density below a
threshold, or keep syntactic dependencies short, then the
score of partial sentences should take into account how
we may be able to cover the remaining semantics. The
obvious remedy, from an AI heuristic search perspective,
is to devise relaxations that complete a search node ↵(X)
into an approximate full sentence ↵. Arbitrary optimization
objectives can then be evaluated on ↵, and be taken as an
estimate of the quality of the best possible completion of
↵(X). But, for this to make sense, we need to ensure that ↵
does indeed correspond to a best possible completion. This
is a known problem in AI for good-natured objectives that
decompose over the structure of the solution, like additive
action costs. But what if the optimization objectives are
non-local, not decomposing as easily?

Non-local optimization objectives. The traditional opti-
mization objectives in sentence realization, and all the more
so the new complex optimization objectives discussed in the
previous section, depend on context. N-grams depend on the
neighboring words. Surprisal depends on the sentence pre-
fix. Uniform density distribution is a property of the sen-
tence as a whole, so depends on the sentence parts already
fixed during the search. The same applies to the length of
syntactic dependencies. To approximate best possible com-
pletions, the computation of relaxed solutions must take into

 23

 23

account such complex objectives. In some approaches, like
abstractions (projections and merge-and-shrink), this might
be relatively straightforward as we can apply non-local crite-
ria to abstract solution paths. In other approaches, like (par-
tial) delete-relexation methods, this is less clear. One possi-
bility could be a limited post-optimization of relaxed solu-
tions (within each call to the predictive scoring function), so
that the objectives can, again, be applied to complete sen-
tences.

Target-value search. In adaptive language generation
systems, in particular when we wish to adapt information
density as appropriate in the current user context, the objec-
tive often is not to minimize a function, but instead to find
a solution whose score is close to a particular value of that
function. This is known as target-value search, a topic that
has been considered in AI graph search already (Kuhn et al.
2008, Linares López, Stern, and Felner 2014), but has not
been given extensive attention. Substantial challenges still
remain on the AI side itself, in particular pertaining to the
design and computation of heuristic functions: The “best
possible completion” is now no longer the cheapest pos-
sible path postfix, but instead one whose cost corresponds
to the “remaining target cost” as closely as possible. This
raises completely new challenges for AI Planning heuristics.
It raises more complex challenges still for non-local opti-
mization objectives, cf. above.

In conclusion, there is a lot of work still to do, but many
ideas from AI Search and Planning appear to be promising
for better NLG surface realization. We hope that our paper
can contribute to making this happen.

Acknowledgements
This work was partially supported by the DFG excellence
cluster EXC 284 “Multimodal Computing and Interaction”,
the DFG collaborative research center SFB 1102 “Infor-
mation Density and Linguistic Encoding”, as well as the
EU FP7 Programme under grant agreement no. 295261
(MEALS). We thank Maximilian Schwenger for discus-
sions. We are also grateful to Almaz for great Eritrean food.

References
Bonet, B.; Haslum, P.; Hickmott, S. L.; and Thiébaux, S.
2008. Directed unfolding of petri nets. Transactions on
Petri Nets and Other Models of Concurrency 1:172–198.
Cahill, A., and van Genabith, J. 2006. Robust pcfg-based
generation using automatically acquired LFG approxima-
tions. In Calzolari, N.; Cardie, C.; and Isabelle, P., eds.,
Proceedings of the 21st International Conference on Com-
putational Linguistics (ACL’06). ACL.
Carroll, J. A., and Oepen, S. 2005. High efficiency real-
ization for a wide-coverage unification grammar. In Natural
Language Processing–IJCNLP, 165–176.
Crocker, M. W.; Demberg, V.; and Teich, E. 2015. Informa-
tion density and linguistic encoding (ideal). KI - Künstliche
Intelligenz.

Crundall, D.; Bains, M.; Chapman, P.; and Underwood, G.
2005. Regulating conversation during driving: a problem for
mobile telephones? Transportation Research Part F: Traffic
Psychology and Behaviour 8(3):197–211.
Demberg, V., and Keller, F. 2008. Data from eye-tracking
corpora as evidence for theories of syntactic processing
complexity. Cognition 109(2):193–210.
Demberg, V., and Sayeed, A. 2011. Linguistic cognitive
load: implications for automotive uis. In Adjunct Proceed-
ings of the 3rd International Conference on Automotive User
Interfaces and Interactive Vehicular Applications (Automo-
tiveUI 2011).
Demberg, V.; Keller, F.; and Koller, A. 2013. Incremental,
predictive parsing with psycholinguistically motivated tree-
adjoining grammar. Computational Linguistics 39(4):1025–
1066.
Dethlefs, N.; Hastie, H.; Rieser, V.; and Lemon, O. 2012.
Optimising Incremental Dialogue Decisions Using Informa-
tion Density for Interactive Systems. In EMNLP-CoNLL,
82–93. ACL.
Drews, F. A.; Pasupathi, M.; and Strayer, D. L. 2008. Pas-
senger and cell phone conversations in simulated driving.
Journal of Experimental Psychology: Applied 14(4):392–
400.
Edelkamp, S. 2001. Planning with pattern databases. In
Cesta, A., and Borrajo, D., eds., Proceedings of the 6th Eu-
ropean Conference on Planning (ECP’01), 13–24. Springer-
Verlag.
Frank, S. L.; Otten, L. J.; Galli, G.; and Vigliocco, G. 2015.
The erp response to the amount of information conveyed by
words in sentences. Brain and language 140:1–11.
Gibson, E. 1998. Linguistic complexity: Locality of syntac-
tic dependencies. Cognition 68(1):1–76.
Gildea, D., and Temperley, D. 2010. Do Grammars Mini-
mize Dependency Length? Cognitive Science 34:286–310.
Hale, J. T. 2001. A Probabilistic Earley Parser as a Psy-
cholinguistic Model. In NAACL.
Haslum, P., and Geffner, H. 2000. Admissible heuris-
tics for optimal planning. In Chien, S.; Kambhampati, R.;
and Knoblock, C., eds., Proceedings of the 5th Interna-
tional Conference on Artificial Intelligence Planning Sys-
tems (AIPS-00), 140–149. Breckenridge, CO: AAAI Press,
Menlo Park.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge & shrink abstraction: A method for generat-
ing lower bounds in factored state spaces. Journal of the
Association for Computing Machinery 61(3).
Hoffmann, J.; Kissmann, P.; and Torralba, Á. 2014. “Dis-
tance”? Who Cares? Tailoring merge-and-shrink heuristics
to detect unsolvability. In Schaub, T., ed., Proceedings
of the 21st European Conference on Artificial Intelligence
(ECAI’14). Prague, Czech Republic: IOS Press.
Jaeger, T. F. 2006. Redundancy and Syntactic Reduction
in Spontaneous Speech. Unpublished dissertation, Stanford
University.

 24

 24

Jaeger, T. F. 2010. Redundancy and reduction: speakers
manage syntactic information density. Cognitive Psychology
61(1):23–62.
Kay, M. 1996. Chart generation. In Joshi, A. K., and Palmer,
M., eds., Proceedings of the 34th Annual Meeting of the As-
sociation for Computational Linguistics, 200–204. Morgan
Kaufmann / ACL.
Keenan, J., and Kintsch, W. 1973. Reading Rate and of
Propositions Retention as a Function of the Number in the
Base Structure of Sentences. Cognitive Psychology 5:257–
274.
Keyder, E.; Hoffmann, J.; and Haslum, P. 2014. Improving
delete relaxation heuristics through explicitly represented
conjunctions. Journal of Artificial Intelligence Research
50:487–533.
Kuhn, L.; Price, B.; de Kleer, J.; Do, M.; and Zhou, R. 2008.
Heuristic search for target-value path problem. In Proceed-
ings of the 1st International Symposium on Search Tech-
niques in Artificial Intelligence and Robotics.
Levy, R., and Jaeger, T. F. 2007. Speakers optimize informa-
tion density through syntactic reduction. Advances in Neural
Information Processing Systems (20).
Levy, R. 2008. Expectation-based syntactic comprehension.
Cognition 106(3):1126–77.
Linares López, C.; Stern, R.; and Felner, A. 2014. Solving
the target-value search problem. In Edelkamp, S., and Bar-
tak, R., eds., Proceedings of the 7th Annual Symposium on
Combinatorial Search (SOCS’14). AAAI Press.
McMillan, K. L. 1993. Using unfoldings to avoid the state
explosion problem in the verification of asynchronous cir-
cuits. In von Bochmann, G., and Probst, D. K., eds., Pro-
ceedings of the 4th International Workshop on Computer
Aided Verification (CAV’93), Lecture Notes in Computer
Science, 164–177. Springer.
Nakatsu, C., and White, M. 2006. Learning to say it well:
Reranking realizations by predicted synthesis quality. In
Calzolari, N.; Cardie, C.; and Isabelle, P., eds., Proceedings
of the 21st International Conference on Computational Lin-
guistics (ACL’06). ACL.
Rajkumar, R., and White, M. 2010. Designing agree-
ment features for realization ranking. In Proceedings of the
23rd International Conference on Computational Linguis-
tics: Posters, 1032–1040.
Rajkumar, R., and White, M. 2011. Linguistically Motivated
Complementizer Choice in Surface Realization. In UC-
NLG+Eval: Language Generation and Evaluation Work-
shop, 39–44. ACL.
Rajkumar, R., and White, M. 2014. Better surface realiza-
tion through psycholinguistics. Language and Linguistics
Compass 8(10):428–448.
Shannon, C. E. 1948. A Mathematical Theory of Commu-
nication. The Bell System Technical Journal 27(3):379–423.
Valmari, A. 1989. Stubborn sets for reduced state space gen-
eration. In Proceedings of the 10th International Conference
on Applications and Theory of Petri Nets, 491–515.

Wehrle, M., and Helmert, M. 2014. Efficient stubborn sets:
Generalized algorithms and selection strategies. In Chien,
S.; Do, M.; Fern, A.; and Ruml, W., eds., Proceedings of the
24th International Conference on Automated Planning and
Scheduling (ICAPS’14). AAAI Press.
White, M., and Rajkumar, R. 2009. Perceptron reranking for
CCG realization. In Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing: Vol-
ume 1-Volume 1, 410–419.
White, M., and Rajkumar, R. 2012. Minimal depen-
dency length in realization ranking. In Proceedings of the
2012 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language
Learning, 244–255.
White, M. 2004. Reining in CCG chart realization. In Belz,
A.; Evans, R.; and Piwek, P., eds., Proceedings of the 3rd
International Conference atural Language Generation, vol-
ume 3123 of Lecture Notes in Computer Science, 182–191.
Springer.
White, M. 2006. Efficient realization of coordinate struc-
tures in combinatory categorial grammar. Research on Lan-
guage and Computation 4(1):39–75.

 25

 25

TIAGO– Tool for Intelligent Allocation of Ground Operations on Cluster-II

Simone Fratini, Nicolas Faerber, Nicola Policella, Bruno Sousa
European Space Agency, Germany

name.surname@esa.int

Abstract

ESA’s four Cluster-II satellites conduct three dimensional in-
situ measurements of the Earths magnetosphere. The mission
is operated from the European Space Operations Centre in
Darmstadt, where the Flight Control Team prepares the rou-
tine operations for the spacecraft. A major aspect of mis-
sion operations is planning and scheduling of ground station
passes. The main driving factor of ground station scheduling
is to keep the fill level of the on-board memory of the four
satellites as low as possible and avoid any overwriting of sci-
entific and housekeeping data.
The process of plan creation is usually done by a member of
the Flight Control Team and requires heavy manual manip-
ulation of the plan and trial-and-error approaches. The vast
amount of constraints which have to be considered during this
process, result in a time intensive activity which requires an
investment of up to 1.5 man-days per week.
To ease this process, an AI-based Tool for Intelligent Al-
location of Ground Operations, TIAGO, has been developed
for automated ground station pass planning and optimization.
TIAGO uses a domain independent planner and scheduler as
core solving process and it is fully integrated in the mission
ground segment software. This paper describes the problem,
the methodological approach followed for the translation into
a planning problem and the architectural aspects of the inte-
gration of the planning technology with the Cluster-II mission
control software platform.

Introduction
The Cluster-II satellite constellation is a cornerstone mis-
sion in the European Space Agency’s Horizon 2000 mis-
sions programme. The tetrahedral formation of the four
identical, spin-stabilised satellites allows them to do precise
in-situ measurements of the Earth’s magnetosphere in three
dimensions. The mission’s objective is to map the electro-
magnetic environment of Earth in space and time. Espe-
cially regions where solar particles interact with the Earth’s
magnetic field – like the polar cusps, the bow shock and the
magnetotail – are of high interest. For this, the spacecraft are
equipped with eleven instruments from European and Amer-
ican institutions. To be able to compare the results from the
measurements of the four spacecraft in space and time, the
instruments on all spacecraft need to be identical and oper-
ated simultaneously.

The Cluster-II mission is controlled and operated from the
European Space Operations Centre (ESA-ESOC) in Darm-
stadt, Germany. The main responsibility for the healthcare
of the spacecraft lies with the Flight Control Team (FCT),
consisting of engineers, analysts and spacecraft controllers.
A web-based front-end, ClusterWeb, which was developed
by the FCT itself, is used by mission operators and planners
to interact with mission data, plans, and active constraints.

An important aspect of the mission operation is the plan-
ning of ground station passes. Aside from the input of the
science operation planning, the ground station plan also de-
pends on the input of the Flight Dynamics team and on
ground station availabilities. Ground station passes enable
the FCT to download the scientific data from the spacecraft
and check the overall health of the satellites. The large
number of constraints involved in pass scheduling requires a
member of the Cluster-II FCT to dedicate about 1.5 working
days to planning and scheduling activities during one week.
Due to the complexity of the problem, the resulting plans are
often not optimal which results, for instance, in higher costs
for tracking hours than necessary.

To ease this process, a tool based on AI technologies,
TIAGO, Tool for Intelligent Allocation of Ground Opera-
tions, has been developed as a collaboration between the
Cluster-II FCT and the Advanced Mission Concepts sec-
tion at the European Space Agency. The approach cho-
sen was to model the problem as planning problem and
to use a planner deployed on top of the ESA APSI (Ad-
vanced Planning and Scheduling Initiative) platform. The
solving technology is based on timeline planning, an ap-
proach well consolidated to provide advanced solutions to
support space operations (Chien et al. 2012). One of the
reasons is the capability of enabling, in a flexible way, the
integration of planning and scheduling. Moreover, various
software development environments exist for rapid proto-
typing, test and synthesis of new planning and scheduling
applications based on timeline planning (EUROPA (EUROPA
2008), ASPEN (Chien et al. 2000)). ESA contributed in this
area by promoting the development of APSI (Fratini and
Cesta 2012) and APSI-related activities (Cesta et al. 2011;
Policella, Oliveira, and Benzi 2013). In general, a series of
activities have proved the capability of planning systems in
supporting different aspects of space mission operations like
spacecraft autonomy (Muscettola et al. 1998), Earth Obser-

 26

 26

vations allocation (Bensana, Lemaitre, and Verfaillie 1999),
Planning & Execution (Knight et al. 2001), Operations sup-
port (Cesta et al. 2007), and Instrument experiment alloca-
tion1 (Johnston and Giuliano 2011).

Compared to previous APSI-based examples, TIAGO fol-
lows the same approach, but the role played by the domain
independent planning technology is more central. In fact
TIAGO models the whole problem into a planning problem,
and solves it using a domain independent planner with au-
tomatized elicitation of relevant information from the model
to drive the search (needed to cope with the size and the
complexity of the real problem). This approach required an
improvement of the planner both at technological level and
at the level of modeling capabilities, but gave much more
flexibility and reusability at the end. Moreover the integra-
tion of TIAGO with the the mission ground segment software
has been implemented to automatize the generation of the
planning problem from the mission data and the translation
of the plan back to the mission database.

In the next section we present the mission scenario, then
we describe the application and the planning technology be-
hind the application, discussing the model and the problem
solving process. We conclude by providing a concise evalu-
ation of the current system and its possible improvements.

Mission Scenario
The main objective of the ground station scheduling for
Cluster-II is to keep the SSR (Solid State Record, the satel-
lite on-board memory) fill level as low as possible and avoid
any loss of scientific or housekeeping data. In particular it is
necessary to empty the SSR when the satellites are approach-
ing a long no-visibility period (like before an eclipse). For
this, a ground station plan with the exact contact times to
the four spacecraft is created and revised by the FCT on a
weekly basis.

The ground station pass plan initially provided by the
Ground Station Planning Office, or ESTRACK, does not
fully satisfy the constraints and requirements of the Cluster
mission. The reason for this is that specific and important
information, like the SSR fill level of the spacecraft or the
science modes cannot be made available in advance. There-
fore heavy manual interaction and manipulation of the orig-
inal plan is required, which makes a non trivial investment
of time, requiring a lot of trials and errors, based on the op-
erator’s experience. Due to the large number of constraints
involved, the process of scheduling is very complex and the
solution is often not optimal.

The planning and scheduling process of the Cluster mis-
sion is driven by different factors with diverging priori-
ties. As already mentioned, the most important factor of
the ground station scheduling is to avoid overwriting of SSR
data. For instance, ground station passes need to be allocated
more frequently in periods of high data production rate and
less frequently in no science periods. The success of the
mission is strongly related to the provided scientific data.
Therefore, a maximized data return is desirable.

1This work also support the operations of Cluster II, focusing
on the scheduling of the Wave Band Data plasma experiments.

To achieve this goal, the produced ground station plans
should also be robust to the unplanned loss of ground sta-
tion passes and therefore tracking hours during a planning
period. The loss of tracking hours can be caused by unpre-
dictable malfunction of the spacecraft or the ground station,
so called anomalies. Satellite launches require short-term
booking of ground stations to support the launch and early
orbit phase of a mission which results in a cancellation of all
bookings on certain ground stations. A further cause for los-
ing tracking hours can be imposed by a natural phenomenon
of the ionosphere. It causes fluctuations of the Automatic
Gain Control and a bad signal-to-noise ratio which results
in the loss of data which need to be recovered during subse-
quent passes.

Ground station planning and scheduling is an activity
which needs to be conducted on a weekly basis. Planning
actions and the release of plans are grouped into planning
periods which usually span about a week and start on Fri-
day. The FCT receives multiple input which need to be con-
sidered for this problem. Passes on ground stations can be
distinguished by their different types, describing the kind of
properties of the pass and the operations that need to be car-
ried out before, during and after that pass. For what concerns
this specific problem, the following have to be considered:
• Ground Station Visibility: an envelope of time windows

over which passes have to be allocated. Currently the four
Cluster satellites share 4 ground stations;

• ESTRACK Schedule: a schedule of booking of ground
stations by other missions or maintenance activities;

• Schedule of Science Modes: a science schedule which
gives the envelope of data production;

• Link Budget: Cluster uses mostly satellite dishes with a
diameter of 15m which does not allow a downlink in high
bit rate (hbr, 262144 bps) close to apogee when the slant
range between ground station and satellite is very high
with about 100 000 km. Hence, data are mostly dumped
in low bit rate (lbr, 131072 bps).

• SSR Fill Level: it takes into consideration residual data
from previous operational periods and other data produc-
tion foreseen during the current period besides the normal
operational ones (provided by the schedule of the science
modes).
In order to operate the spacecraft without problem and to

be able to conduct ground station passes, some operational
requirements have to be considered during:
• Availability: a ground station must be visible and should

not be booked by any other activity in order to be able to
book a Cluster ground station pass.

• Configuration: before the actual begin of tracking, a
ground station configuration activity of 45 min has to be
considered. During this time, the ground station must be
available and should not be booked by any other activ-
ity. After the end of tracking, a ground station post-pass
activity of 15 min has to be considered. Similar to the
pre-pass activity, no other activity should be booked dur-
ing this time. When two consecutive passes of two dif-
ferent Cluster-II spacecrafts are scheduled on the same

 27

 27

ground station, the time accounting for the post and pre-
pass activities can be reduced to exactly 10 min (in order
to change between the different carrier frequencies of the
spacecraft). If this 10 min interval cannot be satisfied, a
configuration time of at least 1 h (15 min post-pass and 45
min pre-pass activities) has to be considered.

• Science Modes: the satellite’s scientific operations are de-
fined by the Telemetry Data Acquisition (TDA) modes.
Depending on the TDA mode, the data production rate and
the type of recorded data differs. Overall eleven different
TDA modes are defined.

• Pass Properties: for cost efficiency reasons, scheduled
passes should have a duration of at least 1 h. Also, the
distance between two consecutive ground station passes
should not be bigger than 40 hours.

• Eclipses: Eclipse operation is a very critical phase dur-
ing the year. Due to the lack of operational batteries, the
spacecraft need to be shut down before every eclipse and
re-configured for nominal operation after each eclipse.
For this, dedicated Eclipse Switch-OFF and Eclipse Re-
covery passes have to be guaranteed (this implies the need
of emptying or reducing as much as possible the SSR
level).
The main driving factor which dictates the plan genera-

tion is the SSR level. Furthermore, it is important to gener-
ate plans robust to the loss of tracking hours. An increasing
robustness of a plan can be achieved by decreasing the hours
between two consecutive passes and reducing the duration of
single passes while the overall number of passes increases
(according to the constraints stated above). The disadvan-
tage of increasing the robustness in this way is the rising
number of configuration hours as the number of passes is
directly proportional to it (one configuration hour per pass).

TIAGO
TIAGO, the Tool for Intelligent Allocation of Ground Oper-
ations, has been implemented using a domain independent
planner and scheduler, PLASMA (PLAn Space Multi-solver
Application), developed on top of the ESA’s APSI platform
(Fratini et al. 2015). In order to guarantee a smooth integra-
tion of the planning technology with the existing mission
databases the key point is to translate data into planning
problems in PDL, the problem description language of the
APSI platform, and to translate the plan back. In addition to
that, a planning model specified in DDL.3, the domain mod-
eling language of the APSI platform, has to be considered as
well as an input of TIAGO. This file is used both to avoid
having the domain information compiled into the tool, and
to support the translation of the mission data to the final PDL
problem.

Analysis of the Requirement
In order to elicit the requirements and to translate the sce-
nario into a planning model, various interactions with the
Cluster-II FCT have been performed, ending up in having
one member of the FCT working directly on the planning
model and with the planning technology.

It was clear from the beginning that, for a better usability,
the scheduling tool should have been integrated seamlessly
in the current scheduling workflow which consists of the ac-
tual scheduling activities performed through their main tool,
ClusterWeb, and the whole ground segment software archi-
tecture. The amount of manual interactions should have to
be minimized and the overall planning process should have
been kept as simple as possible.

Moreover, as mission operation underlies a constant
change of constraints, the need to implement new models
of the scheduling constraints and properties during the oper-
ational life of the application have been raised. This was a
very critical point, because the models should be then eas-
ily exchangeable and understood by different members of
the FCT and the planning technology cannot be provided as
a black-box, with the model designed by experts and never
updated afterward. Finally the plans generated by the tool
had to be made available to the mission database, to allow
the use of the existing interfaces to existing mission schedul-
ing software.

Regarding the size of the problem, a planning period of
Cluster-II stretches usually over a week. Nevertheless, plan-
ning and adjustments to the schedule have to be done when-
ever new inputs concerning visibilities, bookings or science
modes are received. The final plan is usually submitted two
weeks in advance, but scheduling activities can span up to
3.5 months in advance and are regularly sent to the ground
station planning office. During a planning period up to 40
visibilities need to be analyzed and distributed between the
four different spacecraft. Schedules of a planning period
contain approximately 35 ground station passes during rou-
tine operations.

Figure 1: TIAGO Software Architecture

Architectural Design and Workflow
Fig. 1 displays the deployment of the planning tool in the
overall system architecture. The scheduling tool interacts
with the mission databases via the displayed interfaces. The
workflow for creating ground station pass schedules with
TIAGO is the following: (1) The mission planning process
is initiated by the scheduling office which provides a first

 28

 28

Figure 2: TIAGO’s screenshot.

ground station allocation; (2) Scientific Operations planned
at JSOC are provided in input; (3) With the information
available in the mission database, the automated planning
process can be started by converting the necessary data for
the given time-frame into the PDL format and provide it to
the planner; (4) The problem is imported into the planner
and the solving process is started. Various allocation plan
are generated and solutions are identified and selected by
Cluster-II operators; (5) The selected solution is exported
to the PlanCWeb2 format; (6) The newly generated ground
station plan is imported to the mission database (and can be
accessed via the ClusterWeb frontend); (7) The ESA Ground
Station scheduling office is informed about the new updates
of the Cluster schedule.

User Interaction
As mission operations are constantly changing, the user
should be able to modify certain settings and preconditions
for different planning periods. For example the necessity
of pre-heating before manoeuvres might be respected for
some of the spacecrafts but not for others. This requires an
high user interaction when creating the planning problem.
The PDL file is in fact generated directly through the plan-
ning section of ClusterWeb. ClusterWeb is mainly devel-
oped in PHP and uses MySQL queries to access the Cluster
database. The animation processes and validity checks of
the form are implemented by using jquery and JavaScript
functions. According to the selected options, the user inter-
face initiates the pre-processing of the required data. The
tool sends multiple queries to the ClusterWeb database and

2PlanCWeb input format is an XML file containing the neces-
sary information about all passes during a planning period in order
to allow the Mission Planning System to create the operational se-
quences for commanding the spacecraft.

filters the information appropriately and writes it in a PDL
file. The produced file is then downloaded from the Cluster-
Web server, available for the further procedure of creating a
ground station schedule.

The tool’s main display (Fig. 2) is based on the represen-
tation of ground station pass scheduling in ClusterWeb. This
includes the different science modes for the spacecraft, the
SSR fill level, ground station visibilities and ground station
bookings. Fig. 2 shows a period of 7 days during which 32
ground station passes have been allocated. Pass properties
are represented by the different color patterns of the boxes.
A low bit rate pass has a yellow pattern and a high bit rate
pass has a green pattern, for example. Red patterns in the
timeline of each spacecraft indicate periods where no pass
can be scheduled. Hovering over the different elements of
the schedule will provide the user with more detailed infor-
mation about the event.

The right side pane contains elements to control the tool.
The controls in the top initiate the solving process and the
creation of the output file. The selectable options in the
middle allow to manipulate the plan representation. With
the multiple available options, the user is able to create a
view which is suitable for him to identify good plan. The
overview of the schedule can be for example increased by
disabling the ground station visibilities which reduces the
number of elements displayed in the schedule significantly.

The bottom pane displays the currently selected scenario
and the computed solutions. It is also possible to display
multiple solutions for a single scenario by selecting them.
The expand option allows to highlight and enlarge one so-
lution to inspect and compare it with the others. Multiple
solutions have a different pass coloring. A numeric repre-
sentation of plan properties enables the operator to judge on
the quality of a plan based on different criteria. The columns

 29

 29

can be arranged in an arbitrary order and hidden if the user
wishes so. The preferred user settings are saved automati-
cally or can be exported if different views are desired.

Modeling Approach
TIAGO’s underlying planning technology is based on con-
straint based temporal planning with timelines ((Muscettola
1994; Frank and Jonsson 2003; Fratini, Pecora, and Cesta
2008; Chien et al. 2012)). More precisely the planner is de-
ployed on top of the APSI Framework using two classes of
APSI modeling components: state variables and resources.

State Variables. State variables represent components
that can take sequences of symbolic states subject to various
(possibly temporal) transition constraints. This primitive al-
lows the definition of timed automata; here the automaton
represents the constraints that specify the logical and tem-
poral allowed transitions of a timeline. A timeline for a state
variable is valid if it represents a timed word accepted by the
automaton. The timed automaton (or in the APSI case, the
state variable) is a very powerful modeling primitive, widely
studied (Alur and Dill 1994), and for which different algo-
rithms exist to find valid timelines.

Resources. The second APSI primitive used in TIAGO is
the resource. This is used to model any physical or virtual
entity of limited availability, such that its profile represents
its availability over time whereas a decision on the resource
models a quantitative use/production/consumption of the re-
source over a time interval. Three types of resources are cur-
rently available in the APSI Framework: reusable resources
abstract any real subsystem with a limited capacity, where
an activity uses a quantity of resource during a limited in-
terval and then releases it at the end. Consumable resources
abstract any subsystem with a minimum capacity and a max-
imum capacity, where consumptions and productions con-
sume and restore a quantity of the resource in specific time
instants. The third type of resources is the linear reservoir
resource. This resource does not have a stepwise constant
profile of consumption like reusable and consumable ones,
but the activities specify the amount of production/consump-
tion per time, namely slope, resulting in a profile of re-
source that is linear in time. As a consequence the amount of
resource available at each transition of the timeline depends
on the duration of the time intervals over which this produc-
tion or consumption has been performed (conversely with
the other types of resource where the profile of the resource
availability at each transition depends only on when and how
much is produced/consumed and not on the duration of the
production/consumption). And this in turn induces the need
for integrated reasoning on time and data to guarantee the
flexibility of the plan/schedule generated.

Synchronizations. In timeline-based modeling the phys-
ical and technical constraints that influence the interaction
of the sub-systems (modeled either as state variables or re-
sources) are represented by temporal and logical synchro-
nizations among the values taken by the automata and/or re-

source allocations on the timelines. Conceptually these con-
structs define valid schema of values allowed on timelines
and link the values of the timelines with resource alloca-
tions. In particular they allow the definition of Allen’s rela-
tions like quantitative temporal relations among time points
and time intervals as well as constraints on the parameters of
the related values (Allen 1983). From a planning perspec-
tive, the synchronizations define the cause-effect relation-
ships among the states of the system modeled, describing
how a given status can be achieved.

TIAGO Domain and Problem Modeling
The problem of ground station scheduling for the four
Cluster-II satellites is an example for resource driven
timeline-based planning for space application. The main
objective of scheduling ground station passes for Cluster-
II is to keep the on-board memory of the spacecraft as low
as possible to avoid the overwriting of valuable scientific
data. The Solid State Recorder is modeled as a reservoir
resource with a minimum and a maximum fill level. Differ-
ent science modes are represented as states on a timeline for
each spacecraft and give information about the data produc-
tion rate of the satellite’s scientific instruments. The science
modes are synchronized to the SSR timeline of the different
spacecraft and increase the fill level with a fixed positive ac-
tivity according to the different modes. Below an example
of DDL.3 synchronization that models this cause-effect rela-
tionship among spacecraft modes and SSR consumption (re-
source consumptions are in bit/second, positive in this case
as the mode produces data in the SSR).

SYNCHRONIZE tda_modes.clu1_timeline{
VALUE tda4(){

cd1 ssr_fill_level.clu1_ssr_timeline.ACTIVITY(21845);
EQUALS cd1;

}
}

On the other hand, the SSR fill level can be decreased
by means of downlink activities during the ground station
passes assigned to a spacecraft. The ground station visibil-
ities can be further divided into visibilities where no dump
is possible due to bad signal to noise ratio, visibilities with
low signal to noise where data can only be downlinked in
low bit rate and visibilities with a high signal to noise ra-
tio where high bit rate downloads are possible. It is also
possible to have a change in the allowed downlink rate dur-
ing a visibility and a pass. Ideally, the amount of high bit
rate passes should be as high as possible to achieve a higher
data return with equal or smaller tracking hours. But, be-
fore a ground station visibility can be assigned to one of
the Cluster-II spacecrafts, it must be ensured that no other
mission is using the ground station at the given time. This
requires then to consider all ground station bookings and to
plan against actual available windows of opportunity instead
of against station visibilities.

These constraints are represented with a set of synchro-
nizations stating that passes have to be placed during sta-
tion’s visibilities and that a pass can be decomposed into a
set of activities that consume SSR (see Figure 3). In the fol-
lowing synchronization, for instance, the pass for clu 1,

 30

 30

Figure 3: Pass and SRR Fill Level

placed on the New Norcia ground station (NNO) on a low bit
rate is synchronized as: (1) it contains an activity on the SSR
reservoir resource that download data with a low bit rate;
(2) the pass is during the NNO low bit rate availability; (3)
some temporal constraints holds between passes and science
modes of the satellite to state that a pass should stay 6 to 15
minutes “away” from a science mode switch; (4) it has to be
synchronized with other Cluster satellites bookings and pre-
booked time windows, hence an activity on a timeline has to
be generated (and scheduled) to guarantee that the station is
not over booked.

SYNCHRONIZE passes.clu1_timeline
{

VALUE pass(NNO,LPM,?mspa,lbr)
{

(1) LBR ssr_fill_level.clu1_ssr_timeline.ACTIVITY(-131072);
CONTAINS[00:09,00:09][00:01,00:01] LBR;

(2) LBR_V clu1_lpm_rang_dl.nno_timeline.dl(?ul_bool_1,lbr);
DURING LBR_V;

(3) cd_start <?> tda_modes.clu1_timeline.*;
cd_end <?> tda_modes.clu1_timeline.*;
STARTS_DURING[00:00,+INF][00:15,+INF] cd_start;
ENDS_DURING[00:06,+INF][00:15,+INF] cd_end;

(4) cd_book <!> gs_bookings.nno_timeline.clu_booked();
EQUALS cd_book;

}

... OTHER TYPES OF PASS;\
}

Furthermore, configuration jobs of the ground station
stated in the Section Mission Scenario need to be consid-
ered before and after a pass. To represent the configuration
time, intermediate states are introduced on the booking time-
line of the ground station and transition rules are specified,
hence the state variable in Figure 4 models the ground sta-
tion booking logic. In this state variable, external bookings
must be followed by a configuration activity with a dura-
tion of 45 minutes and only after that a Cluster pass can be
booked. Additionally a Cluster pass must be followed by an-
other configuration activity of exactly 15 minutes before the
timeline can take another state. An exception can be made
when a second Cluster pass of a different spacecraft follows.
Then a configuration time of exactly 10 minutes between the
two passes must be considered.

Modeling Issues
The modeling primitives shown above allow the repre-
sentation of traditional integrated planning and scheduling

Free

EXT Booked

CLU Booked [60,+1]

LOS [15,15] AOS [45,45]

Reconfig GS [10,10]

Figure 4: Ground station bookings state varible.

problems by modeling, for instance spacecrafts modes and
passes as state variable values, resource requirements, and
synchronized statements on corresponding resources. How-
ever there are important aspects of the problem that can’t be
modeled only by means of synchronizations.

The first problem was the need to state goals directly
on the resource profiles to force not only to be under the
limit (normal scheduling process) but also to verify some
properties along the plan, like being as low as possible be-
fore eclipse events. Another problem was how to efficiently
specify that the real objective in this scenario is to allocate
passes during ground station visibility windows in order to
empty the Solid State Recorder. The domain model con-
tains both synchronizations associated to data productions
(science modes) and synchronizations on data consumption
(passes), but there is no logical connection that says that an
SSR over consumption has to be solved by allocating passes.
These aspects were discussed in our previous work (Fratini
et al. 2015) and are below summarized.

The first issue has been solved by introducing the resource
level request. This feature allows the modeler to specify
some desiderata directly on the resource level, as minimum
and maximum value required in a given instant. It is sub-
stantially different from a resource allocation: in fact it has
no direct effect on the resource profile like productions and
consumptions, but it raises a flaw in the plan when the con-
dition is not fulfilled.

This is the case of Cluster-II where it needed to empty
the SSR before a spacecraft is entering a period of eclipse
(where is not possible to communicate). This goal is stated
synchronizing the value modeling the eclipse with a resource
requirement as it follows:

SYNCHRONIZE passes.clu1_timeline {
VALUE no_pass_possible(?reason=eclipse_ssr_off){

req ssr_fill_level.clu1_ssr_timeline.level(0.0,0.0);
STARTS_AT req;

}
}

It is also worth to point out that a resource level request,

 31

 31

as any other statement on timelines, can be used as an high
level goal for the planner. In the case of Cluster-II, it has
been used to cope with the presence of eclipses.

For what concerns the second problem, in the Cluster-II
case the objective is to allocate a sufficient number of passes
during ground station availability in order to avoid SSR’s
overwriting. To cope with this issue, we have introduced
the concepts of producer/consumer and opportunity in the
model. These concepts allow to make explicit the informa-
tion (that is in any case already modeled in the synchroniza-
tions as well) as suitable for the efficiency of the solver that
can then take its decisions in a more informed way.

A producer (consumer) is a value of a state variable that
can lead to a production or consumption of resource. A
producer (consumer) value has not a specified production
(consumption), but only bounds derived from all the possi-
ble ways it can be planned. This information can be calcu-
lated automatically by pre-processing the model or, simply,
via the presence of tags in the model. In our example, it is
possible to deduce that a pass can consume an amount of re-
source between a minimum of 131072 b/s (when completely
synchronized with a low bit rate opportunity) and 262144 b/s
(when completely synchronized with an high bit rate oppor-
tunity). These bounds provide some early and useful infor-
mation to allocate consumptions on the SSR.

An opportunity is an uncontrollable timeline that pro-
vides, through one of more of its values, temporal slots to
allocate planning decisions (other state variable values or ac-
tivities). When these timelines are completely specified and
static, this information can be pre-calculated analyzing the
domain and the problem: if a value v of a state variable (or
an activity for a resource) is synchronized during a value o of
a static timeline, than o provides an opportunity for v. This
information can be also obtained by the presence of tags in
the model.

It is worth remarking that this information, being only
necessary but not sufficient to allocate a pass, can only be
used to bound the decision process. Synchronizations will
then have to be planned to find the actual temporal posi-
tion of the passes. In the Cluster scenario, the information
on producers/consumers and opportunities is exploited, in a
domain independent way, to allocate a set of flexible passes.
These passes lead to an envelope of possible SSR allocation
profiles, to be refined by subsequent planning and schedul-
ing steps, as described in the following section.

Problem Solving
In the APSI framework, an application, being a generic plan-
ner and/or scheduler or a domain specific deployed appli-
cation is designed as a collection of solvers. Based on
the constraint-based paradigm, the search space of an APSI
solver is made of planning and scheduling statements on
timelines and temporal and data relations among them. An
application solves a conceptually more complex problem,
like a planning problem for instance, or a global resource
optimization problem. The main difference between a solver
and an application consists in the fact that a solver searches
in the space of decisions and constraints, while an applica-
tion searches in the space of solvers solutions.

In the Cluster-II scenario we have used (and improved)
the PLASMA (PLAn Space Multi-solver Application) plan-
ner. It is made of a collection of solvers, activated on a flaw
detection base: when a flaw is detected on a timeline, the
planner activates an available list of solvers that can try to
fix the problem (De Maio et al. 2015).

PLASMA incorporates the principles of Partial Order Plan-
ning (POP, (Weld 1994)), like a plan-space search space and
the least commitment approach. Starting from an initial par-
tial plan only made of partially specified timelines and goals
to be achieved, the planner iteratively refines it into a final
plan that is compliant with all the requirements expressed by
the goals.

The PLASMA planner is grounded on different solvers to
solve various flaws during the planning process:
• Partial Order Scheduler. It supports the scheduling pro-

cess resulting from planning to guarantee temporal flexi-
bility to the plan. In this domain is not possible to sched-
ule only on fix-times, because the process iteratively in-
terleaves planning and scheduling steps;

• Resource Production Allocator. It makes sure that lin-
ear resource can be adequately managed by avoiding any
over-consumption;

• MaxFlow Resource Profile Bounder. Its task consists in
bounding position and duration of a set of activities (con-
sumption activities in the case of Cluster-II) which assures
that all the resource constraints and/or requirements are
consistent.

Partial Order Schedules
PLASMA exploits the time-flexibility properties of Partial
Order Schedules (Policella et al. 2007) to support the plan-
ning process and to guarantee temporal flexibility to the
plan and schedule (necessary for execution). While the POS
concept was originally introduced to cope with uncertainty
and provide robust solutions, a similar need is present when
considering an integrated planning and scheduling approach
where iteratively a planner and a scheduler are called to
modify a shared representation. In fact, the schedule pro-
duced should be able to accommodate possible changes in-
troduced by the planner preserving sufficient flexibility.

It is worth recalling the POS is a set of activities partially
ordered such that any possible complete order that is con-
sistent with the initial partial order, is a resource and time
feasible schedule. Therefore the planner, when moving in-
side the space identified by POS, will have the possibility of
modifying the temporal allocation preserving the feasibility
of the overall solution.

Allocating Resource Productions
The task of the Resource Production Allocator is to identify
those time-windows among the available one which can be
used to compensate the different over-consumption on the
different linear resources, that is, to produce resource avail-
ability. It is worth remarking that this solver does not pro-
duces directly consumption activities (that are synchronized
with ground station passes in our specific case), but rather
identifies a set of opportunities where these station passes

 32

 32

should be allocated. In other words the solver produces a set
of requests/goals for the next solver. It is the task of the next
planner’s solver to plan in detail these consumption activi-
ties by considering the given opportunities but also all those
aspect not considered by the Resource Production Allocator
such as synchronization of consumption activities with other
timelines (in our case, for instance, the bit-rate timeline),
logical consistency with respect to the spacecraft timelines,
etc.

For instance the solver below described, the MaxFlow Re-
source Profile Bounder, generates a final set of consumption
activities by considering as input the set of consumption op-
portunities together with bit-rate bounds and the data pro-
duction activities.

Managing Linear Reservoir via MaxFlow
As mentioned above, in this domain, one of the main driving
feature is the control of the resource level. In fact in this
situation we have not only capacity constraints to be held
but also specific resource levels can be requested in order to
allocate some activities.

To evaluate the resource level a timeline is taken into ac-
count. The latter represents an ordered sequence of not-
overlapping intervals which have:
• flexible start and end time
• a fixed data slope (positive in case of data generation, neg-

ative in case of consumption)
• resource preconditions which establish the minimum and

maximum feasible resource level - these consist in a spe-
cific resource level request. In case there is no specific
request the two levels are equivalent to the resource ca-
pacity constraints.
Given this information, the goals are (1) to detect possible

inconsistencies and, when consistent, (2) to find a possible
solution which consists in deciding a consistent duration for
all the time intervals in the timeline. In order to satisfy these
goals, the problem has been modeled as a particular flow
network, a Maximum Flow with Edge Demands Problem.

Given then Maximum Flow with Edge Demands Problem
representation, if this does not admit a solution then the ini-
tial timeline is not consistent. On the other side, given a
max-flow solution of the problem, the duration of each time
interval can be computed by considering the different flows
through the network. From a max flow solution, the solver
either generates a set of temporal constraints to reduce ac-
tivities’ durations or, if this is not possible, generates a new
production and restart the algorithm.

TIAGO: Current Status and Future Work
At this stage a first version of the TIAGO tool has been com-
pletely developed. As mentioned above a driving factor con-
sidered during the development of the application was to
re-use as much as possible domain independent planning &
scheduling technologies to prove the feasibility of the AI
approach. With this aim, during the development phase,
the system has been intensively tested with several real-case
problem benchmarks.

These tests have shown that TIAGO can return different
alternative solutions in the order of a few minutes (worst
case) for problem instances defined as challenging by the
Cluster-II Flight Control Team (big data production periods,
with many ground stations already allocated to other mis-
sions and various periods where no passes can be allocated).
Moreover it has been assessed that the tool is flexible enough
with respect to changes of the domain model and can support
the optimization of the overall pass duration.

The tool has recently been delivered to the Cluster-II
Flight Control Team to go through an operational evalua-
tion phase. We expect that this, still on-going, phase will
generate new requirements/goals and spot the limitations of
the current approach. An already collected feedback is that
the current version of TIAGO, while reduces the total pass
time (compared to the manually generated solutions), does
not include other aspects like reducing the number of passes
(instead of the total duration) or minimizing the usage of the
on-board memory. The latter is probably the major contribu-
tor to the robustness’s solution: in fact a lower lever of used
resource allows to better face unpredictable situations like
the loss of a pass.

Future work will therefore aim at evolving the current
solving approach in order to (1) generate more robust solu-
tions and (2) consider multiple optimization criteria beside
the total dumping time.

In particular, in the current approach the on-board mem-
ory is managed with a least commitment approach based on
a max-flow solver. While it assures that the resource usage
is always consistent, this approach is not sufficient to cope
with the requirement of minimizing the resource level while
balancing at the same time the ground station total alloca-
tion time. Future versions of TIAGO will need to overcome
this limitation managing the resource level in a more ade-
quate way. Possible solutions could be to generate resource
allocation requests during the planning period to reduce the
average SSR allocation, or to plan with a resource capacity
that is actually a percentage of the real one.

Conclusions

TIAGO is a tool based on AI planning and scheduling tech-
nologies developed for automated ground station pass plan-
ning and optimization on the ESA Cluster-II mission. TIAGO
in its initial design uses a set of domain independent plan-
ners and schedulers as core solving process. As a method-
ological approach we have chosen to address the problem
entirely with a domain independent planner, in order to ful-
fill the need of the users in being free of modifying the model
and changing the constraints.

TIAGO is also designed to be fully integrated in the
Cluster-II ground segment software, and it is currently un-
der operational evaluation to define optimization criteria and
plan quality measurement (to be added to the planner as
heuristics) for orienting TIAGO from a pass allocation tool
into a pass optimization tool.

 33

 33

References
Allen, J. 1983. Maintaining knowledge about temporal in-
tervals. Communications of the ACM 26(11):832–843.
Alur, R., and Dill, D. L. 1994. A theory of timed automata.
Theor. Comput. Sci. 126(2):183–235.
Bensana, E.; Lemaitre, M.; and Verfaillie, G. 1999. Earth
Observation Satellite Management. Constraints: An Inter-
national Journal 4(3):293–299.
Cesta, A.; Cortellessa, G.; Denis, M.; Donati, A.; Fratini, S.;
Oddi, A.; Policella, N.; Rabenau, E.; and Schulster, J. 2007.
MEXAR2: AI Solves Mission Planner Problems. IEEE In-
telligent Systems 22(4):12–19.
Cesta, A.; Cortellessa, G.; Fratini, S.; Oddi, A.; and
Bernardi, G. 2011. Deploying interactive mission planning
tools - experiences and lessons learned. JACIII 15(8):1149–
1158.
Chien, S.; Rabideau, G.; Knight, R.; Sherwood, R.; Engel-
hardt, B.; Mutz, D.; Estlin, T.; Smith, B.; Fisher, F.; Barrett,
T.; Stebbins, G.; and Tran, D. 2000. ASPEN - Automating
Space Mission Operations using Automated Planning and
Scheduling. In SpaceOps-00. Proceedings of the 6th Inter-
national Conference on Space Operations.
Chien, S.; Johnston, M.; Frank, J.; Giuliano, M.; Kavelaars,
A.; Lenzen, C.; and Policella, N. 2012. A generalized
timeline representation, services, and interface for automat-
ing space mission operations. In Proceedings of the 12th
International Conference on Space Operations, SpaceOps.
AIAA.
De Maio, A.; Fratini, S.; Policella, N.; and Donati, S. 2015.
Resource driven planning with ”plasma”: the plan space
multi-solver application. In ASTRA 2015. 13th Symposium
on Advanced Space Technologies in Robotics and Automa-
tion.
EUROPA. 2008. Europa Software Distribution Web Site.
http://code.google.com/p/europa-pso/wiki/EuropaWiki.
Frank, J., and Jonsson, A. 2003. Constraint based attribute
and interval planning. Journal of Constraints 8(4):339–364.
Fratini, S., and Cesta, A. 2012. The APSI Framework: A
Platform for Timeline Synthesis. In Proceedings of the 1st
Workshops on Planning and Scheduling with Timelines at
ICAPS-12, Atibaia, Brazil.
Fratini, S.; Policella, N.; Faerber, N.; Donati, A.; Sousa, B.;
and De Maio, A. 2015. Resource Driven Timeline-Based
Planning for Space Applications. In IWPSS-15. Proceedings
of the 9th International Workshop on Planning and Schedul-
ing for Space.
Fratini, S.; Pecora, F.; and Cesta, A. 2008. Unifying Plan-
ning and Scheduling as Timelines in a Component-Based
Perspective. Archives of Control Sciences 18(2):231–271.
Johnston, M., and Giuliano, M. 2011. Multi-Objective
Scheduling for the Cluster II Constellation. In Proceedings
of the 7th International Workshop on Planning and Schedul-
ing for Space, IWPSS11.
Knight, R.; Rabideau, G.; Chien, S.; Engelhardt, B.; and
Sherwood, R. 2001. CASPER: Space Exploration through

Continuous Planning. IEEE Intelligent Systems 16(4):70–
75.
Muscettola, N.; Nayak, P. P.; Pell, B.; and Williams, B. C.
1998. Remote agent: To boldly go where no ai system has
gone before. Artificial Intelligence 103(1-2):5–47.
Muscettola, N. 1994. HSTS: Integrating Planning and
Scheduling. In Zweben, M. and Fox, M.S., ed., Intelligent
Scheduling. Morgan Kauffmann.
Policella, N.; Cesta, A.; Oddi, A.; and Smith, S. F. 2007.
From Precedence Constraint Posting to Partial Order Sched-
ules. AI Communications 20(3):163–180.
Policella, N.; Oliveira, H.; and Benzi, E. 2013. Planning
spacecraft activities: An automated approach. In ICAPS-13.
Proceedings of the 23rd International Conference on Auto-
mated Planning & Scheduling.
Weld, D. S. 1994. An introduction to least commitment
planning. AI Magazine 15(4):27–61.

 34

 34

Automatic Resolution of Policy Conflicts in IoT Environments Through Planning

Emre Goynugur§ and Kartik Talamadupula† and Geeth de Mel‡ and Murat Sensoy§

§Ozyegin University
Department of Computer Science

Istanbul, Turkey
emre.goynugur,murat.sensoy @ ozyegin.edu.tr

†IBM Research
T.J. Watson Research Center
Yorktown Heights, NY, USA

krtalamad @ us.ibm.com

‡IBM Research
Daresbury Laboratory

Warrington, UK
geeth.demel @ uk.ibm.com

Abstract

The Internet of Things (IoT) is a highly agile and complex
environment managed via the Internet. The management
of such an environment requires robust automated mecha-
nisms, since manual curation becomes a prohibitively expen-
sive and near-impossible task. Motivated by this observation,
we present a mechanism to resolve conflicts among the ser-
vices provided by IoT devices in such environments, by refor-
mulating conflict resolution as a planning problem. Specifi-
cally, we propose to use planning with soft constraints (pref-
erences) to resolve conflicts that arise when fulfilling multi-
ple goals using varied services in an IoT environment. We
build on previous work on creating a semantic policy frame-
work for detecting conflicts within an IoT environment, and
present a proof-of-concept implementation of our approach
to demonstrate its promise in the IoT space.

1 Introduction
The Internet of Things (IoT) is a highly agile (sensitive to
availability, connectivity, and so forth) and complex (i.e.,
multitude of cross-connected devices) environment man-
aged via the Internet. IoT promises a paradigm shift in
which a multitude of internet-enabled devices – and the
services provided by them – are seamlessly meshed to-
gether such that end-users can experience improved situ-
ational awareness (e.g., “Your usual route home has a 30
min. delay”), added context (e.g., “An accident at Broadway
and 8th”), and so forth to effectively and efficiently func-
tion in the environment. Due to advances in technology,
the promise of IoT is fast becoming a reality, and in recent
years there has been strong evidence in both the research
and commercial sectors showing the applicability of this
technology in multiple domains (Vermesan and Friess 2011;
Iera et al. 2010; Gubbi et al. 2013). Furthermore, soft-
ware systems and digital assistants such as IBM’s Wat-
son, Apple’s Siri, Google’s Now, and Microsoft’s Cortana
– all utilizing IoT enabled services – are fast becoming
the go-to assistants for a variety of users. There is evi-
dence to suggest that more and more users are tasking ser-
vices provided by IoT ecosystems with automatically in-

Copyright c� 2016, All rights reserved.

forming them about their environments (Holler et al. 2014;
Li et al. 2011).

However, with growing adoption and deployment, the
complexity of such IoT systems is fast growing. Such com-
plexity is exacerbated in urban environments where large hu-
man populations will deploy ubiquitous devices (and in turn
services), consume them, and interact with such systems to
fulfill daily goals by meshing IoT services with external ser-
vices such as location, weather and so forth. According to
the United Nations, 54% of the world’s population lives in
cities – a number that will increase to 66% by 2050 (Ja-
yarajah et al. 2015). This will introduce many new services
into IoT environments, and put a huge strain on the manage-
ment of such systems. Furthermore, due to this explosion
in services, conflicts are bound to occur more frequently,
especially unexpected ones. For example, a mobile appli-
cation may instantiate a meshed service that uses a location
service which is prohibited in some locations. Manually,
curating such exceptions is impractical, if not impossible;
thus, an emerging requirement in IoT environments is intel-
ligent management of services, handling of exceptions, and
the provision of automatic resolution techniques, so that the
cognitive overload on the user is reduced.

Policies are typically used in system design to specify
obligations and prohibitions, and automatically handle ex-
ceptions when obligations and prohibitions overlap due to
unforeseen situations. As IoT systems gain more complex
capabilities – especially capabilities to learn, reason, and un-
derstand their environments and user needs – one can con-
sider applying policy techniques to handle conflicts found
in the IoT environment. However, the dynamism of IoT en-
vironments when compared with traditional systems must
be taken into account; this necessitates more intelligent au-
tomation techniques for policy conflict management.

In our recent work, we have created a semantic pol-
icy framework to efficiently detect conflicts within an
IoT environment by restricting the expressivity of OWL-
POLAR (Sensoy et al. 2012) to OWL-QL (Fikes, Hayes, and
Horrocks 2004). In this paper, we present our initial work
and thoughts on automatically handling these conflicts by re-
formulating the conflict resolution problem as an automated

 35

 35

planning problem. Specifically, we formulate policy con-
flicts as preferences to enable the use of preference-based
planning techniques to automatically resolve such conflicts
to the best extent possible.

The rest of the paper is organized as follows: Section 2
provides the motivation for our work by means of use-cases.
In Section 3 we formalize the policy representation and con-
flict detection, and define a number of terms that will be
used in the paper. Section 4 presents the use of automated
planning techniques in our system to automatically resolve
conflicts, and other extensions that could be explored. In
Section 5 we briefly discuss a preliminary proof-of-concept
evaluation of our current system, and in Section 6 we discuss
related literature. We conclude the document in Section 7 by
discussing future work and by providing final remarks.

2 Motivation
When compared with traditional IT systems, one of the ma-
jor issues in managing IoT-based systems is the impracti-
cality of using humans to configure, maintain, and manage
all these connected devices, and the services associated with
them. This is because services related to IoT are dynamic
(especially in terms of availability), agile, and context sensi-
tive. Gartner, Inc. forecasts that 6.4 billion connected things
will be in use worldwide in 2016, up 30 percent from 2015;
this number will reach 20.8 billion by 2020 (van der Meulen
2015). This rapid increase in device numbers precipitates
the need for an expressive and efficient policy framework,
one which would allow its users to define high level rules
that can be refined to individual devices. As there are a lot of
diverse products from different manufacturers, it is difficult
to tailor rules to cover all these individual devices. In addi-
tion to creating rules for device X or product type Y, users
should be able to create rules by describing device proper-
ties or capabilities (e.g. devices with displays or devices that
can play sound, and so forth).

Furthermore, these connected devices will be used by dif-
ferent people who have different preferences, habits, or ex-
pectations. It is safe to assume that these users together will
generate a large number of policies and there will be more
than one policy applying to a specific device; indeed, it is
essential that multiple policies apply to a device in order to
cover the diversity of management functions and of manage-
ment domains (Lupu and Sloman 1999). However, when-
ever multiple policies apply to an object, there is usually a
potential for some form of conflict.

For example, let us assume that in a smart home envi-
ronment there are two policies: if someone rings the door-
bell, then there should be a notification; and if the baby is
sleeping, devices should not make any sound. In this sce-
nario, a conflict occurs if someone rings the doorbell while
the baby is sleeping. The default action for a doorbell is to
make sound to notify the household; however, if it fulfills
this goal, it will violate the “no-sound” policy. In a truly
connected environment, the notify action could be delegated

to another device which uses different notification methods
such as displaying a visual message, sending an SMS, and
so on. Through the rest of the paper, we use this simple
scenario as a running example.

Our policy framework is based on OWL-QL, which offers
efficient reasoning mechanisms, can handle large numbers
of policies, and detect conflicts before they actually happen;
however, it cannot resolve or offer solutions for these con-
flicts. Users cannot be expected to manually resolve all such
conflicts. In order to automate the process of conflict reso-
lution and to address the missing features of our framework,
we believe that automated planning techniques can be used.

3 Problem Definition
In this section, we formalize the representation of policies,
and discuss the conditions for policy activation, expiration,
and conflicts. We first introduce the terminology that will be
used in the rest of this paper to represent policies.

3.1 Policy Terminology
As our method is based on an OWL-QL ontology, we
use the terms OWL-QL ontology and knowledge base syn-
onymously. In our context, a QL knowledge base (KB)
consists of a TBox and an ABox. Concepts, proper-
ties, and axioms that describe relationships between con-
cepts form the TBox of an ontology. We borrow syntax
and semantics from the DL-Lite family to illustrate our
TBox (Calvanese et al. 2007). For example, the statement:
Computer v ElectronicDevice means that Computer
class is a subclass of ElectronicDevice; and the statement
ElectronicDevice u 9playSound represents devices that
can play sound. In PDDL terms, a TBox could be consid-
ered as the collection of types, type hierarchy, predicates,
and derived predicate rules.

On the other hand, an ABox is a collection of extensional
knowledge about individual objects, such as whether an ob-
ject is an instance of a concept, or two objects are connected
by a role (Artale et al. 2009). In Description Logic, roles
are binary relations between two individual objects; these
can be considered binary PDDL predicates in our context:
e.g. livesIn(John,NewY ork). In this statement, livesIn
is the role that connects John and NewY ork. In PDDL,
objects and predicates that exist in a planning state could be
considered as an ABox—e.g. initial and goal states repre-
sent two different ABoxes.

3.2 Policy Representation
In this work, we formalize a policy as a six-tuple (↵, N ,
� : ⇢, a : ', e, c) where:
• ↵ is the activation condition of the policy;
• N is either obligation (O) or prohibition (P);
• � is the policy addressee and ⇢ represents its roles;
• a : ' is the description of the regulated action; a is the

variable of the action instance and ' describes a;

 36

 36

• e is the expiration condition; and
• c is the policy’s violation cost.
In a policy, ⇢, ↵, ', and e are expressed using a conjunction
of query atoms. A query atom is in the form of either C(x)
or P (x, y), where C is a concept, P is either a object or
datatype property, x is either a variable or individual, and y
may be a variable, an individual, or a data value.

For instance, using variables b and f , the conjunction of
atoms Baby(?b)^Sleeping(?b)^inF lat(?b, ?f) describes
a setting where there is a sleeping baby in a flat. Concepts,
properties, and individuals used in the definition of a pol-
icy should come from the underlying OWL-QL knowledge
base. An example TBox of an OWL-QL ontology is shown
in Table 1.

Table 1: An example TBox for an OWL-QL ontology.

An OWL-QL TBox
Sleeping v State

Awake v State

Awake v ¬Sleeping

Baby v Person

SoundNotification v Sound u Notification

TextNotification v Notification

Speaker v Device

Doorbell v Device

9playSound v Device

PortableDevice v Device

MobilePhone v PortableDevice

9hasSpeaker v 9playSound
MediaPlayer v 9playSound
TV v 9hasSpeaker u 9hasDisplay

MakeSound v Action u 9playSound
Notify v Action

NotifyWithSound v MakeSound u Notify

Baby v Person

SomeoneAtDoor v Event

3.3 Policy Activation and Expiration
A policy is activated for a specific set of instances that ful-
fill its activation condition. Likewise, an active policy in-
stance expires if its expiration condition holds true or the
goal of that policy is fulfilled. For instance, in our scenario,
the activation condition for the policy in Table 2 holds for
the binding {?d = dbell, ?b = John, ?f = flt}. As a
result, an activated policy instance is created with this bind-
ing;“dbell is prohibited to perform MakeSound action until
John is awake”. Whenever the expiration condition of an
active policy instance holds, that policy should be removed;
e.g., the activated policy expires if the baby John wakes up.

Some active policies also expire when they are satisfied.
For instance, obligation policies can expire after obligations
are fulfilled. Let us consider the policy example in Table 3,
which defines an obligation policy stating that a doorbell has
to notify adult residents of a flat if someone rings the bell.

Table 2: An example prohibition policy.

� : ⇢ ?d : Device(?d)

N P

↵ Baby(?b) ^ Sleeping(?b) ^ inF lat(?b, ?f) ^ inF lat(?d, ?f)

a : ' ?a : MakeSound(?a)

e Awake(?b)

c 10.0

Table 3: An example obligation policy.

� : ⇢ ?d : Doorbell(?x)

N O

↵ SomeoneAtDoor(?e) ^ producedBy(?e, ?x)^
belongsToF lat(?x, ?f) ^ hasResident(?f, ?p) ^ Adult(?p)

a : ' ?a : NotifyWithSound(?a) ^ hasTarget(?a, ?p)

e

c 4.0

In this case, since Bob rings the bell dbell, the active policy
“dbell is obliged to notify an adult resident of the flat with
sound” should be created. After notifying the targeted per-
son in the flat, the obliged action would be performed and
the activated policy would be satisfied. Alternatively, there
could be an expiration condition to keep that policy instance
active until someone explicitly acknowledges the notifica-
tion or the door is opened.

3.4 Policy Conflicts
In our work, three conditions have to hold true for two poli-
cies to conflict. First of all, these policies should be applied
to the same policy addressee, e.g., same device or individ-
ual. Second, one policy must oblige an action, while the
other prohibits the same action. Third, these two policies
should be active at the same time in a consistent world state
according to the underlying ontology. This situation forces
the addressee to make a decision and violate one of the poli-
cies. It is important to state here that unless an addressee has
to violate one of its own policies to fulfill another one, there
is no conflict.

For instance, in our scenario, the doorbell is obliged to
notify the household with sound due to one policy while the
very same doorbell is prohibited to make any sound due to
another policy. As it has to violate its own prohibition policy
to fulfill its goal policy, these policies are considered to be in
conflict. Let us note that the subsumption relation between
the make sound and notify with sound actions are explicitly
defined in the TBox. Table 4 illustrates a state in which the
policies in Table 3 and Table 2 are in conflict.

It is almost trivial to figure out policy conflicts within a
specific state of the world, as in our example. However, it
is non-trivial at design time to reason if two policies will

 37

 37

Table 4: ABox representing the sandbox.

1 Device(d0)

2 Doorbell(d0)

3 Baby(b0)

4 Sleeping(b0)

5 inFlat(b0, f0)

6 inFlat(d0, f0)

7 SomeoneAtDoor(e0)

8 producedBy(e0, d0)

9 belongsToFlat(d0, f0)

10 hasResident(f0, p0)

11 Adult(p0)

ever get into conflict. Our policy framework can detect such
conflicts during design time, but we refrain from discussing
that capability in this paper; instead, we focus on conflict
resolution.

4 Using Planning for Conflict Resolution
Policy conflicts may arise between two given policies when
the conditions outlined in the previous section are met. In
such cases, it is essential for the system to devise a way to
resolve the conflict and move forward. In this section, we
outline a way of posing this conflict resolution problem as
a planning problem, and using automated planning technol-
ogy to solve that problem instance.

4.1 Representing OWL-QL in PDDL
Our policy framework exploits OWL-QL to cope with very
large volumes of instance data. OWL-QL is less expressive
compared to other OWL languages; however, it makes the
implementation of conjunctive query answering using rela-
tional databases possible. Furthermore, we can map the con-
cepts and relations of our knowledge base to PDDL using
derived predicates.

Table names and their fields in our database can be
mapped as predicates in a PDDL domain file. The instance
data that exist in the database would represent the initial state
of the system. In this context, a predicate is in the form of
either C(x) or P (x, y), where C is a concept, P is either a
object or datatype property, x is either a variable or individ-
ual, and y may be a variable, an individual, or a data value.

However, directly querying the knowledge base does not
reveal the inferred information that may be deduced through
the TBox. For this purpose, OWL-QL uses query rewriting
to expand queries. Also, consistency checking is done by a
disjunctive query that consists of conditions that might cause
inconsistency based on the axioms in the TBox (Artale et al.
2009).

PDDL’s typing feature allow us to encode simple class
hierarchies into the domain file. However, typing alone
is not sufficient to express multiple inheritance and sub-
class expressions with object or data properties, e.g.

TV v 9hasSpeaker u 9hasDisplay . For this reason, in-
stead of using the typing support of PDDL, we represent
type(s) of an object with predicate(s). Hence, all these rea-
soning formulas can be integrated into the PDDL domain
file by either rewriting action preconditions or using derived
predicates. We believe that the latter approach is a cleaner
solution rather than filling up action predicates with disjunc-
tions.

Finally, OWL-QL doesn’t offer support for numerical
constraints to provide efficient reasoning: e.g. it is not pos-
sible to express that one object can only be in one place or
that a room can only have one temperature at a given time.
PDDL can also help compensate for this limitation by em-
bedding numerical constraints into the PDDL domain file.
Below, we give an example of a quasi-PDDL domain and its
contents as it relates to our application1.

1 (define (domain iot)

2 (:requirements :adl :derived-predicates)

3

4 (:predicates

5 (Action ?action)

6 (Awake ?person)

7 (Baby ?baby)

8 (Device ?device)

9 (Display ?display)

10 (Doorbell ?doorbell)

11 (Event ?event)

12 (MakeSound ?action)

13 (MediaPlayer ?MediaPlayer)

14 (MobilePhone ?mobile)

15 (Notification ?notfication)

16 (Notify ?action)

17 (NotifyWithSound ?action)

18 (PortableDevice ?device)

19 (Sleeping ?person)

20 (SomeoneAtDoor ?event)

21 (Sound ?sound)

22 (SoundNotification ?soundNotification)

23 (Speaker ?speaker)

24 (State ?state)

25 (TextNotification ?textNotification)

26 (TV ?tv)

27 (gotNotifiedFor ?person ?event)

28 (hasDisplay ?device ?hasDisplay)

29 (hasSpeaker ?device ?speaker)

30 (playSound ?device ?soundAction)

31 (isConsistent))

32

33 (:derived (SoundNotification ?s)(

34 (and (Sound ?s) (Notification ?s))))

35

36 (:derived (TextNotification ?t)(

37 (Notification ?t)))

38

39 (:derived (TV ?tv)

1Note that this is not a complete and correct PDDL specification
that a planner can parse.

 38

 38

40 (exists (?unbound_1 ?unbound_2) (and

41 (hasDisplay ?tv ?unbound_1)

42 (hasSpeaker ?tv ?unbound_1)))

43)

44

45 (:derived (MakeSound ?action)

46 (and Action(?action) (playSound ?action TRUE))

47)

48

49 (:derived (NotifyWithSound ?notify)

50 (and (MakeSound ?notify) (Notify ?notify))))

51)

52

53 (:action check-consistency

54 (:parameters ...)

55 (:precondition ...)

56 (:effect (isConsistent)))

57

58 (:action notify-with-sound

59 :parameters ...)

60 (:precondition ...)

61 (:effect (... (not (isConsistent))))))

4.2 Consistency Check
As explained in the previous section, an ontology consists
of a TBox and an ABox. Each world state created after ap-
plying an action during planning represents an ABox, and
an ABox of an ontology is valid as long as it is consistent
according to the rules defined in the TBox. Hence, we need
to be sure that none of the steps in a generated plan make
the ontology inconsistent; otherwise the generated plan is
inapplicable.

In other words, as each state during planning represents an
actual, real-world state, none of the actions of a valid plan
should put the world in an inconsistent state; e.g. a door can-
not be both open and closed at the same time. Action pre-
conditions could be designed to handle such inconsistencies;
however, here it is important to focus on the fact that this
state cannot be achieved in real life. For this reason, we have
to check for consistency of the current state every time the
planner applies an action. The rules that may cause incon-
sistency in an ontology are derived from its TBox. Hence,
either an external program must check if the generated plans
cause inconsistencies, or the planner must handle this. Most
planners do not provide a mechanism to run a program after
each step; hence we propose the following solution.

Since we can express the consistency query (gener-
ated using the TBox) in PDDL using predicates, we cre-
ate a special action called check-consistency and
use a special empty predicate called isConsistent.
isConsistent is true in the initial state and it must also
be true in the goal state and in all states that lead to the
goal state. Furthermore, all of the action descriptions are
modified to include isConsistent in their preconditions
along with (not (isConsistent)) in their effects.
This simply means that we need the (isConsistent)

predicate to apply an action, and that the predicate is
deleted after an action is applied. Furthermore, the special
check-consistency action has the negation of the con-
sistency check in its preconditions and (isConsistent)
in its effects. As check-consistency is the only ac-
tion that can add the(isConsistent) predicate, it has
to be applied after each action. If the world state is incon-
sistent, the check-consistency action will not add the
(isConsistent) predicate and all actions will become
inapplicable; the goal state will then be unreachable. This
will prevent the planner from going even deeper in the cur-
rent branch of its search space, as that branch will not pro-
duce a valid plan.

4.3 Policies as Preferences
The central contribution of this paper is automating the pol-
icy conflict resolution process using automated planning
techniques. The first step towards this goal is the model-
ing of the conflicting situation and its attendant information
into a planning problem instance. Specifically, obligations
and prohibitions relating to a specific entity need to be han-
dled, since they are the primary reason that a conflict might
arise.

The key concept here is the framing of obligations and
prohibitions as preferences on a given policy that must be
handled by the underlying planner. In this notion, obliga-
tions and prohibitions can be seen first and foremost as goals
that an entity must achieve. These goals may be soft in na-
ture, i.e., there may be degrees of fulfillment rather than just
binary true or false. Additionally, since we are consider-
ing conflicts in the policy space, obligations and prohibitions
may be competing with each other. In such instances, it may
be the case that not every conflict can be fully resolved; in-
stead, a plan needs to be formulated that least violates some
goodness metric defined for the domain.

We illustrate this idea with the use of our running ex-
ample, outlined in Section 3.4 previously. Envision a sce-
nario where if the doorbell is pressed, an obligation to notify
someone within the house (that there is someone at the door)
is immediately created due to an existing policy. However,
there is also a current prohibition on making sound, since
someone is sleeping – this is due to a second policy that ex-
ists on the doorbell. This forces the addressee (in this case,
the doorbell) to make a determination and pick between one
of the two policies to violate.

However, if there were another way to fulfill both of these
policies (one of them with an obligation, the other with a
prohibition) at the same time without violating the other, the
conflict and ensuing violation could be avoided. Given that
we are dealing with complex domains with multiple entities
and services, it is entirely possible that notification is possi-
ble in a number of ways. For example, instead of making a
sound to notify (and fulfill the obligation) that someone is at
the door, the doorbell could instead hand off the notification
task to another currently active entity. An example of such

 39

 39

an entity could be a television; the television has a service
that can visually notify that someone is at the door. This
takes care of the obligation on the doorbell’s policy, while
at the same time not violating the prohibition on the other
policy of not making a sound while someone is sleeping.

In our domain, these preferences (one on the obligation,
and one on the prohibition) would be represented as follows:

1. preference pref-0 (gotNotifiedFor Adam

Doorbell1)

2. preference pref-1 (NotifyWithVisual

Doorbell1)

In the above, pref-0 stands for the obligation that when
the doorbell rings, Adam (a person in the house) must be
notified. pref-1 is the prohibition that whenever the door-
bell rings, the notification must happen visually2. These two
preferences are in conflict, and will be resolved by the plan-
ner based on the violation cost that is prescribed for each.

One question that crops up is whether this can just be
achieved with regular PDDL actions, without the use of pref-
erences. For example, consider the following actions:

1 (:action notify-with-sound

2 (:parameters ?person ?device ?event ?notifyWithSound)

3 (:precondition (and (playSound ?device ?notifyWithSound)

4 (NotifyWithSound ?notifyWithSound)(Event ?event)

5 (Person ?person) (isConsistent) (Device ?device)))

6 (:effect (and (gotNotifiedFor ?person ?event)

7 (not (isConsistent)) (increase (total-cost) 4))))

1 (:action notify-with-visual

2 (:parameters ?person ?device ?event ?notifyWithVisual)

3 (:precondition (and (playVisual ?device ?notifyWithVisual)

4 (NotifyWithVisual ?notifyWithVisual) (Event ?event)

5 (Person ?person) (isConsistent) (Device ?device)))

6 (:effect (and (gotNotifiedFor ?person ?event)

7 (not (isConsistent)) (increase (total-cost) 4))))

The two actions above both give the same main ef-
fect, namely (gotNotifiedFor ?person ?event).
Therefore it bears asking why the conflict resolution prob-
lem cannot just be handled in a straightforward manner by
the planner without the need to invoke preferences; clearly,
there are two choices, and the planner can take the visual
notify action if the sound notify will violate some other con-
straint. However, this line of thought precludes the possi-
bility that sometimes there may be no other way to uphold
a specific obligation, or avoid a certain prohibition. In cer-
tain cases, the problem may be overconstrained to the point
where some constraint has to be violated. In such cases,
it is useful to think of these constraints as no longer hard

2An alternate way of encoding this preference would be to de-
fine a (DoNotUseSound ?entity) predicate; this is a domain
modeling question.

goals but instead soft constraints that carry violation costs –
preferences. The planner now has more room in a complex
problem setting to decide which constraints can be violated,
and to arrive at the best possible solution.

For instance, in our running example, let us assume that
in addition the baby, the baby’s parents are sleeping as well,
and the doorbell is rung. In this case, the system has to make
a decision; to either violate the sound policy, or to not notify
and ignore the visitor at the door. In this extended scenario,
the planner needs to make a decision according to the vio-
lation costs set by the policy’s authors. In a real-world, de-
ployed IoT scenario, there may be much more complicated
scenarios in which multiple policies are active and the solu-
tion is much more complicated; this demonstrates the need
for soft constraints of some nature, such as preferences.

Future work in casting policy constraint violations as
planning preferences includes modeling the domain such
that the planner can pick not only which constraints are vi-
olated, but also the degree to which those constraints are
violated. For example, in a scenario where there is a tem-
perature controller, and two different people have competing
preferences (one wants the room to be cold, the other would
like it warm), the domain could be modeled in a way that the
eventual solution is a compromise between too cold and too
warm.

Action Descriptions Given the importance of the con-
stituent actions in our domain description, we briefly de-
scribe the genesis of this knowledge. In the context of our
application, an action can be an API offered by a device or
a web service. For example, an action could be moving a
robot, downloading information from the internet, or turning
a TV on. For an illustration, see the simplified version of the
notify-with-sound action shown in the previous sec-
tion. In order to keep things simple, we assume that service
descriptions are available to us in quasi-PDDL form using
our ontology and that we do not need to do complicated
conversions from a description language. Furthermore, as
with many other real-world applications which do service
compositions, interleaving planning is essential for IoT ap-
plications. However, in this paper we do not focus on these
issues.

5 Preliminary Evaluation
At the outset, we clarify that the current evaluation is pre-
sented in the spirit of a proof-of-concept rather than as a
full-scale evaluation of our design choice to implement pol-
icy conflict resolution as a preference-based planning prob-
lem. The approach explained in the previous section requires
a PDDL planner that supports action costs, derived predi-
cates, and preferences at the same time. Unfortunately, we
could not obtain a planner that implements all of those re-
quirements, and were thus unable to evaluate our approach
using a single planner. Although our approach is based on
PDDL, we initially tested it with the JSHOP2 (Ilghami and

 40

 40

Nau 2003) HTN planner. We then used the LAMA (Richter
and Westphal 2010) planner to determine if we could inte-
grate OWL-QL rules into PDDL. Finally, we converted poli-
cies into preferences and used SGPlan5 (wei Hsu, Wah, and
et al. 2006). As future work, we intend to build a planning
system that supports all three requirements: action costs, de-
rived predicates, and preferences.

5.1 JSHOP2
We initially used the JSHOP2 planner since our policy
framework was also developed in Java. Additionally,
JSHOP2’s external calls allowed us to simulate interleaved
planning that requires the execution of non-deterministic ac-
tions such as locate and search. In an IoT environment,
where there are a lot of sensors, interleaving planning with
sensing and execution seems to be essential.

However, JSHOP2 does not support domain predicates or
preferences. We thus had to develop a component to validate
the plans that were generated by JSHOP to check if caused
an inconsistent world state or violated/activated new poli-
cies. Since JSHOP2 does not support derived predicates, we
had to rewrite action preconditions with disjunctions. Un-
fortunately, disjunctions in the domain file cause JSHOP2 to
produce a combinatorial number of duplicate plan files – a
large burden on computational resources.

5.2 Evaluation of Derived Predicates
LAMA, which is a planner that builds on Fast Down-
ward (Helmert 2006), supports ADL descriptions, actions
costs, and derived predicates. We thus used LAMA to check
if we could accommodate OWL-QL reasoning into PDDL.

Throughout our experiments, we used the same ontology
that we used with JSHOP2. However, instead of filling up
action descriptions with disjunctions in the domain file, we
defined re-write rules as derived predicates. Without any
additional effort, we successfully managed to find the same
plans that we found using JSHOP2 and external programs.
Additionally, we tested our approach by slightly modifying
the ontology (by making some classes disjoint) to make the
planner reach an inconsistent state. As expected, the planner
did not find any plans with the modified ontologies. Finally,
utilizing derived predicates did not cause LAMA to produce
duplicate plan files, which was the case with JSHOP2. Be-
low we reproduce one of the plans produced by LAMA.

1 (locate-people locationdiscoveryinflat flat1 mother room1)

2 (check-inconsistency)

3 (notify-people-with-sound mother someoneatfrontdoor

4 speaker playsoundspeaker room1)

5 (check-inconsistency)

Using our example ontology and the derived predicates fea-
ture of PDDL, we eliminated the need for externally inter-
vening in the planning process, or re- analyzing generated
plans. As part of future work, we will seek to evaluate the

performance of using derived predicates versus re-analyzing
generated plans using the same PDDL planner.

5.3 Policies as Preferences
The main focus of this paper was to automate policy conflict
resolution using AI planners. In order to realize this goal,
we first needed to reformulate the conflicting situation as a
planning problem. In the previous sections, we discussed
how we did this reformulation. In this section, we only dis-
cuss how we conducted our preliminary experiments.

As mentioned previously, we could not find a planner that
supported all the features we needed in this work. Thus,
class type inferences and inconsistent states (according to
the underlying ontology) are excluded from these experi-
ments. However, we still use the same initial and goal
state files without disjunctions and derived predicates. We
chose the winner of the IPC 2006 satisficing track, SG-
Plan5 (wei Hsu, Wah, and et al. 2006) for our evalua-
tion. SGPlan5 does not support action costs, and actions
have to be defined in a STRIPS-like representation. After
slightly modifying our domain and problem files to make
them SGPlan5 compatible and to include preferences (poli-
cies), we were able to produce the same results as we did
with the other planners. Below, we reproduce a plan simi-
lar to the one shown previously; however, this plan is pro-
duced by SGPlan5 taking preferences into account. Thus the
notify-people-with-sound action is now replaced
by the notify-people-with-visual action.

1 (locate-people locationdiscoveryinflat flat1 mother room1)

2 (check-inconsistency)

3 (notify-people-with-visual mother someoneatfrontdoor tv

4 visual displaymessageontv room1)

5 (check-inconsistency)

Although using preferences makes the formulation of our
original problem more natural, it does not completely solve
it. Policy activation and expiration conditions are queries.
Hence, during planning, we need to query the current state
with the activation and expiration conditions of policies to
check if a new preference is activated or an active policy is
expired.

Generally speaking, the semantic representation of our
policies is very suitable for generating a goal state with pref-
erences. Moreover, specifying a goal state instead of speci-
fying an action name is more intuitive in an heterogeneous
IoT domain. Although HTN planners can solve the same
problems, PDDL makes it easier to automatically generate
domain files, as we just need to add action descriptions with-
out defining an action hierarchy. Furthermore, PDDL’s sup-
port for derived predicates allows us to embed rewrite rules
of a QL ontology into the domain file without filling action
preconditions with disjunctions. This allows us to find plans
by using class inference rules.

 41

 41

In our implementation we were able to integrate QL rea-
soning into PDDL; however, the planners we found do not
offer a way of dealing with interleaved planning, or with the
issue of updating preferences (policies) during planning. In
our context, these are the shortcomings of existing PDDL-
based planners, and we currently still need to analyze gener-
ated plans with an external script and re-plan if needed.

6 Related Work
Given the exploratory nature of this work, as well as the
use of multiple planners, there is a lot of related work
that must be cataloged and explored. Web-PDDL (Dou
2008) adopts and extends PDDL with namespaces and
sameAsClass to make ontologies more suitable for web
applications. From the same author, another software
tool called PDDOWL (Dou et al. 2006) converts OWL-
QL queries to Web-PDDL, which are then converted to
SQL. Our work does not share the same goal as PDDOWL
and Web-PDDL; however (Dou 2008) explains what PDDL
lacks to fully represent ontologies.

In addition to PDDL planners, there is an HTN planner
called HTNPLAN-P (Sohrabi, Baier, and McIlraith 2009)
that supports preferences. HTNPLAN-P extends PDDL3
with HTN-specific constructs; in contrast to the state-centric
preferences of PDDL, HTPLAN-P supports preferences that
apply to tasks; e.g., “when booking inter-city transportation,
I prefer to book a flight”.

KAoS (Uszok et al. 2003) was the first effort to offer an
ontology based approach for creating a policy framework.
Policies are defined as concepts in the ontology using de-
scription logic class expressions based on constructs such as
subclassOf or object properties like hasCapability, inRoom
etc. Thus, it is not possible to use variables in policy descrip-
tions. KAoS can detect conflicts and if a conflict is detected,
KAoS checks policies’ update times and priority values to
resolve conflicts.

OWL-POLAR (Sensoy et al. 2012), which is an OWL-
DL based policy framework, can also detect conflicts dur-
ing design time. Although a conflict resolution strategy is
not implemented in that work, authors suggest that an AI
planner could be used to avoid conflicts. In addition, it is
stated in their paper that doctrines of legal theory and prac-
tice could be adopted to resolve policy conflicts. However,
OWL-POLAR uses the Pellet reasoner, which is slow and in-
efficient considering IoT requirements. Furthermore, it may
not be possible to completely add the inference and consis-
tency rules of OWL-DL into the PDDL domain.

Rei (Kagal, Finin, and Joshi 2003) is another effort to-
wards an ontology based policy framework. It is based on
OWL-Lite and allows policies to be specified as constraints
over allowable and obligated actions on resources in the en-
vironment (Kagal, Finin, and Joshi 2003). Rei is imple-
mented with Prolog and allows using a logic-like language
to describe policies. Prolog provides Rei with the flexibil-
ity of specifying relations like role-value maps that are not

directly possible in OWL. However, Prolog cannot be used
for expressing all DL expressions. Furthermore, Rei cannot
detect conflicts between policies at design time; it can detect
conflicts when they happen and uses meta-policies to resolve
them.

A different method – which is not based on an ontology –
proposed in (Vasconcelos, Kollingbaum, and Norman 2009)
resolves conflicts by manipulating the constraints associated
with the policy’s variables, removing any overlap in their
values. This approach is similar to adding the conflicting
obligation policy as an exception to the prohibition policy.
For example, if devices are not allowed to make sound when
the baby is sleeping, this approach modifies the prohibition
policy to exclude the doorbell.

7 Future Work & Conclusion
In this paper, we discussed how an AI planner could be used
in a lightweight policy framework to automate policy con-
flict resolution. The policy framework is based on OWL-QL
mainly because it targets IoT applications that generate large
volumes of instance data, and query answering is an essen-
tial task in these systems. We managed to encode type infer-
ence and consistency check rules of an OWL-QL ontology
into a PDDL domain file automatically using a Java pro-
gram. Furthermore, we converted policies into preferences
on PDDL, and used an AI planner to search for a solution
which could alleviate the possible conflict.

Our current approach allows us to embed OWL-QL rea-
soning rules and initial policies (preferences) into PDDL.
However, there is much room for improvement. As dis-
cussed in previous sections, we could not find a singular
planner that could check if new preferences were activated,
expired, or violated during planning. We had to develop a
small program solely for this purpose. Furthermore, inter-
leaving actions and translating web and device service de-
scriptions into PDDL are not trivial tasks to achieve, but they
are necessary for applicability in real-world scenarios.

Another aspect of future work that we hope to focus on
is a conflict resolution strategy, which could try to find a
middle ground between conflicting policies. For instance,
instead of keeping all devices silent when the baby is asleep,
devices could be allowed to use sound as long as they don’t
wake the baby up. Another example (outlined in Section 4.3)
could be a conflict between two people who prefer different
room temperatures. A solution for this case could be setting
to a temperature somewhere in the middle of both prefer-
ences. We think that planners would also be helpful in this
approach.

Acknowledgements
We wish to thank Biplav Srivastava and Shirin Sohrabi for
their help and discussions on planning and preferences. We
would also like to thank the anonymous reviewers for their
helpful feedback.

 42

 42

References
Artale, A.; Calvanese, D.; Kontchakov, R.; and Za-
kharyaschev, M. 2009. The dl-lite family and relations. J.
Artif. Int. Res. 36(1):1–69.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007. Tractable reasoning and efficient query
answering in description logics: The dl-lite family. Journal
of Automated reasoning 39(3):385–429.
Dou, D.; LePendu, P.; Kim, S.; and Qi, P. 2006. Integrating
databases into the semantic web through an ontology-based
framework. In Barga, R. S., and Zhou, X., eds., ICDE Work-
shops, 54. IEEE Computer Society.
Dou, D. 2008. The formal syntax and semantics of web-
pddl. Technical report, University of Oregon.
Fikes, R.; Hayes, P.; and Horrocks, I. 2004. Owl-ql?a lan-
guage for deductive query answering on the semantic web.
Web semantics: Science, services and agents on the World
Wide Web 2(1):19–29.
Gubbi, J.; Buyya, R.; Marusic, S.; and Palaniswami, M.
2013. Internet of things (iot): A vision, architectural ele-
ments, and future directions. Future Generation Computer
Systems 29(7):1645–1660.
Helmert, M. 2006. The fast downward planning system. J.
Artif. Intell. Res.(JAIR) 26:191–246.
Holler, J.; Tsiatsis, V.; Mulligan, C.; Avesand, S.;
Karnouskos, S.; and Boyle, D. 2014. From Machine-to-
machine to the Internet of Things: Introduction to a New
Age of Intelligence. Academic Press.
Iera, A.; Floerkemeier, C.; Mitsugi, J.; and Morabito, G.
2010. The internet of things [guest editorial]. Wireless Com-
munications, IEEE 17(6):8–9.
Ilghami, O., and Nau, D. S. 2003. A general approach
to synthesize problem-specific planners. Technical report,
DTIC Document.
Jayarajah, K.; Yao, S.; Mutharaju, R.; Misra, A.; Mel, G. D.;
Skipper, J.; Abdelzaher, T.; and Kolodny, M. 2015. Social
signal processing for real-time situational understanding: A
vision and approach. In Mobile Ad Hoc and Sensor Systems
(MASS), 2015 IEEE 12th International Conference on, 627–
632. IEEE.
Kagal, L.; Finin, T.; and Joshi, A. 2003. A Policy Language
for A Pervasive Computing Environment. In IEEE 4th Inter-
national Workshop on Policies for Distributed Systems and
Networks.
Li, X.; Lu, R.; Liang, X.; Shen, X.; Chen, J.; and Lin, X.
2011. Smart community: an internet of things application.
IEEE Communications Magazine 49(11):68–75.
Lupu, E. C., and Sloman, M. 1999. Conflicts in policy-
based distributed systems management. IEEE Trans. Softw.
Eng. 25(6):852–869.
Richter, S., and Westphal, M. 2010. The lama planner:

Guiding cost-based anytime planning with landmarks. J. Ar-
tif. Int. Res. 39(1):127–177.
Sensoy, M.; Norman, T.; Vasconcelos, W.; and Sycara, K.
2012. Owl-polar: A framework for semantic policy repre-
sentation and reasoning. Web Semantics: Science, Services
and Agents on the World Wide Web 12(0).
Sohrabi, S.; Baier, J. A.; and McIlraith, S. A. 2009. Htn
planning with preferences. In Proceedings of the 21st In-
ternational Jont Conference on Artifical Intelligence, IJ-
CAI’09, 1790–1797. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.
Uszok, A.; Bradshaw, J. M.; Jeffers, R.; Suri, N.; Hayes, P.;
Breedy, M. R.; Bunch, L.; Johnson, M.; Kulkarni, S.; and
Lott, J. 2003. Kaos policy and domain services: Toward a
description-logic approach to policy representation, decon-
fliction, and enforcement. In Proceedings of Policy. Como,
Italy: AAAI.
van der Meulen, R. 2015. Gartner says 6.4 billion con-
nected ”things” will be in use in 2016, up 30 percent from
2015. http://www.gartner.com/newsroom/id/

3165317. Accessed: 2016-02-29.
Vasconcelos, W. W.; Kollingbaum, M. J.; and Norman, T. J.
2009. Normative conflict resolution in multi-agent systems.
Autonomous Agents and Multi-Agent Systems 19(2):124–
152.
Vermesan, O., and Friess, P. 2011. Internet of Things-
Global Technological and Societal Trends From Smart En-
vironments and Spaces to Green ICT. River Publishers.
wei Hsu, C.; Wah, B. W.; and et al. 2006. Handling soft
constraints and goals preferences in sgplan.

 43

 43

Deploying a Schedule Optimization Tool for Vehicle Testing

Jeremy Ludwig, Annaka Kalton, and
Robert Richards

Stottler Henke Associates, Inc.
San Mateo, California

{ludwig, kalton, richards} @ stottlerhenke.com

Brian Bautsch Craig Markusic, and Cyndi Jones
Honda R&D Americas, Inc.

Raymond, OH
{ CMarkusic, Bbautsch, CJones } @ oh.hra.com

Abstract
Whenever an auto manufacturer refreshes an existing car or
truck model or builds a new one, the model will undergo
hundreds if not thousands of tests before the factory line and
tooling is finished and vehicle production begins. These
tests are generally carried out on expensive, custom-made
prototype vehicles because the new factory lines for the
model do not exist yet. The work presented in this paper
describes how an existing intelligent scheduling software
framework was modified to include domain-specific
heuristics used in the vehicle test planning process. The
result of this work is a scheduling tool that optimizes the
overall given test schedule in order to complete the work in
a given time window while minimizing the total number of
vehicles required for the test schedule. The tool was
validated on the largest testing schedule for an updated
vehicle to date. This model exceeded the capabilities of the
existing manual scheduling process but was successfully
handled by the tool. Additionally the tool was expanded to
better integrate it with existing processes and to make it
easier for new users to create and optimize testing
schedules.

Introduction
Vehicle testing is an essential part of building new cars and
trucks. Whether an auto manufacturer refreshes an existing
model or builds a new one, the model will undergo
hundreds if not thousands of tests. Some tests are exciting,
such as a 48 km/h dynamic rollover and measuring the
impact on the crash-test dummies. Other tests are not quite
as sensational but still important, like testing the heating
and air conditioning system.
 What these tests have in common is that they are
generally carried out on hand-built prototype vehicles
because the new factory lines for the models do not exist
yet. These vehicles can each cost as much as an ultra-
luxury Bentley or Lamborghini, which results in pressure
to reduce the number of vehicles. There are two additional
complications with the test vehicles. First, the hand-built

Copyright © 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

vehicles take time to build and are not all available at once,
but instead become available throughout the testing
process based on the build pitch of the test vehicles. An
example of this is one new test vehicle being made
available each weekday. Second, there are many particular
types of a model, and each test might require a particular
type or any of a set of types (e.g., any all-wheel-drive
vehicle). There may be dozens of types of a particular
vehicle model to choose from, varying by frame, market,
drivetrain, and trim.
 At the same time, market forces dictate when new or
refreshed models must be released. The result is additional
pressure to complete testing by certain dates so model
production can begin.
 Finally, testing personnel and facilities are limited
resources. For example, it would be desirable to schedule
all of the crash tests at the very end of the project so other
tests could be carried out on those vehicles first. However
there aren’t enough crash labs or personnel to support this,
so the crashes must be staggered throughout the project.
 To summarize, the constraints placed on creating a valid
schedule in this domain are:
• Temporal: Tests must be scheduled between the

project start and end date; each test has duration and
an optional start date and an optional end date.

• Calendar: Tests can only be scheduled during
working shifts; tests cannot be scheduled on
holidays.

• Ordering: Tests can optionally be assigned to
follow either immediately after another test or
sometime after another test.

• Resource: Each test can only be scheduled on
certain vehicle types; tests may optionally be
required to use the exact same vehicle as another
test; tests may require personnel to be available; and
tests may require facilities to be available.

• Build Pitch: Vehicles are not available for tests
until the date they are created; creation dates follow
a given build pitch schedule with additional
constraints.

• Exclusive: Test indicated as exclusive must be the
first test on the selected vehicle.

 44

 44

• Destructive: Tests indicated as destructive must be
the last test on the selected vehicle.

 The work presented in this paper describes how Aurora,
an existing intelligent scheduling software framework
(Kalton, 2006), was modified to include domain-specific
algorithms and heuristics used in the vehicle test planning
process. The framework combines graph analysis
techniques with heuristic scheduling techniques to quickly
produce an effective schedule based on a defined set of
activities, precedence, and resource requirements. These
heuristics are tuned on a domain-specific basis to ensure a
high-quality schedule for a given domain. The resulting
domain-specific scheduler is named Hotshot.
 The end product of this work is a deployed system that
automatically creates a valid schedule from a set of
constraints provided by the planner. The created test
schedule will complete the work in a given time window
and observe all of the scheduling constraints. The schedule
optimization process includes determining which vehicle
types are built and the order in which they are built and
minimizes the total number of vehicles required for the
entire test schedule.
 Results from the deployed system are presented from
applying the system to a large-scale testing effort for a
vehicle model update. This effort was not considered
manageable using the existing manual scheduling process,
so there is no direct comparison to the pre-existing
scheduling process. Prior work reported elsewhere does
include a direct comparison between Hotshot and the
previous scheduling process with a 12% reduction in
number of vehicles required (Ludwig et al., 2014).
 In the remainder of this paper, we first discuss related
work. Following this we describe the Aurora scheduling
framework and summarize changes made to create the
domain-specific Hotshot scheduling tool, focusing on the
features added to support the transition from prototype to
deployed system. The methods and results sections
contains the details of how the deployed system was
validated by creating one of the largest test schedules for a
single vehicle model to date. Finally, we present future
work in the conclusion.
 The primary contributions of this case study are
describing the customization of an existing general
scheduling framework to solve a specialized and highly
constrained problem and discussing the requirements
included in deploying a scheduling system that both
supports novice planners and integrates with existing
processes.

Background and Related Work
The current version of the software extends the prototype
Hotshot system (Ludwig et al., 2014), which demonstrated
the ability to generate a valid schedule with a significant

reduction in the number of vehicles required relative to the
existing planning process. The deployed version of Hotshot
includes a number of significant improvements to the
initial prototype.
 Schwindt & Zimmerman (2015) provide a thorough
review of related work aimed at creating test schedules that
respect testing constraints and minimize the number of
prototype vehicles required. The work presented in this
paper is most similar to that of Limtanyakul and
Schwiegelshohn (2012, 2007). They use constraint
programming to solve nearly the same problem of creating
a test schedule for prototype vehicles. Both papers work
towards a valid test schedule that meets the same
scheduling constraints described previously (temporal,
resource, ordering, build pitch, etc.), minimizes how many
vehicles are built, determines the vehicle types to build,
and determines the order in which the prototypes should be
built according to a build pitch.
 Bartels and Zimmerman (2007) also worked on the
problem of scheduling tests on prototype vehicles meeting
temporal, resource, and ordering constraints while
minimizing the number of vehicles required. Initially they
use a mixed integer linear program model for smaller
schedules, moving to a heuristic scheduling method to find
solutions for larger schedules. They found that dynamic,
multi-pass heuristics produced the best results. These are
the same type of prioritization heuristics used in Aurora.
 Zakarian (2010) took a different approach in their
prototype scheduling work for General Motors. They
focused on developing a scheduling and decision support
tool that considers the uncertainty in the test process, such
as duration of tests, possibility of failure, and prototype
availability. The tool helps users trade off between
competing goals such as completing the tests according to
schedule, quality of testing, and number of prototype
vehicles required. Similar to their work, Aurora will
highlight conflicted tests that cannot be scheduled because
of insufficient resource availability in the given time
frame.
 One primary difference from previous research is that
our work focuses on domain specific customization of a
general-purpose scheduling framework already in use in
other applications. A scheduling framework takes
advantage of the large degree of commonality among the
scheduling processes required by different domains, while
still accommodating their significant difference. This is
accomplished by breaking parts of the scheduling process
into discrete components that can easily be replaced and
interchanged for new domains.
 Framinan and Ruiz (2010) present a design for a general
scheduling framework for manufacturing. Aurora, used in
our work, is one example of an implemented scheduling
framework (Kalton, 2006). Aurora distills the various
operations involved in most scheduling problems into

 45

 45

reconfigurable modules that can be exchanged, substituted,
adapted, and extended to accommodate new domains (e.g.,
Richards, 2015; Richards, 2010a; Richards, 2010b). The
OZONE Scheduling Framework (Smith et al., 1996) is
another example of a system that provides the basis of a
scheduling solution through a hierarchical model of
components to be extended and evolved by end-
developers. Becker (1998) describes the validation of the
OZONE concept through its application to a diverse set of
real-world problems, such as transportation logistics and
resource-constrained project scheduling.
 Another difference from existing research is that the
scope of the work presented in this paper extends beyond
the prior work, including the Hotshot prototype, in a
number of ways. The work presented in this paper is part
of a deployed system that includes visualization, analysis,
and integration with existing processes; is currently in use
by novice planners; includes methods to identify and
automatically resolve common types of modeling errors
created by novice planners; and includes methods to
transition the testing schedule from planning stage to
execution phase.

Scheduling Framework
Aurora was designed to be a highly flexible and easily
customizable scheduling system. It is composed of a
number of components that can be plugged in and matched
to gain different results. The scheduling system permits
arbitrary flexibility by allowing a developer to specify
what components to use for different parts of
scheduling. Aurora has been successfully applied in a
multitude of domains, including medical, manufacturing,
and aerospace. (Richards, 2015; Richards, 2010a;
Richards, 2010b). The steps in the scheduling process are
described in detail below. All configurable elements are
shown in bold. Elements that were modified for the test
vehicle domain will be discussed further in later sections.

 Additionally, Aurora includes a default user interface
that is further customized for each domain. As shown in
Figure 1, a domain specific wizard to walk the user
through the scheduling process is shown in the center.
Behind this are parts of the standard interface: list of tasks
(left), information on the selected task (center), and a
network diagram (right) showing the ordering constraints
between tasks. Other views include resources and
calendars as well as various reports and graphs.

Scheduling Process
Schedule Initialization
1. Aurora undoes any previous post-processing (to get back
to the “true” schedule result state) and applies the
Preprocessor to the schedule information.
2. Aurora uses the Queue Initializer to set up the queue
that will be used to run the scheduling loop. A standard
Queue Initializer puts some or all of the schedulable
elements—activities, flows, and resources—onto the
queue.
3. The queue uses the Prioritizer to determine the priority
of each element. Depending on the execution strategy,
these priorities may be used to periodically sort the queue
or to schedule the element with the highest priority at each
stage.
4. The Schedule Coordinator triggers the scheduling of the
elements on the queue by starting the Scheduling Loop.

Scheduling loop
1. A schedulable element (task, project, or resource) asks
the Scheduler to schedule it.
2. The Scheduler calls constraint propagation on the
schedulable so as to be sure that all of its requirements and
restrictions are up to date.
3. The Scheduler looks at the element, considers any
Scheduling Method that is associated with it (e.g.,
Forward, Backward). A Scheduling Method determines
how the system goes about trying to schedule an element.
The Scheduler also selects which Quality Criterion to
associate with the selected scheduling method; the Quality
Criterion determines what makes an assignment “good.”
4. The Scheduler calls the Schedule Method on the
schedulable. The process depends a great deal on the
Schedule Method, but the result is that the schedulable
element is assigned to a time window and has resources
selected to satisfy any resource requirements. It also
returns a list of the conflicts resulting from the given
assignment.
5. The Scheduler calls constraint propagation on the
schedulable (again) in order to update all of the neighbors
so that they are appropriately restricted by the newly
scheduled element. This process may result in additional

Figure 1. Aurora scheduling user interface.

 46

 46

conflicts; if so, these are added to the list of conflicts from
scheduling.
6. The Scheduler adds the conflicts to the Conflict
Manager and asks the manager to attempt to resolve those
conflicts.

Schedule Finalization
1. When the queue is empty, Aurora goes through a final
conflict management step, this time at the global level.
2. Aurora calls the Postprocessor on the schedule, so that
any additional analysis may be done before Aurora returns
the schedule results.
3. Aurora sends the schedule results to the GUI for display.

Domain-Specific Customization
Two different types of modifications were made to the
Aurora framework to create the Hotshot tool. First, the user
interface front end was modified to import the testing
model, display and edit domain-specific properties,
perform the optimization to minimize the number of
required vehicles, and to search for additional resources
that could be added to shorten the project schedule.
Second, components in the scheduling back end were
updated specifically for this domain.

User Interface Customization
There are seven features added to the general scheduling
user interface that are specific to the vehicle test domain:
import an Excel model of the testing problem, edit the
build pitch, edit the vehicles and build order, determine
how to handle irregular tasks, minimize the number of
vehicles required, search for additional resources that could
be used to shorten the schedule, and export the schedule to
a client-specific format. Each of these features will be
described in greater detail, highlighting new features and
changes made to existing features as the user base of the
system grew.
 The starting point of the Aurora customization for the
vehicle testing domain is importing the testing tasks, task
constraints, calendars, resources (vehicles, vehicle types,
personnel, facilities), and build pitch information from a
set of Excel spreadsheets. These Excel spreadsheets
represent a model of the overall testing problem. Once
imported, the general user interface supports graphically
viewing and editing the model elements such as tasks,
resource requirements, resources, resource sets,
constraints, and calendars. For the deployment, the primary
additions were in model error checking. In practice,
multiple team leaders specify portions of the overall
model. This leads to situations where models are defined
that are logically impossible to solve. One example is when
there are more days of work indicated than there are days
of vehicles available given the build pitch and end date.

The deployed system looks for common mistakes made
with the prototype and alerts the user to the problem using
familiar terms that they can easily understand.
 The Build Pitch (Figure 2) dialog was added for viewing
and editing the general build pitch per week (number of
vehicles that can be built) as well as a maximum for each
vehicle type per week. For example, 10 test vehicles per
week can be built, but only 5 all-wheel-drive can be built
in a week. Additionally, each vehicle type has a first
available date, which determines the earliest date that a
vehicle of that type could be available. The Manage
Vehicles dialog is related to Build Pitch, allowing the user
to edit the vehicles to be built and their build order. The
build order is assigned automatically during the
optimization process. Build dates are assigned based on the
build order, moving from 1 to n and selecting the first
available date that meets two criteria: number of
vehicles/week is not exceeded and vehicle type per week is
not exceeded.

 While the general build pitch can be used at the start of
the scheduling process, part-way through the test process a
more detailed build pitch is released that gives specific
dates in which vehicles will be available, for example, 3
vehicles on Monday the 1st. Later in the test process, the
information is even more detailed, with specific dates
given to each test vehicle to be built. The deployed version
of Hotshot supports the existing planning process by
including all three of these modes and updating the
schedule as the model transitions from most general to
most specific build pitch.
 Greater use of the system also indicated that an
additional dialog to handle tasks with irregular dates was
needed. The Set Task End Dates dialog was added to
support tasks that were allowed to extend beyond the

Figure 2. Build pitch configuration.

 47

 47

desired project end date. Examples of this include tasks
with a given end date later than the project end date,
individual tasks that are longer than the entire project
duration, and chains of tasks linked with ordering
constraints such that the combined duration exceeds the
entire project duration. In all these cases, the user
determines if the entire project should be extended or if the
task(s) will be allowed to complete at a date past the
project end date.
 The Optimization Dashboard (Figure 3) is used to
minimize the number of vehicles required to schedule the
testing tasks. In Hotshot, optimization is accomplished by
using the scheduling engine to perform a search through
the space of schedules to find a valid schedule that requires
fewer vehicles. The Optimization Dashboard helps
visualize the setup and search process for the user. The
upper left area of Figure 3 summarizes the present state of
the current schedule, showing the number of vehicles
required, the number of destructive and exclusive tasks, the
utilization of vehicles in the testing schedule, and the
actual project end date relative to the initial. The upper
right shows the current status of optimization, which will
change once the Start button is pressed. This portion of the
dialog also provides an estimate of how long the remaining
optimization will take. The central portion of the dialog
contains the five parts of the optimization process. Buttons
for starting and controlling the optimization are found
along the bottom of the dialog.

 There are five steps in the optimization process. The first
three steps prepare the scheduling model for search, the
fourth step carries out the search, and the final step returns
the schedule to the end user format:
1. Set Backward Schedule. Mark all tasks to be backward
scheduled. This means that the schedule will be created

from the end of the project to the beginning, with all tasks
scheduled as close to their late end dates as possible.
2. Project End Date Extension. Users of the prototype
often ran into problems when the desired model was too
ambitious for a solution to be found. This optimization step
was added to correct for overly optimistic end dates. The
end date extension attempts to schedule the project with all
of the constraints except build pitch. If conflicts are found,
it extends the project end date to try to fix the issues for the
user. If conflicts still exist, optimization is aborted. At this
point the planner will need to refer to the conflicts to fix
the model issues.
3. Date Optimizer. Once the tasks are backward
scheduled, assign build order based on the earliest dates
tasks are assigned to vehicles. That is, if the first task
assigned to Vehicle A starts on Jan 15 and the first task
assigned to Vehicle B starts on Jan 18, then A will come
before B in the build order. The heuristic is that vehicles
that are needed earlier should be built earlier. Note that this
optimizer greatly reduces the amount of time available to
test vehicles built later in the schedule. Due to the same
issue with ambitious test models as seen in step 2., this
optimizer will also attempt to extend the project end date if
conflicts are found once build dates are applied.
4. Meta Disabler Optimizer. This step uses the
scheduling engine as part of a greedy search for valid
schedules that require fewer vehicles. Starting with the
vehicles created last in the schedule, temporarily disable
the vehicle and use the scheduling engine to try to create a
schedule without the vehicle. If this succeeds, permanently
delete the vehicle. If this fails, restore the vehicle and
continue. As vehicles are removed, the Date Optimizer is
used to re-order the build dates of the remaining vehicles.
5. Set Forward Schedule. Finally each task is returned to
forward schedule mode and re-scheduled so that all tasks
try to schedule as close to the project start date as possible.
This is the preferred output format for downstream
processes that make use of the schedule created by
Hotshot.
 The Resource Analysis dialog was developed to provide
guidance to new users on how they could improve the
schedule, either by reducing the number of vehicles
required or by shortening the project duration. Starting
from an optimized schedule, the Resource Analysis dialog
carries out a meta-search process. For each resource
(vehicle type, personnel, or facility), the dialog will
perform the optimization process as if another of that
resource were available. The user is shown the effect of
adding each resource individually to the schedule in terms
of project end date and number of cars required. This
serves as a starting point for discussion on what-if
scenarios for improving the schedule.
 The final feature is aimed at making the scheduling
results easier to use as part of the larger process of

Figure 3. Optimization dashboard.

 48

 48

planning for and carrying out tests. Aurora contains a
variety of highly customizable displays such as the plot
shown in Figure 4. In this figure the actual vehicle and
tasks have been simplified and obfuscated. Vehicles are
shown on the x-axis and time on the y-axis. For example,
SIX~001 is the first vehicle instance of type SIX. It has the
task 9_Group2_Test_9 assigned to it from August 9 to
October 10. The light-purple cell on August 8 to the left of
the task indicates the vehicle is not yet available for
scheduling, visualizing the build pitch. The plot has also
been customized to color code tasks by group and to
indicate destructive tasks with a yellow tag in the upper
right corner. However, an existing format of scheduling
results is already in use as part of the vehicle testing
process. The deployed version of Hotshot includes custom
export capabilities to inject the Hotshot results into the
existing, proprietary system.

Scheduling Component Customization
The main change for the deployed scheduling system was
to support irregular tasks that are allowed to complete
outside of the project start and end dates.

The scheduling model is based on a hierarchical
structure with flows and tasks. Flows represent high-level
projects made up of individual tasks that must be
scheduled. One of the key constraints on flows and tasks is
the late end date. Late end date represents that last possible
date the project or task can be completed. Under normal
conditions, the late end date of the flow will constrain the
late end date of any of the tasks that make up the flow. For
example, Task A has a defined late end date of 12/31/2015.
Task A is part of Flow “Test Project,” which has a late end
date of 12/01/2015. The Preprocessor synchronizes the
end dates of the tasks and the flow that contains the tasks.
So in the above example, Task A will be updated to have a

late end date of 12/01/2015 because it is constrained by the
flow end date. In real-world conditions, the flow late end
date describes when the bulk of the tasks need to be
finished by, but there are some tasks that can be safely
finished after the project is considered complete. To
support this, tasks can be marked as override project end
date. The updated Preprocessor does not change the late
end dates of these tasks.

The Hotshot prototype component customization
focused on three central areas: scheduling direction
maintenance, special handling for vehicle testing’s unusual
requirements, and more standard heuristic tailoring for the
domain. In this paper we focus on the Prioritizer
component, which was not described in detail previously.
See Ludwig et al. (2014) for the customization of other
scheduling components: Preprocessor, Scheduler quality
criteria, Scheduler, and Post-processor.

The Prioritizer uses a cascading series of heuristics to
determine which activities should be scheduled earlier in
the process. In general, if “difficult” activities in the given
domain are scheduled earlier in the process, it tends to
avoid subsequent conflicts in the schedule that would be
difficult to repair. The heuristic prioritizer considers each
heuristic in turn, until it can differentiate between two
prospective activities. If two activities tie on a given
heuristic (e.g. both are “exclusive use” activities), the
prioritizer will consider the next heuristic (“long task"),
and the next, until it can break the tie. The primary
heuristics in this domain are:
• Exclusive task: Prefer to schedule activities that

must have exclusive use of a vehicle earlier in the
process.

• Long task: Schedule the long activities early in the
process and fill in with short activities.

Figure 4. Aurora assignment of tasks to vehicles over time. For example, SIX~001 is the first instance of a vehicle of type SIX. It is
available for tasks starting August 9th. The first task assigned to this vehicle is 9_Group2_Test_9.

 49

 49

• Destructive task: Some tests involve destroying the

vehicle. This prevents any activities from
subsequently making use of the vehicle, so it is
important to place the destructive tasks - as late in
the schedule as possible - early in the scheduling
process.

• Tight window: This reflects the fact that activities
with a short window of opportunity tend to be
harder to place than those with a long window of
opportunity. In this case, the “tightness” reflects the
difference between task duration and the projected
window size.

• End based: Schedule tasks that must be completed
first earlier in the process for the forward-schedule
phase.

• Load-based: Prefer activities with fewer vehicle
options and/or more competition for those vehicles.

• Subsequent duration: Considers the amount of
follow-on work after the current activity, based on
ordering constraints.

Methods
Based on the prototype results, Hotshot was immediately
put to work on a large project that had several challenging
constraints from the start. The first challenge was that the
factory in charge of this project had capacity issues and
was not able to build enough vehicles to satisfy all of the
testing and development requirements. As a result, a
second factory was sourced to make up the shortage of
vehicles the first factory was unable to produce.
Developing an optimized test schedule manually for this
type of build—one that included two build locations, two
separate build pitches, and two different timelines—had
not been attempted previously.

To tackle this challenge, the project leader followed a
divide and conquer approach. Instead of treating this
project as one very large schedule, it was divided into two
medium-sized schedules that were individually optimized.
To carry this out, the project leader separated the exclusive
tasks from the non-exclusive tasks. All exclusive tasks
were to be scheduled and optimized at the second factory
while the non-exclusive tasks were to be scheduled and
optimized at the first factory.

The second challenge centered on negotiations to create
schedules that worked for both the testing team and the
factories building the test vehicles. The schedule that was
using the first factory, which was to build vehicles for the
non-exclusive tasks, was created first. Ongoing
negotiations took place with this factory with regard to
build timing and build pitch. This factory had several
assignments it was balancing and had to make changes and

requests in real time during the schedule optimization
process. These requests were fed back to the project team,
which utilized Hotshot to update the test schedule. Most of
the change requests involved when to build certain vehicles
and how many vehicles to build per week. The project
team was able to honor the factory’s requests as well as
counter-propose options that would help further optimize
vehicles and schedules.

After the non-exclusive tasks’ schedule was created, the
exclusive schedule was started. The second factory was an
in-house fabrication department that had different
requirements and constraints than those of the first factory.
However, the same process of creating a test schedule was
used in this case. Build pitch and build timing were
considered when performing the optimizations and
schedule creation.

Results
In the end, the team was able to create an optimized
schedule with a larger number of vehicles (50 – 150) that
met all of the non-exclusive test groups’ needs. The
second exclusive task schedule was created using a smaller
number (10 – 50) of test vehicles. In total, a large number
of vehicles were needed to satisfy the project requirements
and testing needs, drawing from 30 – 50 different vehicle
types. This included 4042 days of testing, with over 340
testing tasks. These tasks were constrained by the
completion of preceding tasks, by requiring the use of the
same resources as preceding tasks, and by the availability
of vehicles, personnel, and testing facilities. In addition to
successfully scheduling a suite of tests that would have
been very difficult previously, Hotshot also supported the
negotiation process and minimized the number of test
vehicles required.

Working with the initial prototype, planners
demonstrated the ability of generating a schedule in under
two minutes, as opposed to this task requiring days of
labor. This capability enabled the planners to generate
numerous “what-if” scenarios. Planners could quantify the
effect of compressing or extending the schedule in terms of
how many cars would be required. Planners also
demonstrated the effects that steeper and shallower build
pitches have on the number of cars required for a given set
of tasks and project end dates. Planners were also able to
negotiate about the vehicle types required by tests. For
example, a vehicle type requested by one test but not
usable by other tests stands out in plot as a vehicle with
very low utilization. The planner can then go back to the
person in charge of the test and see if a more commonly
used vehicle type could be substituted. The ability to
quickly run “what-if” scenarios held true with the larger
models as well. The ability to quickly examine these types

 50

 50

of effects enabled a more efficient negotiation process to
take place between the test and vehicle production teams
than during previous challenging projects.
 Hotshot was also used to minimize the number of test
vehicles required for this large project. Unfortunately,
there is no direct comparison to the previous method
because no manual model was attempted given the
complexity of the test schedule. The only estimate we can
give for the number of vehicles saved is based on the
combined judgment from several members of the project
team. They estimated that Hotshot created at least six
fewer vehicles than would have been created with the
previous method. This represents a 6% reduction in the
number of vehicles required and a significant cost savings
in the millions of dollars.
 Note that this estimate was purposely conservative. The
prototype version (Ludwig et al., 2014) demonstrated a
12% reduction in vehicles when directly compared with the
manually created schedule on a much smaller model.

Conclusion
This paper described a complex, real-world scheduling
problem in automotive vehicle testing prototype
management. To address this problem, we added domain-
specific heuristics to a general intelligent scheduling
software framework to create the custom Hotshot
scheduling software.
 Hotshot helped solve a very complex scheduling
challenge in the presented use case. Solving this challenge
with the previous, manual method would have been almost
impossible. As deployed, Hotshot enabled the schedules to
be created in an efficient manner while also building fewer
vehicles than the manual method would have needed.
 Due to the reduction in required vehicles, this use case
also demonstrates the cost-effective development of a
customized scheduling system. The savings from the
reduced vehicles alone in the presented use case greatly
outweighs development cost, and additional savings are
generated with each new project. Hotshot has already
saved the end user millions of dollars in prototype costs
while increasing transparency of the entire process from
the implementation level to the executive level.
 Ongoing work is aimed at scaling Hotshot, and its
optimization capabilities, to multiple simultaneous
projects. Currently, Hotshot is used to optimize a single
project. The functionality around build pitch allows
constraints caused by vehicle availability for multiple
projects to be factored into the schedule. However, the
schedule does not take into account delays that could be
introduced due to conflicts in using limited personnel and
testing facilities for different projects being run at the same
time. The next step in development will assist planners in

creating a combined schedule for all of the active testing
projects at any given time.

References
Bartels, J.-H., & Zimmermann, J. (2007). Scheduling tests in
automotive R&D projects. European Journal of Operational
Research, 193(3), 805–819.
Becker, M.A. (1998). Reconfigurable Architectures for Mixed-
Initiative Planning and Scheduling. Ph.D. diss., Robotics Institute
and Graduate School of Industrial Administration, Carnegie
Mellon university, Pittsburgh, PA.
Framiñan, J.M., & Ruiz, R. (2010). Architecture of
manufacturing scheduling systems: Literature review and an
integrated proposal. European Journal of Operational Research
205(2): 237-246.
Kalton, A. (2006). Applying an Intelligent Reconfigurable
Scheduling System to Large-Scale Production Scheduling.
International Conference on Automated Planning & Scheduling
(ICAPS) 2006. Ambleside, The English Lake District, U.K. June
6-10, 2006.
Limtanyakul, K., & Schwiegelshohn, U. (2012). Improvements of
constraint programming and hybrid methods for scheduling of
tests on vehicle prototypes. Constraints, 17, 172-203.
Limtanyakul, K., & Schwiegelshohn, U. (2007). Scheduling tests
on vehicle prototypes using constraint programming. In
Proceedings of the 3rd multidisciplinary international scheduling
conference: Theory and applications (pp. 336–343).
Ludwig, J., A. Kalton, R. Richards, B. Bautsch, C. Markusic, J.
Schumacher (2014). A Schedule Optimization Tool for
Destructive and Non-Destructive Vehicle Tests. Proceedings of
the Twenty-Sixth Annual Conference on Innovative Applications
of Artificial Intelligence (IAAI 2014)
Richards, R. (2010a). Critical Chain: Short-Duration Tasks &
Intelligent Scheduling in e.g., Medical, Manufacturing &
Maintenance. Proceedings of the 2010 Continuous Process
Improvement (CPI) Symposium. Cal State University, Channel
Islands. August 19-20, 2010.
Richards, R. (2010b). Enhancing Resource-Leveling via
Intelligent Scheduling: Turnaround & Aerospace Applications
Demonstrating 25%+ Flow-Time Reduction. 2010 PMI College
of Scheduling Conference PMICOS. Calgary, Canada. May 2-5,
2010.
Richards, R. (2015). Packaging Line Scheduling Optimization.
Pharmaceutical Manufacturing Vol 14 no 8 pp 13-15, Oct 2015.
Schwindt, C. & Zimmermann, J. (Eds.). (2015). Handbook on
Project Management and Scheduling Vol. 2. Springer
International Publishing.
Smith, S.F., Lassila, O. and Becker, M. (1996). Configurable,
Mixed-Initiative Systems for Planning and Scheduling. In: Tate,
A. (Ed.). Advanced Planning Technology. Menlo Park, CA:
AAAI Press.
Zakarian, A. (2010). A methodology for the performance analysis
of product validation and test plans. International Journal of
Product Development, 10(4), 369–392.

 51

 51

Exploring Organic Synthesis with State-of-the-Art Planning Techniques
Rami Matloob and Mikhail Soutchanski

Dept. of Comp. Science,
Ryerson University, 245 Church Street, ENG281, Toronto, ON, M5B 2K3, Canada

Abstract

We explore different techniques to solve the computa-
tionally challenging, but practically important organic
synthesis problem. This problem requires finding a se-
quence of reactions producing the target molecule from
a set of given initial molecules. This problem is often
used on exams to test the problem solving skills of stu-
dents who study generic reactions in organic chemistry
courses. This problem is also relevant in industry. In
a quest to find a more efficient way to solve a set of
benchmark problems, we start by explaining how the
organic synthesis problem can be formulated as a plan-
ning problem in PDDL. We then demonstrate how state-
of-the-art planners such as SASE, Madagascar and Sat-
Plan – that reduce a bounded planning problem to satis-
fiability – can only encode a fraction of the benchmark
problems. We also explore the recently developed ac-
tion schema splitting syntactic transformation that splits
each action into several sub-actions with a shorter inter-
face thereby alleviating somewhat the grounding prob-
lem. We assess experimentally the performance of the
Fast Downward planning system for different splitting
values and compare the results with our original un-split
domain. For the unique finest split, where the modified
action schemas have the smallest number of arguments,
we investigate performance of Fast Downward with dif-
ferent heuristics. We propose organic synthesis as the
new challenge for planning.

1 Introduction
We are involved into a long-term project related to develop-
ing an online automated tutoring system for undergraduate
students who study Organic Chemistry. The goal is to create
a system that will provide many functionalities. In particu-
lar, the main feature will be helping the chemistry students
with solving the multi-step organic synthesis problem. The
organic synthesis problem is a common chemistry problem
that requires finding a sequence of reactions that produces
a target molecule from given initial molecules. The students
who take Organic Chemistry courses are introduced to many
generic reactions. These reactions are generic in the sense
that they are applicable to multiple classes of molecules.
The students study details of each reaction including how
atoms in participating molecules change bonds. To test the
students knowledge it is common to give them a few or-
ganic synthesis problems so the students can discover the
right combination of reactions for a given target molecule
and initial molecules. These exam problems can vary in dif-
ficulty from relatively simple problems that can be solved in
2 or 3 steps to more complex problems that may require find-
ing a sequence of 10-12 reactions. The students can improve
their knowledge about reactions if they can practice solving

numerous organic synthesis problems before the exam. We
would like to develop a tool that will be verifying whether
a solution proposed by a student is correct, and if not, after
a number of unsuccessful attempts, show a correct solution
upon request from the student. More specifically, we would
like to develop a tool that can be challenged with any organic
synthesis problem. The problem can be either entered by a
human using existing open source molecule editing tools, or
it can be generated automatically. The range of organic syn-
thesis problems is potentially unlimited, i.e., the tool should
be able to solve any problem of certain level of complex-
ity, but not just problems out of a finite library entered in
advance. It is possible that this tool will be also helpful for
research purposes since the organic synthesis problem is a
long-standing problem with industrial applications. There
has been a long history of research related to computer aided
synthesis design (CASD). This history and the current devel-
opments are well outlined in (Judson 2009; Cook et al. 2012;
Ravitz 2013; Bøgevig et al. 2015; Szymkuć et al. 2016). Re-
viewing this history would not be relevant for the purposes
of our paper, but it is sufficient to mention that most of the
systems required interaction with a human assistant, and to
the best of our knowledge they are either no longer devel-
oped, or they are not publicly available for assessment.

The recent work (Heifets and Jurisica 2012) explored
solving the organic synthesis problem using AND/OR graph
search with a modified proof number search (this approach
is popular when solving large two-player zero-sum games
such as Go or Chess). The significant contributions of their
work include development of 20 benchmark problems in-
spired by the exam questions given to the students at the
Massachusetts Institute of Technology (MIT) taking Course
5.13 Organic Chemistry II during 2001-2006. Since these
are real exam questions, it is interesting to see if they can be
solved by a computer program. About 50 reactions required
to solve all these 20 problems were manually encoded using
a specialized chem-informatics language (James, Weininger,
and Delany 2011). This benchmark set is publicly available
from (Heifets 2012). The search for a sequence of reac-
tions was facilitated by a proprietary chem-informatics soft-
ware JChem developed by ChemAxon; it reads encodings
of reactions and molecules and can answer queries whether
molecules match (ChemAxon 2015). Since this search re-
quires significant computational resources, it was imple-
mented on an IBM super-computer. Each test received up
to 6 hours of CPU time and 8GB of RAM to solve one of
the benchmark problems. The experimental results are re-
ported in (Heifets and Jurisica 2012). They demonstrate that
some of the 20 benchmark problems could be solved within
6 hours limit, but the problems 16, 17, 18, 19 and 20 could
not be solved.

 52

 52

This previous research begs naturally the question
whether the organic synthesis problems can be solved us-
ing any of the modern AI planning techniques while rely-
ing only on standard hardware. To explore this, (Masoumi,
Antoniazzi, and Soutchanski 2015) has developed represen-
tation of reactions in the Planning Domain Definition Lan-
guage (PDDL). PDDL has been designed to standardize Ar-
tificial Intelligence (AI) planning languages. It is extensively
used by all systems competing at the International Planning
Competitions. More specifically, (Masoumi, Antoniazzi, and
Soutchanski 2015) has developed PDDL representation of
generic reactions in PDDL 2.2 that includes derived pred-
icates (Edelkamp and Hoffmann 2004). Before any of the
planning problems could be solved, both initial and goal
states should be encoded in PDDL. This has been done
manually. Additionally, the reactions from the benchmark
(Heifets 2012) should be somehow translated from the spe-
cialized chem-informatics language into PDDL. Automatic
translation was impossible because some effects of the reac-
tions in (Heifets 2012) are left unspecified. This was not an
obstacle for research reported in (Heifets and Jurisica 2012)
since their program searched from target to input molecules.
However, in PDDL encoding, all the effects must be stated
explicitly. For this reason, all the required reactions have
been manually entered and saved using MarvinSketch reac-
tion editing software provided by ChemAxon (ChemAxon
2015). This software allows saving the reactions in a RXN
format that is popular in chem-informatics industry (Accel-
rys 2011). Subsequently, the reactions have been automat-
ically translated from RXN into PDDL using an in-house
developed computer program. Experimental results reported
in (Masoumi, Antoniazzi, and Soutchanski 2015) are mostly
negative because the evaluated AI planners suffered from the
grounding problem. Each planning instance involves a few
dozen atoms, such as carbon, hydrogen or oxygen, while
some of the actions have more than 5 arguments, and as a
consequence, when actions are instantiated with available
atoms the size of a transition system constructed in the pro-
cess of grounding exceeds the available memory. As re-
ported in (Masoumi, Antoniazzi, and Soutchanski 2015), the
computer memory with 128GB of RAM was not enough
even if only 23 actions remained in the PDDL domain.

Several promising research directions have been identi-
fied in (Masoumi, Antoniazzi, and Soutchanski 2015). Our
paper reports experimental results collected while pursuing
some of the identified research directions. This is the first
contribution of our paper. A close inspection of the previ-
ously developed PDDL domain with reactions has revealed
that some of the reactions and/or planning instances with ini-
tial and goal states had inaccuracies, e.g., types mismatches.
Some of the errors occurred because the reactions have been
entered into MarvinSketch manually by a Computer Science
undergraduate student. For this reason, before we could pro-
ceed, we have carefully debugged a set of reactions. The re-
sulting clean set of 24 reactions is the PDDL domain that
we use in our research: see Table 1. This domain can be
used to solve some of the benchmark problems: see Table 2.
For each of these problems, we have verified that it can actu-
ally be solved using the reactions from a smaller sub-domain

that includes only required reactions. Thanks to this verifica-
tion, we are confident that all problems we are investigating
in this paper actually have a solution that can be potentially
computed. Elucidating this clean PDDL sub-domain is our
second contribution.1

Reaction Name #VARs PRE ADD DEL
alcoholAndPBr3 7 8 4 4

aldolCondensation 15 22 10 10
alkeneAndWater 5 5 6 4

alkylHalideAndCyanide 5 4 4 4
anhydrideReduction 17 46 16 20
aromaticNitration 15 25 6 6

carboxylicAcidAndThionylChloride 9 10 6 8
catalyticHydrogenationOfNitroGroup 6 6 6 6

dediazoniation 6 6 2 4
diazotization 10 13 4 10

dielsAlder 6 19 12 8
enolSN2attackOnAlkylHalide 6 8 8 8

grignard 6 4 6 4
grignardAdditionToAcidChloride 7 7 4 4

grignardReagentFormation 3 1 4 2
imineFormation 8 9 6 6

imineReductionToAmine 14 22 8 6
ketoneAndLDA 13 29 8 8
ketoneReduction 10 17 6 6

michaelAdditionWithKetones 9 15 6 4
michaelAddition 7 14 6 4

oxidationOfAlcoholsWithPCC 16 30 8 10
nitrileReductionToAmine 9 14 10 12

sandmeyerReaction 6 5 4 6

Table 1: 24 verified reactions and their parameters.

Pr TotalObj Hydrogen Carbon Oxygen PlanLength
2 40 16 8 11 4
4 68 24 9 21 8
5 62 28 20 8 3
6 32 10 4 5 7

10 59 31 14 7 3
14 74 40 17 5 5
17 94 46 27 12 5
20 58 22 9 6 11

Table 2: Number of objects in each problem and plan length

The rest of our paper is structured as follows. First, we
review relevant work from planning and provide introduc-
tion to organic chemistry to facilitate understanding of our
paper. Second, we report results from our experimental eval-
uation. They include attempts to solve the benchmark prob-
lems using programs that reduce planning to satisfiability.
Subsequently, we have attempted to transform the domain
syntactically using splitting approach developed in (Areces
et al. 2014). We report results collected with Fast Downward
(FD) software (Helmert and et al 2015) that we use to solve
benchmark problems with the domains produced by splitting
software. As a conclusion, we discuss some of the research
directions that can be further explored. It remains to be seen
whether modern AI planning techniques are mature enough
to compete with undergraduate students when solving exam
problems from Organic Chemistry.

1We are going to share publicly the PDDL encoding of all re-
actions and all 20 benchmark problems once we have completed
debugging and verified that there are no errors left.

 53

 53

2 Background
The following papers investigate how reducing a bounded
planning problem to satisfiability (SAT) can be an efficient
approach to solving planning problems. In 1992, (Kautz and
Selman 1992) proposed reduction of planning to satisfiabil-
ity and explained how effects and preconditions can be en-
coded into SAT. This paper also explains how restrictions
can be added in SAT so encodings can be more compact.

The details and the advantages of linear encodings (with
operator splitting and explanatory frame axioms) and paral-
lelized encodings are explained in (Kautz, McAllester, and
Selman 1996). This is also the first paper that introduces
lifted causal encodings.

The idea of reducing classical planning problems effi-
ciently to SAT is further investigated in (Ernst, Millstein,
and Weld 1997). This is the first paper that discusses the
features of a fully-implemented compiler that can generate
SAT encodings for STRIPS planning problems.

SatPlan’s technical guide (Kautz, Selman, and Hoffmann
2006) discusses the different versions of the SatPlan system
and how it has improved over the years.

A new encoding scheme based on the SAS+ formalism is
introduced in (Huang, Chen, and Zhang 2010). Their encod-
ing reduces the number of clauses in the problem by exploit-
ing the structural information in the SAS+ formalism, where
each variable can vary over a finite domain, while PDDL
has only boolean variables. This paper also introduces a new
SAT-based planner named SASE.

Madagascar is a modern SAT-based planner that was im-
plemented to improve scalability of large SAT problems
(Rintanen 2014; 2015).

Action schema splitting automated domain transforma-
tion approach is introduced in (Areces et al. 2014). It trans-
forms an action schema with a big interface (many param-
eters) into several properly coordinated sub-actions with
smaller interfaces. This automated transformation helps re-
ducing the number of ground actions, but makes the length
of a plan longer. The grain of split (course split vs fine split)
can be controlled in an implementation using a numerical
parameter �. The smaller � is, the fewer variables the gen-
erated sub-actions will have, and the more sub-actions will
be produced for each given action schema. We use an imple-
mentation of this approach downloaded from the author’s
Web site on September 19, 2014.

3 Preliminaries
In this Section, we explain how a chemical molecules and
reactions can be encoded in PDDL. Consider molecules
as graphs with edges that have four different labels rep-
resenting four common types of bonds between atoms.
We model them using the predicate bond(?x, ?y) – it rep-
resents a single bond between atoms ?x and ?y – and
the predicates doublebond(?x, ?y), triplebond(?x, ?y) and
aromaticbond(?x, ?y), where the latter bond is for the case
when several atoms share electrons as in the benzene ring
molecule. Furthermore, in graphs representing molecules,
vertices are labeled by the name of a chemical atom from
the periodic table, such as carbon (C), oxygen (O), hydro-

gen (H), nitrogen (N), sodium (Na), chromium (Cr), chlo-
rine (Cl), and so on. Since molecules can be described as
graphs, it is convenient to consider reactions as graph trans-
formations that break some of the existing bonds and form
some new bonds between atoms in participating molecules.
Each chemical atom has valence, which can be determined
by the number of connections it can form. For example, hy-
drogen has a valence of 1, oxygen has a valence of 2, and
therefore oxygen can form one double bond, or two single
bonds. Each carbon atom has a valence of 4, and for this rea-
son, it can form all four kinds of bonds as explained above,
e.g., one triple bond and one single bond, or one double bond
and two single bonds, and so on. When drawing graphs rep-
resenting molecules with aromatic bonds, it is common to
draw a circle to portray these bonds for atoms around the
circle, e.g., see the pyridine molecule C5H5N that occurs be-
fore and after reaction arrow in Figure 1.

To explain our encoding of reactions in PDDL, we use
problem 5 as an example. One of molecules participating in
reactions solving problem 5 is water or H2O. We define the
atoms in H2O as follows.
o51 - oxygen
h51 - hydrogen
h52 - hydrogen

where we write first names of the constants and then their
types. To describe bonds between the atoms in the molecule
H2O we have to write each predicate twice to characterize
bonds in both directions (for clarity, we do not show numer-
ical indexes in the illustrations).

(bond h51 o51) ;
(bond o51 h51) ;
(bond h52 o51) ;
(bond o51 h52) ;

H

O

H
H2O

Another participating molecule sodium hydroxide or
NaOH can be represented as follows.

na - sodium
o50 - oxygen

h50 - hydrogen

(bond na o50) ;
(bond o50 na) ;

(bond h50 o50) ;
(bond o50 h50) ;

Na

O

H
NaOH

The problem 5, abbreviated subsequently as p5, can
be solved using combination or two reactions; first,
oxidationOfAlcoholsWithPCC is executed twice with
different molecules, and then aldolCondensation is exe-
cuted last to produce the target molecule. Figures 1 and 2
with molecules participating in the reactions are shown be-
low. In RXN files all atoms are consecutively numbered. In
the figures, the numbers are adjacent to each atom. Thanks to
these numbers, it is possible to identify the changes in bonds
between atoms during the reactions. The complete PDDL
code for aldolCondensation can be found in Appendix,
but below we show and discuss a snippet that includes a few
preconditions and selected effects, for brevity.

We encode generic reactions as action schemas because
reactions apply to large classes of molecules not just to spe-
cific molecules. For example, many molecules in organic
chemistry use alkyls. The simplest alkyls are methyl �CH3
and ethyl �CH2�CH3. Each alkyl has a key carbon atom

 54

 54

Figure 1: Oxidation of alcohols with PCC reaction

Figure 2: Aldol condensation reaction

which bonds with an external atom to form a molecule. An
alkyl is a molecule with the general formula CnH2n+1, where
n is a positive integer. The alkyls are arbitrary branching
trees of single bonded carbon atoms such that the remaining
carbon valences are filled with hydrogens. In Figure 2, alkyls
are denoted with R1, but each R1-instance can be a different
alkyl. Therefore, aldolCondensation is a schema covering
a class of individual reactions. In our program, alkyls can be
represented as r-group atoms or can be simply represented
by a single key carbon atom in the PDDL code. In (Ma-
soumi, Antoniazzi, and Soutchanski 2015), it was attempted
to use PDDL derived predicates to represent alkyls and other
functional groups common in organic chemistry, but this did
not work since grounding of the domain with derived predi-
cates could not fit in memory.

In aldolCondensation, the most important change in-
volves two bonds. On the left hand side, the double bond be-
tween the carbon atom with number 1 and the oxygen atom
with the number 4 cleaves, and subsequently, the 4th atom
forms new bonds with potassium Na (number 14) and hy-
drogen (number 11). On the right hand side, the new double
bond between the 1st and 5th carbon atoms forms, while the
previous bonds of the 5th carbon with 8th and 9th hydro-
gen atoms cleave. In the PDDL code snippet we reflect only
the main changes, while skipping minor details. The indexes
of PDDL variables correspond to the numbers assigned to
atoms in the figure. We can describe each bond once when
we write preconditions because bonds are symmetrical in the
input molecules, but to specify effects we write each bond
relation in both directions to maintain its symmetry.

(:action aldolCondensation
:parameters /* skip for brevity */
:precondition (and (not (= ?c_1 ?c_5))

(not (= ?o_10 ?o_4)) (not (= ?o_10 ?o_15))
(not (= ?o_4 ?o_15)) (not (= ?r1_2 ?r1_3))
(bond ?r1_2 ?c_1) (bond ?r1_3 ?c_1)

(doublebond ?o_4 ?c_1) /* skip a few */
(not (= ?h_9 ?h_8)) (not (= ?c_6 ?c_5))

(bond ?c_6 ?c_5) (bond ?h_9 ?c_5)
(bond ?h_8 ?c_5) (doublebond ?o_7 ?c_6))

:effect (and /* skip some effects */
(not(doublebond ?o_4 ?c_1))(not(doublebond ?c_1 ?o_4))
(not (bond ?h_8 ?c_5)) (not (bond ?c_5 ?h_8))
(not (bond ?h_9 ?c_5)) (not (bond ?c_5 ?h_9))

)
)

In the oxidationOfAlcoholsWithPCC reaction, the
large middle pyridinium molecule C5H5NH is part of pyri-
dinium chlorochromate (PCC) reagent C5H5NH[CrO3Cl].
Its purpose is transforming the left-most alcohol molecule
into the carbonyl molecule C��O formed by the the 3rd atom
(carbon) and the 8th atom (oxygen). This carbon atom stands
for an alkyl that before reaction bonds with hydroxyl -OH
thereby forming an alcohol molecule. In the products, we see
that the 7th atom (hydrogen from hydroxyl) cleaves from 8th
atom (oxygen) and forms a new bond. However, we skip this
and other minor changes in the PDDL code snippet below to
focus on the purpose of this reaction.
(:action oxidationOfAlcoholsWithPCC

:precondition (and (not (= ?h_9 ?h_7))
(not (= ?o_8 ?o_5)) (not (= ?o_8 ?o_4))
(not (= ?o_5 ?o_4)) (bond ?c_3 ?h_9)
(bond ?c_3 ?o_8) (bond ?o_8 ?h_7)
/* skip other preconditions */

)
:effect (and /* skip some effects */

(not (bond ?c_3 ?h_9)) (not (bond ?h_9 ?c_3))
(not (bond ?c_3 ?o_8)) (not (bond ?o_8 ?c_3))
(doublebond ?c_3 ?o_8) (doublebond ?o_8 ?c_3)
(bond ?o_5 ?h_9) (bond ?h_9 ?o_5)
(not (bond ?o_8 ?h_7)) (not (bond ?h_7 ?o_8))
(bond ?o_4 ?h_7) (bond ?h_7 ?o_4)

)
)

As described in Table 1, oxidationOfAlcoholsWithPCC
involves 16 parameters, while aldolCondensation has 15
parameters. Since the initial state of the problem 5 has 62

 55

 55

atoms (see Table 2), instantiation of these 2 reactions re-
quires significant memory. Therefore, when we took only 2
reactions required to solve p5, FD was not able to solve this
problem on a computer with 32GB of memory, but could
solve it when we eliminated from a reaction one of the hy-
drogen atoms that has been non-essential for this planning
instance. Subsequently, we call this engineered version as a
“p5 with missing hydrogen” problem.

4 Experiments
4.1 SAT-Based Planners
We use 3 different planners, SASE (Huang, Chen, and
Zhang 2010), the version released on August 30, 2011, Sat-
Plan (Kautz, Selman, and Hoffmann 2006), the version re-
leased in 2006, and Madagascar, version M (with default pa-
rameters), (Rintanen 2014; 2015), publicly available as a C
code with the last modifications from February 2015, to en-
code and solve problems. For brevity, we refer to these 3
programs as “encoders” because they encode a given plan-
ning instance as SAT. The produced encodings were com-
pared based on the number of variables, denoted as NoV ,
and number of clauses, denoted as NoC. However, we did
not try to feed encodings to any of the SAT solvers.

Note that SatPlan gives the option to use 4 different en-
codings and they are: 1)action-based encoding, 2)gpstyle-
action-based encoding, 3) gp-based encoding and 4) thin-
bp-based encoding.

Figure 3: Diagram for number of atoms

Encoding Directly as CNF We started gathering results
from Madagascar, SASE and SatPlan by generating a do-
main file that contained all the actions needed for the prob-
lems mentioned in Table 2. All experiments were performed
on a server running a virtual machine with 2.80 GHz CPU,
Ubuntu 14.04 and 128GB of RAM. The results were not
very promising for the full problems. We were able to only
get CNF encodings of some of the problems. All three en-
coders, either produced a very large CNF encoding or ran
out of memory (Madagascar) when trying to generate an en-
coding. Table 3 and Table 4 show more information about
the encodings generated by SASE and SatPlan, respectively.

Since full versions of some planning instances turned out
to be too complex, 2 or 3 step versions were manually engi-

Problem NoV NoC
P2-Full 10079 782197
P4-Full 9784 742043
P5-Full-Hydrogen missing 460189 101711688
P6-Full 3148 95580
P10-1Step 132 340
P14-Full 2856 121267
P17-Full out of memory out of memory
P20-Full 15331 610997

Table 3: CNF encodings generated by SASE

Problem NoV NoC Encoding
P2-Full Not solved Not solved
P4-Full Not solved Not solved
P5-Missing-H Not solved Not solved
P6-Full 4318 879100 1
P6-Full 3958 1976336 2
P6-Full 4928 2027910 3
P6-Full 4928 713534 4
P10-1Step 12 50 1
P10-1Step 12 50 2
P10-1Step 44 242 3
P10-1Step 44 242 4
P14-Full Not solved Not solved
P17-Full Not solved Not solved
P20-Full 11244 12913007 1
P20-Full 9396 16728930 2
P20-Full 10494 16768636 3
P20-Full 10494 10978125 4

Table 4: CNF encodings generated by SatPlan

neered to get better insights to why the full version was not
solvable. These simpler versions include only atoms needed
by the initial 2 or 3 reactions extracted from the full problem.
Figure 3 displays the number of oxygen, hydrogen, carbon
atoms and the total number of objects in each of the 2-3 step
sub-problems. All 3 encoders, SASE, SatPlan and Madagas-
car were able to find a CNF encoding for problem p6-3 (3
step version of p6) and problem p20-2 (2 step version of
p20). These encodings are promising since they were gener-
ated very quickly (under 0.1 seconds). Moreover, the num-
ber of variables and the number of clauses were also small
as shown in Figure 4 which is based on the raw data from
Table 5. Here, and subsequently, we only show encoding 1
for SatPlan since the other 3 encodings were very similar in
both number of clauses and number of variables.

P6-3 P20-2
SASE, NoV 445 264
SASE, NoC 2102 1221
Madagascar, NoV 511 176
Madagascar, NoC 3364 1212
SatPlan enc1, NoV 105 70
SatPlan enc1, NoC 866 652

Table 5: Metrics for encodings of 2-3 step problems

 56

 56

Figure 4: NoV and NoC for p6-3 and p20-2

Figure 5: Metrics for encoding split domains

Splitting Domain then Encoding as CNF

p2-2 p4-3 p6-3 p10-2 p14-3 p17-full p20-2
SASE (NoV) 25166 221510 3145 1146178 7634
SASE (NoC) 421664 10016148 15179 75020254 67342
Madagascar 5112 45200 2756 24399420 1116294 7322944 598
Madagascar 79907 495665 24436 172364287 8671435 43172172 6593
SatPlan enc1 862 499
SatPlan enc1 5710 38589

Table 6: The odd line is NoV and the even line is NoC

Domain splitting was another option that we decided to
explore. We decided to take all the actions needed for the
problems mentioned in Table 1 and use action schema split-
ting mentioned in (Areces et al. 2014) to create a modified
domain with � = 0.4. This process splits an action with n
parameters into many sub-actions. The minimum number of
parameters for the sub-action is 2 when � = 0 and n when
� = 1. According to (Areces et al. 2014), the advantage of
this process is an exponential reduction of the number of
ground actions when actions are instantiated. This also pro-
duced interesting results. The participating programs were
able to generate CNF encodings for more problems. How-
ever, the encodings were very large and it took several hours
in some cases to generate them. Figure 5 shows a graph
based on the raw data for simplified 2-3 step problems from
Table 6. The empty entries mean the problem could not be
encoded within 128GB of RAM. When comparing the re-

sults for problems 6-3step and p20-2step, it is clear that the
number of variables was much larger for the split domain
with � = 0.4 than it was for the un-split domain. Similarly,
the number of clauses produced by the encoders is much
larger when using the split domain with �=0.4. Apparently,
the CNF encodings from the split domain had been larger,
since each action was split into multiple sub-actions.

The only full problem that was actually solved by all 3
planners, SASE, Madagascar and SatPlan, was problem 6
(both with the split and unsplit domains). Note that the other
full problems discussed above were only encoded as CNF.

Table 7 shows the number of variables and number of
clauses in CNF generated when encoding full p6 by SASE,
SatPlan and Madagascar. When comparing the data from Ta-
ble 7 with Table 3 and Table 4, it is clear how much larger are
the encodings produced for the exact same problem. Note
that both tables are based on a domain containing all 24 ac-
tions from Table 1. The only difference is that in Table 7
the encodings were generated based on the split domain
with � = 0.4 while in Tables 3 and 4 the encodings were
based on the un-split domain. The last column in Table 7 in-
cludes the total time it took for the planners to encode and
then to actually compute a plan. Observe that Madagascar
is faster thanks to its specialized SAT solver. The program
from (Heifets and Jurisica 2012) took 31 seconds to solve
p6-full on an IBM supercomputer. No other full problems
could be encoded using the split domain.

CNF encodings NoV NoC Time (sec)
SASE 54881 490548 12.441
Madagascar 30660 382723 0.829
SATPLAN enc1 25348 2062809 29.846

Table 7: Problem 6-full with the full split domain �=0.4

This set of our experiments led us to several hypotheses.
First, encoding split domains as CNF is not beneficial, since
CNF encodings of un-split domains are more compact. Sec-
ond, for un-split domains, the evaluated planners based on
reducing planning to SAT can encode only the simplest plan-
ning instances. There is little indication they can scale up to
solve all of the benchmark problems. Apparently, the num-
ber of objects in benchmark problems has an adverse effect
on the abilities of SAT-based planners to scale up. Only p6-
full with the lowest number (32) of atoms could be solved.

4.2 Fast Downward on the Split Domains
The split domain did however improve FD’s results when
running over the same problems. Previously, when we were
debugging benchmark problems, FD took many hours on
smaller unsplit domains that contained only actions needed
to solve the problem. The domains used here have been pre-
processed so that they have the distinct(?x, ?y) predicate
instead of negation of equality (not (= ?x ?y)) since split-
ting software requires STRIPS domains before it can run.
In this set of experiments, we run a version of FD released
on October 9, 2015. FD was doing lazy greedy best-first
search with FF heuristic. Table 8 shows the total Time (in

 57

 57

seconds) and peak Memory (in KB) that FD used to solve
the problems using split smaller domains extracted manually
for each problem from the larger split domain. For example,
the sub-domain used for the 2 step version of p2 consisted of
only the 2 actions needed to solve this simplified problem.

Problem T �=0.4 M �=0.4 T �=0.0 M �=0.0
2-2Step 0.0616 5180 0.072 5616
4-3Step 0.6739 31448 0.357 13684
6-3Step 0.0061 3348 0.006 3340
10-2Step 58.6161 538952 0.867 34928
14-3Step 10.1912 62720 0.989 16956
20-2Step 0.0109 3476 0.011 3472

Table 8: FD’s Time and Memory results when using smaller
split sub-domains with �=0.4, �=0.0

The results in Table 8 demonstrate that for smaller do-
mains and short, 2-3 step, planning problems splitting was
effective and the finer split domains (�=0.0) consumed less
time and memory than the coarser split domain (�=0.4).

To investigate the full problems, we decided to look care-
fully into the full domains using different � values to see if
different values improved the time it takes to solve a prob-
lem. We produced 2 more split domains using � = 0.0 and
�=0.2, in addition to the domain with �=0.4 that we had
before. The original full unsplit domain has 24 action, while
the split domains with a gamma values of 0.0, 0.2 and 0.4
have 424, 336 and 228 actions, respectively. To see whether
splitting would improve the time it took for a problem to be
solved by FD, we obtained the following data for the full
problems 4,6 and 14 based on the full split domains.

P4 Total Time (Sec) Peak Memory(KB)
non-split domain Not Solved Not Solved
split domain �=0.4 Not Solved Not Solved
split domain �=0.2 45.7 78112
split domain �=0.0 18.4 62521
P6 Total Time (Sec) Peak Memory(KB)
non-split domain 49.3 275322
split domain �=0.4 42.5 223080
split domain �=0.2 39.1 115232
split domain �=0.0 34.9 74256
P14 Total Time (Sec) Peak Memory(KB)
non-split domain Not Solved Not Solved
split domain �=0.4 Not Solved Not Solved
split domain �=0.2 22546.4 2262432
split domain �=0.0 4306.6 2486320

Table 9: FD: problems 4,6 and 14 split/unsplit full domains
(domains containing 24 actions)

Table 9 shows some advantages of the finer split domains,
since problems 4, 6 and 14 took less time for smaller � val-
ues. However, the other full problems, i.e. 2,3,5,10,17 and 20
were not solved for any of the full split domains. All these
problems need more than 128GB of RAM. Therefore, split-
ting was not completely successful even for �=0.0.

The advantages of splitting were not always demon-
strated. P20 (full, 11-step version) was not solved by FD
with neither the split nor the unsplit full domains due to its

complexity. We decided to create 2 smaller sub-domains,
where only the actions needed for problem 20 are present,
one based on the split domain with a �=0.4 and one based
on the split domain with a �=0.0. Table 10 shows the time,
memory and the number of initial candidates FD produced.

P20 Total Time (Sec) Peak Memory(KB) Initial Candidates
non-split 1.31 23368 6
�=0.4 2750 3698780 74
�=0.0 38.8 80076 93

Table 10: Smaller split and unsplit sub-domains: p20

The number of initial candidates is a metric that is pro-
duced by FD based on the domain and problem given. The
split domain has many more initial candidates that FD needs
to explore than the unsplit domain. This is the reason why
FD takes more time and needs more memory to find the an-
swer when solving the long planning problem using the split
domain. As you can see in Table 10, FD needs to only check
6 initial candidates when using the unsplit domain which
consumes less time and memory. Also, for � =0.4, the do-
main has more initial candidates than the unsplit domain, but
more complex (more parameters) reactions than for �=0.0,
so it is has the worst of both worlds. It is mixing the worst
things of the other two cases into one. Notice also that in the
split domain the length of the plan is much longer than in
the un-split domain because a greater number of sub-actions
should be executed sequentially. Therefore, in the split do-
main, finding a plan can take more time. Overall, splitting
increases the number of initial candidates, but simplifies the
actions. This example demonstrates shows the limitations of
splitting in some situations.

Simplifying the domain to improve time and memory
usage. It was interesting to investigate how much perfor-
mance of FD would improve, if a few atoms are removed
from the domain reactions thereby alleviating in part the
grounding problem. In some reactions, there are hydrogen
atoms that remain invariant, i.e, the reactions have no effects
on their bonds with carbon atoms. Since they do not really
participate in reactions, removing a few of them is harm-
less, in a sense that the planning instances still should be
solvable after doing this minor modification. The data that
we collected in Table 11 show that by removing hydrogen
atoms and their bonds with carbons, the time and memory
improved, but with varying efficiency.

P4 Total Time (Sec) Peak Memory(KB)
FullDomain �=0.0 18.4 62521
Domain �=0.0 with 1 H removed 16.7 40632
P6
FullDomain �=0.0 34.9 74256
Domain �=0.0 with 1 H removed 33 72772
Domain �=0.0 with 2 H removed 16.7 39528
P14
FullDomain �=0.0 4306.6 2486320
Domain �=0.0 with 1 H removed 773 513524

Table 11: Removing hydrogens to improve time/memory

Heuristics All data generated by FD above are collected
from the lazy greedy(ff) search. We experimented with a

 58

 58

Heuristic P4 P6 P14
eager greedy, ff 95 s 82 s 36.4 h
lazy greedy, add 33.8 s 19 s 69946 s
lazy greedy, ipdb – – –
lazy greedy, lmcount – 163 s –
lazy greedy, max – – –
lazy greedy, merge&shrink – – –
astar, add 37 s 19 s 73591 s
astar, ipdb – – –
astar, lmcount – 3.2 h –
astar, max – – –
astar, merge&shrink – – –

Table 12: Time for P4, P6 and P14 using different search

Heuristic P2-2 P6-3 P10-2 P14-3 P20-2
eager greedy, ff 0.12 0.52 0.998 1.05 0.0117
lazy greedy, add 0.08 0.02 0.93 1.04 0.010
lazy greedy, ipdb – 0.052 – – –
lazy greedy, lmcount – 0.10 – – 0.071
lazy greedy, max – – – – –
lazy greedy, m&s – 11.7 – – –
astar, add 0.09 0.4 0.9 1.2 0.011
astar, ipdb – 0.05 – – –
astar, lmcount – 0.19 – – 0.08
astar, max – – – – –
astar, m&s – – – – –

Table 13: Time (sec) for 2-3 step problems per heuristic

few different heuristics and search combinations using the
finest split domain (� = 0.0). As you can see in Table 12,
eager greedy(ff) was only able to solve problems 4 and 6
in a reasonable time but took over 36 hours to solve prob-
lem 14. The astar(add) optimal search performed well: FD
solved problems 4, 6, 14 in 37, 19, 73591 seconds, respec-
tively. However, it was still slower than lazy greedy with ff:
see Table 9 above. The A⇤ search with ipdb, max and the
merge and shrink heuristics produced negative results; “–”
means FD was not able to solve the problem in a reason-
able time. FD doing A⇤ search with lmcount took over 3
hours to solve problem 6, and was not able to solve prob-
lems 4 and 14. In comparison, lazy greedy performed bet-
ter. For example, when using lmcount as the heuristic, P6
was solved in 163 seconds, which is a huge improvement in
time when compared to 3.2 hours for A⇤. A similar pattern
can be seen for the 2-3 step problems: see Table 13. Only
eager greedy with ff and astar(add) were able to solve the
2-3 step problems, but lazy greedy with ff did the best when
compared with the other options. These data are somewhat
preliminary, but they show that this new domain can serve
as a challenge for researchers developing heuristics.

5 Gamer and L-RPG
Gamer (Kissmann and Edelkamp 2011; Kissmann 2012) is
a symbolic planner based on binary decision diagrams. Un-
fortunately, it was not possible to build Gamer on a 64 bit
machine. However, Gamer did run on a 32 bit machine with
4GB of RAM. It was able to solve only P2-2step, P4-3step

and P6-3step using sub-domains containing only the actions
needed for the problems. The actions in the domains were
split with �=0.0 for best results. The same 3 problems were
not solved when a non split domain was used. Furthermore,
none of the full problems were solved using split and non
split domains. It is possible that the reason for not solving
full problems is the limited available RAM. However, the
fact that the 2-3step problems were not solved when using
the non split domain does not support that.

L-RPG (Ridder 2015; 2014; Ridder and Fox 2014) is a
forward-chaining planner that does not rely on grounding.
The planner was developed as a solution to memory con-
straints issues that other state-of-the-art planners have. L-
RPG looks like a promising solution to the benchmark prob-
lems. However, it was not possible to solve any of the plan-
ning instances due to bugs found in the code of L-RPG.

6 Conclusion and Future Work
FD’s results for problems 4, 6 and 14 are somewhat com-
parable in terms of time with data reported in Table 1 from
(Heifets and Jurisica 2012), despite differences in hardware.
FD was able to solve problems 4 and 6 using the finest split
domain slightly slower than the proof-number search on an
IBM supercomputer that took 15sec and 31sec, respectively.
However, FD was able to solve problem 14 faster using the
split domain (�=0.0); the proof number search on an IBM
super-computer took 5138sec vs FD’s 4306sec as reported in
our Table 9 above. However, FD could not solve problems
2,3,5,10 within 128GB of memory even using split domains.

We can see from the results of the experiments that en-
coding the problems as CNF did not generate good results.
The produced encodings were very large due to grounding.
However, we have demonstrated that actions schema split-
ting transformation is practically useful since splitting did
improve FD’s results when compared to unsplit domains, at
least for some problems. At the same time, splitting helped
only with solving a few of the full benchmark problems.
Other ideas should be explored before a planner can reliably
compete with undergraduate students in solving the bench-
mark problems. The proposed benchmark remains a serious
challenge for modern AI planners.

There are several future work possibilities. The research
in LRPG(Ridder 2015) can help because lifted planning can
be promising with the proposed domain. Similarly, lifted
encodings (Kautz, McAllester, and Selman 1996) should
be explored. Moreover, reducing planning to QBF may be
beneficial for this planning domain (Cashmore, Fox, and
Giunchiglia 2013; Cashmore 2013).

7 Acknowledgement
R.M. (the first author) would like to thank the Undergraduate
Program of the Computer Science Department at Ryerson
University for providing the opportunity to take part in the
undergraduate thesis course. We would also like to thank the
Department of Computer Science for providing access to a
cloud based server, which enabled us to run our experiments
on a Linux-based virtual machine that has been allocated
128GB of RAM.

 59

 59

References
Accelrys. 2011. CTfile Formats. Accelrys. http:
//download.accelrys.com/freeware/.
Areces, C.; Bustos, F.; Dominguez, M. A.; and Hoffmann,
J. 2014. Optimizing planning domains by automatic action
schema splitting. In Chien et al. (2014).
Bøgevig, A.; Federsel, H.-J.; Huerta, F.; Hutchings, M. G.;
Kraut, H.; Langer, T.; Löw, P.; Oppawsky, C.; Rein, T.; and
Saller, H. 2015. Route design in the 21st century: The IC-
SYNTH software tool as an idea generator for synthesis pre-
diction. Organic Process Res. & Developm. 19(2):357–368.
Cashmore, M.; Fox, M.; and Giunchiglia, E. 2013. Par-
tially grounded planning as quantified boolean formula. In
Borrajo, D.; Kambhampati, S.; Oddi, A.; and Fratini, S.,
eds., Proceedings of the Twenty-Third International Confer-
ence on Automated Planning and Scheduling, ICAPS 2013,
Rome, Italy, June 10-14, 2013. AAAI.
Cashmore, M. 2013. Planning as Quantified Boolean For-
mulae. Ph.D. Dissertation, University of Strathclyde, Dept.
of Computer and Information Sciences.
ChemAxon. 2015. JChem software. http://www.
chemaxon.com.
Chien, S. A.; Do, M. B.; Fern, A.; and Ruml, W., eds.
2014. Proceedings of the Twenty-Fourth International Con-
ference on Automated Planning and Scheduling, ICAPS
2014, Portsmouth, New Hampshire, USA, June 21-26, 2014.
AAAI.
Cook, A.; Johnson, A. P.; Law, J.; Mirzazadeh, M.; Ravitz,
O.; and Simon, A. 2012. Computer-aided synthesis de-
sign: 40 years on. Wiley Interdisciplinary Reviews: Com-
putational Molecular Science 2(1):79–107.
Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: The Lan-
guage for the Classical Part of the 4th Intern. Planning Com-
petition. Technical Report 195, Universität Freiburg, Institut
für Informatik.
Ernst, M.; Millstein, T.; and Weld, D. 1997. Automatic sat-
compilation of planning problems. In Proceedings of the
Fifteenth International Joint Conference on Artificial Intel-
ligence, IJCAI 97, Nagoya, Japan, August 23-29, 1997, 2
Volumes, 1169–1177.
Heifets, A., and Jurisica, I. 2012. Construction of new
medicines via game proof search. In Hoffmann, J., and Sel-
man, B., eds., AAAI, 1564–1570. AAAI Press.
Heifets, A. 2012. Benchmark problems, 2012. Available
at http://www.cs.toronto.edu/˜aheifets/
ChemicalPlanning/.
Helmert, M., and et al. 2015. The Fast Downward Planning
System.
Huang, R.; Chen, Y.; and Zhang, W. 2010. A novel transi-
tion based encoding scheme for planning as satisfiability. In
Proceedings of the Twenty-Fourth AAAI Conference on Ar-
tificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July
11-15, 2010.
James, C.; Weininger, D.; and Delany, J. 2011. Day-
light Theory Manual Ver. 4.9 (08/01/11). http://www.
daylight.com/dayhtml/doc/theory/index.html .

Judson, P. 2009. Knowledge-Based Expert Systems in Chem-
istry: Not Counting on Computers. RSC Theoretical and
Computational Chemistry. Royal Society of Chemistry.
Kautz, H. A., and Selman, B. 1992. Planning as satisfiabil-
ity. In ECAI, 359–363.
Kautz, H. A.; McAllester, D. A.; and Selman, B. 1996. En-
coding plans in propositional logic. In Proceedings of the
Fifth International Conference on Principles of Knowledge
Representation and Reasoning (KR’96), Cambridge, Mas-
sachusetts, USA, November 5-8, 1996., 374–384.
Kautz, H.; Selman, B.; and Hoffmann, J. 2006. SATPLAN:
Planning as Satisfiability. In Abstracts of the 5th Inter-
national Planning Competition, 2006. http://www.cs.
rochester.edu/users/faculty/kautz/satplan/ .
Kissmann, P., and Edelkamp, S. 2011. Gamer, a general
game playing agent. KI 25(1):49–52.
Kissmann, P. 2012. Symbolic Search in Planning and Gen-
eral Game Playing. Ph.D. Dissertation, Universität Bre-
men, Germany. http://nbn-resolving.de/urn:nbn:
de:gbv:46-00102863-15.
Masoumi, A.; Antoniazzi, M.; and Soutchanski, M. 2015.
Modeling organic chemistry and planning organic synthesis.
In Proceedings of the 1st Global Conference on Artificial
Intelligence (GCAI 2015), volume 36, 176–195.
Ravitz, O. 2013. Data-driven computer aided synthesis
design. Drug Discovery Today: Technologies 10(3):e443 –
e449. http://www.chemplanner.com.
Ridder, B., and Fox, M. 2014. Heuristic evaluation based on
lifted relaxed planning graphs. In Chien et al. (2014).
Ridder, B. C. 2014. Lifted Heuristics: Towards More Scal-
able Planning Systems. Ph.D. Dissertation, Kings College,
Department of Informatics, London, UK.
Ridder, B. 2015. L-RPG: Introducing a Lifted Forward-
Chaining Planner. Available at https://www.assembla.
com/spaces/MyPOP/subversion/source.
Rintanen, J. 2014. Madagascar: Scalable Planning with
SAT; an overview of the techniques in the Madagascar
(M, Mp, MpC) planners. In International Planning Com-
petition. https://users.ics.aalto.fi/rintanen/
papers/Rintanen14IPC.pdf .
Rintanen, J. 2015. Madagascar software. http://users.
ics.aalto.fi/rintanen/MADAGASCAR.TAR .
Szymkuć, S.; Gajewska, E. P.; Klucznik, T.; Molga, K.;
Dittwald, P.; Startek, M.; Bajczyk, M.; and Grzybowski,
B. A. 2016. Computer-assisted synthetic planning: The end
of the beginning. Angewandte Chemie International Edition
55(20):5904–5937.

Appendix
In organic chemistry, many molecules are compounds of
bonded carbon and hydrogen atoms and each carbon atom
has the valence 4. To simplify the figures, it is usual to as-
sume that all unnamed nodes are carbon atoms with the ap-
propriate number of hydrogen atoms attached by default.

To explain what happens in p5, we show main molecules
participating in the solution to p5. We skip here PCC (two

 60

 60

of them are present in the initial state of p5) and other small
molecules since they have been already discussed in Prelim-
inaries section. In the initial state of p5, one of the molecules
participating in oxidation reaction is isopropyl alcohol2 (iso-
propanol) CH3CH�OH�CH3

H3C C

OH

CH3

Isopropyl alcohol
The product of the first reaction is acetone (CH3)2CO, or

propanone, a compound used in many households.3

O C

H3C

CH3

Acetone
OH

C

Benzyl alcohol

The second oxidation reaction takes benzyl alcohol
(known also as phenylmethanol) molecule C6H5CH2OH
and produces a benzaldehyde4 molecule C6H5CHO. This
molecule is called benzyl alcohol because it has a hydroxyl
group �OH attached to the carbon atom that also has a
single bond with the phenyl ring. The phenyl ring can be
viewed as a benzene ring, minus a hydrogen. It is often
called aromatic ring because all (the assumed, present by
default) carbons around the ring have aromatic bonds with
each other. It is common to draw this aromatic ring with a
sequence of alternating single and double bonds, while in
reality they are aromatic bonds. The carbon attached to the
hydroxyl group has two other assumed single bonds with
hydrogen atoms present by default.

The name benzaldehyde can be explained by the presence
of an aromatic phenyl ring that is attached to a carbon atom.
This carbon has a single bond with a hydrogen atom, and a
double bond with an oxygen atom thereby forming the car-
bonyl group C��O. Carbonyl containing compounds with the
bond to hydrogen are known as aldehyde. Benzaldehyde is
simplest aromatic aldehyde; it is industrially useful.

O

H
Benzaldehyde

The last 3rd reaction, aldolCondensation reaction,5
takes acetone, which is a simplest ketone, takes benzalde-

2https://en.wikipedia.org/wiki/Isopropyl alcohol
3https://en.wikipedia.org/wiki/Acetone
4https://en.wikipedia.org/wiki/Benzaldehyde
5https://en.wikipedia.org/wiki/Aldol condensation

hyde, which is an aldehyde, takes sodium hydroxide NaOH,
also known as lye and caustic soda, and produces the tar-
get molecule, named 4-phenylbut-3-en-2-one, also known as
benzalacetone, benzylideneacetone,6 which is a ketone.

O

H3C

Benzylideneacetone
The following PDDL code provides detailed and com-

plete description of this last reaction.
(:action aldolCondensation

:parameters (?o_10 - oxygen ?o_4 - oxygen
?h_11 - hydrogen ?na_14 - sodium ?c_1 - carbon
?c_5 - carbon ?o_15 - oxygen ?h_8 - hydrogen
?h_9 - hydrogen ?h_12 - hydrogen
?h_13 - hydrogen ?r1_2 - object
?r1_3 - object ?o_7 - oxygen ?c_6 - carbon)

:precondition (and (not (= ?c_1 ?c_5))
(not (= ?h_11 ?h_8)) (not (= ?h_11 ?h_9))
(not (= ?h_8 ?h_9)) (not (= ?o_10 ?o_4))
(not (= ?o_10 ?o_15)) (not (= ?o_4 ?o_15))

(not (= ?h_11 ?h_12)) (bond ?o_10 ?h_11)
(bond ?o_10 ?h_12) (bond ?na_14 ?o_15)

(bond ?h_13 ?o_15) (not (= ?r1_2 ?r1_3))
(bond ?r1_2 ?c_1) (bond ?r1_3 ?c_1)

(doublebond ?o_4 ?c_1) (not (= ?h_9 ?h_8))
(not (= ?c_6 ?c_5))

(bond ?c_6 ?c_5) (bond ?h_9 ?c_5)
(bond ?h_8 ?c_5) (doublebond ?o_7 ?c_6))

:effect (and (not (bond ?o_10 ?h_11))
(not (bond ?h_11 ?o_10)) (bond ?o_10 ?h_8)
(bond ?h_8 ?o_10) (bond ?h_11 ?o_4)

(bond ?o_4 ?h_11) (not (bond ?na_14 ?o_15))
(not (bond ?o_15 ?na_14)) (bond ?na_14 ?o_4)
(bond ?o_4 ?na_14) (bond ?h_9 ?o_15)

(bond ?o_15 ?h_9) (not (doublebond ?o_4 ?c_1))
(not (doublebond ?c_1 ?o_4))
(doublebond ?c_1 ?c_5)(doublebond ?c_5 ?c_1)
(not (bond ?h_8 ?c_5))(not (bond ?c_5 ?h_8))
(not (bond ?h_9 ?c_5))(not (bond ?c_5 ?h_9))

)
)

6https://en.wikipedia.org/wiki/Benzylideneacetone

 61

 61

Planning Machine Activity Between Manufacturing Operations: Maintaining
Accuracy While Reducing Energy Consumption

Simon Parkinson, Mauro Vallati
Lukas Chrpa

Department of Informatics
School of Computing and Engineering

University of Huddersfield, UK
s.parkinson@hud.ac.uk

Andrew Longstaff, Simon Flectcher
Centre for Precision Technologies

School of Computing and Engineering
University of Huddersfield, UK

Abstract

There has recently been an increased emphasis on reduc-
ing energy consumption in manufacturing. This is largely
because of fluctuations in energy costs causing uncertainty.
The increased competition between manufacturers means that
even a slight change in energy consumption can have impli-
cations on their profit margin or competitiveness of quote.
Furthermore, there is a drive from policy-makers to audit the
environmental impact of manufactured goods from cradle-to-
grave. The understanding, and potential reduction of machine
tool energy consumption has therefore received significant in-
terest as they require large amounts of energy to perform ei-
ther subtractive or additive manufacturing tasks.

One area that has received relatively little interest, yet could
harness great potential, is reducing energy consumption by
optimally planning machine activities while the machine is
not in operation. The intuitive option is to turn off all non-
essential energy-consuming processes. However, manufac-
turing processes such as milling often release large amounts
of heat into the machine’s structure causing deformation,
which results in deviation of the machine tool’s actual cutting
position from that which was commanded, a phenomenon
known as thermal deformation. A rapid change in temper-
ature can increase the deformation, which can deteriorate
the machine’s manufacturing capability, potentially produc-
ing scrap parts with the associated commercial and environ-
mental repercussions. It is therefore necessary to consider the
relationship between energy consumption, thermal deforma-
tion, machining accuracy and time, when planning the ma-
chine’s activity when idle, or about to resume machining.

In this paper, we investigate the exploitability of auto-
mated planning techniques for planning machine activities
between subtractive manufacturing operations, while being
sufficiently broad to be extended to additive processes. The
aim is to reduce energy consumption but maintain machine
accuracy. Specifically, a novel domain model is presented
where the machine’s energy consumption, thermal stability,
and their relationship to the overall machine’s accuracy is en-
coded. Experimental analysis then demonstrates the effec-
tiveness of the proposed approach using a case study which
considers real-world data.

Copyright © 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Example C-Frame three-axis machine tool

Introduction
Machine tools are complex mechantronic system used in
both subtractive and additive manufacturing. Much of their
performance comes from their mechanical rigidity. For ex-
ample, Figure 1 illustrates the structure of a three-axis ma-
chine tool. Machine tools come in a large variety of sizes
and configurations, but a common feature is their ability to
position their tool in a three-dimensional space relative to
the workpiece either to remove (cut, grind, etc.) or add
material. Accuracy is often a primary commercial driver
in the advancement of machine tools for precision, high-
value manufacturing to micrometre-level tolerances. How-
ever, maintaining such high levels of accuracy requires strict
control of the many factors which can cause a change in ac-
curacy. For example, the effect of temperature change on
the machine’s structure can have a dramatic impact on the
accuracy of the tool. Energy efficiency is also becoming an
increasingly important factor in machine tool development
both to reduce manufacturing costs (Draganescu et al. 2003;
Diaz et al. 2011), as well as reducing environmental im-
pact (Diaz et al. 2010). However, the relationship between
the improvement in energy efficiency and possible reduc-
tion in machine accuracy resulting from rapid temperature
change is less well explored. This is surprising consider-
ing the amount of heat generated from electrical devices and
mechanical subsystems during the machining process.

The use of machine tools has been identified as the largest
consumer of energy during the manufacturing of parts. It
has been established that machine tools use 63% of the to-

 62

 62

tal energy required to manufacture a part (Hesselbach and
Herrmann 2011). Additionally, energy consumption occu-
pies over 20% of the operating costs of machine tools per
year, in excess of £10,000. While it is difficult to state
how much of the 20% is consumed between manufactur-
ing operations, it is likely that the machine will be station-
ary for many periods during the working-day as new parts
are loaded, etc. Many researchers have investigated the po-
tential of reducing energy consumption during the manu-
facturing process itself (Vijayaraghavan and Dornfeld 2010;
Liu et al. 2014; 2015). For example, reducing energy usage
during milling (Diaz et al. 2011). These works have largely
been motivated by the fact that large forces are required to
cut material, and any reduction at this stage can therefore be
significant. However, one area that has received less atten-
tion is the consumption of energy between manufacturing
operations, when the machine is not cutting and therefore is
nominally idle. In the first instance it may appear that if the
machine is idle it will be consuming no energy. However, it
is often the case that many electrical components of a ma-
chine tool will continue to use energy. Furthermore, once
the machine is required to operate once again, an energy-
intensive warm-up cycle is often required to bring the sub-
system (e.g spindle motor) into a suitable (stable) state for
actual machining.

Such warm-up cycles are often required since the heat
generated from the machine components during manufac-
turing will transfer to the machine tool’s structure and cause
deformation. This thermal deformation is, in the simplest
case, a first-order response to the temperature step input.
Heating the subsystem prior to manufacturing means that
much of the deformation will take place before cutting be-
gins, helping to reduce in-process change and increasing the
accuracy of the component. A warm-up cycle is usually en-
ergy intensive, but will only be necessary should the heat-
generating subsystem and surrounding structure decrease
below an identified temperature. This creates an interest-
ing possibility where keeping the machine subsystems ac-
tive, at a reduced level, whilst not manufacturing can gen-
erate sufficient heat to maintain the thermal stability of the
machine tool’s structure and remove the need for a warm-
up cycle, thus reducing the overall energy consumption. For
example, Figure 2 illustrates, through Finite Element Anal-
ysis (FEA), the deformation of the machine tool’s structure
resulting from the release of heat generated by the spindle
motor and friction in the moving mechanical elements. In
the diagram, the nominal tool position and orientation are
shown superimposed on the actual location; the difference
between the two, caused by temperature effects, leads to a
displacement at the tool tip, which is known as the ther-
mal error. If this deformation were to take place during
the manufacturing process then the resultant manufactured
component would display the results of this error, leading to
a requirement for rework or even scrapped parts. However,
if this deformation were to occur before the manufacturing
process, then the thermal error of the machine can remain
stable during the process, and therefore the accuracy of the
produced part is largely unaffected.

Energy consumption information for many machine tool

Figure 2: Deformation of the machine tool’s structure due to
heat generated by the spindle motor

electrical subsystems is widely available, but that from me-
chanical interaction (friction) is often less well defined.
However, in both cases the amount of heat released into the
machine’s structure and its affect on machine accuracy needs
to be established. This can be acquired by recording the
temperature of the machine tool’s structure while monitor-
ing the deviation of the machine tool’s cutting point. Dur-
ing analysis, each subsystem will typically be run at differ-
ent speeds to establish the relationship between the differ-
ent levels of energy consumption and heat generation, and
also the relationship between heat generation at the subsys-
tem’s location and the effect on machine accuracy. Once
all the data has been acquired, FEA can be used to com-
putationally model the relationship between heat generation
and deformation of the machine tool (Mian et al. 2011;
2013). This model can then be used to derive a series of co-
efficients that describe the generation of heat with increased
energy consumption, and the change in machine tool accu-
racy from the resulting different thermal gradients.

The number of electrical subsystems, the different op-
erational levels, the current state of the machine tool, and
the required initial state of the next manufacturing operation
make it challenging to consider all possible options and min-
imise energy consumption whilst maintaining a desired level
of accuracy. This creates an interesting and novel possibil-
ity to utilise Automated Planning to automate the process,
removing the requirement for expert knowledge, minimise
energy consumption, and maintain the required level of ac-
curacy. While the exploitation of planning techniques for
planning machine activities between manufacturing opera-
tions has never been investigated, previous works demon-
strated the potential of using automated planning for opti-
mising different aspects of using machine tools. For exam-
ple, the non-productive time (downtime) of a machine tool
during calibration has been reduced through automatically
constructing calibrations plans, reducing reliance on expert
knowledge (Parkinson et al. 2012a; 2012b). Further work
of encoding mechanisms to calculate measurement uncer-
tainty (Parkinson et al. 2014b) created the potential to per-
form multi-objective optimisation (Parkinson et al. 2014a).

This paper is organised as follows: first, the importance
of planning for activity between manufacturing operations

 63

 63

Time

In
cr

ea
si

ng

Manufacturing
Operation

m1

Interval

i1

Manufacturing
Operation

m2

Tem
pe

rat
ure

Ene
rgy

co
nsu

mpti
on

Mach
ine

Erro
r

Figure 3: Illustrating how the machine tool energy consump-
tion, structural temperature, and accuracy is changing during
manufacturing and interval periods.

(named interval activity herein) is described and motivated.
Second, we provide a discussion on the importance of plan-
ning interval activity, and a domain model is provided,
encoded using the Planning Domain Definition Language
(PDDL) (Fox and Long 2003). Then, the effectiveness of
automated planning is demonstrated using a real-world case
study. Finally, conclusions are given.

Importance of Interval Activity
In this section, the importance of considering interval ac-
tivity is motivated. In particular, the relationship that is of
interest in this paper is that between energy consumption,
generation of temperature profile, and the affect on machin-
ing accuracy. Prior knowledge of this relationship creates
the potential to optimise machine tool use between man-
ufacturing operations. For example, in some situations, it
may be advantageous to keep the electronic components in
use to maintain energy consumption, generate heat, and thus
maintain machine accuracy.

Figure 3 provides a graphical illustration of two manu-
facturing operations with an interval between. The figure
illustrates the relationship between increasing energy con-
sumption (green), heat generation (red), and increasing ma-
chine error (blue) through a simplified representation. Note
that although the figure is for illustration purposes, the data
is a realistic, if simplified, representation of what occurs.
In the figure, it can first be seen that energy consumption
is at its lowest when the machine is idle, and its highest
when a new manufacturing job is started, This is because
a dedicated warm-up cycle is required to stabilise the ma-
chine’s structure and avoid thermal change during manufac-
turing. It is then noticeable in the figure that as the energy
consumption increases, so does the temperature of the ma-
chine’s structure. The final relationship presented is that the
error of the machine tool increases to a steady-state value
and maintained when the temperature is stable. In practice,
the number of different operations that occur during machin-
ing mean that the energy profile, and resulting temperature

Figure 4: Heat generated by spindle motor during a two-
hour heating and cooling cycle. Spindle bottom, top and
motor indicate the normalised temperature for three surface
temperature sensors mounted around the spindle. Spindle
RPM reports the normalised spindle speed in RPM (0 to
9000).

and error trends, will display somewhat more complex be-
haviour. In the remainder of this section, a more detailed
analysis of each element (energy consumption, temperature
and accuracy) is presented.

The relationship between energy consumption, the gener-
ation of heat and its dissipation into the machines structure
is different for every subsystem: a high-speed spindle motor
uses significantly more power than a linear axis servo motor.
For example, consider manufacturing an aluminium housing
with the dimensions of 150mm ⇥ 50mm ⇥ 20mm (Heiden-
hain 2010). The total energy needed for the machine tool to
produce the part is 20.4kW. A total of a 4.8kW for the ma-
chine tool spindle, and 0.5kW for the three axes’ feed drives.
Other electrical subsystems (e.g controller, coolant pump,
etc.) make up the remainder. As both these components
have different levels of energy consumption, they generate
different amounts of heat. Each component will have dif-
ferent modes of operation. For example, a common spindle
motor might be capable of speeds in excess of 9,000 revo-
lutions per minutes (RPM). Figure 4 demonstrates the heat
generated as the spindle speed increases on a three-axis ma-
chine tool. The figure shows the normalised spindle speed in
RPM (0 to 9000), and normalised temperature for three sur-
face temperature sensors mounted around the spindle. There
are: (1) spindle bottom (21.8�C to 27.4�C), (2) spindle mo-
tor (21.6�C to 26.2�C), and (3) spindle motor (21.7�C to
33.1�C). The graph illustrates that when the spindle is used
at its higher speed, the temperature of the machine tool’s
structure surrounding the spindle increases rapidly in tem-
perature. Once high speed usage has finished, it can be seen
that the structure of the machine tool begins to reduce in
temperature.

The next relationship of interest is that of changing ma-
chine tool temperature and its effect on structural deforma-
tion of the machine tool. The heat generated by machine
subsystems transfers into the machine tool’s structure caus-
ing distortion. The severity of the effect of changing tem-

 64

 64

Figure 5: Error of a three axis machine tool generated during
a two hour spindle heating and cooling cycle.

perature is dependent on the material from which it is con-
structed. For example, steel has a high coefficient of thermal
expansion (~12µm per �C) compared to carbon fibre (~2µm
per �C), though much less than aluminium (~22µm per �C).
Considering the previous example of a spindle motor, Fig-
ure 5 illustrates the effect of changing temperature on the
machine’s structure. In this figure the spindle of a three-axis
machine tool was running at 9,000 RPM (70% utilisation)
for 120 minutes, and then left to cool for a further 120 min-
utes. From this experiment, it is noticeable that error for
each of the three axes is changing throughout the heating
cycle in the first 120 minutes, and then once the spindle is
disabled, the errors continue to increase as the heat is still
transferred into the machine’s structure.

The examples discussed in this section demonstrate the
importance of planning for machine activity between man-
ufacturing operations. However, planning in this context is
not a trivial task as any action can impact on machine accu-
racy and energy usage, both of which can have significant fi-
nancial implications. Currently it is up to the machine oper-
ator to make the correct decision in an ad-hoc manner where
they determine machine activity by knowing future manu-
facturing operations, as well as the energy saving policies of
their manager. However, this planning for the machine oper-
ator is complicated by the large number of different machine
activity actions that can be performed and their potential
implications on machine accuracy and energy consumption.
For example, each axis and spindle can be moved at differ-
ent speeds sequentially or concurrently for different periods
of time. Moving a single linear axis will transfer heat in the
machine’s structure surrounding the axis and would result
in thermal distortion from that location, whereas moving all
three axes simultaneously would transfer heat into more of
the machine’s structure and potentially result in more sym-
metrical expansion.

Domain Modelling
In this section, a PDDL model is developed and discussed
to describe the domain of interval planning. In the presented
model, the two following equations are used to determine
energy consumption as well as machine accuracy. These
equations require machine-specific data acquired through

performing an error mapping and energy monitoring audit.

total error = total error + duration⇥
(effect on error ⇥ energy consumption) (1)

total energy = total energy+

(duration⇥ energy consumption) (2)

Equation 1 is used for updating the error fluent by a quan-
tity of time in minutes, multiplied by the the effect on error
in micrometres of deviation per minute of energy consump-
tion. Here, there is a different effect on error value for each
different mode of operation. Equation 2 updates the energy
consumption fluent by the same duration (in minutes) mul-
tiplied by the a fluent storing the energy use of a particular
component when being used in a predefined mode of opera-
tion.

The use of predefined modes has been adopted to reduce
the size of the domain model, in terms of number of op-
erators, and make it easier to be handled by state-of-the-
art planning engines. Many machine subsystems, such as
the spindle motor, can be run at any speed between station-
ary and their maximum RPM. This continuous behaviour
could be encoded in PDDL+ (Fox and Long 2006); how-
ever, this would dramatically increase domain complexity
as the number of heat-generating machine components in-
creases. In addition, the number of planning systems able to
handle PDDL+ is limited (see, e.g. (Coles and Coles 2014;
Della Penna et al. 2009)), especially when compared with
those capable of handling different versions of PDDL. Even
more restricted is the number of solvers able to support the
entire function set of PDDL+. Therefore, for the prelimi-
nary work undertaken to determine the feasibility of using
automated planning in this domain, PDDL2.2 (S. Edelkamp
and J. Hoffmann 2004) –an extension of PDDL2.1 (Fox and
Long 2003)– is used. The International Planning Competi-
tion1 has resulted in the existence of a significant number of
planners able to solve PDDL2.2 planning problems.

Initial and Goal State
The initial state specifies energy consumption and effect
on machine accuracy for each predefined level of oper-
ation through the use of numeric fluents. For example,
energy idle ?c and error ?c represent the energy
consumption and the effect on accuracy for a component
?c. In addition time unit fluent is introduced to spec-
ify a predetermined duration of an action that should occur
to bring about a change in accuracy and energy consump-
tion. The total error and total energy fluents are
used in the initial state to encode information regarding the
machine’s current state after finishing manufacturing. In ad-
dition, timed initial literals are also used to encode the dura-
tion of the interval. Using timed initial literals restricts the
makespan to the duration of the interval, overcoming some
planner’s inability to handle concurrency in durative actions.

1http://www.icaps-conference.org/index.php/Main/Competitions

 65

 65

(:durative-action normal
:parameters (?c - component)
:duration(= ?duration (time unit ?c))
:condition
(and

(over all (in interval))
(at start (not(in use ?c)))

)
:effect
(and

(at start (in use ?c))
(at end (not(in use ?c)))
(at end (increase(total error)

(*(time unit ?c)
(*(error normal ?c)
(/(energy normal ?c)60)))))

(at end (increase(total energy)
(*(time unit ?c)
(/(energy normal ?c)60))))

)
)

)

Figure 6: Durative action representing the fact that the ma-
chine component ?c is planned to remain in a normal state
of operation for a time unit.

The goal state makes use of four optional numeric con-
ditions to impose a tolerance window on the total error and
energy consumption. The tolerance window for the total er-
ror creates the possibility to specify the manufacturing re-
quirements of the next job and to ensure the interval activity
correctly prepares the machine’s state. For example, using
(< (total error) 10) and (< (total energy)
4) in the goal state would ensure that the error must be less
than 10µm(at the end of the modelled interval, thus ready
for the next job) and the overall energy usage must be less
than 4Wm�1.

Operators
In our domain there are machine component objects, and
four operators representing different levels of operation: off,
idle, normal and high. Each operator is similar apart from
the equation to update both error and energy fluents. Fig-
ure 6 details the normal durative action where the machine
error and energy usage are adjusted based on a normal mode
of operation. The action will execute for the time unit,
while the in interval predicate is true. The full PDDL
source is available from the authors on request.

Plan Metric
In this paper the following three different metrics are used:

1. (:metric minimize (total error))

2. (:metric minimize (total energy))

3. (:metric minimize
(/(+(total error)(total energy))2))

Electrical
Item

Off
Wm�1,

µm

Idle
Wm�1,

µm

Normal
Wm�1,

µm

High
Wm�1,

µm

Multiplier

X
Servo

0, 1 0.1,
0.1

0.7,
0.5

2.8, 2 1.2E-
005

Y
Servo

0, 1 0.1,
0.1

0.7,
0.5

2.8, 2 1.2E-
005

Z
Servo

0, 3 0.2,
0.3

1.0,
1.5

4.2, 6 2.4E-
005

Spindle
Motor

0, 6 1.3,
0.6

6.5,
3.1

26, 12 7.7E-
006

Table 1: Case study data demonstrating the different energy
consumption (in Wm�1) and the effect on error (in µmper
minute)

The first two aim to minimise the values held in the to-
tal error and total energy fluent, whereas the third metric is
used to minimise the arithmetic mean of both. This creates
the potential to perform multi-objective optimisation where
both error and total energy consumption are minimised for a
given weighting.

Experimental Analysis
In this section, a case study is provided where interval plan-
ning is performed for a single machine tool when consider-
ing different interval scenarios. The data presented in Ta-
ble 1 details the energy consumption of the machine tool,
as well as the relationship between energy consumption and
machine error. These values have been extracted from a sim-
ilar machine tool as presented in earlier sections of this pa-
per. As interval duration is in minutes, the data presented in
Table 1 has been converted into time units. These are Watts
per minute (Wm�1) and the positional error in microme-
tres per Wm�1. This is calculated using a multiplier de-
rived from dividing the deviation in micrometres per minute
by Watts per minute (µmWm�1

m

�1). For example, to cal-
culate the micron error resulting from 60 minute high use
of the spindle motor would be 12 µm by using Equation 1
where duration = 12, energy consumption = 26,000,
and effect on error = 7.7E � 006.

The machine-specific data presented in Table 1 is now
used in the creation of several PDDL problem files to sim-
ulate the following interval scenarios. First, problem defini-
tions are created with a duration of 30, 60, and 120 minutes.
Following this, three variations of each problem are created
with three different requirements on machine error. These
are: tight (<20µm), medium (<50µm), and large (>50µm).
These requirements are synthetically generated; however,
they do provide an adequate description of different energy
and machine tool accuracy requirements in a manufactur-
ing environment. Considering the combination of each of
these scenarios results in the creation of 9 different prob-
lem instances. In addition, each problem instance will be
solved using each of the three metrics stated in the domain
modelling section, resulting in a total of 27 different PDDL
problem definition files. LPG-td (Gerevini et al. 2006) is

 66

 66

Metric: Error Metric: Energy Metric: Er + En

Instance En(Wm�1) Er(µm) En(Wm�1) Er(µm) En(Wm�1) Er(µm)

T-30 138 10 138 10 138 10
T-60 260 16 220 19 232 20
T-120 520 19 380 20 410 20

M-30 0 21 0 21 0 21
M-60 800 26 374 44 670 36
M-120 1351 45 984 47 1263 46

L-30 - - - - - -
L-60 2578 52 - - - -
L-120 3951 58 1641 61 2584 60

Table 2: Experimental results detailing both error and error values for each of the nine scenarios when using three different
metrics. Entries marked with a dash (-) were not solved within the 5 minute cut-off time. Problem instances are in the format of
a character to represent the scenario and the interval duration in minutes. The characters are: T= tight, M = medium, L = large.

used to find the best solutions (in terms of the specified met-
ric) to the problem definitions within a 5 minute time-frame.
LPG-td has been used in “anytime” configuration; it keeps
increasing the quality of plan, for a given problem instance,
until the available CPU-time is over.

Table 2 provides the error (Er) and energy (En) values for
each problem instance and the use of the three metrics. From
the Table it is evident that the majority of the problem in-
stances were solved within the 5 minute cut-off time. After
examination, it is noticeable the problem instances requir-
ing a large error (L) are not solved within the allowed time.
It is worthy reminding that, while T and M benchmarks re-
quire that the initial error value is lower than a given value,
in L benchmarks the accuracy requirement is to have a value
higher than a given threshold. Therefore, plans which are
suitable for T and M, are not valid for the L scenario. The
fact that some instances are not solvable is not because the
planning problem requires more time to identify a solution,
rather there is no suitable sequence of actions capable of tak-
ing the error beyond that specified in the goal state during the
allocated interval duration. However, this should be seen as
a useful piece of information rather than an issue: it would
not be detrimental for a manufacturer to manufacture a part
on a machine with a smaller error than required to satisfy the
tolerance constraints of the part.

From analysing the results presented in Table 2, it can also
be seen that for both the tight and medium 30 minute interval
problem instances, optimising for all three metrics results in
the identification of the same plan. In addition, in some in-
stances the energy consumption is 0. Interestingly, this is
because the planner is able to identify a plan where the ma-
chine is switched-off and the slow deterioration in accuracy
over the 30 minute period does not take the accuracy beyond
the value set in the initial state (<20µmand <50µm). In ad-
dition, it is also possible to identify that optimising for a sin-
gle metric is often at the expense of the other. For example,
in T-60 it can be seen how the error is reduced to 16µmby
using 260Wm�1when optimising for error, whereas when
optimising for energy, the error increases to 19µmand the
energy usage decreases to 220Wm�1. Optimising for the

arithmetic mean of both metrics also results in a plan where
both metrics are at their lowest.

This experimental analysis has demonstrated that the
technique is useful for stabilising the machine error whilst
reducing estimated energy consumption. It has also demon-
strated that planning for large machine error is unnecessary
as it will result in high energy consumption over short dura-
tions to generate large amounts of heat and cause structural
deformation to reduce accuracy. Conversely, when planning
for tight tolerances, the plan will contain actions with low
energy consumption which will result in gradual heat gen-
eration, leading to thermal stabilisation and improved accu-
racy. For example, in the following plan excerpt it can be
seen how, over a 30 minute period, the spindle is initially
turned off and then switched back on and left to idle to main-
tain accuracy.

0: (OFF SPINDLE MOTOR) [10.0000]
10: (IDLE SPINDLE MOTOR) [10.0000]
20: (IDLE SPINDLE MOTOR) [10.0000]

Conclusion
This paper presents the exploitative use of automated plan-
ning to plan for machine tool activity between manufactur-
ing operations. This is a novel application with potential to
aid machine tool operators prepare their machine for the next
manufacturing task considering overall energy consumption
and the effect on manufacturing accuracy. Research has pre-
viously been undertaken in the area of reducing energy con-
sumption and improving the error of machine tools during
manufacturing. However, to the best of the authors’ knowl-
edge, little work has considered the intervals between man-
ufacturing.

The paper provides a discussion detailing that subsystems
of a machine tool (in particular servo motors) consume a
large quantity of energy and that this energy results in the
generation of heat. It was then discussed how this heat
transfers through the machine tool’s structure causing ther-
mal deformation, resulting in positioning error of the ma-

 67

 67

chine tool’s cutting point relative to the workpiece. This er-
ror then transfers to the manufactured component and can
result in the production of out-of-tolerance parts. It was
discussed how changing the machine’s activity during non-
manufacturing intervals can help to stabilise the machine
tool’s structure, resulting in a reduction in error. An experi-
mental PDDL domain model was then developed to enable
planning for manufacturing intervals using available energy
and error information.

Experimental analysis was then performed using the de-
veloped domain model and nine different problem instances.
Each instance relates to a different combination of accuracy
requirements and interval duration. The exploratory exper-
imental analysis demonstrates good potential as accuracy,
energy, and the arthritic mean of both are minimised below
the specified accuracy limit. It has also been identified that
automated planning is capable of providing a viable mecha-
nism for aiding manufacturing, albeit with a simplified do-
main model. The developed domain requires further devel-
opment and testing to make it more accurately represent in-
terval planning. One limitation of the presented domain is
that the relationship between temperature and accuracy is
non-linear, whereas for this initial proof-of-concept the rela-
tionship has been discretized into linear rates-of-change. Fu-
ture work will include investigating alternative approaches
to solve problems of a larger size to gain better results. For
example, the use of PDDL+ and mixed integer programming
will be considered, as well as undertaking further domain
modelling work with the view of experimenting with differ-
ent planning algorithms.

References
Amanda Jane Coles and Andrew Ian Coles. PDDL+ plan-
ning with events and linear processes. In Proceedings of

the Twenty-Fourth International Conference on Automated

Planning and Scheduling, ICAPS, 2014.
Giuseppe Della Penna, Daniele Magazzeni, Fabio Merco-
rio, and Benedetto Intrigila. UPMurphi: a tool for universal
planning on PDDL+ problems. In Nineteenth International

Conference on Automated Planning and Scheduling, 2009.
Nancy Diaz, Moneer Helu, Stephen Jayanathan, Yifen Chen,
Arpad Horvath, and David Dornfeld. Environmental analy-
sis of milling machine tool use in various manufacturing en-
vironments. In Sustainable systems and technology (ISSST),

2010 IEEE international symposium on, pages 1–6. IEEE,
2010.
Nancy Diaz, Elena Redelsheimer, and David Dornfeld. En-
ergy consumption characterization and reduction strategies
for milling machine tool use. In Glocalized Solutions for

Sustainability in Manufacturing, pages 263–267. Springer,
2011.
F Draganescu, M Gheorghe, and CV Doicin. Models of ma-
chine tool efficiency and specific consumed energy. Journal

of Materials Processing Technology, 141(1):9–15, 2003.
Maria Fox and Derek Long. PDDL2.1: an extension to
PDDL for expressing temporal planning domains. Journal

of Artificial Intelligence Research, 20:61–124, 2003.

Maria Fox and Derek Long. Modelling mixed discrete-
continuous domains for planning. Journal of Artificial In-

telligence Research, 27:235–297, 2006.
Alfonso Gerevini, Alessandro Saetti, and Ivan Serina. An
approach to temporal planning and scheduling in domains
with predictable exogenous events. Journal of Artificial In-

telligence Research, 25:187–231, 2006.
Heidenhain. Aspects of energy efficiency in machine tools.
Technical report, 2010.
Jürgen Hesselbach and C Herrmann. Globalized solutions
for sustainability in manufacturing. In Proceedings of the

18th CIRP International Conference on Life Cycle Engi-

neering, pages 2071–1050, 2011.
Ying Liu, Haibo Dong, Niels Lohse, Sanja Petrovic, and
Nabil Gindy. An investigation into minimising total energy
consumption and total weighted tardiness in job shops. Jour-

nal of Cleaner Production, 65:87 – 96, 2014.
Ying Liu, Haibo Dong, Niels Lohse, and Sanja Petrovic. Re-
ducing environmental impact of production during a rolling
blackout policy–a multi-objective schedule optimisation ap-
proach. Journal of Cleaner Production, 102:418–427, 2015.
Naeem S Mian, Simon Fletcher, Andrew P Longstaff, and
Alan Myers. Efficient thermal error prediction in a machine
tool using finite element analysis. Measurement Science and

Technology, 22(8):085107, 2011.
Naeem S Mian, Simon Fletcher, Andrew P Longstaff, and
Alan Myers. Efficient estimation by FEA of machine tool
distortion due to environmental temperature perturbations.
Precision engineering, 37(2):372–379, 2013.
Simon Parkinson, Andrew Longstaff, Andrew Crampton,
and Peter Gregory. The application of automated planning
to machine tool calibration. In Proceedings of the twenty-

second international conference on automated planning and

scheduling (ICAPS), 2012.
Simon Parkinson, Andrew P Longstaff, Simon Fletcher, An-
drew Crampton, and Peter Gregory. Automatic planning for
machine tool calibration: A case study. Expert Systems with

Applications, 39(13):11367–11377, 2012.
Simon Parkinson, Andrew P Longstaff, Andrew Crampton,
and Peter Gregory. Automated planning for multi-objective
machine tool calibration: Optimising makespan and mea-
surement uncertainty. Proceedings of the twenty-fourth in-

ternational conference on automated planning and schedul-

ing (ICAPS), pages 421–429, 2014.
Simon Parkinson, Andrew P Longstaff, and Simon Fletcher.
Automated planning to minimise uncertainty of machine
tool calibration. Engineering Applications of Artificial In-

telligence, 30:63–72, 2014.
S. Edelkamp and J. Hoffmann. PDDL2.2: The Language
for the Classical Part of the 4th International Planning Com-
petition. Technical Report 195, Albert-Ludwigs-Universitat
Freiburg, Institut fur Informatik, 2004.
Athulan Vijayaraghavan and David Dornfeld. Automated
energy monitoring of machine tools. CIRP Annals-

Manufacturing Technology, 59(1):21–24, 2010.

 68

 68

Copyright © 2016. All rights reserved

Abstract
Space mission planning/scheduling is determining
the set of spacecraft activities to meet mission
objectives while respecting mission constraints. One
important type of mission constraint is data
management. As the spacecraft acquires data via its
scientific instruments, it must store the data onboard
until it is able to downlink it to ground
communications stations. Because onboard storage
and communication opportunities are often limited,
this can be a challenging task.
 This paper describes a formulation of the
overlapping Memory Dumping Problem (oMDP),
which is a generalization of the Mars Express
Memory Dumping Problem (MEX-MDP). We first
describe the abstract problem of onboard data
management for spacecraft. Then we focus on a
more specific version that allows data downlink to
be controlled by using either the priority or the
maximum dump duration of each buffer.
 Previous solutions to the MDP, including Max
Flow and Linear Programming (LP) formulations,
assume that data generation and downlink events do
not overlap. We present a solution, called
DALLOC, that uses a fast heuristic-based method to
solve the more general oMDP. We then compare it
to Max Flow as well as other heuristic methods
using actual mission data from the European Space
Agency’s Rosetta mission. The ESA science
operations team has been successfully using
DALLOC to solve the oMDP in both strategic and
tactical science planning.

1 Introduction
Spacecraft enable us to explore Earth, our solar system, and
bodies beyond our galaxy to the furthest reaches of the
universe. However, determining operations of these
spacecraft (e.g. Mission planning and scheduling) is an
extremely challenging part of these space missions. While in

the space community it is termed mission planning, from an
Artificial Intelligence perspective the issue is more
scheduling than planning as the challenge is to find
appropriate times to schedule observations to achieve
mission objectives that conform to the operations constraints
of the spacecraft. Space mission planning represents a fertile
applications area for Artificial Intelligence-based planning
and scheduling techniques with a wide range of deployed
systems (for a survey see [Chien et al. 2012]).
 One particular challenge for space mission planning is
downlink planning. In this problem the data acquired
onboard from engineering telemetry and science observations
is stored onboard. This onboard storage is limited and is
often pre-partitioned in an inflexible allocation. Commonly,
first a schedule is negotiated between the space mission and
a ground communications station provider (or providers).
Once this schedule has been determined, a prior version of a
mission plan is adapted to ensure that all data is preserved -
determining exactly which portions of onboard storage are
downlinked when so as to enable the science and engineering
data to be acquired and downlinked without loss of data.
 Many variants of this downlink problem exist. For
example, there may be some uncertainty in the volume of
acquired data, or deadlines for downlinking certain types of
data, or buffers with dynamic priorities. We describe a
particularly challenging downlink problem, the oMDP, in
which data generation may occur over extremely long periods
of time, overlapping with long downlink periods. We then
describe the heuristic solution used by DALLOC, and
compare it to two alternative heuristics and a Max Flow
solution.

2 The Overlapping Memory Dumping
Problem (oMDP)

Downlink scheduling is a sub-problem of the larger task of
scheduling spacecraft activities. From a science
planning/scheduling perspective, when constructing the
schedule for the first time, the scheduler must decide on
which observations to include, where they should occur, as

Managing Spacecraft Memory Buffers with Overlapping Store and Dump
Operations

Gregg Rabideau1, Steve Chien1, Federico Nespoli2, Marc Costa3

1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
{gregg.rabideau, steve.chien}@jpl.nasa.gov

2European Space Agency, Noordwijk, Netherlands / Telespazio VEGA UK Ltd, Luton, UK.
fnespoli@esa.int

3European Space Astronomy Center (ESAC-ESA), Villanueva de la Cañada, Madrid, 28692, Spain
marc.costa@esa.int

 69

 69

well as which downlink commands to issue to best satisfy
science requests (e.g. for Rosetta [Chien et al. 2015]). When
constructing and evaluating these observation schedules, the
impact of the observations on spacecraft resources, such as
memory, must be managed.

In this paper, we assume that a set of observations has been
selected, and we focus on finding the best way to downlink
data, thus freeing up memory used to store those
observations. We focus on the scheduling of downlink
commands only, assuming that the observation schedule
cannot be changed. Fill rates from observations, and dump
rates from downlinks, are all provided as inputs to the
scheduler. As mentioned, this is a sub-problem of the
strategic mission planning/scheduling process [Costa et al.
2016] where observation scheduling and downlink
scheduling are performed either simultaneously or
interleaved [Ayucar et al 2016]. In addition, this type of
downlink re-scheduling is often necessary during short-term,
tactical planning when certain last-minute changes must be
made (e.g. due to the loss of a downlink).

Our problem was first discussed in [Rabideau et al. 2015]
and is similar to the Mars Express Memory Dumping
Problem (MEX-MDP) described in [Oddi and Policella
2004]. While we discuss this problem in the context of the
Rosetta mission [Rosetta 2015], most space missions handle
downlink/data volume scheduling similarly.

The general problem we solve is to specify an “empty”
function that utilizes a fixed set of downlink periods to keep
a set of onboard memory buffers well within their pre-defined
limits. We formalize the data downlink problem as follows:

Given:

a time range T

a set of buffers B = {b1, b2, ... bn}
where each bj has
 an initial volume state: init_volj
 a final volume requirement: end_vol_reqj
 a hard volume capacity: capacityj
 a required margin: marginj

a set of buffer fillers F = {f1, f2, ... fn}
where each fi = <start_fi, end_fi, rate_fi>

a set of downlinks D = {d1, d2, ... dn}
where each di = <start_di, end_di, rate_di>

Solve:

∀di,∀bj: assign a function empty(bj,t)→rate s.t.:

∀t ∈ [start_di, end_di]: Σ empty(bj,t) ≤ rate_di
(cannot empty more than the downlink capacity)

∀t ∈ T: volume(bj, t) ≤ capacityj - marginj
(cannot exceed the buffer capacity minus margin)

t = max(T): volume(bj, t) ≤ end_vol_reqj
(cannot exceed the end volume requirement)

∀bj: minimize max(peak_percent(bj))
(maximize robustness)

In reality, as we will see, flight software on actual missions
is not designed to allow for arbitrary downlink policies, so
that our ability to control the empty(bj,t) function is not as
flexible as desired.
 Note that in our problem formulation, the downlinks and
fill function are specified over all time. Therefore, the data
generation and downlink events can occur concurrently.
Indeed, in Rosetta operations, downlinks cover greater than
half of all time and on average seven data generation events
are occurring at any point in time. Thus Rosetta represents a
case where prior problem formulation assumptions of non-
overlap between data production and downlink [Cesta et al.
2007, Righini and Tresoldi 2010] most definitely do not hold.

3 Controlling Data Downlink with Priority
and/or Duration

As with most spacecraft, Rosetta onboard data storage is
partitioned into a set of buffers, called packet stores, for
different types of science and engineering data that is
accumulated from observations. Each instrument has a
designated buffer with a specified hard upper volume limit
that cannot be changed during routine scheduling.

 The behavior of each downlink can be controlled in two
ways: by setting priority or by limiting duration.
• First, a priority can be assigned to each of the memory

buffers, indicating a relative downlink order.
• Second, downlink of a specific buffer can be halted at

any time, effectively limiting the duration of data
dump from that buffer.

Priority and duration are the only decision variables
available to the scheduler for controlling the “empty”
function described earlier. Therefore, in this formulation, the
control variables are:

priorities P = {p1,1, p1,2, ... pi,j} for each di∈D and bj∈B
durations U = {u1,1, u1,2, ... ui,j} for each di∈D and bj∈B

To fully understand how these variables affect the “empty”

function, we must examine the onboard software that controls
the data downlink. We summarize the behavior of the Rosetta
downlink software in the following set of rules.
• Some of the buffers (used for high-priority

engineering data) have fixed priorities and cannot be
halted (they must dump first, and until they are
empty).

• A buffer remains “active” until a command is issued
to stop it, after which no data will be downlinked
regardless of priority.

• When more than one active buffer has data waiting to
be downlinked, the one with higher priority will be
dumped first.

 70

 70

• If more than one active buffer all have the same
priority, data will be downlinked round-robin.

• When a buffer becomes empty, downlink for that
buffer will stop, allowing downlink to start on the next
highest priority buffer.

• Downlink from a buffer will be preempted when new
data is added to an active, higher-priority buffer.

Using these downlink rules, and the two control variables,
the primary goal of the downlink scheduler is to prevent
overflow on all buffers. The secondary goal of the scheduler
is to make selections that respect a minimum margin and
maximum carryover. And finally, it is preferred to have
margins as large as possible, making the schedules more
robust to uncertainties in data collection (e.g. compression
ratios) and downlink availability.

To achieve these goals, the scheduler must first model the
behavior of the buffers so that volume and overflows can be
accurately predicted. This is accomplished using the
activities and timelines of the ASPEN scheduling system.
With a model of how data is collected and downlinked,
ASPEN generates a profile for each buffer that predicts the
data volume at any point during the planning period. This
profile can be used not only to predict overflows, but also
provides information to the scheduler about when, and by
how much, data will overflow. This information can then be
used to make decisions about which priority values to assign
at the start of each downlink, and when to stop the dump
during each downlink. For example, after a given downlink,
if there is one particular buffer that will overflow sooner, or
exceed its limit by more than any other buffer, then that
buffer should be given higher priority or more time to
downlink.

Because of the serial nature of the resulting dump
schedules, using stop dump commands to allocate fixed
downlink volumes is brittle to changes in those downlinks. If
downlink times change (to start later, end earlier, or with an
interruption in the middle), stop dump commands that fall
during deleted downlink periods will be ignored. Losing
these commands will cause some buffers to dump much
longer than needed, consuming time needed by other buffers.

Originally the Rosetta mission used a fixed set of pre-
assigned buffer priorities and selected only the duration for
each dump. To address the brittleness of this approach, the
Rosetta mission switched to a priority-based method, which
assigns different priorities to buffers and does not explicitly
halt data dumps. This method offers less control over the
exact amount to downlink from each buffer, but is more
robust to changes in the downlink schedule. Potentially, both
priority and duration could be used to control the dump
schedule and increase control and robustness - this topic is
left for future work.

In this paper, we discuss a set of value selection heuristics
for the overlapping Memory Dumping Problem (oMDP), and
evaluate their performance on selecting either dump priorities
or dump durations.

4 Downlink Parameter Value Selection
Heuristics

In Rosetta operations, the DALLOC software tool is used to
assign buffer priorities or durations based on the number of
downlinks that exist before the first overflow of that buffer.
Roughly speaking, this “downlink count” heuristic used by
DALLOC will assign higher priorities or longer durations to
buffers with earlier overflows. This ensures that more
downlink time is given to the buffers with more urgent need.
 For comparison purposes, we have implemented three
alternative heuristics/methods for selecting either downlink
duration or priority within the DALLOC framework. In all,
we have:

1. Downlink count
2. Random
3. Percent full
4. Max flow

In the “random” heuristic, values were independently
selected at random to create a lower bound for comparison.
When assigning priorities, one of the available priority levels
is randomly selected. When assigning durations, a set of
random numbers for the buffers is normalized across the total
available downlink duration.
 The “percent full” heuristic assigns priorities (or
durations) by normalizing the peak volume percentages
across the available priority values (or across the downlink
duration). In other words, the relative priority or duration
assigned is proportional to the relative percent full for the
peak of that buffer.
 Finally, we compare our local heuristics against “max
flow” which uses flow values that result from running the
Edmond-Karp max-flow algorithm on the network
constructed for the overlapping Memory Dumping Problem
(oMDP). The MEX-MDP very closely matches the oMDP,
allowing us to use a similarly constructed network. Here,
“flow” represents data flowing into the buffers, out via
downlinks, and carrying over to the next downlink (or end of
the planning period). When the max-flow algorithm
completes successfully, dump durations for each buffer can
be extracted from the resulting graph. If selecting priorities,
the “flow” value is converted to a priority by looking at it as
a percent of the downlink available.
 One distinction with Rosetta and the oMDP, however, is
that buffer store and dump activities can occur over long
periods of time (e.g. hours) and often overlap. In the max-
flow formulation, these activities must be modeled as
instantaneous events. The resulting flow values, therefore,
are not guaranteed to prevent overflow when the buffer
profile is created.
 In “max flow”, the entire schedule is evaluated to compute
control variables (dump durations or priorities) for all
downlinks at once. This can help ensure that selected values
for one downlink do not adversely impact what can be done
in a later downlink (i.e. prevents “painting into a corner”).
However, the run-time for such a global evaluation can be
significantly longer than local methods. All other heuristics
use more local methods, selecting parameters for a downlink

 71

 71

without much consideration for other downlinks. However,
because we update buffer volumes after scheduling a
downlink, this new information can be used when applying
the heuristic to subsequent downlinks. While this lack of
global information may lead to sub-optimal heuristics, it
makes the computation very fast. Efficiency is important
when downlink scheduling must be performed repeatedly
during the construction of observation schedules, as done in
the strategic planning phase.
 All heuristics are compared in the empirical evaluation
section of this paper.

5 Schedule Robustness and Iterative Leveling
As in [Oddi and Policella 2004], we are interested in
producing schedules that are robust to unpredictable events
that occur after committing to the schedule (e.g. after uplink).
For comparison purposes, we use the same approximation to
schedule robustness, which uses the maximum percent full
that any buffer is predicted to be at any time.
 In [Oddi and Policella 2004], max-flow is used to find a
solution for all downlinks. This does not maximize the flow
through any individual downlink, which can produce
solutions that contain buffers that are near capacity at specific
times. These solutions are considered brittle, and an
“Iterative Leveling” technique is presented to improve
robustness. Here, more robust solutions are generated by
assigning an epsilon smaller capacity to the brittle buffer after
each iteration.
 We present a variant of iterative leveling that reduces all
capacities to the same level instead of one-at-a-time, and
iterates using binary search instead of epsilon reduction.
First, we recognize that limiting one buffer to a lower percent
does not help robustness if other buffers are allowed to
increase above the previously identified maximum. For
example, if one buffer is limited to 90%, all should be limited
to 90%. Therefore, binary search can find a more robust
solution by using an artificial capacity that is reduced when a
solution is found, or increased when the solution results in
overflows.

6 Estimated Computational Complexity
Figure 1 contains high-level pseudo-code for downlink
scheduling using a global max-flow formulation, using local
heuristics, and finally the outer loop that adds iterative
leveling with binary search. We use the following variables
to analyze the computational complexity of these downlink
scheduling methods:

D = downlinks
B = buffers
C = capacities
F = fill rate changes

First, we compute max-flow values using the Edmond-Karp
implementation, which is O(EV2) where E is the number of
edges and V is the number of nodes. In the MDP flow
network, there are only a few nodes and edges for each buffer

dump [Oddi and Policella 2004]. Therefore, E and V are each
approximately equal to D*B, making the overall complexity
of solving the MDP with max-flow O(D3B3).
 For all but “random”, the local heuristics require an initial
sort of the downlinks, and a propagation of volumes after
each downlink assignment. Sorting the downlinks is
O(DlgD). Because the downlinks are scheduled forward in
time, recalculating volumes after the last scheduled downlink
is simply proportional to the number of fill rate changes. The
resulting complexity of scheduling using a local heuristic is
O(DlgD + D*F).
 For any of the heuristics, performing iterative leveling with
binary search will add a constant multiplier. This is because
our implementation works on an integer percentage between
1 and 100, which will loop at most lg100 times (about 7
times).
 For the Rosetta mission, downlink planning is typically
processed over a "Medium Term Plan" or MTP, which is
generally 4 weeks in length. For Rosetta there are 16 buffers,
and for one MTP, there are typically 30+ downlinks and
hundreds of fill rate changes.

7 Empirical Evaluation
We have conducted an empirical evaluation of the scheduling
algorithm using the four previously mentioned heuristics for
assigning dump durations or priorities. Performance of the

scheduleWithMaxFlow(D, B, C, F)
 M = computeMaxFlow(D, B, C, F)
 for each d in D
 for each b in B
 assignValue(d, b, M[d][b])

scheduleWithHeuristic(D, B, C, F)
 sort(D)
 for each d in D
 for each b in B
 c = C[d][b]
 heuristicallyAssignValue(d, b, c)
 for each f in F
 recalculateVolumeAt(f)

iterativeLeveling(D, B, C, F)
 Cdelta = 100
 Cprev = 0
 while(Cdelta > 1)
 Cdelta = abs((C – Cprev) / 2)
 Cprev = C
 if(USE_MAX_FLOW)
 r = scheduleWithMaxFlow(D, B, C, F)
 else

r = scheduleWithHeuristic(D, B, C, F)
 if(r)
 C -= Cdelta
 else
 C += Cdelta

Figure 1: Scheduling with max-flow, with local heu-

ristics, and iterative leveling

 72

 72

heuristics based on run-time and schedule robustness. We use
data from four medium-term planning (MTP) periods during
the comet escort phase of the Rosetta mission. The data
collected during each MTP is roughly the same as the
downlink available. This is because the fill rate data we use
was taken from an archive of the tactical planning process,
where the strategic selection of observations has already
completed. In addition, the data collected from these
observations is typically about 2x to 3x the total capacity of
all buffers.
 First, in order to evaluate the performance over a range of
constrainedness, we varied the downlink rates from 80% to
120% of the true rate used in operations. Then, we look at
how each heuristic compares when selecting either dump
duration (Figure 2) or dump priority (Figure 3).
 When selecting dump duration, the relative performance of
the heuristics does not change as the problem becomes more
or less constrained. As expected, selecting random durations
results in schedules that are the most brittle (resulting
volumes were greater than 200% and therefore do not appear
on the graph in Figure 2). Surprisingly, using the max-flow

values does not produce the most robust solutions. The
“downlink count” heuristic, which selects duration based on
the number of downlinks before the first overflow,
consistency outperforms max-flow.
 Next we look at the performance of heuristically assigning
buffer priorities without changing dump durations (Figure 3).
Recall that this will simply control the order in which buffers
are downlinked. Because max-flow solutions contain volume
assignments, we first convert flow values to priorities based
on the flow volume as a percent of capacity. Using the actual
downlink rate (100%), when fill and downlink volumes are
about the same, max-flow outperforms all other methods by
at least 10%. But when over- (<100%) or under-constrained
(>100%), we see that the “downlink count” heuristic
outperforms max-flow by about 10%.
 Results from max-flow were surprising since we had
expected a global solution to consistently outperform any of
the local heuristics. First, we must consider that max-flow
was not designed to assign priorities, which could explain the
results in Figure 3. For under-constrained problems, one
possibility is that max-flow is relying more heavily on
iterative leveling to keep the peaks low. For over-constrained
problems, max-flow is more likely to fail to find a solution,
which could contribute to the drop in robustness. In all cases,
max-flow models the filling and downlinking events as
instantaneous, while in reality, these activities have durations
and even overlap. This modeling inaccuracy may be
producing suboptimal solutions.
 In addition to comparing the robustness of these various
methods, we are also interested in run-times in order to
determine whether the benefits outweigh the costs. Table 1
reports the run times (real CPU time in seconds) of max-flow
and each of the local heuristics, with and without iterative
leveling. Table 2 reports the robustness (max peak volume
percent) obtained, averaged from both priority and duration
assignment, using actual (100%) downlink rates. As

	 No	Leveling	 Leveling	
Downlink	count	 14.6	 92.6	
Max	flow	 337.5	 2190.0	
Percent	full	 11.0	 77.3	
Random	 11.1	 76.8	

Table 1: Average run-times (seconds)

	 No	Leveling	 Leveling	
Downlink	count	 64.2%	 55.6%	
Max	flow	 85.4%	 57.9%	
Percent	full	 76.4%	 77.1%	
Random	 162.9%	 175.9%	

Table 2: Average robustness for the actual (100%)

downlink rate

 73

 73

expected, compared to using local heuristics, the cost of
running max-flow is high (roughly 20x slower). Moreover,
solutions are not much better, and in some cases worse than
those produced by the best local heuristics. Next, we consider
the cost-benefit tradeoff of using iterative leveling. As shown
in the complexity analysis, the cost is a multiplier of lg100,
or about 6.6x. This is consistent with the observed data in
Table 1. In Table 2, we see that iterative leveling, as expected,
is more important for max-flow where no peak minimization
is attempted in a single iteration.
 In our experience, the best combination is the use of
iterative leveling with a local heuristic. This allows the tool
to be more responsive during tactical planning, but also
enables its use as part of the strategic planning process, where
it may need to be run hundreds of times to generate a single
MTP schedule.

8 Discussion
The downlink scheduling algorithms described in this paper
were originally deployed as part of the Rosetta early science
planning operations tool that also scheduled science activities
[Chien et al. 2015]. Later in operations the data downlink
scheduling software was modularized and extracted to also
be used in mid to late tactical science planning. It is this
separated scheduling software and associated algorithms that
we describe in this paper. In some form or other this
downlink scheduling software has been in use to schedule
over 18 Medium Term Plans (each ~1 month of Rosetta
Orbiter operations).
 Automated downlink planning is in operational use for the
Mars Express mission [Cesta et al. 2007]. However, they
model observations and downlinks as non-overlapping (or
equivalently instantaneous) data producers and consumers.
In many space missions, including Rosetta, this assumption
does not hold. Their robustness metric is similar to our
margin requirement.
 Onboard downlink management [Pralet et al. 2014] is
proposed in order to address challenges of uncertainty in data
generation (due to the uncertainty of effectiveness of content-
dependent compression schemes). This formulation of the
problem adds even several more complexities such as
antenna pointing, multiple channels, data latency, and
encoding table time. Again for a typical earth imager, the
data production is effectively instantaneous, in contrast to the
Rosetta problem.
 Most other deployed automated planners must also solve
some version of the downlink planning/scheduling problem
however in most cases it is not the focus of the overall
scheduling problem (e.g. Hubble Space Telescope [Johnston
and Miller 1994], Earth Observing One [Chien et al. 2005,
2010] or Orbital Express [Knight et al. 2013]).
 The Philae Lander for the Rosetta Mission has a science
scheduling with downlink problem [Simonin et al. 2012].
They use ILOG-scheduler in a system called MOST to solve
for most of the scheduling constraints except data
management. They examine the problem of scheduling
science experiments with fixed science experiment storage
and downlink buffer storage but with a fixed priority

downlink strategy. This problem is analogous to the full
Rosetta scheduling problems [Chien et al. 2015]. However,
one key difference is that MOST does not have the ability to
re-program buffer priorities dynamically as we have on the
Rosetta Orbiter (and described here in this paper).

9 Summary
We have described the downlink scheduling problem, a well
defined subproblem within the overall space mission
planning and scheduling problem. While this problem can be
and often is solved in isolation, it is also addressable
concurrently with the overall scheduling problem.
 We then described the Rosetta downlink scheduling
problem as a specific instantiation of the general downlink
scheduling problem with overlapping data creation and
downlinks. We describe heuristic solutions to this new
problem that are in operational use for ESA’s Rosetta mission
and show that they outperform prior max-flow methods that
do not handle overlapping effects on Rosetta mission data.

Acknowledgments
Portions of this work were performed at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration.

References
[Cesta et al., 2007] A. Cesta, G. Cortellessa, S. Fratini, A.

Oddi, and N. Policella. "An Innovative Product for Space
Mission Planning: An A Posteriori Evaluation." Proc Intl
Conf on Automated Planning and Scheduling, pp. 57-64.
2007.

[Chien et al., 2005] S. Chien, R. Sherwood, D. Tran, B.
Cichy, G. Rabideau, R. Castano, A. Davies, D. Mandl, S.
Frye, B. Trout, S. Shulman, D. Boyer, “Using Autonomy
Flight Software to Improve Science Return on Earth
Observing One, Journal of Aerospace Computing,
Information, & Communication, April 2005, AIAA.

[Chien et al., 2010] S. Chien, D. Tran, G. Rabideau, S.
Schaffer, D. Mandl, S Frye, “Timeline-based Space
Operations Scheduling with External Constraints,“
International Conference on Automated Planning and
Scheduling, Toronto, Canada, May 2010.

[Chien et al., 2012] S. Chien, M. Johnston, N. Policella, J.
Frank, C. Lenzen, M. Giuliano, A. Kavelaars, A
generalized timeline representation, services, and
interface for automating space mission operations, Space
Operations (SpaceOps 2012). Stockholm, Sweden. June
2012.

[Chien et al., 2015] S. Chien, G. Rabideau, D. Tran, J.
Doubleday, D. Chao, F. Nespoli, M. P. Ayucar, M. Costa,
C. Vallat, B. Geiger, N. Altobelli, M. Fernandez, F.
Vallejo, R. Andres, M. Kueppers, Using Constraint-based
Search to Schedule Science Campaigns for Rosetta

 74

 74

Orbiter, Invited Talk, Proc. International Joint Conference
on Artificial Intelligence, Buenos Aires, Argentina, July
2015.

[Costa et al., 2016] M. Costa, M. Perez-Ayucar, M. Almeida,
M. Ashman, R. Hoofs, S. Chien, J. Beteta, M. Kueppers,
“Rosetta: Rapid Science Operations for a Dynamic
Comet, Space Operations Symposium, Daejon, Korea,
2016.

[Johnston and Miller, 1994] M. D. Johnston and G. Miller.
"Spike: Intelligent scheduling of hubble space telescope
observations." Intelligent Scheduling (1994): 391-422.

[Knight et al., 2014] R. Knight, C. Chouinard, G. Jones, D.
Tran, Leveraging Multiple Artificial Intelligence
Techniques to Improve the Responsiveness in Operations
Planning: ASPEN for Orbital Express, AI Magazine, Vol
35, No 4, 2014.

[Oddi and Policella, 2004] A. Oddi and N. Policella, A Max-
Flow Approach for Improving Robustness in a Spacecraft
Downlink Schedule, International Workshop on Planning
and Scheduling for Space (IWPSS-04). Darmstadt,
Germany. June 2004.

[Perez-Ayucar et al., 2016] M. Perez-Ayucar, M. Almeida,
M. Ashman, S. Chien, M. Costa, J. Garcia, R. Hoofs, M.
Kueppers, D. Merritt, J. Marin, F. Nespoli, G. Rabideau,
E. Sanchez, “Science Data Volume management for the
Rosetta Spacecraft, Space Operations Symposium,
Daejon, Korea, 2016.

[Pralet et al., 2014] C. Pralet, G. Verfaillie, A. Maillard, E.
Hébrard, N. Jozefowiez, M.-J. Huguet, T. Desmousceaux,
P. Blanc-Paques, J. Jaubert. Satellite Data Download
Management with Uncertainty about the Generated
Volumes. Proc. of the 24th International Conference on
Automated Planning and Scheduling (ICAPS-14),
Portsmouth, NH, USA, 2014.

[Rabideau et al., 2015] G. Rabideau, F. Nespoli, S. Chien.
Heuristic Scheduling of Space Mission Downlinks:
A Case study from the Rosetta Mission. International
Workshop on Planning and Scheduling for Space
(IWPSS-15). Buenos Aires, Argentina, 2015.

[Righini and Tresoldi, 2010] Righini G, Tresoldi E. A
mathematical programming solution to the Mars Express
memory dumping problem. Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on. 2010 May;40(3):268-77.

[Rosetta Mission, 2015] http://rosetta.esa.int/, retrieved 16
November 2015.

[Simonin et al., 2012] C. Simonin, C. Artigues, E. Hebrard,
and P. Lopez, "Scheduling Scientific Experiments on the
Rosetta/Philae Mission," "Scheduling scientific
experiments on the Rosetta/Philae mission." In Principles
and Practice of Constraint Programming, pp. 23-37.
Springer Berlin Heidelberg, 2012.

 75

 75

Efficient High Quality Plan Exploration for Network Security

Anton V. Riabov Shirin Sohrabi Octavian Udrea Oktie Hassanzadeh
IBM T.J. Watson Research Center

1101 Kitchawan Rd, Yorktown Heights, NY 10598, USA
{riabov, ssohrab, udrea, hassanzadeh}@us.ibm.com

Abstract
We consider the application of planning in network
security. In this application, plans represent possi-
ble attacks on the network, and network administra-
tors need tools that would allow them to explore the
plan space quickly and efficiently. Multiple aspects
of this problem require generating and inspecting
more than one plan, primarily due to limited infor-
mation about the possible actions of the attacker,
and a variety of possible attacks. This problem can
be modeled as diverse planning, with the caveat that
high quality (or, equivalently, low cost) plans must
be prioritized, since those plans typically represent
the most efficient attacks that are of highest impor-
tance to the administrators. Hence, there is a need
for a systematic approach to finding such plans. We
propose a new technique based on a top-k planner
that finds k optimal or near-optimal plans, followed
by plan consolidation, for generating diverse high
quality plans. Comparing to existing diverse plan-
ners, we show that it is able to meet the high qual-
ity and plan diversity requirements efficiently, and
therefore we can recommend it for this application.

1 Introduction
Multiple security-related challenges arising in administration
and management of computer networks have been success-
fully tackled using classical planning in prototypes and pro-
duction systems. In this paper, we propose to address a spe-
cific requirement of finding relevant but sufficiently differ-
ent attacks, which we believe to be common for all proposed
planning-based systems, by developing an efficient technique
that allows A⇤-based planners to produce a diverse set of high
quality plans.

In network security applications of planning, domain mod-
els are developed by capturing and formalizing expert knowl-
edge. Domain models include the actions of attacker, such as
network scans and exploitation of vulnerabilities to infect net-
work hosts with malware, possibly complemented by actions
representing actions of users that expose new vulnerabilities,
actions that help account for network connectivity, installed
software, operating system and other configuration [Boddy et
al., 2005; Roberts et al., 2011; Lucngeli et al., 2010]. The

individual valid plans then represent possible attacks, and the
space of valid plans represents attack graphs, therefore allow-
ing network administrators to explore and analyze the space
of possible attacks, for example, by altering goals or initial
state configuration.

Another class of domain models, which uses planning-
based diagnosis techniques [Sohrabi et al., 2010], allows aug-
menting the planning problem with a sequence of ambiguous
and unreliable observations from network monitoring sys-
tems to generate plans of attacks that may be in progress
[Sohrabi et al., 2013].

Planners can indeed be very effective in network secu-
rity applications, even compared to more traditional pene-
tration testing tools and analysis techniques based on attack
graphs, because planning provides efficient search in huge at-
tack graphs induced by domain models that are exceedingly
small by comparison, and therefore are significantly easier to
design and maintain [Lucngeli et al., 2010].

Nevertheless, this still leaves open the question of selecting
the relevant portions of attack graphs to bring to the atten-
tion of the network administrators (or automated penetration
testing tools). One of the planning systems discussed above
proposed generating top high quality plans to address this is-
sue [Sohrabi et al., 2013]. While finding multiple high quality
plans is beneficial and necessary in order to focus the inves-
tigation on the efficient and hence relevant attacks, by itself
it is not sufficient. If generated attack plans are too similar to
each other in actions and states, administrators can be easily
overwhelmed with small variations of the same pattern. In ad-
dition, planner performance is important for timely response
to ongoing attacks.

We believe this combination of requirements has not been
addressed in prior work. The problem we are considering is
closely related to diverse planning, but plans found by the di-
verse planners are not necessarily all of high quality [Nguyen
et al., 2012; Sroka and Long, 2012]. On the other hand, top-k
planning [Riabov et al., 2014] provides an efficient technique
for finding a set of top quality plans, by applying K⇤ algo-
rithm [Aljazzar and Leue, 2011] to augment A⇤ search, but it
does not guarantee plan diversity.

We propose to address these challenges by using a top-k
planner to create a large set of high-quality plans, followed by
clustering based on a similarity metric, and finally outputting
a set of cluster representatives that are both high quality and

 76

 76

diverse. In the rest of the paper, we briefly describe the top-
k planning and clustering techniques we use, and evaluate
the end-to-end performance of our approach, comparing to
existing diverse planners and a top-k planner.

2 Network Security: Domain Models
Rather than develop a new domain model for the network se-
curity application, our goal is to show via experiments how
our approach can benefit previously proposed models. We
generated planning task instances for two classes of domain
models: attack graphs, as discussed in [Boddy et al., 2005;
Roberts et al., 2011; Lucngeli et al., 2010] and hypothesis
exploration based on unreliable observations and a model of
a dynamical system, as described in [Sohrabi et al., 2013].

For the attack graph model, we followed an approach sim-
ilar to [Lucngeli et al., 2010]. We obtained a list of products
and known vulnerabilities from The U.S. National Vulnera-
bility Database, allowing us to define up to 3554 network ex-
ploit actions, each annotated with low, medium or high com-
plexity, and configure the hosts with a selection from 21107

products. We also generated a random hierarchical network
topology of up to 2000 nodes on up to 150 networks separated
by firewalls, with several VPN connections cutting across
the hierarchy. We defined the following actions: connect-tcp,
which checked network connectivity between hosts, exploit-
net-V, which represented remote exploitation of a known vul-
nerability V for a compatible product, with higher costs for
more complex attacks, and exploit-local-V, with similarly as-
signed costs, which was invoked after the remote exploita-
tion succeeded, to achieve escalation of privilege and fully
compromise the host and use it for subsequent attacks. All
network hosts, including gateway nodes between networks,
were configured to have at least one locally exploitable prod-
uct and one remotely exploitable product, which ensured a
large number of possible attacks, and therefore a large space
of plans for exploration.

Our hypothesis exploration domain model, following
[Sohrabi et al., 2013], uses two manually defined state tran-
sition systems: a malware detection system with 25 states de-
scribed in that work, and an extended version of it represent-
ing two hosts and interactions between them, with 221 states
total. To generate problem instances, we generated random
observation sequences of varying length, and combined them
with the transition systems. In this case, the planning task
models the states of the host, transitions between states, and
the corresponding observations from network traffic monitor-
ing sensors, with the goal of generating hypotheses explain-
ing the observations. For example, a malware infection state
of a host can have a corresponding observation of download-
ing an executable file, and a possible transition to a command-
and-control rendezvous state which has a new Internet Re-
lay Chat (IRC) session observation. The executable download
may also be observable in other states, such as remote soft-
ware installation by administrator, which makes this observa-
tion ambiguous, also making multiple hypotheses necessary.
Note that due to this structure of the model, and since the
same transition system state can be reached through differ-
ent explanation paths, one state of the modeled system corre-

2 20 14
s

t
18 8 11

9 10 25

 15 20 12 7

 13 27 14 15

t

s

 (a) (b)

Figure 1: (a) shows a graph with source node s and terminal node t
with edge lengths specified on the edges; (b) shows the shortest path in
bold arrows and the second shortest path in dashed arrows.

sponds to many possible planning states. Consequently, this
model generates a very large space of plans, as in the attack
graph domain.

3 Finding Diverse High Quality Plans
To measure plan quality, we assume that action costs can be
assigned such that cost of a plan is the sum of costs of actions
included in the plan, and the lower the cost of the plan, the
higher its quality. The first step of our approach is to generate
a fixed number k of lowest-cost plans, and then cluster similar
plans based on a plan similarity metric. We require k to be
sufficiently large, so that when similar plans are clustered, we
obtain the necessary number of clusters. Finally, one lowest-
cost representative plan from each cluster is selected to form
the resulting set of diverse high quality plans.

In this section, we first introduce what we call a top-k plan-
ning problem. Then, we describe how to compute top-k plans
using a k shortest paths algorithm. Finally we describe the
clustering algorithm and the plan similarity metric used for
clustering.

3.1 Tok-k Planning Problem
Definition 1 We define the top-k planning problem as R =

(F,A, I,G, k), where F is a finite set of fluent symbols, A
is a set of actions with non-negative costs, I ✓ F defines
the initial state, G ✓ F defines the goal state, and k is the
number of plans to find. Let R0

= (F,A, I,G) be the planning
problem with action costs that has n plans (n can be infinite).
The set of plans ⇧ = {⇡1, ...,⇡m

}, where m = k if k  n,
m = n otherwise, is a solution to R if an only if each ⇡

i

2 ⇧

is a plan for R0 and there does not exists a plan ⇡0 for R0,
⇡0 /2 ⇧, and a plan ⇡

i

2 ⇧ such that cost(⇡0
) < cost(⇡

i

) .

The solution to the top-k planning problem is a set of low-
cost plans, and are not necessary all optimal. If k is less than
the number of optimal plans for R0, then ⇧ will contain all
of the optimal plans. However, if k is larger than the number
of optimal plans for R0 then ⇧ will contain some suboptimal
plans in addition to all optimal plans. Also note that if k > n,
⇧ contains all n valid plans, otherwise it contains k plans

3.2 Background: K Shortest Paths Problem
K shortest paths problem is an extension of the shortest path
problem where in addition of finding one shortest path, we
need to find a set of paths that represent the k shortest paths
[Hoffman and Pavley, 1959].

 77

 77

42 33 23 7

t

s55 56 36 22

 (a) (b)
 37 19 11 0

3

4 1

10 6

9

Figure 2: (a) shows the shortest path tree T and distance to destination
t; (b) shows the side edges with their associated detour cost.

The following is a formal definition taken from Eppstein
[Eppstein, 1998].

Definition 2 (K Shortest Path Problem) k shortest path
problem is defined as 4-tuple Q = (G, s, t, k), where G =

(V,E) is a graph with a finite set of n nodes (or vertices)
V and a finite set of m edges E, s is the source node, t is
the destination node, and k is the number of shortest paths
to find. Each edge e 2 E has a length (or weight or cost),
which is denoted by l(e). The length of a path p, l(p), is con-
sequently defined by the sum of its edge lengths. The distance
d(u, v) for any pair of nodes u and v 2 V is the length of
the shortest path between the two nodes. Hence, d(s, t) is the
length of the shortest path for the problem Q. Let n = size
of the set of all s-t paths in graph G. Then, the set of paths
P = {p1, p2, ..., pm}, m = k if k  n, m = n otherwise, is
the solution to the k shortest paths problem Q if and only if
each p

i

2 P , is a s-t path in graph G and there does not exist
a s-t path p0 in graph G, p0 /2 P and a path p

i

2 P such that
l(p0) < l(p

i

) .

Note that if k > n, then P contains all s-t paths, otherwise
P contains k shortest paths from node s to node t. It follows
from the definition that at least one shortest path with length
d(s, t) is in the set P if m > 0. Figure 1 shows an example
from [Eppstein, 1998] to illustrate the terminology. The dis-
tance d(s, t) = 55, is the length of the shortest path shown in
bold; the length of the second shortest path is 58.

The K⇤ algorithm [Aljazzar and Leue, 2011] is an im-
proved variant of the Eppstein’s k shortest paths algo-
rithm [Eppstein, 1998] and hence uses many of the same con-
cepts as in the Eppstein’s algorithm (which we refer to as EA).
Here, we first outline the EA algorithm, and then discuss K⇤.

Given a k shortest paths problem Q, the EA algorithm first
computes a single-destination shortest path tree with t as the
destination (or the reversed single-source shortest path tree)
by applying Dijkstra’s algorithm on G. The edges in the re-
sulting shortest path tree, T are called the tree edges while
all the missing edges (i.e., the edges in G� T) are called the
sidetrack edges. Each edge in G is assigned a number that
measure the detour cost of taking that edge. Consequently,
the detour cost of the tree edges is 0, while the detour cost
of the sidetrack edges is greater than 0. Figure 2 shows the
shortest path tree T and the sidetrack edges along with their
detour cost of our earlier example.

The EA algorithm then constructs a complex data structure
called path graph P (G) that stores the all paths in G, where

each node in represents a sidetrack edge. This is followed by
the use of Dijkstra search on P (G) to extract the k shortest
paths. An important property is that given a sequence of side-
track edges representing a path in P (G) and the shortest path
tree T , it is possible to uniquely construct a s-t path in G.
This can be done by using sub-paths from T to connect the
endpoints of sidetrack edges. Given this property and the spe-
cial structure of P (G), it is ensured that the i-th shortest path
in P (G) results in a sidetrack sequence which can be mapped
to the i-th shortest path in G. By construction, P (G) pro-
vides a heap-ordered enumeration of all paths in G, and since
every node of P (G) has limited out-degree (at most 4), the
complexity of enumerating paths in increasing cost order is
bounded. The worst-case runtime complexity of the EA algo-
rithm is O(m+n log n+kn). This complexity bound depends
on a compact representation of the resulting k paths, and can
be exceeded if the paths are written by enumerating edges.

Although EA could be used for top-k planning, the K⇤

algorithm is preferable, because it does not require the com-
plete state transition graph G. Instead, K⇤ can create G dy-
namically using A⇤ search, driven by a heuristic toward the
goal, an approach commonly used in planners (e.g., Fast-
Downward [Helmert, 2006]). In short, the K⇤ algorithm
works as follows. The first step is to apply a forward A⇤

search to construct a portion of graph G. The second step
is suspending A⇤ search, updating P (G) similarly to EA, to
include nodes and sidetracks discovered by A⇤, applying Di-
jkstra to P (G) to extract solution paths, and resuming the A⇤

search. The use of A⇤ search to dynamically expand G en-
ables the use of heuristic search and also allows extraction
of the solution paths before G is fully explored. While K⇤

algorithm has the same worst-case complexity as the EA al-
gorithm, it has better performance in practice because unlike
the EA algorithm, K⇤ does not require the graph G to be
completely defined when the search starts.

3.3 Top-k Planning Using K⇤

In the implementation of the planning algorithm we follow
the algorithm structure imposed by K⇤, as follows.

0. Read planning problem R = (F , A, I, G, k).
1. Expand the state graph G by using A⇤

and applying actions to compatible states

starting from I, and until G is reached.

2. Continue applying A⇤
to expand G

until 20% increase in links or nodes.

3. Update P (G) based on new links in G.
4. Apply Dijkstra step

to extract the next path from P (G).
5. If k paths are found

6. Goto step 10.

7. If K⇤
scheduling condition is reached

8. Goto step 2.

9. Goto step 4.

10. Return at most k plans (one plan per path).

We expect that with some work this approach can be in-
tegrated into planners that use A⇤ search, enabling those
planners to solve top-k problems. Also note that the sound-
ness and completeness of planning follows directly from the
soundness and completeness of the K⇤ algorithm.

 78

 78

3.4 Clustering Algorithm
Given the set of top-k plans, in this section, we will discuss
how to group the similar plans using clustering techniques. In
practice, many of the generated top-k plans are only slightly
different from each other. That is, they do seem to be du-
plicates of each other, except for one or more states or ac-
tions that are different. This may be the result of the underlin-
ing AI planner which tries to generate all alternative low-cost
plans, and while this generates distinct low-cost plans, it does
not always mean that these plans are significantly different
from each other. Hence, instead of presenting large number
of plans, some of which could be very similar to each other,
with the help of clustering, we can present clusters of plans,
where each cluster can be replaced by its representative plan.

Clustering has been a topic of interest in several areas
of research within several communities such as Information
Retrieval (e.g, [Aslam et al., 2004]), machine learning, and
Data Management as part of the data cleaning process (e.g.,
[Hassanzadeh and Miller, 2009]). Many survey papers ex-
ist on clustering algorithms (e.g, [Xu and Wunsch, 2005;
Filippone et al., 2008]). While most, if not all, clustering al-
gorithms share a common goal of creating clusters that min-
imize the intra-cluster distance (distance between members
of the same clusters) and maximize the inter-cluster distance
(distance between members of different clusters), the assump-
tions and inputs for these clustering algorithm are often dif-
ferent. For example, several of these approaches assume some
given input parameters such as the number of clusters or a
cluster diameter. To consolidate similar plans produced by the
top-k planner, we apply a clustering algorithm that must sat-
isfy the requirements stated below. One representative plan
from each cluster is selected to be included in the final set of
diverse plans.

Definition 3 (Clustering Requirements) Given a set of
k sorted plans, ⇧, create clusters of plans C = {c1, ..., co}
where the value of o is unknown ahead of time. Further, for
each two clusters c, c0 2 C, c \ c0 = ; and 8⇡ 2 ⇧, 9c 2 C
such that ⇡ 2 c. Hence, the clusters are disjoint and each
plan belongs to one cluster.

We propose the use of the following three non-hierarchical
clustering algorithms. Each of these algorithms require visit-
ing each plan only once in order to decide to which cluster
they belong to; hence, are called single-pass algorithms.

Center-Link
Center-Link clustering algorithm iterates over the top-k plans
starting with the lowest-cost plan. For each plan, it computes
the similarity to a representative of each cluster created in pre-
vious iterations. If there are no clusters that have a representa-
tive similar to the plan (i.e., their similarity score is above the
threshold ✓), a new cluster is created and the plan becomes the
representative of that cluster. Otherwise the plan is added to
the first cluster whose cluster representative is similar to this
plan. Cluster representatives are chosen to be the lowest-cost
plans in each cluster. Due to the order of iteration, stating
from the lowest-cost plans, the cluster representative is al-
ways the first added plan to the cluster. This algorithm is sim-
ilar to the CENTER algorithm in [Hassanzadeh and Miller,

2009], however, the sorted input is different (i.e., plans, as
opposed to records in a database). The Center-Link algorithm
could result in small number of similarity comparisons be-
cause each plan is only compared to the representative plan
of each cluster.

Single-Link
Single-Link clustering algorithm is an extension of the
Center-Link algorithm, where instead of comparing only with
the representative of a cluster, each plan is compared with all
members of a cluster, and if the plan is found to be similar to
any of the members of that cluster, then it is assigned to that
cluster. Single-Link algorithm is a non-hierarchical variation
of single-linkage algorithm [Xu and Wunsch, 2005]; the node
joins a cluster as long as there is a single link with one of the
members of the clusters. This algorithm could result in the
smallest number of clusters.

Average-Link
Average-Link algorithm is a simple extension of the Single-
Link algorithm, where each plan is compared with all the
members of a cluster and the average similarity score is used
to determine if the plan belong to that cluster or not. This
algorithm results in many similarity comparisons, and could
result in large number of clusters. Note, Average-Link clus-
tering is a non-hierarchical variant of hierarchical average-
linkage clustering [Xu and Wunsch, 2005]. In the experi-
ments we show we have used this algorithm because it pro-
duced more clusters and more diverse plans.

3.5 Plan Similarity Metric
Finding if two plans are similar has been studied mainly under
two categories: plan stability for replanning (e.g., [Fox et al.,
2006]) and finding diverse plans (e.g., [Nguyen et al., 2012]).
We follow prior work on diverse planning and compute plan
similarity during clustering as Jaccard similarity between ac-
tions of the plan, thereby grouping similar plans together and
increasing the diversity between the clusters.

Jaccard similarity is a score between 0 and 1, which mea-
sures the ratio of the number of actions that appear in both
plans to the total number of actions appearing in at least one
plan. Let A(⇡) be the set of actions in ⇡, then:

simJaccard(⇡,⇡
0) =

|A(⇡) \A(⇡0)|
|A(⇡) [A(⇡0)| (1)

We note that Jaccard similarity is the inverse of the plan
distance defined in [Nguyen et al., 2012].

4 Experimental Evaluation
To compare planner performance, we configure the planners
so that approximately 50 diverse plans are generated. We
measure plan diversity using stability and uniqueness metrics.
We also compare plan cost and planning time.

We measure stability and uniqueness using the follow-
ing formula from [Roberts et al., 2014]. Note, we modi-
fied these formula to make it a number between 0 and 1.
Let ⇧ = {⇡1, ...,⇡m

} be the set of plans. If |⇧| = 1,
Diversitystability(⇧) = 1, and Diversityuniqueness(⇧) = 1, oth-
erwise for |⇧| � 1:

 79

 79

Domain Top-k + clustering LPG-d Div
Time #Plans Cost D U Time #Plans Cost D U Time #Plans Cost D U

Malware-5 1 50 1502 0.51 1 1 10 3513 0.80 1 1 9 1789 0.36 0.37
Malware-10 1 50 1586 0.41 0.99 59 10 8426 0.84 1 1 5 3861 0.44 0.54
Malware-20 3 50 1492 0.20 0.99 384 10 16520 0.87 1 1 6 7262 0.46 0.53
Malware2-5 1 50 2005 0.66 0.96 - - - - - 1 3.2 1454 0.40 0.98
Malware2-10 2 50 2441 0.47 1 - - - - - 5 6 6092 0.68 0.97
Malware2-20 5 50 2105 0.28 1 - - - - - 3 6.8 4910 0.35 0.95
AttackGraph-1 3 50 54 0.59 1 1.89 2 59 0.95 0.43 - - - - -
AttackGraph-2 194 50 65 0.30 1 - - - - - - - - - -

Table 1: Comparisons of planning time, plan diversity and average plan cost.

Diversitystability(⇧) =

P
⇡i,⇡j2⇧,i 6=j

[1� simJaccard(⇡i,⇡j)]

|⇧|⇥ (|⇧|� 1)
(2)

Diversityuniqueness(⇧) =

P
⇡i,⇡j2⇧,i 6=j

⇢
0 if ⇡i \ ⇡j = ;
1 otherwise

|⇧|⇥ (|⇧|� 1)
(3)

4.1 Experiment Results
We use a family of malware detection planning problems de-
scribed in [Sohrabi et al., 2013]. We varied the size of the
problem by changing the number of observations, with Mal-
ware2 problem also supporting more system states. All plan-
ning problems share a planning domain description contain-
ing 6 actions and 8 predicates. In this domain, low costs were
assigned to actions used in perfect explanations of observa-
tions, and high costs to actions representing exceptions, such
as unexplained observations or state transitions without ob-
servations. For the attack graph model we are using the ap-
proach discussed in domain model section.

Table 1 summarizes the experiment results with two do-
main models. In all experiments we used a dual 16-core
2.70 GHz Intel(R) Xeon(R) E5-2680 processor with 256 GB
RAM.The results presented in each row, corresponding to a
planning domain. For Malware domains, the results are aver-
ages over 5 instances of each size. We have terminated plan-
ners after the time limit of 30 minutes was reached.

We compare the performance to two planning systems,
LPG-d [Nguyen et al., 2012] and Div [Roberts et al., 2014],
with our system that combines top-k and clustering.For both
planners we have set the number of plans to 10, with the intent
to produce a small number of attack scenarios to review.

The column Time in Table 1 contains planning time in sec-
onds. The #Plans column contains the number of plans pro-
duced. The Cost column is the average cost of those plans.
The D column is the average Diversitystability(⇧), and the U
column is the average Diversityuniqueness(⇧). The closer these
two diversity metrics are to 1, the more different are the plans.

We have selected LPG-d because it creates plans that max-
imize diversity, and that was confirmed by our experiments.
Even though we have set parameter d to 0.1, to be equal to ✓
for our clustering algorithm, Diversitystability(⇧) is above 0.8
in all experiments for this planner.

Div places greater emphasis on plan cost, and indeed aver-
age plan cost is lower than for LPG-d. However it sometimes
produces multiple copies of the same plan, resulting in very
poor diversity metrics. There are no AttackGraph results for
Div, due to a crash without an error message.

The Top-k planner produced 1000 plans, which were later
clustered. The number of clusters is determined by the sim-
ilarity threshold ✓, which was set to a low value 0.1 to en-
sure sufficient number of clusters, further bounded at maxi-
mum 50. It was the only planner that could solve the largest
AttackGraph-2 instance with 4000 vulnerabilities and 1950
hosts. Overall this simple approach performs well in these
domains in terms of planning time, and plan quality, but gen-
erally has lower plan stability metric that measures plan diver-
sity. This is expected since we are trading off plan diversity
for plan quality. In the network application, prioritizing cost is
a desirable property because it eliminates from consideration
attacks that are different from previously considered, but too
inefficient to be carried out in practice. Of course, the qual-
ity and the applicability of the obtained solutions ultimately
depends on knowledge engineering, and specifically on how
action costs map to relevant attacks.

5 Related Work

Generating a plan set rather than just one plan has been
a subject of interest in several recent papers in the con-
text of generating diverse plans (e.g., [Roberts et al., 2014;
Coman and Muñoz-Avila, 2011]). Several plan distance mea-
sures most of which are domain-independent have been pro-
posed to both guide the search and evaluate the set of di-
verse of plans (e.g., [Srivastava et al., 2007; Bryce, 2014]).
Given some partial preferences or multiple dimensions of
quality, such as cost or time, the problem becomes a multi-
objective optimization problem where diverse plans should
form a Pareto-optimal set [Nguyen et al., 2012]. Sroka and
Long 2012 argue that the previous work will not find good-
quality plans as they are more focused on finding diverse
plans since it is “easier to find diverse sets father away from
optimal”. The work we presented in this paper falls in be-
tween. While we are given some notion of quality as mea-
sured by cost, the cost function itself is imperfect, and we are
not given other objective functions besides costs. So finding
one min-cost plan is not enough, nor is finding a diverse set
of plans without taking into consideration the cost function.
Hence, finding a set of diverse low-cost plans is required.

 80

 80

6 Conclusions and Future Work
In this paper we propose to address the plan space explo-
ration problem arising in network security applications by
generating high-quality diverse plans. We find that the exist-
ing work on diverse planning does not address this problem
directly, and we propose a new approach specifically for this
task, by combining top-k planning and plan clustering. Ex-
perimental evaluation shows that our new technique provides
significant improvements in both plan quality and planning
time. Although the primary focus of this work is to facilitate
planning-assisted attack graph exploration carried out by net-
work administrators, the techniques we are using are domain-
independent, and future work may involve studying the ap-
plicability and the potential benefits of this approach in other
applications, as well as integration with network security sys-
tems and evaluation via user studies.

References
[Aljazzar and Leue, 2011] Husain Aljazzar and Stefan Leue.

K*: A heuristic search algorithm for finding the k shortest
paths. Artificial Intelligence, 175(18):2129–2154, Decem-
ber 2011.

[Aslam et al., 2004] J. A. Aslam, E. Pelekhov, and D. Rus.
The Star Clustering Algorithm For Static And Dynamic
Information Organization. Journal of Graph Algorithms
and Applications, 8(1):95–129, 2004.

[Boddy et al., 2005] Mark S. Boddy, Johnathan Gohde,
Thomas Haigh, and Steven A. Harp. Course of action
generation for cyber security using classical planning. In
Proceedings of the 15th International Conference on Au-
tomated Planning and Scheduling (ICAPS), pages 12–21,
2005.

[Bryce, 2014] Daniel Bryce. Landmark-based plan distance
measures for diverse planning. In Proceedings of the
24th International Conference on Automated Planning
and Scheduling (ICAPS), pages 56–64, 2014.

[Coman and Muñoz-Avila, 2011] Alexandra Coman and
Hector Muñoz-Avila. Generating diverse plans using
quantitative and qualitative plan distance metrics. In
Proceedings of the 25th National Conference on Artificial
Intelligence (AAAI), pages 946–951, 2011.

[Eppstein, 1998] David Eppstein. Finding the k shortest
paths. SIAM Journal on Computing, 28(2):652–673, 1998.

[Filippone et al., 2008] M. Filippone, F. Camastra, F. Ma-
sulli, and S. Rovetta. A Survey of Kernel and Spectral
Methods for Clustering. Pattern Recognition, 41(1):176–
190, 2008.

[Fox et al., 2006] Maria Fox, Alfonso Gerevini, Derek Long,
and Ivan Serina. Plan stability: Replanning versus plan re-
pair. In Proceedings of the 16th International Conference
on Automated Planning and Scheduling (ICAPS), pages
212–221, 2006.

[Hassanzadeh and Miller, 2009] Oktie Hassanzadeh and
Renée J. Miller. Creating Probabilistic Databases from
Duplicated Data. VLDB Journal, 18(5):1141–1166, 2009.

[Helmert, 2006] Malte Helmert. The Fast Downward plan-
ning system. Journal of Artificial Intelligence Research,
26:191–246, 2006.

[Hoffman and Pavley, 1959] Walter Hoffman and Richard
Pavley. A method for the solution of the nth best path
problem. Journal of the ACM, 6(4):506–514, 1959.

[Lucngeli et al., 2010] Jorge Lucngeli, Carlos Sarraute, and
Gerardo Richarte. Attack planning in the real world. In
Workshop on Intelligent Security (SecArt 2010), 2010.

[Nguyen et al., 2012] Tuan Anh Nguyen, Minh Binh Do, Al-
fonso Gerevini, Ivan Serina, Biplav Srivastava, and Sub-
barao Kambhampati. Generating diverse plans to handle
unknown and partially known user preferences. Artificial
Intelligence, 190:1–31, 2012.

[Riabov et al., 2014] Anton Riabov, Shirin Sohrabi, and Oc-
tavian Udrea. New algorithms for the top-k planning prob-
lem. In Proceedings of the Scheduling and Planning Appli-
cations woRKshop (SPARK) at the 24th International Con-
ference on Automated Planning and Scheduling (ICAPS),
pages 10–16, 2014.

[Roberts et al., 2011] M. Roberts, A. Howe, I. Ray, M. Ur-
banska, Z. S. Byrne, and J. M. Weidert. Personalized vul-
nerability analysis through automated planning. In Work-
ing Notes of IJCAI 2011, Workshop Security and Artificial
Intelligence (SecArt-11), 2011.

[Roberts et al., 2014] Mark Roberts, Adele E. Howe, and In-
drajit Ray. Evaluating diversity in classical planning. In
Proceedings of the 24th International Conference on Auto-
mated Planning and Scheduling (ICAPS), pages 253–261,
2014.

[Sohrabi et al., 2010] Shirin Sohrabi, Jorge Baier, and Sheila
McIlraith. Diagnosis as planning revisited. In Proceed-
ings of the 12th International Conference on the Principles
of Knowledge Representation and Reasoning (KR), pages
26–36, 2010.

[Sohrabi et al., 2013] Shirin Sohrabi, Octavian Udrea, and
Anton Riabov. Hypothesis exploration for malware detec-
tion using planning. In Proceedings of the 27th National
Conference on Artificial Intelligence (AAAI), pages 883–
889, 2013.

[Srivastava et al., 2007] Biplav Srivastava, Tuan Anh
Nguyen, Alfonso Gerevini, Subbarao Kambhampati,
Minh Binh Do, and Ivan Serina. Domain independent
approaches for finding diverse plans. In Proceedings
of the 20th International Joint Conference on Artificial
Intelligence (IJCAI), pages 2016–2022, 2007.

[Sroka and Long, 2012] Michal Sroka and Derek Long. Ex-
ploring metric sensitivity of planners for generation of
pareto frontiers. In Proceedings of the 6th Starting AI Re-
searchers’ Symposium (STAIRS), pages 306–317, 2012.

[Xu and Wunsch, 2005] R. Xu and I. Wunsch. Survey of
Clustering Algorithms. IEEE Transactions on Neural Net-
works, 16(3):645–678, 2005.

 81

 81

Using Operations Scheduling to Optimize Constellation Design

Steve Schaffer, Andrew Branch, Steve Chien, Stephen Broschart, Sonia Hernandez,
Konstantin Belov, Joseph Lazio, Loren Clare, Philip Tsao, Julie Castillo-Rogez, E. Jay Wyatt

Jet Propulsion Laboratory, California Institute of Technology
Pasadena, CA, 91109-8099

firstname.lastname@jpl.nasa.gov

Abstract
Space mission design is a challenging task. Many factors
combine to influence overall mission return, and it is ex-
tremely difficult a priori to predict which factors in concert
will most influence mission return. These challenges are
even greater for constellation missions, in which a potentially
large number of spacecraft are used in concert to achieve mis-
sion goals, because constellations have additional design
choices of number of spacecraft, orbit combinations, and con-
stellation topology.
 We describe efforts to use automated operations schedul-
ing to assist in the design and analysis of a family of radio
science constellation missions. Specifically, we work to pro-
duce a model-based approach to evaluating mission return
based on key design variables of: target catalogue selection,
constellation topology, size of the science constellation, size
of the relay support network, orbit mix, communications ca-
pability, communications strategy, ground station configura-
tion, onboard processing and compression, onboard storage,
and other elements of operations concept.
 In our design methodology, choices on the design dimen-
sions are evaluated by producing mission plans using auto-
mated scheduling technology and these resultant plans are
evaluated for science return. By this approach we intend to
enable evaluation of large numbers of mission configurations
(literally 106 configurations) with manual assessment of only
a small number of the best of these configurations.

 Introduction
Space mission design involves concurrent engineering on
multiple disciplinary fronts in an effort to produce an overall
configuration of spacecraft, orbit, and operations concept, to
best achieve overall science objectives.
 One of the challenges in space mission design is correctly
accounting for a large number of design dimensions that
may interact in subtle and hard to predict ways. We address
this difficulty by adopting an operations-based approach to
evaluating mission designs. We in effect partially simulate
the missions, applying any and all operations constraints we

Copyright © 2016 California Institute of Technology. Government spon-
sorship acknowledged.

can to derive results as realistic as possible. We then char-
acterize the science measurements possible and use these as
a proxy for mission return. By performing these simulations
and calculations, we hope to estimate mission return and
therefore enable devoting resources to the most promising
early mission designs.
 We investigate the use of this approach in the context of
a large scale constellation to perform low frequency radio
science measurements. Such a constellation would be
placed well beyond Earth orbit – potential locations would
be Lagrange points, Earth trailing, or a lunar orbit. Figure 1
shows a screen snapshot of a Cosmographia [NAIF] visual-
ization of a constellation in a lunar orbit. This would enable
the constellation to measure signals from beyond the inter-
ference of the Earth’s ionosphere which restricts Earth-
based arrays. The constellation would consist of a number
of spacecraft: 16-128 spacecraft constitute a design range
under study. Because the purpose of using multiple space-
craft is to synthesize a signal as if measured by a larger vir-
tual antenna, ideally the spacecraft would be spread out at a
range of distances from each other (from several km to sev-
eral 1000 km) in a diverse spatial distribution. This disper-
sion presents challenges for communications – as commu-
nications rates decline with the square of the distance. Ad-
ditionally – ground-based antenna arrays use antennae each
of which weighs many tons and produces a Gigabit of data
per second. In order for this constellation to be feasible the
launch mass must be reduced to small spacecraft (< 10 kg
per spacecraft) to reduce the expense of the mission. Addi-
tionally, the data volume must be reduced in order to be
brought back to the Earth – bringing back 128 Gb/s from
lunar orbit would require an extremely powerful communi-
cations setup and small spacecraft have very limited power.
 In this paper we discuss the high level approach of the
design process, the design dimensions of the constellation

 82

 82

mission, the details of our implementation, and some pre-
liminary results.

Figure 1: Cosmographia visualization of constellation of
spacecraft in lunar orbit.

Mission Design
We formulate of the mission design problem is as follows.

Set of mission design dimensions:
 D1…Di
For each design dimension Dj there are a set of k alterna-
tives:
 Dj,1…Dj,k

Indeed there can be a continuous range of alternatives, for
simplicity we restrict to finite discrete alternatives here.
 A mission design can therefore be a choice of a single al-
ternative for each of the design dimensions:

Dproposed = <D1,a, D2,b, D3,c … DM,m>

We also presume a set of mission constraints:

 C1…Co where Cj(Deval) à {True, False}

 We also presume a mission score function F(Deval) à in-
teger.

The goal of the mission design process is to determine a mis-
sion design:
 Dgood = < D1,a, D2,b, D3,c … DM,m >

 Such that Forall constraints Ci=1…Ci=o Ci(Dgood) = TRUE

 (e.g. the mission passes all of the constraints)

and F(Deval) is maximized.

Generate and Test Operations Evaluation-based
Mission Design
Our overall approach is to enumerate a large proportion of
the design space by enumerating a large number of design
vectors (e.g. the design vectors Dgood listed above). For each
of these candidate designs that satisfies all mission con-
straints C1…Ci, we automatically construct an operations
model for the mission design and the use this operations
model to generate a mission plan for the mission. This mis-
sion plan is automatically scored to estimate the F(Deval).
 Figure 2 below shows the flow of this general approach.

Figure 2: Generate and Test approach to spacecraft de-
sign configuration and operations analysis.

Dimensions of Constellation Mission Design
Study

We now describe a number of the design dimensions we are
analyzing in our constellation mission design study. These
dimensions represent set D in the problem formulation.

Constellation Topology
One key aspect of constellation design is constellation to-
pology. One possible configuration is that all of the space-
craft do not directly interact in operations and each directly
transmits its data to ground communications stations. An-

 83

 83

other configuration uses one or more “mother ships” com-
municating with a larger number of daughter ships. In this
setup commands are uplinked to a mother ship and relayed
on to the daughter ships. Similarly, science and engineering
data is cross linked from the daughter ships to a mother ship
and then downlinked to Earth-based ground communica-
tions stations. This “star” configuration has the advantage
that the mother ship relays can be higher powered and there-
fore more suited to the longer distance communication to the
Earth. Additionally, the mother ship can be placed into an
orbit advantageous for communications to Earth, whereas
the daughter ships can be placed into orbits advantageous
for science. The constellation topology also interacts with
the sizing of the spacecraft onboard storage (e.g. solid state
recorder). In a peer-based constellation the individual sci-
ence craft must have significant SSR storage. In a star to-
pology this storage can be concentrated at the mother
ship(s).

Antenna Synthesis
As we are studying a radio science constellation, the primary
science driver is the quality of radio antenna that can be syn-
thesized. This quality is driven by several factors: antenna
pattern coverage, individual antenna design and perfor-
mance, and integration time.
 Antenna pattern coverage for distributed antennae has
been studied previously, mostly in the context of ground-
based radio science arrays [Keto 1997, Boone 2001, Boone
2002]. In short, a good antenna pattern provides uniform
coverage over a range of baseline lengths and orientations
where a pairwise baseline length is the planar projective dis-
tance between the two receivers (e.g. spacecraft) and the ori-
entation is the relative orientation of that baseline (all rela-
tive to the target).

Data Generation and Representation
The radio science measurements being made represent in-
credibly large amounts of raw data in a natural uncom-
pressed format. For the low frequency measurement con-
stellation we are studying, sampling and storing the data in
the 30MHz regime (twice the frequency of interest) acquired
at 12 bit resolution per sample at two polarizations results in
a raw data rate of 0.7 x 109 bits per second per spacecraft of
science data. A number of other measurements and storage
options are possible at a potential reduction in science.
These options are listed below. For each of these opera-
tional scenarios we evaluate the potential constellation re-
turn in terms of length, number, and qualities of science
measurements possible.

Type of Data Acquired Data Volume (bits/second)
(2 polarizations, per s/c)

12bCC 0.7 x 109
12bPPCC 12 x 106
3bCC 180 x 106
3bPPCC 3 x 106
1bCC 60 x 106
1bPPCC 1 x 106
12bFx2ms 0.343 x 106

Orbit Selection and Design
The orbit of the spacecraft comprising the constellation
drives many of the constellation performance factors. The
orbit drives the antenna pattern coverage and therefore a
good proportion of the science quality. A good combination
of orbits will provide a good variation of baselines and ori-
entations to provide good science.
 Orbit selection also significantly affects communications.
Communications data rate is proportional to d-2 where d is
the distance between the two points in communications.
Also occlusions by spacecraft or the moon can prevent com-
munications. In a star mothership topology, the orbits dic-
tate the cross link distance each spacecraft must communi-
cate to the mother ship(s). The mothership orbit may be oc-
cluded from the Earth by the moon so we also analyze the
coverage (visibility) of the mother ship(s) from the three
Deep Space Network ground station locations: Canberra,
Goldstone, and Madrid.

Spacecraft Design
Spacecraft design influences mission return in many ways.
For the mothership relays, their communication capability is
directly related to their power capability. Additionally, the
mothership design may have one or multiple cross link an-
tennae – each cross link antenna may be able to simultane-
ously receive a signal from a science spacecraft. There may
however be a geometric constraint on the two cross linking
spacecraft. Also, whether the mothership can crosslink and
downlink to earth simultaneously is a major factor. As is
the onboard solid state recorder capacity of the mothership
(or each mothership if there are more than one).
 The science spacecraft capabilities also will vary. Can
each acquire science data and cross link simultaneously?
How much power is available to cross link (affecting data
rate)? How much onboard storage does each science craft
have?
 Additionally, for both the mother ship and science craft,
what are the onboard maintenance activities that need to be
performed and how will they impact science return?

 84

 84

Operations Planning
Once we have determined the above elements of the mis-

sion design we drive the design process using operations
planning. The idea is that the operations model can be used
to derive an estimate of the overall science return of the con-
figuration.
 Each full set of candidate design choices are semi-auto-
matically encoded into separate domain models for the AS-
PEN/CASPER planning system [Chien et al. 2000a, 2000b].
ASPEN is a timeline-based scheduling framework that al-
lows for operations, spacecraft, science, and other con-
straints to be incorporated in an automated scheduling envi-
ronment.
 The automatic scheduling algorithms then generate a pro-
posed mission operations schedule constrained by those
models. Each of the generated mission plans may then be
evaluated for various metrics including science data utility,
remaining resource margins, etc. The combined metrics for
each design choice set can then be compared to select the
best candidate mission designs for further evaluation.

The separate domain models for each point in the design
space each leverage a common core of action/state models
describing the entire space of available mission designs. The
actions available in the common model span the entire con-
stellation: some are executed only on individual science
craft, some only on the mothership(s), and others require
joint simultaneous action by multiple craft. The modeled ac-
tions include: repointing the field of view of the sensor, re-
cording data from the sensor, crosslinking data from a sci-
ence craft to a mothership, downlinking data from the moth-
ership to earth, downlinking data directly from a science
craft to earth, as well as placeholders for intermittently re-
quired engineering activities. These actions make use of var-
ious modeled states and resources: the visibility of each sci-
ence target, the interferometry baseline utility of each obser-
vation window, the number of receivers on the mothership,
the visibility of earth ground stations, the bandwidth of each
communication link, power generation rate, remaining bat-
tery reserves, and so on.

Each complete set of concrete design choices then im-
poses additional constraints on the common base model. For
example, the choice of sensor changes the field of view and
scientific utility of observations, the choice of data storage
device changes the available storage space and required
power, and the selected transmitter power changes the avail-
able data bandwidth. These additional constraint inputs to
the planner are generated from the mission design choices
by a set of scripts dedicated to the task.

The CASPER automated operations planning system then
uses the combined core model and design constraints to gen-
erate a proposed operations plan. CASPER starts from an
empty mission plan and iteratively optimizes it by adding or
removing actions to improve a declared utility function. The

utility function is directly related to the calculated science
utility of the data received at earth, and strongly inversely
related to any mission constraint violations. This guides the
planner to add observation, crosslink, and downlink activi-
ties while also respecting the design limits on view periods,
storage space, bandwidth, power etc. As described earlier,
the calculated utility of the science data is related to the total
observation integration time and how well the selected in-
terferometry baselines cover the space of distances and an-
gles needed to characterize the structure of each radio as-
tronomy target. The final output operations schedule from
the planner includes concrete timed actions for each of the
constellation craft to execute.

Critical to all of this operations planning is the geometric
aspect of the problem. For all of these geometric analyses
we use the SPICE package [Acton 1996]. These analyses
include: spacecraft position and science target position for
antenna analysis, spacecraft and mothership position for
cross link calculations, and mothership and groundstation
position and downlink calculation.

The operations schedule can then be evaluated versus var-
ious metrics that are interesting to the design team. These
metrics represent F(D) in the problem definition. Foremost
among these will be the overall predicted utility of the re-
turned science data, as calculated by the planner’s own util-
ity function. Each of the component metrics of baseline cov-
erage, integration time, target coverage is also reported for
comparative consideration by the design team. Additional
metrics such as excess unused capacity on some resources
(e.g. unused power or bandwidth) are also reported to help
inform which parts of each design may be over-engineered
and which are the bottlenecks during actual operations.

Implementation
We are currently in early prototyping of our overall de-

sign evaluation system. The overall data flow of our proto-
type is shown below in Figure 3.

Figure 3: Design Operations Evaluation System Ar-
chitecture

 85

 85

The overall range of design alternatives is described in an

input file. This input file is used to semi-automatically gen-
erate a set of ASPEN models. Also input is a list of science
targets for evaluation and a set of candidate orbits. These
are analyzed by a separate code module which computes the
antenna coverage pattern and baselines at each point in time
for each target if the orbit were to be used and the relevant
target were under observations.

 In a run for each constellation configuration, ASPEN pro-
duces a plan as well as ancillary operations timelines. These
indicate which spacecraft are observing which target at each
point in time as well as the communications transfers re-
quired to return the data to Earth ground stations. This in-
formation can be used to analyze the operations perfor-
mance of the constellation configuration and also the opera-
tions can be visualized within Cosmographia. For example,
we can directly observe the state of the science spacecraft
solid state recorders, or of the mothership relay solid state
recorders. If these are constantly at capacity, we might infer
that the bottleneck is the communications rates for either the
cross link or the mothership to Earth.

The above architecture is in the process of being imple-
mented and has already revealed some preliminary results
which are being investigated further. Specifically, as we add
more science spacecraft to the constellation, the number of
independent measurements goes up linearly – so that the sig-
nal to noise improves linearly. However, addition of a
spacecraft increases the number of pairwise observation
baselines by n, for n spacecraft, i.e. the number of pairwise
baselines increases as n2 with the number of spacecraft.
Therefore, we might expect the antenna coverage ratio to in-
crease with the square of the number of spacecraft. How-
ever preliminary runs indicate that it is hard to realize even
a linear increase in antenna coverage due to most orbits
simply repeat coverage of already existing baselines (in dis-
tance and orientation) (Figure 4 below). As shown in this
analysis, increases in the number of spacecraft show even
declining (sub linear) increase in the antenna coverage pat-
tern. However, this represents only initial results and much
further study is needed. Figure 4 shows the antenna cover-
age ratio as random spacecraft from the orbits shown in Fig-
ure 1 are added to the constellation for 512 r bins x 512 theta
bins (not equal area bins) computed over one repeat orbit
cycles (about 8 hours 40 minutes) with a step size of 1 se-
cond theta range 0-110 degrees, and r range from 0 to 700
km.

Figure 4: Plot for antenna coverage as a function of number
of spacecraft

Related and Future Work
FRACSAT [Do et al 2013] uses forward state space search
planning to generate all possible feasible configurations in a
constellation design space. This approach is directly rele-
vant to the first part of our methodology, i.e. generation of
feasible alternatives to then simulate operations. While we
currently use a hard coded approach for this phase, the
FRACSAT approach is quite promising to explore and is an
excellent area for future work. Also coming out of the F6
program (like FRACSAT), the work by Cornford [Cornford
et al. 2012] considers more trades in the project management
aspect of the design space such as when to commit to a cer-
tain design option or family of options.
 The work described in this paper can be considered a con-
tinuing evolution of the planning for mission design ap-
proach previously described in [Knight et al. 2012] applied
to the Desdyni mission (now called NI-SAR) and previously
applied to SIM mission design [Smith et al. 2000], Europa
mission Design [Rabideau et al. 2015] and Pluto Fast Flyby
Misson Design [Sherwood et al. 1997]. In this approach,
operations plans are generated for a range of mission con-
figurations and these plans are evaluated with respect to mis-
sion objectives. Work on analyzing the BepiColumbo data
management and downlink [DelaFuente et al. 2015] using
automated downlink scheduling techniques can also be con-
sidered in the same approach – specifically using automated
operations techniques to analyze and predict possible sys-
tem performance prior to operations.
 Work by Fukunaga [Fukunaga et al. 1997] also addresses
automation of spacecraft design. This work also searches in
the design space and simulates to evaluate mission perfor-
mance. However, this approach does not use any planning
or scheduling based operations model.
 There are many areas of future work – this paper only de-
scribes very preliminary efforts towards operations-based

 86

 86

constellation design analysis. First, all of the models used
thus far are quite primitive – using more refined accurate
models would result in better results. Second, intelligent ex-
ploration of the design space rather than brute force sparse
sampling would be much more effective. Third, we could
introduce stochasticity in the operations model to evaluate a
designs robustness to a wider range of scenarios. This sto-
chasticity could represent either a wider range of operating
scenarios or robustness to execution uncertainties.

Conclusions
We have presented preliminary work in using an opera-

tion-based planning model to evaluate design configurations
for a radio science constellation mission concept. In this ap-
proach we enumerate a number of design alternatives, semi
automatically generate operations models for each of these
design alternatives, and use these operations models to gen-
erate baseline operations plans. These operations plan can
then be analyzed to evaluate the constellation designs. This
software prototype is in very preliminary stages and still un-
dergoing evolution.

Acknowledgements
Portions of this work were performed by the Jet Propulsion
Laboratory, California Institute of Technology, under con-
tract with the National Aeronautics and Space Administra-
tion.

References
Acton, C.H.; "Ancillary Data Services of NASA's Navigation and
Ancillary Information Facility;" Planetary and Space Science, Vol.
44, No. 1, pp. 65-70, 1996.
 Boone F. Interferometric array design: Optimizing the locations
of the antenna pads. Astronomy & Astrophysics. 2001 Oct
1;377(1):368-76.
 Boone F. Interferometric array design: Distributions of Fourier
samples for imaging. Astronomy & Astrophysics. 2002 May
1;386(3):1160-71.
 Chien S, Rabideau G, Knight R, Sherwood R, Engelhardt B,
Mutz D, Estlin T, Smith B, Fisher F, Barrett T, Stebbins G. Aspen–
automated planning and scheduling for space mission operations.
InSpace Ops 2000 June, Toulouse, France, AIAA.
 Chien S A, Knight R, Stechert A, Sherwood R, Rabideau G. Us-
ing Iterative Repair to Improve the Responsiveness of Planning
and Scheduling. In Artificial Intelligence Planning Systems, 2000
Apr (pp. 300-307), AAAI Press.
 Cornford S, Shishko R, Wall S, Cole B, Jenkins S, Rouquette N,
Dubos G, Ryan T, Zarifian P, Durham B. Evaluating a Fractionated
Spacecraft system: A business case tool for DARPA's F6 program.

In Aerospace Conference, 2012 IEEE 2012 Mar 3 (pp. 1-20).
IEEE.
 S. de la Fuente, N. Policella, S. Fratini, J. McAuliffe, “Bepi-
Colombo Science Data Storage and Downlink Optimization Tool,”
Intl Workshop on Planning and Scheduling for Space, Buenos
Aires, Argentina, July 2015.
 Do M, Feather M, Garcia D, Hicks K, Huang E, Kluck D,
Mackey R, Nguyen T, Shah J, Stylianos Y, Tikidjian R. Synthesiz-
ing Fractionated Spacecraft Designs as a Planning Problem. Sched-
uling and Planning Applications workshop, Intl Conf on Planning
and Scheduling, Rome , Italy, 2013.

A. Fukunaga, S. Chien, R. Sherwood D. Mutz, and A. Stechert.
Automating the process of optimization in spacecraft design. In
Proc. of Aerospace Conference, volume 4, pages 411–427, 1997.

E. Keto, The shapes of cross-correlation interferometers. The
Astrophysical Journal. 1997 Feb 1;475(2):843.
 R. Knight, D. McLaren, and S. Hu. Planning coverage cam-
paigns for mission design and analysis: clasp for the proposed
desdyni mission. In Proc. of Intl Symposium on Artificial Intelli-
gence, Robotics, and Automation for Space, 2012.
 Navigation ancillary information facility, Jet Propulsion Labor-
atory, California Institute of Technology,
http://naif.jpl.nasa.gov/naif/cosmographia.html
 G. Rabideau, S. Chien, E. Ferguson, Using Automated Sched-
uling for Mission Analysis and a Case Study Using the Europa
Clipper Mission Concept. International Workshop on Planning and
Scheduling for Space, (IWPSS 2015). Buenos Aires, Argen-
tina. July 2015
 R. Sherwood, S. Chien, G. Rabideau, T. Mann, Design for X
(DFX) Operations Characteristic Spacecraft Design Analysis, In-
ternational Workshop on Planning and Scheduling for Space 1997,
Oxnard, CA.
 B. Smith, B. Engelhardt, R. Knight, and D. Mutz. Automated
planning for spacecraft and mission design. In Proc. of 3rd Inter-
national Symposium on Intelligent Automation and Control, 2000.

 87

 87

Constructing Plan Trees for Simulated Penetration Testing

Dorin Shmaryahu and Guy Shani

Information Systems Engineering
Ben Gurion University, Israel

Joerg Hoffmann and Marcel Steinmetz

Department of Computer Science
Saarland University, Germany

Abstract

Penetration Testing (pentesting), where network admin-
istrators automatically attack their own network to iden-
tify and fix their vulnerabilities, has recently received
attention from the AI community. Smart algorithms that
can identify robust and efficient attack plans can imi-
tate human hackers better than simple protocols. Cur-
rent classical planning methods for pentesting model
poorly the real world, where the attacker has only partial
information concerning the network. On the other hand
POMDP-based approaches provide a strong model, but
fail to scale up to reasonable model sizes. In this paper
we offer a more realistic model of the problem, allowing
for partial observability and non-deterministic action ef-
fects, by modeling pentesting as a partially observable
contingent problem. We suggest several optimization
criteria, including worst case, best case, and fault toler-
ance. We experiment with benchmark networks, show-
ing contingent planning to scale up to large networks.

1 Introduction
Penetration testing (pentesting) is a popular technique for
identifying vulnerabilities in networks, by launching con-
trolled attacks (Burns et al. 2007). A successful, or even
a partially successful attack reveals weaknesses in the net-
work, and allows the network administrators to remedy these
weaknesses. Such attacks typically begin at one entrance
point, and advance from one machine to another, through the
network connections. For each attacked machine a series of
known exploits is attempted, based on the machine configu-
ration, until a successful exploit occurs. Then, this machine
is controlled by the attacker, who can launch new attacks on
connected machines. The attack continues until a machine
inside the secure network is controlled, at which point the
attacker can access data stored inside the secured network,
or damage the network.

In automated planning the goal of an agent is to produce
a plan to achieve specific goals, typically minimizing some
performance metric such as overall cost. There are many
variants of single agent automated planning problems, rang-
ing from fully observable, deterministic domains, to par-
tially observable, non-deterministic or stochastic domains.
Automated planning was previously suggested as a tool for
conducting pentesting, exploring the two extreme cases — a

classical planning approach, where all actions are determin-
istic, and the entire network structure and machine configu-
ration are known, and a POMDP approach, where machine
configuration are unknown, but can be noisily sensed, and
action outcomes are stochastic.

The classical planning approach scales well for large net-
works, and has therefore been used in practice for pen-
testing. However, the simplifying assumptions of complete
knowledge and fully deterministic outcomes results in an
overly optimistic attacker point-of-view. It may well be that
a classical-planning attack has a significantly lower cost than
a real attack, identifying vulnerabilities that are unlikely to
be found and exploited by actual attackers.

The POMDP approach on the other hand, models the
problem better, and can be argued to be a valid representa-
tion of the real world. One can model the prior probabilities
of various configurations for each machine as a probability
distribution over possible states, known as a belief. Pinging
actions, designed to reveal configuration properties of ma-
chines are modeled as sensing actions, and a probability dis-
tribution can be defined for the possible failure in pinging a
machine. The success or failure of attempting an exploit over
a machine can be modeled as a stochastic effect of actions.

This approach, however, has two major weaknesses —
first, POMDP solvers do not scale to the required network
size and possible configurations. Second, a POMDP requires
accurate probability distributions for initial belief, sensing
accuracy, and action outcomes. In pentesting, as in many
other applications, it is unclear how the agent can reliably
obtain these distributions. In particular, how to identify an
accurate probability distribution over the possible OS for
the machines in the network? Prior work (Sarraute et al.)
has devised only a first over-simplifying model of ”software
updates”, which the authors admit themselves is not suitable
and may adversely affect the usefulness of the pentesting
result (”garbage in, garbage out”). One might consider re-
search into obtaining better distributions, e.g. by statistics
from data, but this is wide open, and in any case the scala-
bility weakness remains.

A possible simple approach to defining such probabili-
ties is to use a uniform distribution. However, a solution to a
POMDP defined using a uniform distribution can be arbitrar-
ily bad. Consider, for example, a case where there exists a
large set of configurations that are easy to penetrate, such as

 88

 88

a variety of old, unupdated operating systems. All these con-
figurations may be very rare in the network, yet still exist on
some machines, and are hence represented in the model. As-
suming a uniform distribution over possible configurations,
an attacker may believe that these vulnerable configurations
are as frequent as any other configuration, and may hence at-
tempt a long sequence of exploits which will work only for
these faulty configurations. In such a case, the performance
of the agent measured over the uniform POMDP, may be
arbitrarily far from its performance in practice.

As an intermediate model between classical planning and
POMDPs, MDP models of pentesting have been suggested
(Durkota et al. 2015; Hoffmann 2015). These somewhat
simplify the issue of obtaining the probabilities, now cor-
responding to ”success statistics” for exploits. Yet even this
data is not easy to come by in practice, and scalability may
still be problematic given that solving factored MDPs is no-
toriously hard (a thorough empirical investigation has yet to
be conducted).

In this paper we suggest another, different, intermediate
model between classical planning and POMDPs. We replace
the POMDP definition with partially observable contingent
planning, a qualitative model where probability distributions
are replaced with sets of possible configurations or action
effects (Albore et al. 2009; Muise et al. 2014; Komarnitsky
and Shani 2014). Solvers for this type of models scale better
than POMDP solvers, and can be used for more practical
networks. As these models require no probabilities, we avoid
the guesswork inherent in their specification.

Contingent planners attempt to find a plan tree (or graph),
where nodes are labeled by actions, and edges are labeled by
observations. This plan tree is a solution to the problem if all
leaves represent goal states. In pentesting, one is also inter-
ested in finding better attacks, i.e. in ranking the set of possi-
ble plan trees by some measurable quantity. For example, an
attacker may be interested in attacks that, at the worst case,
take no more than a certain amount of time. An important
research question is, hence, to define possible optimization
criteria for attack plan trees. Then, one must design algo-
rithms dedicated to these optimization criteria.

We focus here on the first question — possible optimiza-
tion criteria for ranking contingent plan trees. We suggest a
number of such criteria, including best and worst case, bud-
get constrained plans, and fault-tolerant planning (Domshlak
2001). We also consider deadends, which arise in pentesting
as some machine configurations cannot be penetrated, leav-
ing no opportunity to the attacker to reach its goal. We dis-
cuss how to define and compare contingent plans under such
unavoidable deadends.

We demonstrate empirically that different heuristics pro-
duce different plan trees, and that these plan trees can
be compared using our optimization criteria, to prefer one
heuristic over another. We leave the construction of optimal
and approximate contingent planners for future research.

2 Networks and Pentesting
We begin by providing a short background on pentesting.

We can model networks as directed graphs whose vertices
are a set M of machines, and edges representing connections

between pairs of m 2 M . Like previous work in the area,
we assume below that the attacker knows the structure of the
network. But this assumption can be easily removed in our
approach. We can add sensing actions that test the outgoing
edges from a controlled host to identify its immediate neigh-
bors. From an optimization prespective, though, not know-
ing anything about the network structure, makes it difficult
to create smart attacks, and the attacker is forced to blindly
tread into the network. It might well be that some partial in-
formation concerning the network structure is known to the
attacker, while additional information must be sensed. We
leave discussion of interesting forms of partial knowledge to
future work.

Each machine in the network can have a different configu-
ration representing its hardware, operating system, installed
updates and service packs, installed software, and so forth.
The network configuration is the set of all machine configu-
rations in the network.

Machine configuration may be revealed using sensing
techniques. For example, if a certain series of 4 TCP re-
quests are sent at exact time intervals to a target machine,
the responses of the target machine vary between different
versions of Windows (Lyon 2009). In many cases several
different such methods must be combined to identify the op-
erating system. Sending such seemingly innocent requests
to a machine to identify its configuration is known as fin-
gerprinting. Not all the properties of a target machine can
be identified. For example, one may determine that a certain
machine runs Windows XP, but not which security update is
installed.

Many configurations have vulnerabilities that can be ex-
ploited to gain control over the machine, but these vulnera-
bilities vary between configurations. Thus, to control a ma-
chine, one first pings it to identify some configuration prop-
erties, and based on these properties attempts several appro-
priate exploits. As the attacker cannot fully observe the con-
figuration, these exploits may succeed, giving the attacker
full control of the target machine, or fail as some unde-
tectable configuration property made this exploit useless.

The objective of penetration testing (pentesting) is to gain
control over certain machines that possess critical content
in the network. We say that a machine m is controlled if it
has already been hacked into, and the attacker can use it to
fingerprint and attack other machines. A reached machine m
is connected to a controlled machine. All other machines are
not reached. We assume that the attacker starts controlling
the internet, and all machines that are directly connected to
the internet are reached.

We will use the following (small but real-life) situation as
an illustrative example (Sarraute et al.):
Example 2.1. The attacker has already hacked into a ma-
chine m0, and now wishes to attack a reached machine m.
The attacker may try one of two exploits: SA, the “Syman-
tec Rtvscan buffer overflow exploit”; and CAU, the “CA
Unicenter message queuing exploit”. SA targets a particu-
lar version of “Symantec Antivirus”, that usually listens on
port 2967. CAU targets a particular version of “CA Unicen-
ter”, that usually listens on port 6668. Both work only if
a protection mechanism called DEP (“Data Execution Pre-

 89

 89

vention”) is disabled. The attacker cannot directly observe
whether DEP is enabled or not.

If SA fails, then it is likely that CAU will fail as well
because DEP is enabled. Hence, upon observing the result
of the SA exploit, the attacker learns whether DEP is en-
abled. The attacker is then better off trying other exploits
else. Achieving such behavior requires the attack plan to
observe the outcomes of actions, and to react accordingly.
Classical planning which assumes perfect world knowledge
at planning time cannot model such behaviors.

3 Contingent Planning Model and Language
A contingent planning problem is a tuple <
P,A

act

, A
sense

,�
I

, G >, where P is a set of proposi-
tions, A

act

is a set of actuation actions, and A
sense

is a
set of sensing actions. An actuation action is defined by a
set of preconditions — propositions that must hold prior
to executing the actions, and effects — propositions that
hold after executing the action. Sensing actions also have
preconditions, but instead of effects they reveal the value
of a set of propositions. �

I

is a propositional formula
describing the set of initially possible states. G ⇢ P is a set
of goal propositions.

In our pentesting application, P contains propositions for
describing machine configuration, such as OS(m

i

, winxp),
denoting that machine m

i

runs the OS Windows XP. Sim-
ilarly, SW (m

i

, IIS) represents the existence of the soft-
ware IIS on machine m

i

. In addition, the proposition
controlling(m

i

) denotes that the attacker currently controls
m

i

, and the proposition hacl(m
i

,m
j

, p) denotes that ma-
chine m

i

is directly connected to machine m
j

through port
p.

The set A
sense

in our pentesting model represents the
set of possible queries that one machine can launch on
another, directly connected machine, pinging it for vari-
ous properties, such as its OS, software that runs on it,
and so forth. Each such sensing action requires as pre-
condition only that the machines will be connected, and
reveals the value of a specific property. In some cases
there are certain “groups” of operating systems, such as
Windows XP with varying service packs and updates in-
stalled. In this case we can allow one property for the group
(OS(m

i

, winxp)) and another property for the version, such
as (OSV ersion(m

i

, winxp
s

p1)) which may not be observ-
able by the attacker.

The set A
act

in our pentesting model contains all the
possible exploits. We create an action a

e,m

source

,m

target

for each exploit e and a pair of directly connected ma-
chines m

source

, m
target

. If an exploit e is applicable only to
machines running Windows XP, then OS(m

target

, winxp)
would appear in the preconditions. Another precondition is
controlling(m

source

) denoting that the attacker must con-
trol m

source

before launching attacks from it. The effect of
the action can be controlling(m

target

), but we further al-
low the effect to depend on some hidden property p that
cannot be sensed. This is modeled by a conditional effect
hp, controlling(m

target

)i denoting that if property p exists
on m

target

than following the action the attacker controls
m

target

.

Belief states in contingent planning are sets of pos-
sible states, and can often be compactly represented
by logic formulas. The initial belief formula �

I

rep-
resents the knowledge of the attacker over the pos-
sible configurations of each machine. For example
oneof(OS(m

i

, winxp), OS(m
i

, winnt4), OS(m
i

, win7))
states that the possible operating systems for machine m

i

are Windows XP, Windows NT4, and Windows 7.
Like Sarraute et al., we assume no non-determinism, i.e.,

if all properties of a configuration are known, then we can
predict deterministically whether an exploit will succeed.
We do allow for non-observable properties, such as the ser-
vice pack installed for the specific operating system. We sup-
port actions for sensing whether an exploit has succeeded.
Hence, observing the result of an exploit action reveals in-
formation concerning these hidden properties.

Example 3.1. We illustrate the above ideas using a very
small example, written in a PDDL-like language for describ-
ing contingent problems (Albore et al. 2009).

We use propositions to describe the various properties of
the machines and the network. For example, the predicate
(hacl ?m1 ?m2) specifies whether machine m1 is connected
to machine m2, and the predicate (HostOS ?m ?o) specifies
whether machine m runs OS o. While in this simple example
we observe the specific OS, we could separate OS type and
edition (say, Windows NT4 is the type, while Server or En-
terprise is the edition). We can then allow different sensing
actions for type and edition, or allow only sensing of type
while edition cannot be directly sensed.

We define actions for pinging certain properties. For ex-
ample, the ping-os action:

(: a c t i o n ping�os
: p a r a m e t e r s (? s r c � h o s t ? t a r g e t � h o s t ? o � os)
: p r e c o n d i t i o n (and (h a c l ? s r c ? t a r g e t)

(c o n t r o l l i n g ? s r c)
(n o t (c o n t r o l l i n g ? t a r g e t))

: o b s e r v e (HostOS ? t a r g e t ? o)
)

allows an attacker that controls host s connected to an un-
controlled host t, to ping it to identify whether it’s OS is o.
We allow for a similar ping action for installed software.

The exploit action attempts to attack a machine exploiting
a specific vulnerability:

(: a c t i o n e x p l o i t
: p a r a m e t e r s (? s r c � h o s t ? t a r g e t � h o s t ? o � os ?sw � sw

? v � vu ln)
: p r e c o n d i t i o n (and (h a c l ? s r c ? t a r g e t)

(c o n t r o l l i n g ? s r c)
(n o t (c o n t r o l l i n g ? t a r g e t))
(HostOS ? t a r g e t ? o)
(HostSW ? t a r g e t ?sw)
(Match ? o ?sw ? v))

: e f f e c t (when (E x i s t V u l n ? v ? t a r g e t) (c o n t r o l l i n g ? t a r g e t))
)

The preconditions specify that the machines must be con-
nected, that the OS is o and the software sw is installed, and
that the vulnerability v which we intend to exploit matches
the specific OS and software.

 90

 90

The success of the exploit depends on whether the vul-
nerability exists on the target machine, which manifests
in the conditional effect. The attacker cannot directly ob-
serve whether a specific vulnerability exists, but can use the
CheckControl action to check whether the exploit has suc-
ceeded:

(: a c t i o n CheckCon t ro l
: p a r a m e t e r s (? s r c � h o s t ? t a r g e t � h o s t)
: p r e c o n d i t i o n (and (h a c l ? s r c ? t a r g e t ? p)

(c o n t r o l l i n g ? s r c))
: o b s e r v e (c o n t r o l l i n g ? t a r g e t)

)

The initial state of the problem describes the knowledge
of the attacker prior to launching an attack:

(: i n i t
1 : (c o n t r o l l i n g i n t e r n e t)
2 : (h a c l i n t e r n e t h o s t 0)

(h a c l i n t e r n e t h o s t 1)
(h a c l h o s t 1 h o s t 2)
(h a c l h o s t 0 h o s t 2)
. . .

3 : (oneof (HostOS h o s t 0 winNT4ser) (HostOS h o s t 0 winNT4ent))
(oneof (HostOS h o s t 1 win7en t) (HostOS h o s t 1 winNT4ent))
. . .

4 : (oneof (HostSW h o s t 0 I I S 4) (HostSW h o s t 1 I I S 4))
. . .

5 : (Match winNT4ser I I S 4 vu ln1)
. . .

6 : (o r (E x i s t V u l n vu ln1 h o s t 0) (E x i s t V u l n vu ln2 h o s t 0))
. . .

)

We state that initially the attacker controls the “internet”
only (part 1). In this case the structure of the network is
known, described by the hacl statements (part 2). Then, we
describe which operating systems are possible for each of
the hosts (part 3). Below, we specify that either host0 or
host1 are running the software IIS (part 4). We describe
which vulnerability is relevant to a certain OS-software pair
(part 5), and then describe which vulnerabilities exit on the
various hosts (part 6).

The above specification may allow for a configuration
where no vulnerability exists on a host (machine) that
matches the host OS and software. Hence, none of the ex-
ploits will work for that specific host.

4 Plan Trees and Optimization Criteria
We now formally define solutions to a contingent planning
problem. We discuss deadends that arise in pentesting, and
then turn our attention to a discussion of optimization crite-
ria.

4.1 Contingent Plan Trees
A solution to a contingent planning problem is a plan tree,
where nodes are labeled by actions. A node labeled by an
actuation action will have only a single child, and a node la-
beled by an observation action will have multiple children,
and each outgoing edge to a child will be labeled by a pos-
sible observation.

An action a is applicable in belief state b, if for all s 2 b,
s |= pre(a). The belief state b0 resulting from the execu-
tion of a in b is denoted a(b). We denote the execution of
a sequence of actions an1 =< a1, a2, ..., an > starting from
belief state b by an1 (b). Such an execution is valid if for all i,
a
i

is applicable in ai�1
1 (b).

Plan trees can often be represented more compactly as
plan graphs (Komarnitsky and Shani 2014; Muise et al.
2014), where certain branches are unified. This can lead to
a much more compact representation, and to scaling up to
larger domains. Still, for ease of exposition, we discuss be-
low plan trees rather than graphs.

In general contingent planning, a plan tree is a solution, if
every branch in the tree from the root to a leaf, labeled by ac-
tions an1 , an1 (bI) |= G. In pentesting, however, it may not be
possible to reach the goal in all cases, because there may be
network configurations from which the target machine sim-
ply cannot be reached. To cater for this, we need to permit
plan trees that contain dead-ends. We define a dead-end to
be a state from which there is no path to the goal, given any
future sequence of observations. That is, any plan tree start-
ing from a dead-end state would not reach the goal in any
of its branches. For example, a dead-end state arises if no
exploit is applicable for the goal machine. It is clearly advis-
able to stop the plan (the attack) at such states. On the other
hand, if a state is not a dead-end, then there still is a chance
to reach the target so the plan/attack should continue.

There is hence need to define contingent plans where
some of the branches may end in dead-ends. A simple so-
lution, customary in probabilistic models, is to introduce a
give-up action which allows to achieve the goal from any
state. Setting the cost of that action (its negative reward)
controls the extent to which the attacker will be persistent,
through the mechanism of expected cost/expected reward.

In a qualitative model like ours, it is not as clear what the
cost of giving up (effectively, of flagging a state as ”dead-
end” and disregarding it) should be. It may be possible to set
this cost high enough to force the plan to give up only on
dead-ends as defined above. But then, the contingent plan-
ner would effectively need to search all contingent plans not
giving up, before being able to give up even once.

We therefore employ here a different approach, allowing
the planner to give-up on s iff it can prove that s is a dead-
end. Such proofs can be lead by classical-planning dead-
end detection methods, like relaxation/abstraction heuristics,
adapted to our context by determinizing the sensing actions,
allowing the dead-end detector to choose the outcome. In
other words, we employ a sufficient criterion to detect dead-
end states, and we make the give-up action applicable only
on such states. As, beneath all dead-ends, eventually the pen-
test will run out of applicable actions, eventually every dead-
end will be detected and the give-up enabled.

In general, this definition would not be enough because
the planner could willfully choose to move into a dead-end,
thereby ”solving” the task by earning the right to give up.
This cannot happen, however, in the pentesting application,
as all dead-ends are unavoidable, in the following sense. Say
N is a node in our plan tree T , and denote by [N] those ini-
tial states from which the execution of T will reach N . If N

 91

 91

is a dead-end, then every I 2 [N] is unsolvable, i.e., there
does not exist any sequence of A

act

actions leading from I
to the goal. In other words, any dead-end the contingent plan
may encounter is, in the pentesting application, inherent in
the initial state. Matters change if we impose a budget limit
on the attack, in which case the dead-ends encountered de-
pend on which decisions are taken. We define an according
plan quality criterion as part of the next subsection.

4.2 Optimization Criteria for Contingent Plans
General contingent planning follows the satisfying planning
criterion, that is, one seeks any solution plan tree. It is possi-
ble, though, to consider cases where one plan tree is prefer-
able to another, and construct algorithms that seek better, or
even the best possible plan tree.

When we assume that the environment is modeled as a
POMDP, and we know all the probability distributions, an
obvious optimization criterion is the expected discounted
reward (or cost) from executing a plan tree in the environ-
ment, and can be estimated by running multiple trials and
computing the average discounted reward (ADR). In this pa-
per, however, we focus on cases where these distributions
are unknown. Without the specified distributions one cannot
accurately estimate expected reward. Any attempt to use a
different distribution, such as a uniform distribution, which
may be arbitrarily far from the true distribution, may result
in quality estimation that is arbitrarily far from reality.

We hence revert to other possible optimization criteria.
Perhaps the most trivial optimization criteria under unknown
probability distributions is the best case scenario, or the
worst case scenario. In the best case scenario we compare
plan trees based on the length of the shortest branch leading
to a goal state. In the worst case scenario we compare the
length of the longest branch leading to a goal state, prefer-
ring plan trees with shorter worst case branches. This may
be somewhat different than the naive definition of a worst
case, as a complete failure is obviously worse (less desir-
able) than a success after a lengthy sequence of actions. In
our case, as the deadends in the plan trees are unavoidable,
the naive worst case — a complete failure — is identical
in all plan trees. We thus choose to ignore branches ending
with deadends when considering worst case analysis.

While well defined, best and worst case optimization may
not be sufficiently expressive. A best case scenario is too op-
timistic, assuming that all attack attempts will be successful.
A worst case scenario is over pessimistic, assuming that all
attack attempts, but the last one, will fail. We would like to
define finer optimization criteria.

Budget Optimization One possible such criterion as-
sumes attacks on a budget — that is, the attacker is allowed
only a certain predefined number of actions (or total cost) in
a branch. When the budget runs out, the attacker is not al-
lowed any additional actions, and hence, a deadend occurs.
Setting a budget prior to attacking seems like a reasonable
requirement from an attacker. For example, if action costs
represent the time it takes for each action, the attacker may
wish to restrict attention only to attacks that require less than
a certain amount of time.

Now, given two plan trees that respect a given budget, we
can compare them on two possible criteria — the best case
scenario and the set of solved network configurations. The
worst case scenario is less interesting here as it will probably
be identical to the budget.

The set of network configurations where the attacker has
reached the goal under the budget is now interesting, be-
cause deadends induced by the budget may well be avoid-
able. That is, one can choose different attack plans, that may
lead to the goal faster and hence will result in less deadends.
However, simply counting the number of network configu-
rations for which the goal has been reached is undesirable
under our qualitative assumptions. For example, it may well
be that plan tree ⌧1 solves only for a single configuration c,
while another plan tree ⌧2 solves for all configurations but
c. Still, it may be that the (unknown) probability of c is 0.9,
making ⌧1 preferable to ⌧2. As we do not know these proba-
bilities, we cannot make such comparisons.

We can hence only declare plan tree ⌧1 to be better than
plan tree ⌧2 if the set of solved configurations of⌧1 is a strict
superset of the set of solved configurations of ⌧2. As contin-
gent planners typically maintain some type of belief over the
set of possible network configurations in each search node,
such computations are feasible. For example, if the belief is
maintained by a logic formula, as we do, then each goal leaf
g has a logic formula �

g

defining the belief at that leaf. We
can check whether

_

g2G(⌧1)

�
g

|=
_

g2G(⌧2)

�
g

(1)

_

g2G(⌧2)

�
g

6|=
_

g2G(⌧1)

�
g

(2)

where G(⌧) is the set of goal leaves in plan tree ⌧ .

Fault Tolerance Optimization Another possible opti-
mization is by extending the ideas of fault-tolerance plan-
ning to pentesting. In fault-tolerance planning (Domshlak
2001), assuming that certain actions may fail with some low
probability, a solution achieves the goal under the assump-
tion that no more than k failures will occur. The underlying
assumption is that the probability of more than k failures
is so small, that we can ignore it. A failure in our case can
be defined in one of two ways — either that we will ping
a machine for a given property (say, OS(m

i

, winxp)) and
receive a negative response. Alternatively, we may declare
a failure only when we attempt an exploit, and it fails to
achieve control of a machine (due to some unobserved prop-
erty).

With that view in mind, we can compare solution plan
trees, focusing only on branches that contain exactly k fail-
ures. As having no more than k failures is an optimistic as-
sumption, it is reasonable to check the worst case under this
optimistic assumption. That is, of the branches of the plan
tree that have the lowest probability that we care about, we
compare the longest branches. Looking at the best case —
the shortest branch when having no more than k failures, is
identical to the overall best case scenario, ignoring failures
all together.

 92

 92

A complementing approach assumes no less than k fail-
ures at each branch. This assumption is more appropriate
where the probability of failure is sufficiently large, such
that the probability of completing a task without any failure
is very low. In such cases, we again compare only branches
with exactly k branches, and as no less than k failures is a
pessimistic assumption, we compare the best case scenario
— the shortest branch with exactly k failures. Again, the
worst case is less interesting as it is identical to the overall
worst case.

5 Empirical Study

Size k Method Shortest Longest
4 h0 8 14
4 h1 13 28
4 0 h0 8 9
4 0 h1 13 18
4 1 h0 11 12
4 1 h1 15 21
4 2 h0 14 14
4 2 h1 17 24
4 3 h0 ⇥ ⇥
4 3 h1 19 26
4 6 h0 ⇥ ⇥
4 6 h1 28 28
8 h0 8 15
8 h1 10 27
8 0 h0 8 8
8 0 h1 10 18
8 1 h0 10 10
8 1 h1 12 20
8 2 h0 12 13
8 2 h1 14 23
8 3 h0 15 15
8 3 h1 17 24
8 6 h0 ⇥ ⇥
8 6 h1 24 28

16 h0 8 12
16 h1 13 22
16 0 h0 8 8
16 0 h1 13 16
16 1 h0 10 10
16 1 h1 15 18
16 2 h0 12 12
16 2 h1 17 20
16 3 h0 ⇥ ⇥
16 3 h1 20 22

Table 1: Comparing the performance of h0 and h1 over fault
tolerance optimization, for varying network sizes (number of
hosts). The first line for each network size is the overall best
and worst case. k denotes the number of failures. In cases
where h0 did not produce k failures in any path, we marked
the entry with ⇥.

We now provide some empirical proof-of-concept for our

optimization criteria. Specifically, we demonstrate that the
criteria we suggest above can be used to differentiate be-
tween various plan trees (graphs), helping us to select a bet-
ter algorithm. We generate a number of networks of vary-
ing sizes using the generator of Hoffman and Steinmetz(Sar-
raute et al. ; Steinmetz et al.).

We use a simple greedy best first contingent planner that
uses a heuristic to determine which state and action to ex-
pand next. In addition, we use a mechanism for detecting
repeated plan tree nodes, converting the plan tree into a plan
graph. We augment this algorithm with a domain specific
deadend detection mechanism, checking whether there is
still a path from the attack source (“the internet”) to the tar-
get host.

We employ several domain specific heuristics, that lever-
age the network graph. We chose the next host to attack
among the hosts closest to the goal host. When choosing
actions, we first ping a host for its operating system, and
then we ping it only for software that, combined with the
observed OS, may have a vulnerability. If a possible vulner-
ability has been detected, we attempt an exploit, followed
by sensing action to check if control was gained over the
attacked host.

This simple heuristic, which we denote h0 proves to be
highly effective for this application, and we manage to pro-
duce attack graphs for networks with 80 hosts and more.
However, as we are interested in generating a variety of plan
trees, we also implemented a variant of the above heuristic
— choosing the next host to attack only (denoted h1). Sadly,
although not surprisingly, h1 scale much worse. We hence
report results on much smaller domains, ranging from 4 to
16 hosts.

We compare these 2 heuristics over the various network
sizes. Table 1 reports the best and worst case in the fault tol-
erance scenario, with different values of k. As can be seen,
the trees vary on the lengths of the shortest and longest path
to the goal. This shows that the fault tolerance optimization
metric can differentiate between different trees. In this spe-
cific case, h0 produced better trees than h1 for all values of
k. We can hence deduce that h0, on top of being much faster,
is also better than h1 for the networks that we experimented
with.

6 Conclusion and Future Work
In this paper we suggest contingent planning as an attrac-
tive option for modeling pentesting. This model allows for
partial observability of various properties, such as a machine
operating system and installed software, that can be sensed
by ping actions. Thus, contingent planning offers a richer
model than classical planning, while being able to scale up
better than POMDP-based approaches.

We focus our attention on defining optimization criteria
that allow the attacker to prefer one attack plan over the
other. We discuss best and worst case, as well as budgeted
attacks and fault tolerance approaches.

We provide some cal validation, showing that different al-
gorithms generate different attack plans, that can be ranked
using our optimization criteria.

 93

 93

An obvious next step on our research agenda is the devel-
opment of contingent planners and heuristics that produce
optimal plans given each optimization criterion, as well as
approximate, scalable algorithms, that produce good, if not
optimal, plans rapidly.
Acknowledgments: We thank the reviewers for their useful
comments. This work was supported by ISF Grant 933/13,
and by the Helmsley Charitable Trust through the Agri-
cultural, Biological and Cognitive Robotics Center of Ben-
Gurion University of the Negev.

References
Alexandre Albore, Héctor Palacios, and Hector Geffner. A
translation-based approach to contingent planning. In IJCAI
2009, Proceedings of the 21st International Joint Confer-
ence on Artificial Intelligence, Pasadena, California, USA,
July 11-17, 2009, pages 1623–1628, 2009.
Burns et al. Security Power Tools. O’Reilly Media, 2007.
Carmel Domshlak. Fault tolerant planning: Complexity and
compilation. volume 22, pages –, 2001.
Karel Durkota, Viliam Lisý, Branislav Bosanský, and
Christopher Kiekintveld. Optimal network security harden-
ing using attack graph games. In Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelli-
gence, IJCAI 2015, Buenos Aires, Argentina, July 25-31,
2015, pages 526–532, 2015.
Jörg Hoffmann. Simulated penetration testing: From ”di-
jkstra” to ”turing test++”. In Proceedings of the Twenty-
Fifth International Conference on Automated Planning and
Scheduling, ICAPS 2015, Jerusalem, Israel, June 7-11,
2015., pages 364–372, 2015.
Radimir Komarnitsky and Guy Shani. Computing contin-
gent plans using online replanning. In Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelligence,
July 27 -31, 2014, Québec City, Québec, Canada., pages
2322–2329, 2014.
Gordon Fyodor Lyon. Nmap network scanning: The official
Nmap project guide to network discovery and security scan-
ning. Insecure, 2009.
Christian J. Muise, Vaishak Belle, and Sheila A. McIl-
raith. Computing contingent plans via fully observable
non-deterministic planning. In Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence, July 27 -
31, 2014, Québec City, Québec, Canada., pages 2322–2329,
2014.
Carlos Sarraute, Olivier Buffet, and Jörg Hoffmann.
POMDPs make better hackers: Accounting for uncertainty
in penetration testing.
Marcel Steinmetz, Jörg Hoffmann, and Olivier Buffet. Re-
visiting goal probability analysis in probabilistic planning.

 94

 94

Prioritization and Oversubscribed Scheduling for
NASA’s Deep Space Network

Caroline Shouraboura*, Mark D. Johnston† and Daniel Tran†
*Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh PA 15213

cshourab @ andrew.cmu.edu

†Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena CA 91109
{mark.d.johnston, daniel.tran} @ jpl.nasa.gov

Abstract
NASA’s Deep Space Network (DSN) is a unique facility re-
sponsible for communication and navigation support for over
forty NASA and international space missions. For many
years, demand on the network has been greater than its ca-
pacity, and so a collaborative negotiation process has been
developed among the network’s users to resolve contention
and come to agreement on the schedule. This process has be-
come strained by increasing demand, to the point that over-
subscription is routinely as high as 40% over actual capacity.
As a result, DSN has started investigating the possibility of
moving to some kind of prioritization scheme to allow for
more automated and timely resolution of network contention.
Other NASA networks have used strict static mission priori-
ties, but if this were applied in the same way to the DSN,
some missions would fall out of the schedule altogether. In
this paper we report on analysis and experimentation with
several approaches to DSN prioritization. Our objectives in-
clude preserving as much of each each mission’s requested
contact time as possible, while allowing them to identify
which of their specific scheduling requests are of greatest im-
portance to them. We have obtained the most promising re-
sults with a variant of Squeaky Wheel Optimization com-
bined with limiting each mission’s input based on historical
negotiated reduction levels.

1. Introduction
NASA’s Deep Space Network (DSN) consists of three com-
munications complexes, located in Goldstone, California;
Madrid, Spain; and Canberra, Australia. Each complex con-
tains one 70-meter antenna and three or four 34-meter an-
tennas. These ground antennas are responsible for commu-
nications and navigation support for a wide range of scien-
tific space missions, from those in highly elliptical earth or-
bits, to some beyond the solar system. In future years, DSN
will also support human missions to the moon and beyond.

Copyright © 2016, California Institute of Technology. Government spon-
sorship acknowledged.

The placement of the three DSN complexes allows at least
one of them to be in view of any distant spacecraft at all
times (Fig. 1); see (Imbriale, 2003).

At this time there are approximately forty missions using
the Deep Space Network. There is a natural cycle of mis-
sions ending and new missions starting up in their prime
mission phase, but the majority of DSN users are in their
extended mission phases. The distinction between prime and
extended missions plays a role in some prioritization sug-
gestions, as will be discussed below.

The DSN has seen an increasing level of oversubscription
in recent years. In 2011/2012 there was roughly 300 hours
per week total difference between initial and final mission
time allocations (how much tracking time was requested vs.
how much could actually be scheduled.) However, in late
2015, this had grown to as much as 500 hours per week, an

Fig. 1: Fields of the view of the DSN complexes, showing
overlapped coverage for distant spacecraft.

 95

 95

increase of over 50% (Fig. 2). To place this in context, the
weekly oversubscription amounts to about 4 additional an-
tennas worth of activities, over and above the 13 actual (34m
and 70m) antennas in the DSN.

 Along with oversubscription, the number of conflicts in
the schedule has also increased. Most conflicts are due to
oversubscribed resources, i.e. antennas or other assets at the
DSN complexes. Resolving these conflicts takes increas-
ingly high levels of human effort, since they are phrased as
irreducible time requirements.

 In the following (Section 2) we first briefly describe the
DSN scheduling process, highlighting where oversubscrip-
tion impacts the scheduling software and processes that gen-
erate and manage DSN schedules. We then describe some
of the factors that come into play in evaluating priority
schemes for the DSN (Section 3). Results of a series of ex-
periments with different algorithms are then presented and

discussed (Section 4), followed by conclusions and direc-
tions for future work (Section 5).

2. DSN Scheduling Process Overview
The DSN scheduling process (Johnston et al., 2014) oper-
ates on a rolling weekly basis (Fig. 3): as the deadline for a
week approaches (roughly four months before the start of
the week), mission scheduling representatives enter the re-
quirements for that mission into the Service Scheduling
Software (Johnston et al., 2012, 2012). Unlike other net-
works, many DSN user missions have changing require-
ments from week to week, reflecting mission events and
phases, including a wide range of pre-planned science activ-
ities. Due to the long light travel time to many DSN space-
craft, spacecraft are sequenced with command loads that are
generated many weeks ahead, and the DSN schedule is a
critical input to this process.

Once all inputs for a week are in, they are integrated into
a single schedule and the DSN Scheduling Engine (DSE,
(Johnston et al., 2010)) is run to deconflict as much as pos-
sible, given any specified flexibilities in the input require-
ments from each mission. In practice, little flexibility is al-
lowed, and the net oversubscription level means that many
conflicts necessarily remain in the schedule.

Each requirement has a specified priority on a scale from
1 to 7. The default value is 7, nominal mission operations,
and nearly all activities are assigned this priority level. Ex-
ceptions are made for elevated criticality events like
launches, planetary landings and orbit insertions, and other
high-risk mission events or unique major science opportuni-
ties, but in general these are rare. Note that priorities are on
specific requirements, not on missions: there is no intrinsic
priority distinction from one mission to another. Priority is
used by the DSE to place higher priority activities on the
schedule at their preferred times and antennas, and then to
place lower priority activities where they least conflict with
higher priority ones. However, given the high levels of over-
subscription, many lower priority activities are placed in
conflict with higher priority ones, since it is not permitted to
drop them out of the schedule at this stage.

Once the scheduling engine has been run, and conflicts
reduced as much as possible based on specified flexibilities,
a human scheduler called “Builder of Proposal”, or BOP,
starts to work on the schedule and makes further changes
based on experience and background knowledge of each
mission’s requirements. These changes include: deleting
some activities, shortening tracks below their specified min-
imums, splitting tracks flagged as unsplittable and placing
the (now shorter) segments into gaps in the schedule. This a
time-consuming and labor-intensive process, requiring a
great deal of familiarity with the entire DSN mission set and
their typical requirement patterns. The BOP can generally

Fig. 3: Schematic diagram of the DSN mid-range schedul-
ing process: for each week, the process starts at the top.

Fig. 2: Oversubscription percentage by week for a range
of 13 weeks in late 2015. The average is about 30% with
a standard deviation of 5%

 96

 96

eliminate ~200 conflicts, but at the end there usually remain
10-20 conflicts. At the conclusion of the BOP phase, the
week is released to the full set of mission scheduling repre-
sentatives to negotiate the remaining conflicts and to make
any adjustments to changes introduced by the BOP.

The second part of the interactive scheduling phase is
when individual mission representatives collaboratively ne-
gotiate peer-to-peer, to resolve remaining conflicts and
make additional changes (Carruth et al., 2010). In this pro-
cess, one user will propose a set of changes, to which all
affected users must concur before it becomes the new base-
line. If any user disagrees with the changes, it falls on him
or her to counter-propose an alternative (where just undoing
a previous proposal is not allowed!). This process continues
until the deadline is reached, at which point conflicts are ei-
ther cleared or (rarely) waived, and the schedule is consid-
ered baselined and published. From the completion of the
automated scheduling run to the baseline conflict-free
schedule is typically 2-3 weeks. The overall duration of this
process means that multiple weeks are being worked on in
parallel.

3. Priority Considerations for DSN
As noted above, DSN currently uses a 7-level priority

scheme strictly for categories of events: at the top are safety-
and mission-critical activities, and at the bottom are normal
science operations. Because nearly all activities (except es-
sential maintenance) are considered “normal science” and
thus at the lowest event priority level, the current priority
scheme provides virtually no guidance for addressing over-
subscription.

In terms of the current DSN scheduling process (Section
2), the greatest leverage for process improvement comes
from the pre-BOP automated scheduling step: if oversub-
scription could be addressed prior to the BOP process, then
both the BOP effort and the collaborative negotiation pro-
cess phases could be drastically reduced. Missions would
have their schedules baselined earlier, and could start work
earlier to plan their onboard activities and generate their
command loads. Prioritization could also play a role in later
schedule changes, but these changes are of a much smaller
magnitude. In the remainder of this paper, we focus entirely
on the pre-BOP scheduling phase.

A variety of factors could be incorporated into a more
fine-grained prioritization, including the following:

1. Prime vs extended missions: only about 25% of DSN
mission users are still in their prime mission phase:
the rest are in their extended missions (some have
been flying for nearly 40 years). More than half of all
requested time comes from extended missions. While
prime vs extended could be used as a prioritization

factor, would not help with addressing oversubscrip-
tion, which would still be a problem even it there
were no prime missions at all.

2. NASA vs. non-NASA missions: as DSN is a NASA
asset, one option would be to give NASA missions
priority for its use. However, high level agreements
with partners provides for use by non-NASA mis-
sions on the same footing as NASA missions. As a
result, this is not a factor that can help with oversub-
scription.

3. Intra-mission priority tiers: this concept calls for
missions to divide their requested DSN time into pri-
ority tiers, rather than submitting all at the same
event priority. This can provide explicit information
about what each mission could possibly “do without”
as being of lower priority. This information is im-
plicit in the cuts that missions accept each week, ac-
counting for the hundreds of hours of antenna time
that is reduced by the BOP or negotiated away.

4. Enforced reduced input levels: this notion is based on
the observation that missions ultimately accept re-
ductions to deal with oversubscription, and so con-
straining their input levels to historically accepted
output levels would be one way to enforce a request
pool that would eliminate or drastically reduce over-
subscription. For example, if mission X routinely
states a requirement for 80 hours of tracking time,
and then routinely accept 55 hours, their input could
be constrained to 55 hours in the first place. This
would add an additional check/enforce step to the
process, but could shorten all the downstream steps.
A drawback of this approach is that some mission re-
quirements tend to vary from week to week and so a
constant cut-off would be a problem for some mis-
sions.

5. Time-dependent priority: most DSN users require a
time spread in their activities, to reflect the accumu-
lation of scientific data and subsequent transmittal to
Earth, and for regular measurements for navigation
updates. Most also have a check for communication
with Earth, such that if they have not been in touch
for some configurable time, the spacecraft goes into
“safemode”. As a result, the time since last contact
comes into play when considering the priority of
each mission, so that no mission can be “starved” and
drop out of the schedule, thus threatening spacecraft
health and safety.

 97

 97

4. Experiments and Results

Experimental setup
To define a uniform basis for experiments, we used a 16-
week period in 2012 consisting of just over 4,000 require-
ments for 31 missions. This particular dataset is only mod-
estly oversubscribed, but reflects a realistic mix of typical
requirement types. We used a modified version of the DSN
Loading Analysis and Planning Software (LAPS) (Johnston
et al., 2012) being developed for long-range planning and
forecasting. This software allows for plugging in different
algorithms for prioritization, thus making it easy to experi-
ment. It can also be configured to drop requirements that
can’t be satisfied without conflicts.

As a baseline, we used a greedy algorithm that works as
follows: for each priority tier from highest to lowest, order
requirements by most constrained first, and schedule in their
most preferred place (time/antenna). If there are no feasible
places left, add the requirement into the unscheduled set. For
our sample dataset, the overall total scheduled/requested is
88%. In this requirement sample, all missions are at the
same event priority level, that of routine normal science pri-
ority.

From the perspective of any individual mission, it is not
the total scheduled/requested that matters, but their own in-
dividual mission’s level. In this baseline scenario, 4 of the
34 missions received 80% or less of their requested time,
while one received less than half. So one of the questions we
address is how to keep some missions from a proportionally
greater impact, while satisfying all mission’s requirements
to the greatest degree possible.

To see the effect of the ‘most constrained first’ aspect of
the baseline strategy, we removed that and scheduled all re-
quirements at equal priority (breaking ties randomly). The
net effect is as would be expected: some requirements with
lots of flexibility consume places needed by more con-
strained requirements, and so more of the latter remain un-
scheduled. The overall total scheduled/requested drops to
82%, and 5 missions receive 80% or less of what they re-
quested, with three receiving less than 50%.

We also looked at the impact of separating out prime mis-
sions from extended ones in the prioritization, assigning
prime missions a higher priority. The three prime missions
represented 12% of the total time requested, and when given
a higher priority, they received virtually all that they re-
quested (99.9%). However, there was a larger impact on the
overall total scheduled time (reduced from 88% to 83%): of
the extended missions, 5 received 80% or less of their re-
quested time, and two receiving 50% or less. Therefore, the
impact of prime vs. extended missions is not clear-cut, since
including them at higher priority significantly drives down
the total time scheduled, to the detriment of all.

Priority Tiers
From the observed behavior of mission users to accept less
time than originally requested, it is clear that what is sub-
mitted by many users as required is not truly required: it
represents a desired level of time allocation, and can be re-
duced as circumstances warrant to fit with everyone else in
the same week. This is borne out by the BOP’s strategy
when working on a week: the first step is to cut virtually all
missions back to “typical” levels and then to tweak and op-
timize the resulting schedule. In general, all users accept
these cuts without complaint, and spend the negotiation pe-
riod fine-tuning the resulting allocations, and attempting to
horse-trade with other users to make incremental improve-
ments. The fact that the required submission is, in fact, flex-
ible, is not specified by users in their inputs to the scheduling
process. We will return to this point later as it has a major
impact on potential solutions.

Based on this observation, we considered how to modify
the process if users did specify at least the relative priority
of their own inputs. This suggested a tiered input approach,
with users dividing their requirements up into tiers as illus-
trated in Fig. 4. We chose a simple scheme where levels 1
and 2 reflected elevated priority requirements, level 3 corre-
sponded to normal priority, and levels 4 and 5 were desira-
ble if possible. As an example, one mission had require-
ments on certain days of the week that were essential in or-
der to upload commands to the spacecraft for the following
week. For this mission, meeting those specific requirements
was much more important that others in the same week,
which could be more readily reduced or even occasionally
dropped.

Generating an accurate dataset with this information is
very difficult, so in the absence of real user inputs, we arbi-
trarily divided each mission’s inputs into these 5 levels, with
an even distribution of time across the levels. Each level was
scheduled in priority order for all missions, with the results
fixed when lower priority levels were considered (i.e., level
1 was scheduled for all missions, then level 2 added, and so
on). The results showed that nearly all missions received 90-

Fig. 4. A tiered priority scheme for user-specified re-
quirement priority. Levels 1-3 are considered “must
have”, levels 4 and 5 are “desired if possible”.

 98

 98

100% of their level 1 and level 2 inputs, and 75% received
90-100% of the level 3 inputs. The levels that received less
that half of the time requested were almost all from levels 4
and 5. However, the overall total time scheduled was still
reduced to about 84%. It remains an open question whether
that fact that more missions got more of their “highest pri-
ority” requests would balance out this reduced overall
scheduling efficiency.

We explored some alternatives to the 5-level tiers, e.g. a
2-level tier with 80% of the time in a higher priority level,
and the remaining 20% as lower priority. The results showed
a slight improvement on the overall total scheduling effi-
ciency, to 85.5%. On the other hand, the 5-level tiers provide
more granular information as to how users place a relative
value on the time they are receiving, and so could be the
most useful in improving the automation process.

It is worth noting that while much more information about
alternative requirements could be asked of users, it would
place a significant additional workload on them to provide
information that might not be used. For example, users could
specify preferences for shrinking or dropping certain re-
quirements, depending on which other requirements are sat-
isfied in the schedule. Specifying these inputs could become
complicated and time consuming, and would only be used if
the dependency circumstances were realized. The notion of
simply adding one additional relative priority field to a re-
quirement would certainly be manageable, as well as being
directly usable by the software, the BOP, and other sched-
ulers during the negotiation phase.

Enforced Input Reduction
Another tactic to reduce the high level of oversubscription
is to require users to reduce their inputs to a level that they
have historically been shown to accept. We tried to simulate
this by taking historical reduction results, and then arbitrar-
ily cutting mission inputs to correspond to what each mis-
sion had found acceptable over a 6-month period around the
time of our experiment 16-week time range. We only re-
duced the heaviest users (those requesting 40 or more hours
of tracking time per week, a total of 14 missions). Reduction
percentages varied over a significant range, with 7 missions
receiving reductions over 20%, with the the largest reduc-
tions of about 35%. The results showed 26 of the 31 mis-
sions receiving over 90% of their requested time, with only
one mission receiving less than 50%. The total input time
was reduced by about 13% overall, and so the overall time
scheduled was reduced accordingly.

Because our experimental reduction was arbitrary, it does
not reflect the specifics of what each mission might consider
essential. This would be very difficult to determine post
facto to make the experiment more realistic. On the other
hand, it would not be a large burden on users to ask them to

fit their input requirements within an overall time cap. Fur-
thermore, the option would remain to add back in additional
requirements if it turned out that there remained opportuni-
ties to do so during the negotiation phase.

Squeaky Wheel Optimization
An optimization technique that has been used with good re-
sults on other oversubscribed scheduling problems is that of
Squeaky Wheel Optimization (Joslin and Clements, 1999);
see also (Barbulescu et al., 2006a, 2006b; Laura Barbulescu
et al., 2004; L. Barbulescu et al., 2004; Kramer et al., 2007).
In this approach, requirements are assigned an initial prior-
ity and then scheduled in priority order, then the priorities
are adjusted until no further improvement in the objective
function are observed. We applied this technique to the DSN
scheduling problem in the following way. The objective we
used was the overall total scheduled time for all missions.
Note that this does not take into account that some missions
might perform relatively poorly, even though the overall to-
tal scheduled time is better. This is an area for further work.

For the initial priority assignment, we tried different tech-
niques, including: random; smallest requested time; and
largest requested time. We found the best results using larg-
est request time, likely because the larger users tend to dom-
inate the objective function if they can be scheduled earlier
and get a larger fraction of the time they request.

 We adjusted the priority after each iteration by looking at
which mission had the worst ratio of unscheduled to re-
quested time, and swapping places with the next higher pri-
ority mission (Fig. 5). If the overall schedule did not im-
prove, we restored the swap and tried instead the next worst,
and so on. We terminated a run when there are no places left
to swap without making the schedule worse.

For two missions, we found that unless they were ex-
cluded from the iteration process, they would invariably re-
ceive no time. Both were relatively small and so were left
fixed as first and second priority in the list.

Fig. 5. Illustrative behavior of Squeaky Wheel Optimi-
zation in exchanging the priority of two missions (here
ATOT and WIND) in order to achieve an improvement
in the overall total time scheduled. Each mission is as-
sessed using the ratio of unscheduled to requested time.

 99

 99

The results were encouraging, in that the best runs with
SWO were able to schedule 91% of the total requested time,
an improvement over the 88% found by greedy least con-
strained first.

5. Conclusions
The results of the experiments reported above are very en-
couraging in suggesting several promising directions to help
address the DSN oversubscription problem:

1. Time reduction: use of this mechanism would require
users to submit less “required” time in order to define a
weekly scheduling pool that more nearly matches the an-
tenna time available to be allocated. This requires a policy
change, and leaves open the thorny question of how to set
the appropriate restriction level per mission. Depending on
the mission phase and the occurrence of various science and
engineering events, there can be a significant variation from
week to week, and so setting and policing this constraint
could be burdensome. A further complication is the align-
ment of mission visibility periods at certain times during the
year, which leads to some times being oversubscribed while
others are unusable. Thus the target time to reduce to meet
the objective of managing oversubscription is difficult to
evaluate.

In spite of these considerations, some form of required
time reduction is likely, and the most promising approach is
to use the DSN long-range planning and forecasting soft-
ware (Johnston et al., 2012) to set appropriate limits on how
much time can be specified as “required” in the top priority
tiers. This software will work from a long-range specifica-
tion of requirements and can look ahead multiple years to
assess oversubscription and contention due to overlapping
critical events. Resolving contention far in advance could
lead to “fair” and agreed input levels for the mid-range
scheduling process.

2. Tiered relative priorities: this would allow users to ex-
plicitly specify how important are their different categories
of requirements, knowledge which currently resides only in
textual descriptive material or in the schedulers’ heads. This
approach could be readily combined with (1) time reduction,
in that the total time in the top tiers could be restricted, while
the lower priority requirements could be provided to take
advantage of opportunities if they are available.

3. Squeaky Wheel Optimization with internal priorities:
the use of a mission-level priority scheme does not lend it-
self to the DSN due to the high level of oversubscription and
to the time variation in mission activity and corresponding
requirements. However, the use of an internal and dynamic
priority list does work well to improve the overall schedule
efficiency while avoiding starvation of any mission due to
being stuck in a low position on a static list. SWO could be

combined with (2) tiered relative priorities to define an ob-
jective per mission to reflect the importance of meeting each
mission’s designated top priority activities, while attempt-
ing to fit in lower priority activities. It could also be com-
bined with (1), time reduction to a fair level, in that the top
tiers could be constrained to fit within agreed up (historical
or forecast) limits on the available antenna time.

Currently, DSN is evaluating potential policy changes
that would enable implementation of an approach like that
described above. Further investigations will address how
best to combine these approaches in a flexible but effective
manner.

Acknowledgements: the authors are grateful for comments
and suggestions from a wide range of participants in the
DSN scheduling process, including mission personnel,
scheduling team members, and the DSN scheduling office.
We also acknowledge very useful suggestions from anony-
mous referees.

References
Barbulescu, L., Howe, A.E., Whitley, L.D., Roberts, M., 2006a.

Understanding algorithm performance on an oversubscribed
scheduling application. J. Artif. Intell. Res. 27, 577–615.

Barbulescu, L., Howe, A.E., Whitley, L.D., Roberts, M., 2004.
Trading Places: How to Schedule More in a Multi-Resource
Oversubscribed Scheduling Problem.

Barbulescu, L., Howe, A., Whitley, D., 2006b. AFSCN schedul-
ing: How the problem and solution have evolved. Math.
Comput. Model. 43, 1023–1037.

Barbulescu, L., Whitley, L.D., Howe, A.E., 2004. Leap before
you look: An effective strategy in an oversubscribed schedul-
ing problem.

Carruth, J., Johnston, M.D., Coffman, A., Wallace, M., Arroyo,
B., Malhotra, S., 2010. A Collaborative Scheduling Environ-
ment for NASA's Deep Space Network. Presented at the
SpaceOps 2010, Huntsville, AL.

Imbriale, W.A., 2003. Large Antennas of the Deep Space Net-
work. Wiley.

Johnston, M.D., Tran, D., Arroyo, B., Call, J., Mercado, M.,
2010. Request-Driven Schedule Automation for the Deep
Space Network. Presented at the SpaceOps 2010, Huntsville,
AL.

Johnston, M.D., Tran, D., Arroyo, B., Sorensen, S., Tay, P., Car-
ruth, J., Coffman, A., Wallace, M., 2014. Automated Sched-
uling for NASA’s Deep Space Network. AI Mag. 35, 7–25.

Johnston, M.D., Tran, D., Arroyo, B., Sorensen, S., Tay, P., Car-
ruth, J., Coffman, A., Wallace, M., 2012. Automating Mid-
and Long-Range Scheduling for NASA’s Deep Space Net-
work. Presented at the SpaceOps 2012, Stockholm, Sweden.

Joslin, D.E., Clements, D.P., 1999. Squeaky Wheel Optimization.
J. AI Res. 10, 353–373.

Kramer, L.A., Barbulescu, L.V., Smith, S.F., 2007. Analyzing
basic representation choices in oversubscribed scheduling
problems. Presented at the 3rd Multidisciplinary International
Conference on Scheduling: Theory and Application (MISTA-
07), Paris, France.

 100

 100

Using Hierarchical Models for Requirement Analysis of Real World Problems in
Automated Planning

Rosimarci Tonaco-Basbaum and Javier Martinez Silva and José Reinaldo Silva
Department of Mechatronic Engineering, University of São Paulo, Brazil

rosimarci@usp.br, javsilva@usp.br, reinaldo@usp.br

In the intelligent design field, the early phase of re-
quirement analysis plays a fundamental role, especially
when dealing with problems to which an analytic for-
mal solutions is not applied. Automated planning ap-
pears in that category - particularly when the target
are ”real world” systems. Requirement analysis is ex-
actly where the Engineering Knowledge embedded in
the problem is explored to provide clues to the solu-
tion. A great effort has been made today in the area of
Artificial Intelligence to define a reliable design pro-
cess for automated planning that includes a Knowledge
Engineering early phase. This paper intents to propose
a requirements analysis formal procedure that starts by
taking requirements for planning problems represented
in UML and proceed to an analysis process based on
Petri Nets. In fact a similar approach were insert in
a tool called itSIMPLE (by one of the authors) using
an old version of UML (1.4). As we will see in this
proposal the process were not completely formal, even
if practical. In the current work an unified Petri Net
is fully complied with the ISO/IEC 15.909 standard
replace the graph analysis. Using this net we can in-
troduce a formal property analysis including invariant
analysis and exploring abstraction from a hierarchical
extension of classic Petri Nets. Case Studies are pre-
sented, with classic problems from the manufacturing
and petroleum industries, aiming to show the differ-
ences between the early proposal and the current pro-
posal.

Introduction
Planning characterizes a specific type of design problem
where the purpose is to find an admissible sequence of ac-
tions to bring the system from a given initial state to a tar-
get final state. Current approaches in the literature aim to
improve the performance of automated planners by trying
to optimize the search algorithms and the general solution
(Edelkamp and Jabbar 2006). In addition, most of existing
work on this direction driven to synthesized and artificial
problems (closed problems that have limited set of actions)
as a proof of concept for the proposed algorithms. Due to the
extensive development in this area some authors started to

Copyright c� 2016. All rights reserved.

apply planning techniques on real world problems as well -
like logistic problems - with a considerable higher number of
variables, where domain independent approaches are com-
putationally prohibitive (Vaquero et al. 2012). Such alterna-
tive approach could bring some light and/or good results to
challenge problems and could also gave some feedback to
solve a fully automated, domain-independent problem.

That said, it is clear that the automated planning area car-
ries an uncertainty problem:

• the study made until today is historically connected to
search solution methods to automatic planning problems
in a domain independent approach. This, solutions could
be inserted in intelligent automated devices, especially
robots, or an autonomous machine system.

• on the other hand, formal techniques, especially those
which are domain independent, lead to important tech-
niques that can be applied in several demanding fields,
like logistics, diagnostic systems, navigation, space
robots, satellite systems, etc. However, this demand are
sensible to the adequacy of formal techniques to the spe-
cific knowledge surrounding real problems. This combi-
nation can provide good solutions, while inspires new do-
main independent solutions.

Indeed, complex domains are hard to deal with when no
abstraction is present. In these domains, a hierarchical prob-
lem decomposition based on topological structure can lead
to significantly better performance. Our preliminary run-
ning exercise (ROADEF 2005) is based on a synthesized
domains and shows an impressive performance when hier-
archical models are introduced in the design process.

In a standard planning domain such as Logistics, topolog-
ical abstraction of the real world is part of the definition. In
Logistics, several packages have to be transported from their
initial location to various destinations. A Logistics problem
has a map of cities connected by airline routes. Transporta-
tion inside cities can be done by truck (there is one truck
in each city). Cities are abstracted, being treated as black
boxes. Inside a city, a truck can go from any point to any
destination at no cost (Botea, Muller, and Schaeffer 2003).
However, in the real world, transportation within a city is a
subproblem that can involve considerable costs. In this con-
text, removing human expertise and automatically obtaining
abstracted models of the real world is an important research

 101

 101

problem. And this kind of problem is one of the motivations
for this work.

This paper intent to propose a requirements analysis for-
mal procedure, based on hierarchical models, that starts by
taking requirements for planning problems represented in
UML 2.4 and proceed to an analysis process based on clas-
sic Petri Nets. In fact, a similar approach were insert in a
knowledge based tool called itSIMPLE (Integrated Tool and
Knowledge Interface to the Modeling of Planning Environ-
ments) using an old version of UML (1.4). We claim that the
new approach presented here turn the design process more
accurate and result in clear design discipline. Formal design
requirements analysis could be done in unified Petri Nets,
that follows ISO/IEC 15.909 standard. Once analyzed re-
quirements could be translated to PDDL and then submit-
ted to an automated planner. Fourteen different planners are
used, selected among those of better performance to a diver-
sified set of planning problems.

In section 2 we focus on the use of semi-formal and for-
mal methods in the requirement analysis and the challenge
of jumping from a potentially inconsistent set of require-
ments to a stable and consistent new set. Section 3 will
show some aspects about the designing process in automated
planning, followed by a brief description of itSIMPLE old
method, and introduces itSIMPLE new design process. Fi-
nally, we present two running exercises: a manufacturing
problem, adapted from automotive industry and a real prob-
lem of logistic in offshore petroleum exploitation. Both il-
lustrate the importance of including specific domain knowl-
edge in the process and the effectiveness of the proposed
process.

Requirement Analysis: Semi-formal X Formal
Methods

Regardless of how the final specification is made, the suc-
cess of any project depends on a correct and complete re-
quirements definition, and requirements specification is used
as a reference to test and validate what comes out from de-
sign and implementation phases. This is an essential role
of the requirements engineering process, which comprises
the complete representation of system behavior, considering
functional and non-functional requirements. Therefore, an
inadequate identification of requirements is a major cause
of system failures, and avoiding errors during this phase be-
comes a vital process in the project development cycle.

Many researchers and practitioners have used semi for-
mal techniques to capture system requirements. Thus, the
analysis and verification phases inherit requirements exces-
sive flexibility that results from semi-formal methods. Such
methods are generally characterized by their simplicity and
flexibility, and for a lack of consistency assurance, while for-
mal methods are characterized by a formal representation
which is the support for a sound simulation and analysis pro-
cess.

The literature proposes some techniques and methods that
can be used in analysis and specification of requirements, but
none of them guarantees a complete and consistent represen-
tation of these requirements. There are three fundamental

problems in the analysis of requirements, often mentioned
in recent research:

• The detection and analysis of inaccurate and incomplete
requirements (Liu and Yen 1996);

• The detection of inconsistencies and proposition of meth-
ods to manage it;

• Creation of a systematic process that takes the require-
ments informally specified, but already proved consistent,
and transform it in formal specification.

In addition to these challenges we can also add the re-
quirements volatility. Important requirements in elicitation
and analysis phase, may lose importance during the de-
sign process, may disappear or merge with others. Besides
that, the early detection of emerging requirements during the
analysis phase is a hard task. Another important challenge is
to make sure there is a sound mapping between requirements
and attributes of the system improving traceability and main-
tenance (Vaquero 2011).

Many researchers propose to convert semi formal require-
ments in a formal representation (Baresi and Pezze 2001b).
Among the most widespread formal methods there is Petri
nets, widely used in the representation and validation of re-
quirements based on properties that enable the verification
process. In this case, a feasible design discipline involves
UML to capture semi formal requirements of the system
which are translated into a hierarchical Petri net to perform
de analysis and verification phases. Possible inconsistencies
will be detected in this translation and must be fixed.

At the present, there are several approaches that combine
UML and Petri nets and their extensions. (Zhao et al. 2004),
discusses some technical transformation of graphs, which
can be used to convert UML diagrams in Petri nets. There
are other proposals which offers methods to build Petri nets
representing the functional behavior of systems consider-
ing sequence diagrams, activity diagrams, state diagrams,
use case diagrams or activity diagrams (Denaro and Pezze
2004), (Guerra and Lara 2003).

Diagrams composing a UML model are interrelated, and
their relationships may reflect the semantics of the diagrams.
Therefore, to transform UML models in a Petri net it should
be taken into account both the static structure and the dy-
namic structure of the diagrams, and so the relationships be-
tween them. In (Zhao et al. 2004). These relations were clas-
sified into three levels: the relationship between the same
UML diagram in different contexts; the relationships be-
tween various diagrams of the same viewpoint; and the re-
lationships between various diagrams with different view-
points of the system. This third level describes the relation-
ship between the diagrams with static viewpoints and with
dynamic viewpoints. That will be clarified in the proposition
of a design discipline for automated planning.

Design Process in Automated Planning
The interesting to solve real world problems using Auto-
mated Planning techniques is growing significantly in the
last few years. In general, the major focus of the planning
community is the pursuit of planners efficiency neglecting

 102

 102

the analysis aspects (Zimmerman and Kambhampati 2003;
Upal 2005), and the need to deal with complex real world
problems.

To conduct the planning of an activity it is necessary to
determine all features of the system in which it is embedded.
Some factors must be considered, for example the sub sys-
tems evolved, internal variables, correlations with other sys-
tems, constants and constraints. Such specification is called
system modeling, and from it depends the success of the re-
sult obtained from the planning process. In this aspect sev-
eral points becomes important, such as the proposed model
complexity, and its accuracy from the original system.

In the design process, languages such as the traditional
PDDL (McDermott 2003), or the UML (OMG 2009) are
used. To help in the design and the requirement analysis
phases, there are frameworks available such as itSIMPLE
(Vaquero, Tonidandel, and Silva 2005) (Vaquero et al. 2007),
that focus on the initial design process phases, such as speci-
fication and modeling. After design is concluded, it is neces-
sary validate de model and to execute this task it is possible
to use a formal representation like Petri nets.

To design a real life systems in the context of this work,
there are two key challenges: 1) create a design discipline for
modeling real life systems, using UML as the representation
language; 2) translate and synthesis of the UML diagrams
in a unique hierarchical Petri net (from GHENeSys, that is
a class of high level Petri nets) (Miralles 2012), which will
be analyzed in order to obtain information that can antici-
pate problems in the model and help in the design phase to
generate suitable plans.

The general purpose of this paper is to propose a design
process for automated planning systems, that is composed
of two layers: 1) where independent domain methods are
applied; and 2) using the specific knowledge and require-
ments analysis applying hierarchical Petri nets to increase
the quality of planning applications in Artificial Intelligence.
The challenge here were to discover where to insert the spe-
cific knowledge and how to include this in the design process
since we are working with three classes of problems where
the specific knowledge level increases from benchmark to
real world problems. The classes are: benchmarks, interme-
diates (like ROADEFs (Perez et al. 2006)) and real world
problems (like Petrobras problem presented in the Interna-
tional Competition of Knowledge Engineering for Planning
and Scheduling (ICKEPS) 2012) (Vaquero et al. 2012).

In the first level the purpose is to design the model using
UML (Class Diagram, Behavioral Statechart Diagram and
Object Diagram) to model the hierarchical aspects of real
world problems. From that model to suggest a formalization
of this structure based on Hierarchical Petri nets. The prop-
erties will serve to analyze the similarities, repetitive cycles,
invariants and other properties between the models.

In the second level the specific knowledge can be included
as dynamic relationships and actions properties, that will
be inserted in UML diagrams (using OCL) and translated
in a Petri net (therefore having a format compatible with
the previous phase). The structure receives the dependent-
domain knowledge, to apply the analysis techniques of hi-
erarchical Petri nets. These techniques are particularly sen-

sitive when applied in real world problems, requiring a dif-
ferent approach from the academic applications. Real world
problems must follow a very disciplined design process,
grounded in Knowledge Engineering, whose initial stage is
composed by elicitation and requirement analysis. Such de-
sign process is the study focus of many researchers in Auto-
mated Planning area (McCluskey et al. 2003).

Planning applications has two different classes of require-
ments: domain requirements and problem requirements (Va-
quero, Tonidandel, and Silva 2005). In this paper we pro-
pose an evolution of this assumption, based on (Vaquero,
Beck J C, and Silva 2013). Our proposal aims to divide the
design process in two aspects: 1) the work domain aspects,
where all the essencial characteristics are considered, (such
as: name, constraints, operations, general actions and envi-
ronment descriptions that are critical to the system); and 2)
the planning problem aspects, where the initial state, goal
state and set of objects that comprises the problem instance,
as shown in figure 1. Based on this independence hypothesis
the design process is performed.

Figure 1: General schema for planning environment.

To show the efficiency and applicability of the proposal
presented in this article lets recall the itSIMPLE old design
process.Then, the new design process will be presented and
finally a running exercise that will illustrate the new design
process presented in this paper.

itSIMPLE Old Design Process
In this section it will be presented the itSIMPLE design
method proposed in (Vaquero et al. 2005), in order of high-
light some improvements we propose to achieve a new anal-
ysis method using Hierarchical Petri net. In (Vaquero et
al. 2005) the basic process to model planning applications
would start from requirements based on Use Case Diagram,
Class Diagram, Statechart Diagram, Activity Diagram and
Object Diagrams. Such approach became very popular in AI
Planning community and won the ICKEPS 1 competition in

1ICKEPS (Int. Competition on Knowledge Engineering for
Planning and Scheduling), is a competition organized in the scope
of ICAPS (Int. Conference in Artificial Planning and Scheduling).
itSIMPLE won 2009 competition and was directly involved in 2012
organization and could not compete. Since 2014 the system is be-
ing rebuilt.

 103

 103

2009.
According to (Vaquero et al. 2005), the Class diagram can

be used as a representation of the planning domain static
structure and concepts showing existing entities, their rela-
tionships, their features, methods (actions) and constraints.
Classes and objects are the first and most important concepts
in object-oriented modeling, and stand by entities that make
sense in the application context. In UML.P (Vaquero et al.
2005), a general structure composed by an Agent class and
a domain Environment class is proposed in order to organize
the model. Dynamic agents change the arrangement of ob-
jects which compose the environment in order to find a path
from an initial state to a goal state. Every entity that acts over
the domain is a specialization of the Agent and all the others
classes will be associated with the environment.

The Statechart diagram was used to define pre and post
conditions. This diagram is very useful to represent entities
that perform dynamic behavior. Usually, all actions (meth-
ods) defined in the class diagram are better specified in this
diagram. Any class in Class diagram has its own Statechart
diagram, specially those that perform actions. Each diagram
does not intend to specify all changes caused by an action,
instead, it shows only changes that it causes in an object of
the Statechart diagram’s class. Constraints in the Class di-
agram and all the pre and post conditions on the Statechart
diagram are specified using constraint language OCL.

The initial problem statement in a planning domain is
characterized by a situation where only two points are
known: the initial and goal state, and a set of admissible
actions. The diagram used to describe these states is called
Object diagram or Snapshots (D Souza and Wills 1999). In
fact, a planning problem is compose by two Object Dia-
grams, one describing an initial state and another describing
a partial or entire goal state. Additional constraints intrinsi-
cally related to the problem can be specified by using OCL
(Object Constraint Language), such as limitation on domain
variable, rule and others. To illustrate the entire process, fig-
ure 2 it will present the itSIMPLE classical design process.

Figure 2: itSIMPLE classical design process.

DynA Design Process
Our main proposal is to substitute former itSIMPLE ap-
proach by a new one, which is more scalable - introducing a
hierarchical approach - more disciplined - with a more rigor-
ous definition of domain, where requirements are based on
a minimum set of UML diagrams. Thus, this is a method di-
rected to requirements analysis of dynamic systems ou just
dynamic analysis (which will be based on Petri Nets).

Before start with the new design process we are proposing
for itSIMPLE, it is important to clarify the basic concepts
of the former itSIMPLE. In this work the UML diagrams

chosen to be part of the design process has the same meaning
they had in the original proposal (Vaquero et al. 2005). The
major difference between this proposal and the old one is
the introduction of a more abstract hierarchical structure to
design the model, the introduction of a minimum set of UML
diagrams to compose a sound representation of work domain
and planning problem - the basic elements for AI planning.

After some running exercises, we discover the necessity to
migrate for a more recent version of UML. The original it-
SIMPLE framework - even in its 4.0 release - uses UML 1.4,
while our proposal introduces a hierarchical abstract struc-
tures to represent models which are not supported in UML
1.4. Considering that, in this project we upgraded the UML
version to 2.4 and face all conceptual consequences, includ-
ing convergence to a model driven approach.

The minimal set of UML diagrams comprises four dia-
grams, as will be shown. From the class of structural dia-
grams we take the Package diagram, the Class diagram and
the Object diagram. The Package diagram shows the pack-
ages and their relationships. The Class diagram is a static
structure of the system at the level of its classifiers (classes,
interfaces, etc.). This diagram is able to represent some of
the system classifiers, subsystems and components, the dif-
ferent relationships between them, their attributes, opera-
tions and constraints (in OCL). In the class of behavioral di-
agrams we took only the Behavioral State Machine diagram.
The State diagram is used to model the discrete system be-
havior as a whole, by the finite state transitions. As proposed
in (Vaquero et al. 2005), the problem statement is a planning
domain characterized by a situation where only two states
are known: the initial and goal state. To represent this it is
used the Object Diagram or Snapshots (D Souza and Wills
1999).

In this section it will be presented the design process to
model state transition systems (that is a class of real world
systems) in the automated planning scope.

Precondition: the system must have distinct components
that are inter-related.
• Define components and relationships;
• From previous step, design the Class diagram;
• If necessary, divide the Class diagram into modules;
• In the Class diagram, identify the dynamic objects of the

system;
• Use OCL to define constraints;
• Design the Behavioral Statechart diagram;
• In the higher level, use composite states to design the sys-

tem; and
• Design the internal states until the lower level of the sys-

tem.
• Use Object diagram to define inicial and goal states.

Once a UML model is done, and requirements (and con-
straints) were inserted in the diagrams, the next step is to
analyze the requirements and validate the model - which is
now made explicitly. To perform this phase it will be used
a Petri nets formalism. For this purpose it was developed a

 104

 104

translation algorithm, to convert the Behavioral Statechart
Diagram into a Hierarchical Petri net.

Once the model was validated using Petri nets, it can be
translated in some specification language that planners can
interpret in order to generate a plan automatically. Since
the focus here is the use of hierarchical methods it makes
sense use some planner (and language) that can support this
features. Originally, itSIMPLE uses PDDL (and all PDDL-
driven planners) to generate a plan, and it is well known the
incapacity of PDDL to process hierarchical models (Mc-
Cluskey 2003). Because of this limitation we had to test
our proposal outside the original itSIMPLE, using a clas-
sic UML editor (capable to use all resources UML 2.4 can
offer, specially in the Behavioral Statechart diagram). The
translation process (both to classic Petri nets, and to HTN)
is made by a direct algorithm (which does not belong to the
original itSIMPLE framework). The resulting model will be
submitted to JSHOP2 planner (Ilghami 2006) which can use
all knowledge engineering features included in the new de-
sign approach, including hierarchy.

This new approach can be applied to larger and more
complex systems. A second running exercise (Petrobras Do-
main) is used to show that such approach is more scalable
and could be applied to real problemas with symmetric prop-
erties but with a larger number of states (that will be shown
later on). Figure 3 shows the design method proposed in this
paper.

Figure 3: The new design process.

Translation algorithm: from UML to Petri nets
As expected, the practical application of AI planning tech-
niques to real problemas lead to the need to include more ab-
stract modeling based on hierarchy, as well as a model driven
approach. This finding lead to the use of UML 2.4, espe-
cially the Behavioral Statechart diagram, that can represents
the whole system in a hierarchical way. If the initial model
is hierarchical, make it all sense to validate it using a formal
technique also hierarchical. Initially we consider to use High
level Petri nets to perform the requirement analysis and val-
idate the model, however it became clear that the modeling
process could fit better in an abstract process based on hi-
erarchy, and thus an extension of the basic Place/Transition
or High Level models. We choose Hierarchical Petri nets as
a validation tool, because the hierarchical structure designed
in the Behavioral Statechart diagram fits perfectly in the con-
cept of this kind of Petri net. The remaining problem is then
how to translate from UML diagrams to Hierarchical Petri
Nets without any semantic loss.

Our first sound translation algorithm was based on the
classic Baresi’s algorithm (Baresi and Pezze 2001a). Some
improvements had to be included in order to consider the Be-
havioral Statechart diagram and the OCL constraints present

in the diagram. These constraints are essential to ensure a
more faithful analysis process. That said, it will be presented
the translation algorithm.

In this part of the algorithm, please consider only the Be-
havioral State Chart Diagram:
• The states of the diagram are modeled as places on Petri

net while transitions in the diagram are modeled as tran-
sitions on the Petri nets.

• If the states of the diagram have constraints formulated
in OCL, representing preconditions, they are modeled as
places representing the state to which they belong; and if
the states in the diagram have constraints that represents a
post-condition, then it will be modeled as a place to rep-
resent the respective state.

• relations between states and transitions in the diagram are
modeled as arcs between the corresponding places and
transitions in the Petri net.

• The composite (or super states) states in the diagram will
be modeled as macro elements in the Petri net and then
refined until they reach the lower level of the system.

In the last part of the algorithm, please consider only the
Object Diagram:
• The instantiated objects in the diagram will indicate the

multiplicity of the process in the Petri Net.
After the net is translated the analysis and validation

phases are made using the framework GhENeSys 2. In this
system, the hierarchical approach is based on homogeneous
borders composed either from places or transitions with the
requirement that there is only one input and one output el-
ement. Such requirement can improve the performance of
property analysis using hierarchy (Miralles 2012).

Next section will show a running exercises (based on real
applications) made to test the proposed design discipline.
Petrobras domain is based on a real demand (the problem
was reduced to fit space in this work) and refers to a demand
to control the supply chain in a offshore facility to produce
petroleum. Even the reduced problem would not be com-
putationally prohibitive using the original approach. Thus,
more than a comparison, the performance of the proposed
discipline show an enhanced capacity to scale problems.

Running Exercise
Petrobras 2012 - Ship Operations on Petroleum
Ports and Platforms
The general problem to be solved is based on the transporta-
tion and delivery of a list of requested cargo to different lo-
cations considering a number of constraints and elements
such as available ports, platforms, vessel capacity, weights
of cargo items, fuel consumption, available refueling sta-
tions in the ocean, different duration of operations, and costs
(Vaquero et al. 2012). Given a set of cargo items, the prob-
lem is to find a feasible plan that guarantees their delivery

2GHENeSys (General Hierarchical Enhanced Net System) was
a first attempt from our Lab to produce a Petri Net modeling envi-
ronment strictly in the ISO/IEC 15.909 standard. This system has
some extensions, including hierarchy and time Nets.

 105

 105

while respecting the constraints and requirements of the ship
capacities. The objective is to minimize the total amount of
fuel used, the size of waiting queues in ports, the number of
ships used, the make span of the schedule and the docking
cost. Next figures will show the UML model to represent
this problem.

Figure 4: Class Diagram for Petrobras Domain.

Figure 5: Behavioral Statechart Diagram for Petrobras Do-
main.

To complete de UML model was modeled the Object Di-
agrams for initial and goal states, respectively (they were
omitted to fit space in this work). In the initial state the ships
are docked all in Santos waiting area and the goal is to de-
livery cargo itens in one Santos platform and two Rio de
Janeiro platforms.

According to the translation algorithm outlined in the pre-
vious section, the Statechart diagrams were transformed into
a GHENeSys net (Foyo 2009). Figures 7 and 8 show the
general view of Petrobras domain and the ships operations,
respectively. The model was generated using the GHENeSys
environment (Olivera Salmon et al. 2011).

The verification process was made using place invariants
to validate properties of the system. The invariants are used
both in the representation and verification of system require-
ments as presented in (Olivera Salmon, Del Foyo, and R.
2014).

To verify the accuracy of the model we first compute the
invariants, thereafter we verify that the sets of places of

Figure 6: Behavioral Statechart Diagram for the ships in
Petrobras Domain.

Figure 7: Hierarchical Petri net for Petrobras Domain.

Figure 8: Hierarchical Petri net for ships operations in Petro-
bras Domain.

each inequality belongs to some vector in the solution set of
Petri net place invariants. The invariants were calculated by
GHENeSys system, which provides a set of invariants that
represent the basic solution i.e. the generator of all possible
invariants (Olivera Salmon et al. 2011). Thus, any invariant
of the net can be obtained as a linear combination of the
vectors of the generator sets.

Using the invariants set calculated and generated by
GHENeSys, we obtained the invariants shown in the pre-
vious figures. These set of invariants demonstrate that the

 106

 106

model are adequate to represent the requirements defined in
(Vaquero et al. 2012). Thus, it is possible to verify that the
system has the desired requirements. The invariants places
that we want to verify.

According to the design process proposed in previous sec-
tions the next step is to translate the UML/Petri Net model
to HTN language - the language JSHOP2 accept to run the
model and generate the plan. We tested the Petrobras do-
main with different planning problems, in this paper it will
be presented one of this where problem instance were de-
fined with 3 ships and 6 platforms (2 in Santos port and 4 in
Rio de Janeiro port). To facilitate the understanding of the
generated plan it was translated into 3 Statechart Diagrams
(one for each ship). Figures 10, 11 and 12 will show the plan
for ship 1, ship 2 and ship 3, respectively.

Figure 9: Statechart diagram for ship 1 action plan.

Figure 10: Statechart diagram for ship 2 action plan.

Figure 11: Statechart diagram for ship 3 action plan.

The states waas previously defined in the domain (and
were represented in the diagrams) and the text box repre-
sents the auxiliary functions defined in the HTN code to sup-
port the main HTN function. As we can see in figures 12 and

16 (that represents the Behavioral Statechart diagram and
Hierarchical Petri net for the ships, respectively), the ship
must be at first in some waiting area. That is what happens
with every ship. Another requirement is: the ship have al-
ways to perform an unload action before start the load pro-
cess. This is part of the requirements defined in Petrobras
domain documentation that we can verify using the design
process present in this paper.

Conclusion
The first conclusion we can derive from this work is about
the efficiency of the combined use of UML and Petri nets to
capture and analyze requirements in challenge real problems
related to planning, which keeps UML in a good position as
a standard language. Such combination could be used suc-
cessfully in the design of real problems that demand the use
of AI Planning techniques. However such approach turn to
be prohibitive to large problems, which make it attractive to
use abstraction and hierarchy both in UML and Petri nets.
That means more than a representation enhancement but a
significant change in the design discipline.

During the development of this work, we realized that
the Petri net generated by the original version of itSIMPLE
missed some details. itSIMPLE consider just the old version
of State Machine Diagram and this is not enough to derive a
detailed Petri net. Another weakness of itSIMPLE is how the
planning application is modeled. There is no design process
to guide the user and this can lead the to some mistakes in
the modeling, confusing the work domain with the planning
problem. Our proposal is to separate them and this approach
offers different viewpoints that complement the information
needed to generate the Petri net.

After some running exercises, we observe that large real
world problems can benefit from hierarchical structures. The
most complex domains are hard to deal with when no ab-
straction is present. In these domains, a hierarchical prob-
lem decomposition based on topological structure can lead
to a significantly better performance. Our preliminary run-
ning exercises using these domains as a testbed has already
shown an impressive potential to use hierarchical models in
the design process.

This work showed the need to restructure the framework
itSIMPLE starting with the update of the UML version.
This discover was made after several running exercises that
were performed aiming refine the first proposal presented in
(Tonaco-Basbaum, Vaquero, and Silva 2013). Another rel-
evant discovery was the perfect adequacy of hierarchical
models to represent real world problems. With these three
main findings we justify the need of a new itSIMPLE version
encompassing methods presented in this work. The main
changes was made outside itSIMPLE to test the proposal,
both running exercises presented in this paper were previ-
ously solved using classical version of itSIMPLE but only
in the last (Petrobras domain), we can ”compare” the re-
sults, even our problem scope being greater than the scope
presented in (Vaquero et al. 2012).

In this paper, we presented a different proposal for Petri
nets in automated planning, that uses the Petri net in Knowl-
edge Engineering to improve the design process. The objec-

 107

 107

tive was to create a better and disciplined way to model plan-
ning applications using UML and Petri nets in the context of
itSIMPLE framework, trying fix and improve the design and
validation processes.

References
Baresi, L., and Pezze, M. 2001a. Improving uml with petri
nets, electronic notes in theoretical computer science 44.
Baresi, L., and Pezze, M. 2001b. On formalizing UML with
high-level petri nets. Concurrent object-oriented program-
ming and petri nets: advances in petri nets.
Botea, A.; Muller, M.; and Schaeffer, J. 2003. Extending
pddl for hierarchical planning and topological abstraction.
ICAPS 2003.
D Souza, D. F., and Wills, A. 1999. Objects, components,
and frameworks with UML: the catalysis approach. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc.
Denaro, G., and Pezze, M. 2004. Petri nets and software en-
gineering. Lectures on Concurrency and Petri Nets. Springer
Berlin Heidelberg,.
Edelkamp, S., and Jabbar, S. 2006. Action Planning for
Directed Model Checking of Petri Nets. Electronic Notes in
Theoretical Computer Science 149(2).
Foyo, P. M. G. 2009. Verificação formal de sistemas discre-
tos distribuı́dos. Tese (Doutorado) - Escola Politécnica da
Universidade de São Paulo.
Guerra, E., and Lara, J. 2003. A framework for the verifica-
tion of uml models. examples using petri nets.
Ilghami, O. 2006. Documentation for jshop2. Technical
report cs-tr-4694., Department of Computer Science. Uni-
versity of Maryland.
Liu, X., and Yen, J. 1996. An analytic framework for spec-
ifying and analyzing imprecise requirements. international
conference of software engineering.
McCluskey, T. L.; Aler, R.; Borrajo, D.; Haslum, P.; Jarvis,
P.; Refanidis, I.; and SCHOLZ. 2003. Knowledge Engineer-
ing for Planning Roadmap.
McCluskey, T. L. 2003. Pddl: A language with a purpose?
In ICAPS03, 13th International Conference on Automated
Planning and Scheduling.
McDermott, D. 2003. PDDL2.1 - The Art of the Possible?
Commentary on Fox and Long. Journal of Artificial Intelli-
gence Research (JAIR) 20.
Miralles, J. S. P. 2012. GHENeSys , uma Rede Unificada e
de Alto Nı́vel. Ph.D. Dissertation, São Paulo.
Nau, D.; Au, T.; Ilghami, O.; Kuter, U.; Murdock, J.; Wu,
D.; and Yaman, F. 2003. Shop2: An htn planning system.
AI Access Foundation.
Nguyen, A. 2005. Challenge ROADEF 2005 - Car Sequenc-
ing Problem.
Olivera Salmon, A.; Miralles, J. A.; Del Foyo, P.; and R.,
S. J. 2011. Towards a unified view of modelingand design
with ghenesys. Proceedings of COBEM2011.
Olivera Salmon, A. Z.; Del Foyo, P.; and R., S. J. 2014. Ver-
ification of automated systems using invariants. Anais do XX

Congresso Brasileiro de Anais do XX Congresso Brasileiro
de Anais do XX Congresso Brasileiro de Automação.
OMG. 2009. OMG Unified Modeling Language TM (OMG
UML), Superstructure.
OMG. 2011. OMG Unified Modeling Language (TM)
(OMG UML), Superstructure. Version 2.4.1.
Perez, O.; Reines, F.; Olivares, J.; Vidal, L.; and Hervas, T.
2006. Planning process from a user perspective. In Pro-
ceedings of the 16th International Conference on Automated
Planning and Scheduling (ICAPS 2006) Workshop on Plan
Analysis and Management. Cumbria, UK.
Tonaco-Basbaum, R.; Vaquero, T.; and Silva, J. R. 2013.
Requirement analysis method for real world systems in auto-
mated planning. Knowledge Engineering for Planning and
Scheduling (KEPS). The 23rd International Conference on
Automated Planning and Scheduling. Rome, Italy.
Upal, M. 2005. Learning to Improve Plan Quality. Compu-
tational Intelligence 21(4).
Vaquero, T.; Beck J C, McCluskey, T. L.; and Silva, J. R.
2013. Knowledge engineering for planning and scheduling:
Tools and methods. JAIR.
Vaquero, T.; Tonidandel, F.; Barron, L.; and Silva, J. R.
2005. On the use of uml.p for modeling a real application
as a planning problem. American Association for Artificial
Intelligence.
Vaquero, T. S.; Romero, V.; Tonidandel, F.; and Silva, J. R.
2007. itSIMPLE2.0: An integrated Tool for Designing Plan-
ning Environments. In Proceedings of the 17th International
Conference on Automated Planning and Scheduling (ICAPS
2007). Providence, Rhode Island, USA.
Vaquero, T.; Costa, G.; Tonidandel, F.; Igreja, H.; Silva,
J. R.; and C, B. J. 2012. Planning and Scheduling Ship
Operations on Petroleum Ports and Platforms. Proceedings
of the Scheduling and Planning Applications Workshop.
Vaquero, T.; Tonidandel, F.; and Silva, J. R. 2005. The it-
SIMPLE tool for Modelling Planning Domains. In Proceed-
ings of the First International Competition on Knowledge
Engineering for AI Planning, Monterey, Califormia, USA.
Vaquero, T. 2011. Pós-design para Problemas de Plane-
jamento Automático : uma abordagem combinando di-
agnóstico, realidade virtual e reutilização de rationales.
Tese de doutorado, Universidade de São Paulo.
Zhao, Y.; Fan, Y.; Bai, X.; Wang, Y.; Cai, H.; and Ding, W.
2004. Towards formal verification of uml dia- grams based
on graph transformation, proceedings of the ieee interna-
tional conference on e-commerce technology for dynamic
e-business, ieee computer socity.
Zimmerman, T., and Kambhampati, S. 2003. Learning-
assisted automated planning: looking back, taking stock, go-
ing forward. AI Magazine 24(2).

 108

