
The 26th International Conference on Automated 

Planning and Scheduling 

 

 

 

 

Proceedings of the 4th Workshop on 

Planning and Robotics  

(PlanRob) 
 

 

Edited by: 

Alberto Finzi, Erez Karpas 

 

 

London, UK, 13-14/06/2016 



Organising Committee 

Alberto Finzi 

DIETI - Università di Napoli "Federico II", Italy  

 

Erez Karpas 

Technion - Israel Institute of Technology, Israel   

 

Program Committee 

Rachid Alami (LAAS-CNRS, France) 

Sara Bernardini (King's College, UK) 

Amedeo Cesta (ISTC-CNR, Italy) 

Marcello Cirillo (Orebro University, Sweden) 

Patrick Doherty (Linkoping University, Sweden) 

Erez Karpas (Technion, Israel) 

Sven Koenig (University of Southern California, USA) 

Alberto Finzi (Naples University, Italy) 

Robert Fitch (University of Sydney, Australia) 

Malik Ghallab (LAAS-CNRS, France) 

Joachim Hertzberg (Osnabrück University, Germany) 

Felix Ingrand (LAAS-CNRS, France) 

Luca Iocchi (University of Rome "La Sapienza", Italy) 

Matteo Leonetti (University of Leeds) 

Daniele Magazzeni (King's College, UK) 

Karen Myers (SRI International, USA) 

Daniele Nardi (University of Rome "La Sapienza", Italy) 

Goldie Nejat (University of Toronto, Canada) 

Andrea Orlandini (ISTC-CNR, Italy) 

Frederic Py (Independent) 

Enrico Scala (ANU, Australia) 

David Smith (NASA Ames, USA) 

Tiago Stegun Vaquero (MIT, USA) 

 

2



Foreword 

Robotics is one of the most appealing and natural applicative area for the Planning and Scheduling (P&S) 

research activity, however such a natural interest seems not reflected in an equally important research 

production for the Robotics community. In this perspective, the aim of the PlanRob workshop is twofold. 

On the one hand, this workshop would constitute a fresh impulse for the ICAPS community to develop 

its interests and efforts towards this challenging research area. On the other hand, it aims at attracting 

representatives from the Robotics community to discuss their challenges related to planning for 

autonomous robots (deliberative, reactive, continuous planning and execution etc.) as well as their 

expectations from the P&S community.  

The PlanRob workshop aims at constituting a stable, long-term forum on relevant topics concerned with 

the interactions between the Robotics and P&S communities where researchers could discuss the 

opportunities and challenges of P&S when applied to Robotics. Started during ICAPS 2013 in Rome (Italy) 

and followed by a second edition at ICAPS 2014 in Portsmouth (NH, USA) and a third one at ICAPS 2015 

in Jerusalem (Israel), the PlanRob WS series (http://pst.istc.cnr.it/planrob/) has gathered very good 

feedback from the P&S community which is also confirmed by the organisation of a specific Robotics 

Track from ICAPS 2014. 

This fourth edition of the PlanRob workshop has been proposed in synergy with the Robotics Track to 

further enforce its original goals and to maintain a more informal forum where more 

preliminary/visionary works can be discussed. PlanRob 16 succeeded in achieving these objectives 

providing a rich and articulated program. Indeed, 23 papers have been accepted for oral presentation 

covering many relevant topics in Planning and Robotics such as high-level task planning, task and motion 

planning, planning and execution for robots, planning and learning, human-robot interaction, real 

applications and case studies. The workshop program is completed by the invited talk by Prof. Manuela 

Veloso (Carnegie Mellon University - CMU) on "The Multiple Facets of Planning in Robot Autonomy". 

The varieties of research topics and results collected in these proceedings reflect a stimulating and 

intense research activity along with a growing interest for a forum where the Planning and Robotics 

communities can find a common ground. 

Among the numerous people that contribute to the success of PlanRob 2016, we would first of all thank 

the ones that submitted their research papers to the workshop and attended the event. Moreover, we 

sincerely thank the program committee for the important work on the reviewing process.   

Alberto Finzi, Erez Karpas 

The PlanRob 2016 Chairs 

 

PlanRob 2016 is partially supported by the SHERPA project (EU FP7 under the grant agreement ICT-

600958). 
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From videogames to autonomous trucks: A new algorithm for lattice-based
motion planning

Marcello Cirillo
Scania Technical Centre, Södertälje, Sweden

marcello.cirillo@scania.com

Abstract
Autonomous navigation in real-world environments is still a
challenging task in many respects. One of the key open chal-
lenges is fast planning of physically executable complex ma-
neuvers under non-holonomic constraints. In recent years,
lattice-based motion planners have been successfully used
to generate kinematically and kinodynamically feasible mo-
tions for non-holonomic vehicles. However, it is not clear yet
what algorithms are best to efficiently explore the lattice state
space, while at the same time ensuring real-time performance.
In this paper, we show how motion planning can greatly ben-
efit from tapping into the latest results in path planning on
grids, and we present a new version of Time-Bounded A∗.
Our version is designed to work for high-dimensional mo-
tion planning problems in real-world robotic applications. We
demonstrate our algorithm both in simulation and on a full-
size autonomous truck.

Introduction
In recent years, the interest for autonomously driving vehi-
cles has steadily increased. Many big actors in the car in-
dustry, as well as competitive outsiders have joined the race
to provide the world with the first fully autonomous cars,
trucks or buses (Ross 2014). Thanks to this interest, great
resources have been allocated worldwide to develop the new
algorithms and techniques necessary to reach the ambitious
goal, and the by-product of the race has been the commer-
cialization of new advanced safety systems. When it comes
to industrial tasks, such as in mining or intra-logistic scenar-
ios, solutions which totally or partially rely on autonomous
vehicles have been available for many years (Thrybom et al.
2015; Andreasson et al. 2015a). This is because some of the
most challenging problems that must be addressed in urban
environments are muted when autonomous vehicles operate
in special, enclosed areas. However, industrial solutions can
still greatly benefit from recent advancements.

The industry standard approach to motion planning for
autonomous vehicles still relies largely on fixed paths (Mar-
shall, Barfoot, and Larsson 2008), which have been either
previously driven by a human operator or manually drawn
during system deployment. Both approaches, although ef-
fective, present the major drawback that even small modifi-
cations to the environment require defining new paths, which
can be a costly and cumbersome procedure. Moreover, ve-
hicles on pre-defined paths can only deal with unexpected

obstacles by reducing their velocity or by employing very
simple avoidance strategies.

In this paper, we address the problem of motion planning
for non-holonomic vehicles in unstructured environments,
that is, in possibly large areas where a vehicle cannot fol-
low roads and needs to perform complex maneuvers. More
specifically, we focus on heavy transport vehicles, as our
work is driven by the goal of introducing a new level of
autonomy in environments such as open and underground
mines, or construction sites. Although these environments
typically contain a low number of other agents, trucks op-
erating there require advanced motion planning algorithms:
The transportation tasks effectively change the landscape
of the areas, loading and unloading locations change over
time, and the maneuvering spaces can be quite narrow. As
a practical example, consider the area in Figure 1. Here,
the truck arrives on the maneuvering area through a nar-
row road, and it needs to get to a loading place whose lo-
cation can change over time and can be precisely identi-
fied only by sensor readings. Also, other trucks and loaders
may have moved material around, thus creating new unex-
pected obstacles. Although motion planning has been the
focus of extensive studies in the past decade, and many so-
lutions have been proposed to deal with non-holonomic ve-
hicles (LaValle 2006; Pivtoraiko, Knepper, and Kelly 2009;
Thrun et al. 2006), a definitive solution for the problem de-
scribed above does not exist as yet, and the existing ones can
still be greatly improved.

Our main contribution is to show how motion plan-
ning can be further improved by tapping into the wealth
of algorithms which have been developed for graph
search outside the robotics community. We describe
why and how we adapted the popular algorithm Time-
Bounded A∗ (Björnsson, Bulitko, and Sturtevant 2009) for
working with robotic systems, and we demonstrate its effec-
tiveness in simulation and on an autonomous truck.

In the following, we first present recent related work. We
then briefly describe our planning framework and the origi-
nal algorithm, we present our new version of the algorithm,
adapted for high-dimensional spaces and robotic applica-
tions, and we empirically demonstrate the capabilities of our
planner. Finally, we discuss our results and highlight inter-
esting avenues for future research.
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Figure 1: The autonomous truck used in our tests and an area were
the truck is required to maneuver.

Related Work
Motion planning under differential constraints has been ex-
tensively studied in the past decades. Whenever differen-
tial constraints and obstacles are considered, combinatorial
methods and analytical solutions are of limited use (LaValle
2006). The former are not well suited in the presence
of differential constraints, while the latter cannot effec-
tively cope with obstacles. When it comes to planning mo-
tions for car-like vehicles on roads, several assumptions can
be made that led to the development of specialized plan-
ners (Madas et al. 2013; Levinson et al. 2011). Most of these
results, however, are not suitable for maneuvering in un-
structured environments. In these environments, sampling-
based methods have been proven to be effective: Proba-
bilistic Roadmaps (PRMs) (Kavraki et al. 1996), Rapidly-
exploring Random Trees (RRTs) (LaValle 1998) and lattice-
based motion planners (Pivtoraiko and Kelly 2009), all of
which can work in high-dimensional configuration spaces.
PRMs have two major drawbacks: First, before running the
algorithm, several parameters must be selected (e.g., the du-
ration of the learning phase); and, second, a new roadmap
has to be built every time the environment is subject to sub-
stantial changes. After their initial introduction (LaValle
and Kuffner 2001), RRTs have been extensively studied,
and many variants of the original algorithm have been pro-
posed (Karaman and Frazzoli 2011; Kuwata et al. 2009;
Karaman and Frazzoli 2013). RRTs do not guarantee con-
vergence (termination is usually implemented with a time-
out) and, unless the space is analyzed beforehand, they can-
not verify whether a problem offers no solution. Lattice-
based motion planners combine the strengths of the previ-
ous approaches with classical AI graph-search algorithms,
such as A∗, ARA∗ (Likhachev, Gordon, and Thrun 2003)
andD∗Lite (Koenig and Likhachev 2002). Differential con-
straints are incorporated into the state space by means of pre-
computed motion primitives which trap the motions onto a
regular lattice. The state space is then explored using graph-
search algorithms.

Lattice-based planners have proven to be particularly ef-
fective for quickly calculating accurate, complex maneuvers
(e.g., three-point turns) in environments cluttered with ob-

stacles (Andreasson et al. 2015b). Existing planners, how-
ever, generally use only a very restricted subset of the graph
search algorithms developed in recent years. More impor-
tant still, most of the algorithms currently used need to find
a complete solution before starting execution. This can be
computationally expensive and even useless, as the environ-
ment around a mobile vehicle is usually observable only as
far as its sensors’ range allows. Therefore, the solutions
found often need to be corrected or completely re-calculated
as new information is acquired.

Parallel to the research on motion planning under differ-
ential constraints, there have been very interesting devel-
opments in the area of path finding on grids (Sturtevant et
al. 2015). Videogames have very stringent requirements on
the amount of time that can be allotted to path finding for
each character, especially when the number of agents to be
moved is high and the map only partially observable (Sturte-
vant 2015). The algorithms employed must be effective and
must work in real time, providing also partial solutions in
the little time available. Although pathfinding algorithms on
grids have to consider only a few possible alternative moves
at each state (depending if a 4- or an 8-connected grid is
used), they can be easily adapted to work on lattices. There
is a wealth of algorithms (Koenig and Likhachev 2006;
Björnsson, Bulitko, and Sturtevant 2009) that can be used
to improve lattice-based motion planners, and in this paper
we show how.

Motion planning framework
Given a model of vehicle maneuverability, the intuition be-
hind lattice-based motion planning is to sample the state
space in a regular fashion and to constrain the motions of
the vehicle to a lattice graph G = 〈V, E〉, that is, a graph
embedded in a Euclidean space Rn which forms a regular
tiling (Pivtoraiko, Knepper, and Kelly 2009; Cirillo, Uras,
and Koenig 2014). Each vertex v ∈ V represents a state,
or pose of the vehicle, while each edge e ∈ E encodes a
motion which respects the non-holonomic constraints of the
vehicle. Here, we focus only on kinematic constraints, as in
our system the generation of a velocity profile is decoupled
from the maneuver calculated by the motion planner. The
reason for this division is two-fold: First, removing the ve-
locity at planning time we effectively reduce the size of the
state space, thus speeding up the search for solutions. Also,
the speed profiling can then be better tailored to the require-
ments of the low-level controller. Second, calculating the
velocity using a dedicated module, we can easily take into
account dynamic obstacles and avoid them by adapting the
cruising speed without re-planning.

In a motion planning problem, a vehicle is fully specified
by its model. A model encodes the geometric measurements
of the vehicle, the discretization of the dimensions of the
lattice on which the vehicle moves and a set of motion prim-
itives P . The discretization of the lattice defines what states
the vehicle can reach. A valid state for a model is repre-
sented by a four-dimensional vector s = 〈x, y, θ, φ〉: (x, y)
lies on a grid of resolution r, θ ∈ Θ and φ ∈ Φ, where Θ
and Φ are a finite set of allowed orientations and of allowed
steering angles, respectively. The set of motion primitives
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Figure 2: The motion primitives in the state s = 〈0, 0, π/2, 0〉. In
this model, r = 50 cm, |Θ| = 16 and |Φ| = 1.

P captures the mobility of the vehicle while intrinsically
taking into account its kinematic constraints. Under the as-
sumption of even terrain, we can design P to be position-
invariant.1 Every p ∈ P is calculated by using a bound-
ary value problem (BVP) solver to connect a set of initial
states s = 〈0, 0, θ, φ〉 to a set of neighboring states in a dis-
crete, bounded neighborhood in free space. The BVP solver
guarantees that the motions respect the kinematic constraints
of the vehicle, while the position-invariant property ensures
that the primitives are translatable to other states. P can
then be reduced for efficiency using the techniques described
in (Pivtoraiko and Kelly 2011), by removing those prim-
itives that can be decomposed into other primitives in P ,
without affecting the reachability of the state space of the
vehicle when obstacles are not considered. Finally, a cost
g(p) is associated with each p ∈ P . In our implementa-
tion, g(p) is calculated by multiplying the distance covered
by p by a cost factor which penalizes backwards and turning
motions. An example of motion primitives for the vehicle
model of a truck can be seen in Figure 2, where r = 50
cm, |Θ| = 16 and |Φ| = 1. The figure represents all the
primitives applicable in the starting state s = 〈0, 0, π/2, 0〉.

A planning problem is defined by a starting state start, a
goal state goal and a world representationW , in which are
included all known obstacles. A valid solution is a sequence
of collision-free primitives (p0, . . . , pn) connecting start to
goal. Given the set of all valid solutions to a problem, an
optimal solution is the one with minimum cost.

Time-Bounded A*

Time-Bounded A∗ (TBA∗) was first introduced
in (Björnsson, Bulitko, and Sturtevant 2009) and was
designed for efficient path finding on grids. The most
prominent features of the algorithm (described below in
pseudo-code as in the original publication) are that it

1This assumption can be relaxed if the low-level controller of
the vehicle can absorb minor perturbations or by means of a post-
processing step.

achieves real-time operation, it allows to interleave search
periods with action execution, and it avoids many unnec-
essary state re-expansions compared to other solutions.
These characteristics, combined with the fact that TBA∗

maintains completeness, make the algorithm a great choice
for gaming applications.

Procedure TBA∗(start,goal,W)

solutionFound← false1
solutionFoundAndTraced← false2
traceDone← false3
loc← start4
while loc 6= goal do5

if (¬solutionFound) then6
solutionFound← A∗(lists, start, goal,W, NE)7

if (¬solutionFoundAndTraced) then8
if (doneTrace) then9

pathNew ← lists.mostPromisingState()10

doneTrace← traceBack(pathNew, loc,NT )11
if (doneTrace) then12

pathFollow ← pathNew13
if (pathFollow.back() = goal) then14

solutionFoundAndTraced← true15

if (pathFollow.contains(loc)) then16
loc← pathFollow.popFront()17

else18
if (loc 6= start) then19

loc← lists.stepBack(loc)20
else21

loc← loc last22

loc last← loc23
move agent to loc24

Given an initial state start, a desired final state goal and
a representation of the world W , TBA∗ searches the state
space as A∗ would do. However, while the latter would
continue until it finds a complete path from start to goal,
TBA∗ stops the search after a finite number NE of expan-
sions (line 7), while retaining the open and the closed lists.
In case a solution has not yet been found after NE expan-
sions, the algorithm extracts from the open list the most
promising state, tracing it back (pathNew) either to start,
or to the current location of the agent loc, in case the agent
is already on pathNew. Note that also the tracing operation
is done in a time sliced manner, and onlyNT steps are traced
at each iteration (line 11). When tracing is done, pathNew
becomes the path to follow (pathFollow, line 13) and the
algorithm executes sequentially its actions (line 17). How-
ever, the agent might not be on pathFollow, but on another
path that was extracted as most promising during a previous
iteration. In such case it will have to backtrack its steps (line
20) to reach the state where the two paths meet (start, in the
worst case). Move actions (lines 24) are performed one per
iteration, while expansion and tracing steps (NE and NT )
are fixed in number at each algorithm’s iteration. The au-
thors also considered the special case in which the agent has
reached start, but no new path is available. Here, the agent
is forced to act, and it moves back to the state it came from

8



(loc last line 22)
Conceptually, it would be straightforward to modify the

algorithm to explore a lattice, rather than a grid. However,
robotic systems are not equivalent to videogame agents, and
domain-specific adaptations are required.

Lattice Time-Bounded A*

Moving from videogames to autonomous vehicles, there are
many aspects of TBA∗ which require adjusting. The result-
ing new algorithm, Lattice Time-Bounded A∗ (LTBA∗), is
summarized in pseudo-code below. LTBA∗ maintains the
operational principles of TBA∗ and still works in a time-
sliced manner, where A∗ is repeatedly called at each itera-
tion with the same lists (line 12). However, this new algo-
rithm must take into account the fact that we are planning
for a physical system, which cannot be safely steered on a
new path without considering its velocity and inertia, and
which should not exhibit erratic behaviours. Moreover, the
algorithm must take into account that new goals could ar-
rive during execution, and that other systems (such as the
low-level controller) may fail, or steer the vehicle out of its
intended path. Finally, new sensor data arrive at every itera-
tion, and new obstacles may be perceived. In the following,
we detail and motivate all the major differences between the
original algorithm and its adaptation for robotic systems.

Procedure LTBA∗(goal,W)

loc← getSensorData()1
start← createState(loc)2
lastState, committedState← start3
t← now()4
while loc 6= goal do5

(currentGoal, loc,W)← getSensorData()6
if (currentGoal 6= goal) ∨ outOfPath(loc) then7

return8

(lastState, committedState)← trackLoc(loc)9
if committedState 6= startState then10

updateLists(committedState)11

solutionFound← A∗(lists, start, goal,W,∆T − t)12
t← now()13
pathNew ← lists.mostPromisingState()14
if pathNew.size() > 0 then15

sendPath(pathNew)16
else17

sendPath(lastState)18

Continuous sensor update The first difference between
LTBA∗ and TBA∗ lies in the distinction between states,
that are a discrete representation used for exploring the lat-
tice space, and the status of the vehicle, contained in the
variable loc. loc does not only contain the position of the
vehicle in the continuous space, but it also includes infor-
mation such as current speed and mass.2 Because of this
difference, the starting state of the vehicle is not passed as
an argument, but it is inferred directly from sensor data, so

2The information about the mass could be included into the
model of the vehicle. However, here we are targeting a transporta-
tion domain, where the truck’s load varies.

that start reflects where the vehicle is expected to be by the
end of the first planning cycle (lines 1-2).

Sensor updates are repeated at each iteration of the algo-
rithm (line 6). New readings are processed for updating the
representation of the worldW (e.g., the position of detected
obstacles), the location of the truck loc and to verify if the
current goal has changed. If, for any reason, the truck is out-
side its designed path, or in case a new goal is received, the
procedure terminates and a new one is immediately instanti-
ated with a new start (lines 7-8).

Procedure mostPromisingState
if solutionFound then1

pathNew ← solution2
else3

pathNew ← openList.pop()4

while ¬ collFree(pathNew) ∧ openList.size() > 0 do5
removeCollisionStates(lists, pathNew)6
pathNew ← openList.pop()7

if collFree(pathNew) then8
return(pathNew)9

else10
pathNew ← {}11
return(pathNew)12

Path selection and path commitment After each plan-
ning iteration (line 12), pathNew is updated as it was the
case in TBA∗. However, here, the procedure which selects
the most promising state is more complex and it is detailed
in pseudo code in Procedure mostPromisingState.

As it is customary in robotic applications, the planner
works under the free world assumption, which means that
the area outside the range of the truck’s sensors, with the
exception of fixed infrastructure, is considered as obstacle-
free. Hence, it may happen that the extracted pathNew is
invalidated once a new obstacle enters within the sensors’
range (see example in Figure 4).

The selection of pathNew works as follows: First, the
algorithm checks if A∗ during the last search iteration has
reached a solution, which would obviously become the first
candidate for pathNew. In case a solution does not exist,
the most promising node is extracted from the openList
(Procedure mostPromisingState, lines 1-4). Once a candi-
date has been selected, it is checked for obstacles. In case
the result of the check is positive, the edge of the lattice
graph on which the first collision point occurs is identified
and removed, along with all its successors. Such states, now
unreachable, are deleted from the lists (line 6). New can-
didates are then evaluated until one of two possibilities oc-
curs: Either a candidate pathNew is collision-free, or the
openList is empty. In the latter case, an empty pathNew is
returned. pathNew is then sent for execution (LTBA∗, line
16). In the unlikely case that pathNew is empty, the algo-
rithm sends the position contained in lastState for execu-
tion. If the truck is moving, this would cause an emergency
braking procedure. Note that this mechanism was never trig-
gered in the course of our experiments, both simulated and
with the real truck, but it is nevertheless necessary to ensure

9



(a) (b) (c) (d)
Figure 3: A simplified example of how the explored lattice is pruned after the algorithm has selected a committedState on the current
pathNew. (a): A vehicle, captured by a simple vehicle model with three motion primitives, must move from start (green arrow, bottom left
corner) to goal (red arrow, top right); (b): After the first search iteration, the lattice has been partially explored, and the algorithm selects a
pathNew, represented by a continuous line and terminating at the state circled in green, which is sent for execution; (c): Before the next
search iteration, the algorithm commits to a committedState (circled in red), where the truck is going to be after the search episode. The
lattice space is then pruned, so that no further exploration would be possible between start and committedState; (d): The next search
iteration further explores the lattice starting from the states expanded in previous searches.

overall system safety.
Finally, dealing with a heavy vehicle traveling at consid-

erable speed entails that sudden stops and change of direc-
tions are not acceptable. Nor we can allow for the truck
to trace back a dismissed path in reverse. Therefore, the
traceBack function in TBA∗ is replaced by a mechanism
to ensure that such occurrences never happen. More specif-
ically, at each cycle we use the information about position
and speed of the truck on the pathNew to calculate both the
lastState visited and the committedState (line 9). The
committedState is the state that lies on pathNew before
which the truck, at its current speed, is not allowed to de-
viate from pathNew. The calculation of committedState
takes into account two factors: First, the position at which
the truck is predicted to be at the end of the current planning
cycle; Second, the momentum of the truck, so as to avoid
infeasible maneuvers.

Once committedState has been calculated, it becomes
the new root node of the search. This is done by re-
moving from all the lists the states that branch from start
to committedState, thus forcing the search to continue
from committedState onwards. A simplified example of
this procedure can be seen in Figure 3, while a real test
case is shown in Figure 4. Note that the discarded states
can be reached again, but only by first passing through
committedState. This last step ensures that the next
pathNew will share the first segment of the previous one.

Real-time execution Maintaining real-time performance
in LTBA∗ is of the utmost importance. As the algorithm
needs to send a collision-free pathNew for execution every
fixed ∆T (in our implementation, ∆T = 0.5 seconds), we
need to make sure that the time allotted for search takes into
account other possibly time-consuming procedures, such as
the collision checking and the selection of pathNew. Also,
when dealing with lattice state, the time required for each ex-
pansion may greatly vary, as collision checking is more com-
plex than on a grid. For this reason, we prefer to put a hard
limit on the execution time of the search phase, rather than
on the number of expansions as originally done in TBA∗.

Figure 6: The planner quickly calculates parking maneuvers.

Thus, before the main loop begins (line 4) and right after the
search on the lattice space (line 13), a time t variable is re-
set. A∗ is called as the last operation in each time cycle, so
that we can calculate exactly how much time is available for
exploring the lattice.

Two possible alternatives to maintain real-time execution
would be to either start a new search at every planning cycle
and select pathNew each time from scratch, or to wait for
a complete solution before moving and then safely stop and
start a new search if the current solution is invalidated. How-
ever, LTBA∗ shows better performance: by never discard-
ing the lists, it avoids useless re-expansions. Furthermore, it
can exploit moments in which the truck is proceeding slowly
or has stopped to continue state expansion.

Notes on completeness and complexity
Lattice-based motion planners can be complete with respect
to the discretization of the state lattice and the selection of
the motion primitives (Cirillo et al. 2014), provided that the
algorithm used to search the lattice is complete. LTBA∗

relies on a time-sliced A∗ search, which is per se com-
plete. However, contrarily to TBA∗, the new algorithm
does not expand all the nodes as A∗ would do, as some
branches are pruned away because of the mechanism of the
committedState. To ensure completeness, it would be re-
quired to modify the algorithm in two ways: (1) whenever
a solution is not found within a number of search cycles,
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(a) (b) (c)
Figure 4: In this simulation, the truck moves from its current position (lower right) to goal (blue). The lattice is explored (a), and a pathNew
selected. In successive search iterations, LTBA∗ keeps exploring the lattice, finds a complete solution (in white), and discards those branches
that stem from behind the committedState (b). When an obstacle is detected (c), the current pathNew is abandoned, and the lattice is
explored for alternative solutions.

(a) (b) (c)
Figure 5: TBA∗ can efficiently cope with new obstacles detected along the path. As the initially calculated path (a) is not viable any longer
(b), the algorithm resume the exploration of the lattice, to find an alternative, collision-free route (c).

the truck is required to reduce speed or even to stop, so as
to give enough time to complete a full A∗ search from the
current committedState; and (2) the set P of motion prim-
itives should be designed to have symmetric forward and
backward maneuvers.

The memory complexity of LTBA∗ is the same of A∗:
in the worst-case, the algorithm would require to explore
the entire state space. It can be readily understood that the
state space of the lattices used for motion planning can be
very large. Therefore, we rely on two heuristic functions to
direct the search: A simple euclidean distance and a state-to-
state heuristic table with exact costs in free space. This last
heuristic has been already successfully used in (Pivtoraiko,
Knepper, and Kelly 2009) and it is calculated by running Di-
jkstra’s algorithm starting from a few selected starting states.
Both heuristics are consistent, and we can combine them so
that the resulting function is also consistent.

Experimental Results
We tested our planner both in simulation and on our robotic
platform (Figure 1). The simulation environment duplicates
all the sub-systems of the real platform, from behaviour se-
lection to the low level controller, and it is effective in testing
all the modules deployed on the autonomous truck. All the
components of the simulation run on a virtual machine with
as Ubuntu OS, which in turns is running on a normal laptop
equipped with an Intel Core i7-4810QM CPU @ 2.80GHz
and 16 GB RAM (8 GB available to the virtual machine).
The computer running the components on the robotic plat-
form is Debian-based, and with comparable hardware spec-

ifications. The tests were carried out with two truck models:
one with |Θ| = 16, |Φ| = 1 and |P | = 192, the second
with |Θ| = 32, |Φ| = 1 and |P | = 1312 (r = 50 cm
in both cases). The second model allows for more precise
maneuvering, but its state space is obviously much larger.
Both models were used with a heuristic table for speeding
up close-quarters maneuvering.

The first tests included parking scenarios (Figure 6),
point-to-point movements and evasive maneuvers when new
obstacles appear on the map unexpectedly during execution
(Figure 4). All tests were successful: the low level controller
was able to effectively execute all the maneuvers planned
and the obstacles were correctly avoided.

The second series of tests were carried out to demonstrate
that LTBA∗ can cope with new obstacles better than a sim-
ple A∗. We designed 5 similar scenarios, in which the plan-
ner was invoked with fixed start and goal. After 10 sec-
onds, an obstacle would appear between the truck and its
destination, as shown in Figure 5. We run the scenarios first
using LTBA∗ and then A∗. In the second case, the plan-
ner was forced to find a complete solution before commit-
ting to a path, and to start from scratch when the current
solution was invalidated. The model used in these tests was
the more complex one (|Θ| = 32 and |P | = 1312). Over
the 5 runs, not only our algorithm expanded less nodes than
A∗ (LTBA∗: avg 6017 [max 8505] ; A∗: avg 10473 [max
11850]), but it never required abrupt braking for calculating
a new path.
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Conclusions and Future Work
In this paper we have shown how motion planning for
robotic systems can greatly benefit from the latest findings in
the area of path finding on grids. We adapted TBA∗, an al-
gorithm designed for path finding in videogames, to lattice-
based motion planning. The new algorithm, LTBA∗, was
described, analyzed and tested in simulation and on an au-
tonomous truck. Future work include a comparison of the
new algorithm with other state-of-the-art search algorithms
and the extension to multi-robot systems.
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Abstract
We describe a methodology for control of vertically pro-
filing floats that uses an imperfect predictive model of
ocean currents. In this approach, the floats have control
only over their depth. We combine this control authority
with an imperfect model of ocean currents to force the
floats to maintain position. First, we study the impact
of model accuracy on this ability to station keep (e.g.
maintain X-Y position) using simulated planning and
nature models. In this study, we examine the impact of
batch versus continuous planning. In batch planning the
float depth plan is derived for an extended period of time
and then executed open loop. In continuous planning the
depth plan is updated with the actual position and the
remainder of the plan re-planned based on the new in-
formation. In these simulation results, we show that (a)
active control can significantly improve station keeping
with even an imperfect predictive model and (b) con-
tinuous planning can mitigate the impact of model in-
accuracy. Second, we study the effect of using heuristic
path completion estimators in search. In general, using
a more conservative estimator increases search quality
but commensurately increases the amount of search and
therefore computation time. Third, we discuss results
from an April 2015 deployment int he Pacific Ocean and
compare model accuracy and float control performance.

Introduction
The state of the ocean affects the environment and cli-
mate, thus affecting food production, defense, and leisure.
As such, ocean dynamics is an important area of study that
currently uses a variety of different techniques to measure
ocean conditions. One technique involves the use of robotic
marine vehicles such as floats, gliders, and autonomous un-
derwater vehicles (AUV) to measure conditions such as cur-
rents, salinity, and temperature in a dynamic way. Another
technique uses moored buoys, which allow scientists to col-
lect data at a fixed location over time. However, a couple of
drawbacks to physically mooring a buoy are that it involves
significant financial investment and the location cannot be
changed after installation.

As an alternative, a virtual mooring is proposed in which
a dynamically controlled vehicle uses a control policy in or-
der to maintain its position. Specifically, one proposal is to

Copyright c© 2016, All rights reserved.

Asset Control Speed Longevity Cost
Floater None None Weeks $100’s
Vertical
Profiling Vertical ∼0.1 m/s Years $10K’s
Float
Seaglider Horizontal ∼0.5 m/s Months $50’s -

$100’sK
AUV Horizontal ∼2.5 m/s 1 Day $100K

& Vertical - Weeks - $M

Table 1: Characteristics and costs for different families of
marine vehicles.

deploy a vertical profiling float to the location of desired data
collection and to use predictive ocean models to plan a con-
trol sequence for changing depths that best keeps the float
near the same latitudinal and longitudinal location using the
ocean currents. A vertical profiling float can change depths,
but does not have any lateral propulsive power, meaning that
the float is carried solely by the ocean current in the latitu-
dinal and longitudinal directions. By purposefully changing
depths it is possible to harness the motion of the ocean to di-
rect the float. This method has multiple benefits over using
a physical mooring. First, the float could be retrieved and
redeployed when desired. Second, there is more flexibility
since the float could be programmed to track a moving tar-
get or to drift to facilitate deployment or retrieval. Third, the
deployment would be less expensive than building a physi-
cal anchor location.

Although using an AUV would provide better control to
remain at a fixed location, more capable vehicles are more
expensive. Table 1 shows approximate costs for families of
marine vehicles (Woods Hole Oceanographic Institution ;
Sanford et al. 2005; Eriksen et al. 2001; YSI Systems ;
OceanServer Technology, Inc. ; Bluefin Robotics Corpora-
tion ; Kongsberg Mairtime AS ).

Scientists studying the characteristics of the ocean would
ideally like to be able to collect data at all depths and all
times at a particular location. Obviously, a single float can-
not be at all depths at all times and therefore must profile
to collect data across the depths. Using a predictive ocean
model it is possible to generate a control sequence for the
float to change depths in a way that keeps it as close to the
desired location of data collection as possible.
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To analyze the benefit of planning a path for a float to act
as a virtual mooring, compared to allowing the float to con-
tinuously profile, an Electromagnetic Autonomous Profiling
Explorer (EM-APEX) (Sanford et al. 2005) vertical profil-
ing float is modeled. During a deployment, each time that
the EM-APEX float surfaces, it transmits its data and can be
commanded to profile to a different depth. This allows for
two possible control strategies. First, in batch planning, the
float plans once for the deployment based on the best model
of the ocean currents. In continuous planning, at each float
surfacing, we re-plan the control sequence of the float dur-
ing each surfacing. This enables the planning to incorporate:
(1) the most up to date information about the location of
the float and (2) the most up to date ocean current model. 1

We believe that using this opportunity to re-plan the control
sequence using the best information can improve the path
when there is information gain in the model.

Since directing the float relies solely on the ocean cur-
rents, success is based heavily on the planning process,
and thus on the ocean model used for planning. Modeling
ocean currents is a tremendously challenging problem - as
a chaotic system it is not feasible to model the ocean per-
fectly and producing even modestly accurate predictions is
quite challenging. As we investigate the use of predictive
ocean current models to plan underwater vehicle paths, pre-
dictive accuracy can dramatically affect the utility of our ap-
proach. Therefore studying the impact of model accuracy on
path planning is of great import. Additionally, methods of
measuring predictive model accuracy and correlating these
to planning utility is of great interest.

To study this relationship between model accuracy and
planning utility, we use the Regional Ocean Modeling Sys-
tem (ROMS) (Chao et al. 2009; Li et al. 2006; Farrara et al.
2015). Specifically we artificially create models with vary-
ing degrees of fidelity. Because it is very expensive to per-
form a physical deployment in the ocean, we mimic a de-
ployment. In a deployment we plan in a model and we ex-
ecute in the physical world. In ROMS, we create one or
more planning models of varying fidelity to a nature model.
We then construct plans in a planning model and execute
in the nature model. The planning models were five other
ROMS models with decreasing fidelity. In order to eval-
uate the models, we use the models for path planning of
an Electromagnetic Autonomous Profiling Explorer (EM-
APEX) (Sanford et al. 2005) vertical profiling float attempt-
ing to act as a virtual mooring.

The paths were planned in all of the models and com-
pared to the execution in the nature model. The paths were
also re-planned using continuous planning during execution
using each of the models to compare to the results with-
out re-planning. We show that using current model to plan a
path for a vertical profiling float to act as a virtual mooring
can improve its station keeping compared to a naive con-
trol strategy and that re-planning the path during execution

1While in our deployment scenarios the model does not change
significantly on the timescale of our plan execution so that major-
ity of the gain is from (1), other operational scenarios might exist
where (2) may provide significant value

is an effective technique. Furthermore, this paper aims to
show how the information in a model affects the benefit of
planning a path as well as the efficacy of re-planning during
execution. These ideas have also previously been explored
in (Troesch et al. 2016).

The remainder of this paper is organized as follows. First,
we describe the ROMS modeling framework that we use as
an imperfect predictive model of ocean currents. Second, we
describe the batch and continuous float planning algorithms.
Third, we describe our results in simulation - highlighting
both the effect of model accuracy and heuristic path com-
pletion estimation on algorithm performance. Fourth, we de-
scribe results from an April 2015 field deployment off the
coast of California. Fifth, we describe related and future
work, and conclusions.

Ocean Models
A number of ocean models have been developed including
the Harvard Ocean Prediction System (HOPS) (Robinson
1999), the Princeton Ocean Model (POM) (Mellor 2004),
the Hybrid Coordinate Ocean Model (HYCOM) (Chassignet
et al. 2007), and ROMS (Chao et al. 2009). As described
in the Introduction, for our experiments we use the ROMS
model. However, our techniques naturally extend to any cell-
based, predictive model with information about ocean cur-
rents over multiple depths and an extended period of time,
and thus any of these models could be used for the path plan-
ning. Indeed, when multiple modes are available it is also
possible to use them in as an ensemble to further enhance
results (Wang et al. 2013).

ROMS is a discrete, cell-based, predictive model of the
ocean. We used the California coast configuration near the
Monterey Bay, which is a grid of 3 km by 3 km in the lat-
itudinal and longitudinal directions, 1 hour in the time di-
mension up to 72 hours long, and fourteen depths from 0 m
to 1000 m in non-uniform intervals. The currents in the grid
vary over space and time. At deeper depths, the currents tend
to be slow and uniform, conversely, the surface currents are
faster and more variable.

As previously stated, it is not feasible to perform an ocean
deployment of the planned paths for this experiment, so an
approximation using a ROMS model for the ocean is used
instead. This model is the best possible representation from
ROMS and is referred to as the nature model. Five different
planning models were used for this experiment. The differ-
ence between the models is the number of days advanced
prediction that is used in generating the model. Fewer days
of advanced prediction means a higher fidelity model and
thus means that the model is closer to the nature model. We
used 2, 4, 6, 8, and 10 days of advanced prediction for the
planning models. A summary of the inputs for the ROMS
models is shown in Table 2.

To show how the model information decreases with more
advanced prediction of the model, the correlation coeffi-
cient of the currents between the nature model and each
of the planning models was calculated. All of the veloci-
ties in a 41 grid by 41 grid subsection of the ROMS model
across all depths and times were used for the calculation. In
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Planning Nature
Models Model

Archiving, Validation and x x
Interpretation of Satellite
Oceanographic (AVISO)
sea surface height data
Advanced Very High Resolution x x
Radiometer (AVHRR) sea
surface temperatures
Moderate Resolution Infrared x x
Spectroradiometer (MODIS)
sea surface temperatures
GOES satellite sea surface x x
temperatures
High Frequency (HF) x
radar surface current data
Monterey Bay Aquarium x x
Research Institute (MBARI)
M1 mooring vertical profiles
of temperature and salinity
Ship sea surface temperatures x x
Number of days advanced 2, 4, 6, 8, 10 1
prediction

Table 2: ROMS inputs for the planning and nature models.
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Figure 1: The correlation coefficients of the zonal and merid-
ional currents between the different planning models and the
nature model over a 41 by 41 3km x 3km cell subsection of
the model averaged over all depths and times.

other words, Znature is a vector of the zonal (west-east) cur-
rents in the selected subregion of the nature ROMS model
at all depths and times. The vector Mnature contains the
corresponding meridional (north-south) currents. Similarly,
Zplanx

and Mplanx
contain the zonal and meridional cur-
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Figure 2: The root mean square error of the zonal and merid-
ional currents between the different planning models and the
nature model over a grid that encompasses the entire search
space over all locations at all depths and times.

Days Advanced Prediction RMS Error
2 0.00855
4 0.05665
6 0.08555
8 0.11445

10 0.13735

Table 3: Root mean square error used for each model with
the specified number of days advanced prediction.

rents of the same data in the planning model using x days of
advanced prediction, respectively. Using these vectors, the
zonal correlation coefficients, ρZx , and the meridional cor-
relation coefficients, ρMx , could be calculated with the fol-
lowing equations

ρZx
=

Cov(Zplanx
, Znature)

σZplanx
σZnature

ρMx =
Cov(Mplanx

,Mnature)

σMplanx
σMnature

where Cov is the covariance function and σZplanx
, σZnature

,
σMplanx

, and σMnature
are the standard deviations of the ref-

erenced vector.
Figure 1 summarizes the values of the correlation coef-

ficients and shows how the information in the model be-
comes less correlated to the nature model as the number of
advanced prediction days increases. In fact, the correlation
coefficient for the zonal currents using 8 and 10 days of ad-
vanced prediction has a negative value, indicating that the
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Figure 3: The currents at a surface point over 72 hours in all
of the planning models and the nature model.

currents are inversely correlated to the currents in the na-
ture model, which causes the value of planning a path to
decrease.

Just as the correlation coefficient decreases with the in-
crease in number of advanced prediction days, the root mean
square (RMS) error increases. Figure 2 shows the RMS er-
ror between each planning model and the nature model using
the currents over the search space that encompasses all of the
goal locations using all depths and times. The average RMS
error between the zonal and meridional currents for each of
the planning models will be used in the rest of this paper as
a measure of the fidelity of the model, which in turn could
be used as a comparison and reference point in physical de-
ployments to analyze the fidelity of the model being used.
The values of RMS error used for each model are shown in
Table 3.

Another way to visualize how the currents vary across the
different models is by looking at the currents at one loca-
tion over time across all models. Figure 3 shows the zonal
and meridional currents for the same location in all models
over time. The currents of the planning model with 2 days of
prediction are very close to the nature model, but the other
planning models diverge.

Furthermore, Fig. 4 demonstrates how the exact same
control sequence executed over 24 hours in the different
models results in very different path positions.

From Fig. 1, Fig. 2, Fig. 3, and Fig. 4 it is clear that there
is different value in the information provided by the differ-
ent planning models. Specifically that with further advanced
prediction there is a decrease in the predictive accuracy of
the model as indicated by the decrease in correlation coef-
ficient and increase in RMS error. Furthermore, that these

varying information models will predict significantly vary-
ing paths and consequently planing in the different models
can produce significantly different paths.

Figure 4: The same executed control sequence in all of the
planning models and the nature model starting at the same
location over 24 hours. The number 0 labels the path for the
nature model and the other numbers indicate the number of
planning days in the model used for that path.

Batch Planning
The path planner for this experiment generates a control se-
quence for a vertical profiling float to act as a virtual moor-
ing. As described in the introduction, a vertical profiling
float can change depths both to gather data and to make use
of the currents to stay near a desired location. The float can
be programmed to move between the surface and the pro-
filing depth, to remain at the surface, or to remain at the
profiling depth. Stopping and staying at a depth is restricted
to the surface and profiling depth in order to best mimic the
behavior of the EM-APEX floats. Depending on the needs
of the scientist, it may be more important to stay at a fixed
location or to gather more data by profiling. In this way a
trade-off can be made between staying at the desired loca-
tion and performing more profiles.

Even though the problem space is continuous, to make
the search tractable, the control sequence of the float is de-
termined in a discrete manner. At each decision point, the
float can remain at the depth that it is at, which must be
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the surface or the profiling depth, or it can move between
the surface and the profiling depth. If the float remains at a
depth, the duration is equivalent to the time it takes to move
between the depths. To mimic the behavior of a deployed
EM-APEX float, each time that the float returns to the sur-
face from the profiling depth, it must remain at the surface
to upload the collected data. The duration of the upload is 35
minutes. If the float decides to remain at the surface, it must
once again upload the collected data for 35 minutes after the
duration of remaining at the surface.

The value of the currents used for determining the motion
of the float is based on the position of the float as well as the
time. Every approximately 42 seconds (the amount of time
that it takes the float to vertically move half of the smallest
depth step), the position is updated and the current informa-
tion is interpolated among the eight closest grid points. This
current is used to determine the motion of the float until the
next interpolation step or the allotted time step for the node
has been reached.

The algorithm that is used to perform the search is an A*
algorithm. The objective function that is used to score the
paths was designed to make a trade-off between remaining
close to a desired location and performing more profiles, de-
pending on the desires of the user. The equation is

g(n) =
∑

n

∑

d

(wT ∆Td + wD∆Dd)

where n are the nodes in the path, d are the possible depth
choices (in this case, the surface or the profiling depth), wT

and wD are weighting terms, ∆Td is the time in seconds
since the float was at depth d, and ∆D is the distance in
kilometers that the float was from the goal location when
it was last at depth d. In other words, each time a node is
added to the path, the most recent node at the surface and the
profiling depth is used to calculate (wT ∆Td+wD∆Dd) and
this sum is added to the score. Since ∆Td measures the time
since the float was at the other depth, it is a good metric for
determining the time since the last profile was performed.
Therefore, a higher wT to wD ratio favors less time between
profiles and thus favors more profiles. Similarly, a lower wT

to wD ratio favors control sequences that keep the float as
close as possible to the desired location.

The heuristic function used in the A* algorithm simply
assumes that the score will increase at the same rate for the
remainder of the path. Therefore, the equation is

h(n) =

(
g(n)

T

)
(mission duration− T )

where T is the time since the beginning of the mission when
the float is at node n.

The equation used by the A* algorithm is thus

f(n) = g(n) + w ∗ h(n)

where w is a weighting given to the heuristic function.
A path is considered complete once its duration reaches

that of the desired mission length.
The execution of the algorithm is summarized in the fol-

lowing pseudocode for Algorithm 1.

Algorithm 1 Batch Planning A* Algorithm
1: function BATCHPLANNER(startPath)
2: (*Note: Model = Planning Model)
3: Q← startPath
4: while Q not empty do
5: curPath← lowest f score path in Q
6: if curPath needs to upload then
7: newPath0← curPath + node at surface
8: else
9: newPath1← curPath + node at surface

10: newPath2 ← curPath + node at profiling
depth

11: end if
12: if any newPath duration > mission duration

then
13: return curPath
14: end if
15: Q.push all newPaths
16: end while
17: end function

Continuous Planning
During every data upload when the float resurfaces, there is
an opportunity to re-plan the path of the float based on the
best information of its location. Each time the float performs
an upload, the location at the true position of the path so far
in the execution can be used in Algorithm 1 to plan the rest of
the path using the planning model. The next part of the con-
trol sequence is executed according to the re-planned path.
The process of re-planning is repeated each time that the
float re-surfaces until the duration of the mission has been
completed. The control sequence is always executed in the
nature model and planned in the planning model. A sum-
mary of the re-planning algorithm is shown in Algorithm 2.

Algorithm 2 Continuous Planning Algorithm
1: function CONTINUOUSPLANNER(startNode)
2: (*Note: Model = Nature Model)
3: path← startNode
4: controlSeq ← BATCHPLANNER(path)
5: while controlSeq duration > path duration do
6: while path does not need to upload do
7: nextNode← controlSequence.next
8: depth← depth of nextNode
9: path← path + node at depth

10: end while
11: controlSeq ← BATCHPLANNER(path)
12: end while
13: return path
14: end function

Experimental Procedure
The experiment was performed over 100 goal locations in a
10 by 10 grid, which are shown in Fig. 5. At each location,
the five different planning models were used to plan a con-
trol sequence using Algorithm 1, which were then executed
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in the nature model. Each of these control sequences were
then also re-planned with continuous planning using Algo-
rithm 2. This process was repeated over all of the locations
using 3 different trade-offs in the objective function, specifi-
cally a wT to wD ratio of 1.6, 4.8, and 8.0 were used, as well
as 6 different weights for the heuristic function from 0 to 1
in steps of 0.2.

Figure 5: The 100 starting and goal locations used for the
experiment. The latitudes and longitudes labeled indicate the
boundaries of the grid.

The start location of the float was always set to be the
same as the goal location. The profiling depth was 500 m
and the vertical speed of the float was 0.12 m/s, resulting
in a step time of approximately 69 minutes. As previously
stated, the time required for the data upload was 35 minutes.
The total duration of the mission was 24 hours. Given these
inputs, the maximum number of profiles that can be achieved
by continuously profiling is 8.

In order to evaluate the results of the planned paths, base-
lines were developed that evenly space the profiles, from 0
to the maximum of 8 within the mission duration. In order to
attempt to prevent bias in the baselines, three different ways
of evenly spacing the profiles were used. The first, referred
to as the surface baseline, evenly spaces the profiles by re-
maining at the surface between profiles that consist of going
to the profiling depth and resurfacing immediately. The sec-
ond baseline, referred to as the even baseline, evenly spaces
the profiles by remaining at the surface and at the bottom
of the profiles at even intervals. The final baseline, referred
to as the deep baseline, remains at the profiling depth dur-
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Figure 6: The control sequences for 3 profiles using the sur-
face, even, and deep baselines.

ing each profile and only surfaces in between profiles for the
amount of time required to upload the data. As an example,
the depths of the different baseline paths for 3 profiles is
shown in Fig. 6.

Evaluation of the Heuristic
In order to evaluate the heuristic function and the effect of
the chosen weight, an analysis was done on all of the paths in
the planning models. Since the scores are heavily dependent
on the wT to wD ratio in the objective function, the anal-
ysis was split among the three executed ratios. The average
score and number of node expansions to find a complete path
across all locations and planning models was found for each
wT to wD ratio, which can be seen in Fig. 7 and Fig. 8.

As more weight is given to the heuristic function, the
strength of the path decreases, which can be seen by the in-
creasing scores in Fig. 7. However, at the same time, the
number of nodes expanded decreases, which can be seen in
Fig. 8, meaning that the time to find a complete path is im-
proved.

Empirical Evaluation in Simulation
Using a heuristic weight of 0 in order to ensure using the
best planned path, for each wT to wD ratio, each ROMS
model, and each location, the executed path in the nature
model was found for both batch planning and continuous
planning. As an example to show how the control sequence
and the score changes from batch planning to continuous
planning, Fig. 9 shows the depth and score over time using
6 days of advanced planning and a wT to wD ratio of 4.8 at
location (35.67◦ lat, -123.73◦ lon).

The average scores across all of the locations for each wT

to wD ratio and each ROMS model were then calculated for
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Figure 8: Average number of node expansions required
across all planning models and locations for different heuris-
tic weights.

both batch planning and continuous planning, separately. In
order to give a fair comparison to the baselines, the aver-
age number of profiles for each wT to wD ratio and ROMS
model combination was found from both batch planning and
continuous planning. This number of profiles was then used

for the baselines with those same inputs. Since the average
number of profiles for eachwT towD ratio was not the same
for each ROMS model, the baseline scores are not constant
across a single ratio. Comparing the baselines to the differ-
ent planning methods revealed that the surface baseline per-
formed too poorly (with scores over 100,000) to be repre-
sented on the same scale as the other results, therefore the
surface baselines are not presented on the graphs showing
the results. The comparison of the scores using the different
planning models can be seen in Fig. 10 for the wT to wD

ratio of 1.6, in Fig. 11 for the wT to wD ratio of 4.8, and in
Fig. 12 for the wT to wD ratio of 8.0.
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Figure 9: Batch and continuous planning using 6 days of
advanced planning and a wT to wD ratio of 4.8 at location
(35.67◦ lat, -123.73◦ lon).

From these figures, it is clear that on average planning a
control sequence using any of the models performs better
than simply using evenly spaced out profiles. Furthermore,
they all show that the benefits of planning are increased
when the planning model has better knowledge of the cur-
rents in the nature model. As the RMS error in the planning
models increases, the benefits of planning a control sequence
over the baseline decreases.

When considering continuous planning, the benefit is also
related to the amount of knowledge in the planning model.
Obviously, when planning using the nature model, there is
no increase in benefit from continuous planning, since the
position was already correctly known during the planning
process and thus the continuous plan and the batch plan are
identical and there is no added benefit to continuous plan-
ning. However, as the planning model and the nature model
diverge, the updated information at each surfacing provides
a benefit to the planner.

Looking at Fig. 13, the planning model with just a value
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Figure 10: The average batch and continuous planning
scores when thewT towD ratio was 1.6 using each planning
model compared to the average baseline scores of the same
average number of profiles. The RMS errors for the zonal
and meridional currents for two deployed floats discussed in
the next section are also shown.
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Figure 11: The average batch and continuous planning
scores when thewT towD ratio was 4.8 using each planning
model compared to the average baseline scores of the same
average number of profiles. The RMS errors for the zonal
and meridional currents for two deployed floats discussed in
the next section are also shown.
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Figure 12: The average batch and continuous planning
scores when thewT towD ratio was 8.0 using each planning
model compared to the average baseline scores of the same
average number of profiles. The RMS errors for the zonal
and meridional currents for two deployed floats discussed in
the next section are also shown.
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Figure 13: The average batch and continuous planning
scores when thewT towD ratio was 8.0 using each planning
model compared to the average baseline scores of the same
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and meridional currents for two deployed floats discussed in
the next section are also shown.
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of 0.0085 RMS error is very similar to the nature model,
therefore although there is a benefit to continuous planning,
the added benefit is not significant since the executed path
would not have strayed far from the planned path. Looking at
the next three higher values of RMS error, continuous plan-
ning has a consistent advantage over batch planning. With
the models with the highest values of RMS error, the ben-
efit of continuous planning decreases. This could be due to
the fact that starting at such a large value of RMS error, the
model has such poor information gain that even though the
location is updated at every surfacing, the model is not good
enough to make a significantly better plan.

Empirical Results in Deployment
A prior version of this software was deployed to con-
trol EM-APEX floats during an April 2015 deployment
in support of an AirSWOT (Jet Propulsion Laboratory a;
b) field experiment in the coast off of Monterey Bay, Califor-
nia. In this field experiment, the goal was to keep EM-APEX
floats near features of interest identified manually by scien-
tists. The overall AirSWOT deployment goals are represen-
tative of the intended scientific use case for these planning
tools.

The overall AirSWOT deployment was to test out an Air-
borne science instrument by providing corroborative data
over interesting science features using in-situ instrumenta-
tion (floats, ships) and remote sensing data (from overflying
spacecraft). The AirSWOT instruments were scheduled to
fly in a coverage pattern over specific areas chosen to over-
lap satellite overflights.

Three EM-APEX floats were to be deployed to be near
satellite overflights and airborne overflights. The float plan-
ning tool was used to evaluate potential deployment loca-
tions by predicting the projected drift path of the floats.

Figure 14 shows the variability of the expected float drift
based on the deployment location. The blue paddle indicates
the start location and the green path shows where the float
was projected to drift over time.

Sites for each of the three float deployments were
screened for projected stability and hand selected by the ex-
periment team.

Additionally, two of the three EM-APEX floats were al-
lowed to be controlled dynamically from shore by an earlier
version of the float planning software. This prior float plan-
ning software received the satellite phone updated location
each time the target float surfaced. Because of connectiv-
ity issues, the float planning software could not receive this
data rapidly enough to generate a new plan for transmission
to the float during this surface cycle as the float was only on
the surface approximately 30 minutes each cycle. Instead the
planner could only assert a plan with a 1 surface cycle lag.
Therefore the plan communicated to the float to be executed
after surface cycle n was only based on the actual position
from cycle n− 1 plus the projected drift from cycle n− 1 to
cycle n.

The EM-APEX float tracks planned and executed are
shown for floats 6665 and 6667 in Fig. 15. The yellow point
indicates the start location of the float. The actual location of

Figure 14: Expected float drift based on starting location.
The blue paddle indicates the starting location and the green
paths shows the drift.

the float at each surfacing is shown in blue with the arrows
indicating the direction. The red points show where, at each
step of re-planning, the float was predicted to travel. Since
the re-planning was performed two cycles ahead, two surfac-
ing locations are displayed. As shown, the expected control
for neither of the floats performed very well.

This poor performance is not surprising as the current ve-
locities in the ROMS model in the area near both floats was
not very accurate, as can be seen in Fig. 16 and Fig. 17. Be-
cause EM-APEX is designed to get velocity data, it provides
a good opportunity to compare collected data to the ROMS
model. The plots show the zonal and meridional currents of
the interpolated point in the ROMS model at each location
where velocity data was collected by the float. In fact, when
comparing these values to the values used in the simulated
experiment in Table 3, the RMS errors experienced in the
deployment are in the range of the worst models. The RMS
errors for the meridional current for both floats were simi-
lar to the worst model, the RMS error for the zonal current
for float 6667 was similar to the second to worst model, and
the RMS error for the zonal current of float 6665 was al-
most twice as much as the worst model. This can be seen by
the lines indicating the RMS errors of the currents for the
deployed floats compared to the simulated models in Fig.
10, Fig. 11, Fig. 12, and Fig. 13. Starting in this range the
benefits of continuous planning started to decrease and even
batch planning scores started to approach those of the deep
baseline control sequence.

The poor correlation between the ROMS and the float col-
lected velocities is most likely due to the front that was com-
ing in during the deployment that even caused the deploy-
ment to be cut short.
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Figure 15: The deployed path and predicted path at each re-
planned step in the deployed path for floats 6665 and 6667.

0 10 20 30 40 50 60

−0.4

−0.2

0.0

0.2

0.4

Zo
na

lC
ur

re
nt

s
(m

/s
)

Float 6665
ROMS

0 10 20 30 40 50 60
Time (hr)

−0.4

−0.2

0.0

0.2

0.4

M
er

id
io

na
lC

ur
re

nt
s

(m
/s

)

Figure 16: Zonal and Meridional currents found along the
path for float 6665 in the ROMS model and actually experi-
enced in the deployment.
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Figure 17: Zonal and Meridional currents found along the
path for float 6667 in the ROMS model and actually experi-
enced in the deployment.

Table 4 summarizes the RMS errors and correlation coef-
ficients from the data presented in Fig. 16 and Fig. 17.

6665 RMS Corr Min Vel Max Vel
Error Coef (m/s) (m/s)

Zonal 0.24 -0.28 -0.46 0.38
Meridional 0.13 0.42 -0.39 0.39

6667 RMS Corr Min Vel Max Vel
Error Coef (m/s) (m/s)

Zonal 0.12 0.33 -0.23 0.53
Meridional 0.13 0.05 -0.42 0.29

Table 4: Root mean square error and correlation coefficient
for the deployed velocities collected by the EM-APEX floats
compared to the ROMS velocities. The minimum and max-
imum velocities collected by the floats is also shown.

The results from the April 2015 deployment reinforce the
thesis of this paper. In cases where the current model pro-
vides significant information, the model information can be
used improve to float control. In cases where the model pro-
vides no or bad information, performance will be poor and
even in some cases worse than open loop algorithms such as
constant profiling.

Related Work
Path planning for underwater vehicles has been widely stud-
ied; however, most of this work focuses on marine vehicles
with greater control such as Sea gliders and Autonomous
Underwater Vehicles (AUVs). A notable exception is (Dahl
et al. 2011) which examined the problem of optimizing cov-
erage across the oceans for a large number of floats, but only
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considered a constant depth and a greedy algorithm. Much
more research has been done on glider planning, where there
is some control for choosing a direction of motion, but it is
less than the current velocity. (Thompson et al. 2010) also
uses the ROMS model, but calculates reachability envelopes
using wavefront propagation for glider path planning. The
work in (Eriksen et al. 2001) describes Seaglider, a glider
that is manually controlled from the shore, and is some-
times controlled to maintain position. No ocean model simi-
lar to ROMS was used. (Alvarez, Garau, and Caiti 2007) also
does not use an ocean model, but instead uses synthetic data
with general algorithms to control a set of floats and glid-
ers. Like the work in this paper, (Rao and Williams 2009)
uses an A* graph search algorithm; however, that work as-
sumes that currents change slowly with time and compute
the path across many nodes in a single time step, whereas
we have many time steps within a single cell. Instead of try-
ing to remain near a specific location, (Pereira et al. 2013)
focuses on gliders that are attempting to avoid surfacing in
dangerous areas, such as shipping lanes. (Grasso et al. 2010)
focuses on the prediction of the glider location, analyzes the
accuracy of the predictive model, and uses a physics based
control model. Using an asset with more control, (Cashmore
et al. 2014) explores the problem of autonomously maneu-
vering near a site for inspection using an AUV with proba-
bilistic modeling for uncertainty. Autonomous marine vehi-
cles have even been proposed to explore Titan, a moon in the
Saturnian system (Pedersen et al. 2015; ESA/NASA 2009;
Stofan et al. 2009). (Leonard et al. 2010) present a controls-
based methods to guide a set of gliders along coordinated
paths. Their approach does not use a model of currents, but
does adaptively guides assets back on to paths and desired
spacing them along racetracks if the vehicles are perturbed
by currents. Therefore this approach would counter-act cur-
rents but does not use a projective forward model as our ap-
proach does.

Continuous planning has become more prevalent in recent
years and the evolution of this planning technique, with re-
spect to multiple assets, is clearly described in (Durfee et
al. 1999). (Myers 1999) describes a Continuous Planning
and Execution Framework (CPEF), which integrates plan-
ning and execution through plan generation, monitoring, ex-
ecution, and repair. Using an iterative repair process, as well
as user interaction, CPEF is able to plan in unpredictable
and dynamic environments, which is shown through tests
in a simulation of an air-campaign for dominance. (Chien
et al. 2000) presents Continuous Activity Scheduling Plan-
ning Execution and Replanning (CASPER), which also uses
iterative repair as part of continuous planning, specifically
for autonomous spacecraft control. (Branch et al. 2016) uses
continuous planning to control AUVs, Seagliders, and Wave
Gliders, also using different fidelity ROMS models, to fol-
low short distance patterns.

Future Work
There are many different extensions that are possible from
this work. A different objective function that guides the float
along a line or a moving point could be developed. Allowing
the float to move to any depth at any time, instead of requir-

ing full profiles to the same depth could be tested. Deploy-
ment and retrieval cost could be included in the objective.
Different assets could be included, such as a glider or AUV,
to give more flexibility in the control. Multiple assets of dif-
ferent types could be controlled simultaneously with differ-
ent objectives and goal locations. New methods for under-
standing the information gain in the different models could
be created as well as using the information about the pre-
dictive accuracy in the model to change how the planning is
performed. For example, if it is known that the model per-
forms poorly after a particular time, that information could
be used to adjust the planning algorithm.

Conclusions
When performing predictive path planning for underwater
vehicles, the model used to represent the ocean always has
some limitations in terms of predictive accuracy. This ex-
periment has shown that the amount of knowledge in the
planning model used to generate the control sequence for a
vertical profiling float attempting to perform virtual moor-
ing affects the benefits of performing planning over simply
evenly spacing the profiles of the float. Specifically, as the
predictive accuracy of the planning model decreases, repre-
sented by the RMS error of the planning model to the nature
model, the benefits of planning also decrease.

One method to counteract the poor information in the
planning model is to perform continuous planning. We have
shown that continuous planning is beneficial when the plan-
ning model does not match the nature model, but there is
still some valid information in the model used for planning.
The RMS error of the model can be used to determine if
continuous planning is worthwhile.
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Abstract

This paper addresses a stochastic shortest path problem. We
focus on a problem in which online observation information
can be utilized during the traverse. We examine the prob-
lem on a directed acyclic graph and at each node, the edge to
be observed can be chosen and after that, on the basis of the
gathered information, the edge to traverse decided. The infor-
mation about the edge travel times is uncertain and presented
by Gaussian distributions. We have studied the problem using
a risk-averse objective function which penalizes uncertainty.
Our main interest lies in the optimization of observations i.e.
based on the prior-expected value of the observations, which
of the edges should be observed? We claim that the schedul-
ing of the observations is an integral part of the dynamic path
planning of autonomous agents. We present an algorithm for
solving the shortest path problem including optimization of
the observations. The result is an offline routing policy for
optimal observing and traversing actions.

Introduction
Let us consider a case that an autonomous working ma-
chine, e.g. a forest harvester or shuttle carriers at harbors,
traverses a rough terrain. The working machine navigates
between locations and performs the tasks given to it. Path
must be planned with only uncertain information about the
travel times between locations. In a junction, the working
machine may request external sensing agent – micro aerial
vehicle – to fly through the paths. The micro aerial vehi-
cle can observe the current conditions of the paths using e.g.
imaging sensors and provide up-to-date information about
the travel times. However, the observations are uncertain
and slow down the progress of the working machine. Hence,
the observation missions should be carried out only when the
expected value of the information exceeds the delay caused.

In this paper, we study path planning of an autonomous
agent in the presence of a sensing agent capable of ob-
serving missions. We represent the terrain where the au-
tonomous working machine traverses as a directed acyclic
graph (DAG). The task is to traverse from any given node i
to a target node g with minimal travel costs. At each node,
the action options are

1. to observe one of the edges

2. to travel along one of the edges.

We examine a case in which the edges are associated with
cost representing the travel time along the edge. The travel
time depends on the length of the edge as well as on the
roughness of the terrain. The time is static but the decision
maker (autonomous agent) has only incomplete information
about it. Hence, the information about the cost is presented
by a probability distribution, more precisely Gaussian distri-
bution. When the autonomous working machine is at a node,
the adjacent edges of the node can be observed using an ex-
ternal sensing agent. The sensing agent gathers informa-
tion about the edge travel time but the information is uncer-
tain and hence presented by a probability distribution. The
edge travel time information can be updated by combining
the prior information and the sensed observations by using
Bayesian filtering. The observation missions are associated
with cost representing the time spent in the mission. There-
fore, we include the decision of the observation mission to
the overall path optimization. The prior-expected value of
information for each observation mission is calculated. The
optimal mission is the one with the best prior expectation of
the posterior optimal performance.

In this paper, the attitude towards uncertainty is risk
averse: paths with lower uncertainty are prioritized. We
have chosen a linear combination of the mean and the vari-
ance of the edge travel time as the objective function. The
path planning is in closed-loop (Fu 2001): optimization at
a node assumes that the subsequent decisions are done opti-
mally with respect to the observation opportunities. DAG in-
dices a partial order of the nodes. The problem is solved re-
versing this partial order, starting from the target node. Op-
timal actions for all the nodes as functions of data resulting
from optimal observation missions are solved offline.

This paper is organized as follows. Section 2 reviews the
studies related to optimal path planning. In Section 3, the
objective function is formulated and the updating method for
the edge travel times presented. In Section 4, optimization
of the observing and traversing actions is presented. Section
5 presents two numerical case studies illustrating the path
planning with optimization of observations. Finally, Section
6 concludes the main points of the research and discusses
about the future work.
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Background and related work
Algorithms such as Bellman’s (Bellman 1958), Dijkstra’s
(Dijkstra 1959) and A* search (Hart, Nilsson, and Raphael
1968) solve deterministic shortest path problems in which
the travel times are known exactly. In stochastic path plan-
ning problems, the edge travel times are not determinis-
tic, but presented by a probability distribution. The sim-
plest formulation of the stochastic path planning problem
is minimization of the expected travel time, i.e. least ex-
pected time (LET) problem. If the edge travel times are
time-invariant and uncorrelated, the LET problem reduces
to the deterministic path planning in which the travel times
are replaced with their expected values. LET problem in
a stochastic time-dependent network was first time exam-
ined by Hall (1986). In his study, the travel time prob-
abilities depended on the arrival time to the node. The
travel time was described as a discrete function of the
arrival time and the problem was solved as a minimiza-
tion of the expected travel time. Other studies exploit-
ing LET formulation include e.g. (Fu and Rilett 1998;
Miller-Hooks and Mahmassani 2000; Miller-Hooks 2001;
Fu 2001; Gao and Chabini 2006; Gao and Huang 2012).

As the LET formulation does not depend on the uncertain-
ties of the edge travel time, the total travel time can differ
highly from the expected value. Therefore, the LET prob-
lem represents risk neutral planning and may not be desir-
able for risk-averse path planning. Formulations suitable for
risk-averse path planning include e.g.

(a) maximizing the probability of arriving on time,

(b) minimizing the travel time budget while ensuring pre-
defined on-time arrival probability,

(c) maximizing the expected utility, or

(d) minimizing the sum of the travel time and the weighted
variance/standard deviation.

Frank (1969) was the first to formulate the shortest path
problem by maximizing the probability of achieving the tar-
get in a pre-defined limit (formulation a). Since that, on-
time arrival problems have been studied e.g. by (Fan, Kal-
aba, and Moore 2005; Fan and Nie 2006; Nie and Fan 2006;
Nikolova 2010; Lim et al. 2012; Samaranayake, Blandin,
and Bayen 2012). A related formulation to the on-time ar-
rival, is minimization of the travel time budget while en-
suring a pre-defined on-time arrival probability (formula-
tion b), see e.g. (Chen and Ji 2005; Nie and Wu 2009;
Nikolova 2010; Nie et al. 2012; Pan, Sun, and Ge 2013).
While the formulation (a) deals with a question ”which path
most likely takes the agent to the destination in a given
time”, the formulation (b) respectively deals with a ques-
tion ”how much in advance the agent should start the jour-
ney to reach the destination with a given probability”. Loui
(1983) formulated the stochastic path planning problem as a
maximization of the decision maker’s expected utility (for-
mulation c). He introduced several utility functions and
stated that for general non-linear utility function the Bell-
man’s principle of optimality (Bellman 1965) does not hold.
However, for special monotone utility functions, the princi-
ple of optimality holds and the problem can be solved us-

ing the algorithms for deterministic problems. Since that,
expected travel time minimized through some utility func-
tion has been studied e.g. by (Murthy and Sarkar 1996;
1998). In studies by (Nikolova 2010; Lim et al. 2012; Chen
et al. 2012; Zockaie, Nie, and Mahmassani 2014), the path
planning is formulated as a linear combination of the mean
and the standard deviation of the edge travel time (formula-
tion d). This is called the mean-risk model (Lim et al. 2012;
Nikolova 2010).

Adaptive path planning stands for shortest path problems
in which online information attained during the operation is
exploited. Interesting studies in that field are e.g. (Dean
2013; Fan, Kalaba, and Moore 2005; Fu 2001). Adaptive
path planning problems can in principle be solved (1) in
open-loop by re-planning with a deterministic path planning
algorithm whenever new information is obtained or (2) in
closed-loop by taking into account future availability of in-
formation (Fu 2001). Dean (2013) examined adaptive path
planning including online information about the travel times.
The planning was done in open-loop in the sense that the
optimization was repeated when additional information ar-
rived. The observations were uncertain, but optimization of
observations was not addressed. Fu (2001) studied adap-
tive path planning for systems including online information
about the travel times. The updated travel times were avail-
able during the traverse and hence, were exploitable before
the decision in the current node. The a priori travel times
were presented as Gaussian distributions, but the updated in-
formation indicating the travel times of the outgoing edges
from the current node was exact. Fan, Kalaba, and Moore
(2005) studied adaptive path planning for stochastic on-time
arrival (SOTA) problem. They introduced an algorithm for
solving a routing policy that is adaptive to the realized arrival
times to the nodes.

The novelty of our study is that we include the optimiza-
tion of the observations to the overall path optimization of
a stochastic network. The information about the network is
updated online on the basis of the observed values. Both the
a priori information and the observed information about the
travel times are uncertain and presented by Gaussian proba-
bility densities. There is an additional cost associated with
observing, hence computation of the value of observing is
reasonable. We present an algorithm for solving an offline
routing policy that optimizes both the observing and travers-
ing actions. The optimal traversing action is solved as a
function of the data obtained from the observations.

Problem formulation
Let us consider a directed acyclic graph (DAG) with |N |
nodes and |E| edges. The edges are associated with a cost
that is related to the travel time of the edge. The prior in-
formation about the travel time of an edge e ∈ E is in-
complete and represented by a Gaussian distribution with
edge-specific means µe and variances σ2

e . As negative travel
times are not sensible, the parameters must be chosen such
that the probability of negative travel time is insignificantly
small. In this paper, the information about the edge travel
times is assumed statistically independent.
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Figure 1: Decision tree of three edge options. The upper fig-
ure shows an example of a graph of three edges leaving the
node A. Furthermore, there exists paths from nodes B, C,
D to the target node G. In the lower figure the correspond-
ing decision tree is presented for a case in which one of the
edges leaving the node A can be observed. The branches
g1, g2, g3, o1, o2, and o3 represent the action alternatives:
traverse (i.e. go) or observe edges 1, 2, or 3, respectively.

The task is to traverse from any given node i to a goal
node g with minimal travel costs. For supporting the de-
cision making at a node, the cost of one of the outgoing
edges can be observed. However, the observation informa-
tion is uncertain and induces a cost as observing slows down
the operation. Let us denote the observed value of the edge
travel time as ye and the observation uncertainty (variance)
as σ2

obs. In this paper, we are concerned with a case in which
at each node the action options are either to travel along one
of the edges, or first observe one of the edges and then to
travel along one of the edges. If there is only one edge leav-
ing the node, observing is useless as the only edge is neces-
sarily traversed. Hence, observing is an option only if there
are two or more edges leaving the node. Figure 1 illustrates
the decision options for a case with three edge options leav-
ing from a node.

Policy
Let us denote the current information state of the edge travel
time as f(T ) and the set of possible actions in node i as Ai.
Any policy can be written as

π = {π(i, f(T ), g)}i∈N (1)

Here

π (i, f(T ), g) = (a1 (f(T )) , a2 (f(T ), ye))a1,a2∈Ai
. (2)

Hence, the policy defines actions a1 (f(T )) ∈ Ai and
a2 (f(T ), ye) ∈ Ai i.e. which edge is observed or tra-

versed first and what is done after the first action. Note that
if a1 (f(T )) is an observation action, then a2 (f(T ), ye) is
a traverse action, whereas if a1 (f(T )) is a traverse action,
then a2 (f(T ), ye) is null.

By applying the policy π and obtaining data y on the way,
the travel time from the node i to the goal node g will have
a probability distribution:

f (Tig|π, y, f(T )) (3)
However, at the planning stage the data is not known. Hence,
a policy is evaluated based on the prior expectation of this
distribution:

f (Tig|π, f(T )) = EY [f (Tig|π, y, f(T ))] . (4)
Let µig and σ2

ig be the expectation and the variance of this
distribution.

Objective function
In this paper, the objective function of the path planning
problem is represented as a linear combination of the mean
(µig) and the variance (σ2

ig) of the path travel time

min
π
µig + ασ2

ig, (5)

where α ≥ 0 is a weighting parameter indicating the degree
of the risk aversion. For α = 0 the problem is risk-neutral
and reduces to the LET problem with observation capabil-
ities, whereas for large values of α the problem becomes
risk-averse. This objective function is known to be the only
form that both penalizes uncertainty and is separable into
edges. The separability is a prerequisite for Bellman’s prin-
ciple of optimality (Bellman 1965) that allows solving the
optimal path with dynamic programming methods.

Update of the edge variable
After the observation, the edge information is updated by
combining the a priori information N(µe, σ

2
e) with the ob-

servation data N(ye, σ
2
obs) using Bayesian estimation. As

the prior information and the observation uncertainty model
are Gaussians, the expected travel time and its uncertainty
(variance) can be updated according to the Bayesian theory:

µ̃e(ye) =µe +
σ2
e(ye − µe)
σ2
e + σ2

obs

σ̃2
e =

σ2
eσ

2
obs

σ2
e + σ2

obs

.

(6)

For computational reasons, it is practical to introduce a
variable Y (ye) such that

Y (ye) =
σ2
e(ye − µe)
σ2
e + σ2

obs

. (7)

Hence, µ̃e(ye) in Eq.(6) takes a form
µ̃e(ye) = µe + Y (ye). (8)

The prior information about Y (ye) is distributed as

f (ap)(Y (ye)) = N(Y (ye); 0, σ
2
Ye
) (9)

where

σ2
Ye

=
σ4
e

σ2
e + σ2

obs

. (10)

By using this notation (Y (ye) and σ2
Ye

), the optimal policy
can be defined also if the edge is observed only partly.
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Figure 2: Example of the graph reduction. Light gray nodes
are active, dark nodes dead.

Path planning with optimization of
observations

This section presents a strategy for planning the path with
optimization of observations. As the optimal decisions dur-
ing the traverse depend on the data obtained, the optimal
path cannot be solved on the basis of the prior information
only. However, the policy of the optimal actions at each node
can be solved offline. The policy is solved by examining the
prior expectation of the posterior optimal costs, hence the
expectation of the cost before any action is done. The policy
defines

1. the optimal first action a1 (f(T )) i.e. which edge is ob-
served or traversed first,

2. the optimal second action a2 (f(T ), ye) i.e. what is done
after the first action.

The second action is needed only if the first action is obser-
vation.

The following subsections present first the order in which
the decision policy for nodes is solved and then the method
for solving the decision policies for the observing and
traversing actions.

Solving the order of nodes
The decision policy is solved for all nodes from which the
target node is reachable. The policy is solved reversing the
partial order induced by the DAG. Figure 2 shows a simple
example of solving the DAG topology. The DAG in this ex-
ample consists of 6 nodes and 7 edges, node A being the
starting point and node F the target. On the first round (Fig-
ure 2a), the target node F is selected as dead and nodes D
and E are in the queue of active nodes. The order of nodes
D and E is arbitrary. During the second round (Figure 2b),
node D is first taken as the current node, solved and then
put into the queue of dead nodes while nodeB, having it de-
scendants either dead or active, is appended to the queue of
active nodes behind node E. The dashed arrow in the figure
denotes that, for example, when solving node B the details

of the DAG from node D→F and node E→F are irrele-
vant once the optimal value of objective function at nodes
D and e is known. Similarly, when solving node A the de-
tails of B→F and C→F are irrelevant. The final order of
the queue of dead is one of the partial orders induced by the
DAG and reversed.

Solving decision policy of a node: general case
After the order of nodes is solved, the decision policy for a
node can be solved. Let us denote the set of all paths leaving
from the node i and heading to the node g as Pig , and a
single path as p ∈ Pig . Without observation capabilities, the
value of the objective function is straightforwardly the sum
of the edge cost parameters:

Jig = min
π

∑

e∈p
µe + α

∑

e∈p
σ2
e . (11)

If observing is possible, the value of the objective function
for observation actions is to be solved before the observa-
tion data is known. Therefore, the optimal decision after ob-
servation must be determined as a function of the observed
value. The prior expected value and variance of the cost-to-
target when decisions are posterior optimal are:

µig =E {Tig} =
∞∫

−∞

TigF (Tig)dTig

σ2
ig =E

{
T 2
ig

}
− E {Tig}2

=

∞∫

−∞

T 2
igf(Tig)dTig −



∞∫

−∞

TigF (Tig)dTig




2

.

(12)

LetEi be a set of edges leaving from the node i and ek ∈ Ei
an edge leaving from the node i and heading to the node j.
Let the travel time of the edge ek be observed resulting yek
with uncertainty σ2

obs. Then the distribution of accumulated
cost-to-target as a function of the observed value is denoted
as F (Tig|yek). The prior expectation of the posterior per-
formance resulting from optimal posterior decisions is dis-
tributed as:

F (Tig) =

∞∫

−∞

F (Tig|yek)F (ap)(yek)dyek . (13)

As the edge costs are independent,

F (Tig|yek) =
∞∫

−∞

F (Tek , Tig − Tek |yek)dTek

=

∞∫

−∞

F (Tek |yek)F (Tjg = Tig − Tek)dTek .

(14)

Using notation equivalent to Eq.(6), the a priori probability
density of the observed value yek can be presented as

F (ap)(yek) = N(yek ;µek , σ
2
ek

+ σ2
obs). (15)
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We denote the posterior mean of Tig given data yek as
µig(yek) and its prior expectation, i.e. the mean of Eq.(13)
as µig(oek). Similarly we denote the variance of Eq.(13) as
σig(oek)

2. Hence, oek denotes the observation and yek the
data obtained. Straightforwardly we get

µig(oek) =

∞∫

−∞

∞∫

−∞

TigF (Tig|yek)F (ap)(yek)dyekdTig

= µek(oek) + µjg

σig(oek)
2 =

∞∫

−∞

∞∫

−∞

T 2
igF (Tig|yek)F (ap)(yek)dyekdTig

− µig(oek)2

= σek(oek)
2 + σ2

jg

(16)

By denoting the cost associated with observing edge e as ce,
the value function for all edges leaving the node i can be
solved as

Jig = min
π

{
µe + ασ2

e + Jjg ∀e ∈ Ei
µig(oe) + ασig(oe)

2 + ce ∀e ∈ Ei (17)

and the decision is done according to:

π∗ = argmin
π
Jig. (18)

In this paper, we focus on solving a case in which at
most one observation can be made in a node. However, the
above solution can be exploited for cases where sequential
observations are possible. When considering follow-up ob-
servations, the analysis is as in Eq.(16), but as a function
of the data from the first observation. However, this will
require use of approximated solutions as the exact solution
presented in this paper becomes arduous with even three out-
going edges from a node. In the following subsection the
solution is explained in more detail for the case with only
one observation from a node.

Solving decision policy of a node: one observation
Let us consider a node A with three edges: e1, e2, and
e3 leaving from the node A and heading to the descendant
nodes B, C, and D, respectively. Nodes B, C, and D are
further having paths to a target node G, as depicted in Fig-
ure 1. Let us assume the descendants of the node A have
been solved i.e. the optimal policies from descendants to tar-
get πBG, πCG, and πDG, as well as the expected cost (e.g.
travel time) and variance of traversing from the descendants
to target are known. The values of objective functions are

JBG =µBG + ασ2
BG

JCG =µCG + ασ2
CG

JDG =µDG + ασ2
DG.

(19)

The edges e1, e2, and e3 are distinct and their costs are sta-
tistically independent, but their descendant nodes can be the

same or different. The travel times of the edges are dis-
tributed as

Te1 ∼ N(µe1 , σ
2
e1)

Te2 ∼ N(µe2 , σ
2
e2)

Te3 ∼ N(µe3 , σ
2
e3).

(20)

Hence without observation possibility, the objective function
JAG is given as

JAG =min
π





µe1 + ασ2
e1 + JBG

µe2 + ασ2
e2 + JCG

µe3 + ασ2
e3 + JDG

(21)

With observation possibility, there are six action alterna-
tives at a node A: to traverse or observe one of the edges
e1, e2, and e3. Let us denote the traversing and observing
actions as ge (i.e. go edge e) and oe, respectively. Hence,
the action a1 ∈ {ge1 , ge2 , ge3 , oe1 , oe2 , oe3}. The objective
function of a node A is

JAG = min
π





µe1 + ασ2
e1 + JBG

µe2 + ασ2
e2 + JCG

µe3 + ασ2
e3 + JDG

µig(oe1) + ασig(oe1)
2 + ce1

µig(oe2) + ασig(oe2)
2 + ce2

µig(oe3) + ασig(oe3)
2 + ce3 .

(22)

The computation of the rows 1–3 of Eq.(22) is obvious. Let
us compute the fourth row, i.e. the value function for ob-
serving first the edge e1.

As sequential observations were not allowed, after a1 =
oe1 , there are three consequential action options: to traverse
edge e1, e2, or e3, i.e. a2 ∈ {ge1 , ge2 , ge3}. The value
function after the observation is determined as a minimum
of the corresponding objective functions. The formulation is
as follows

JAG(ye1) = min
π





µ̃e1(ye1) + ασ̃2
e1 + JBG + ce1

µe2 + ασ2
e2 + JCG + ce1

µe3 + ασ2
e3 + JDG + ce1 ,

(23)

where µ̃e1(ye1) and σ̃e1 are the updated mean and variance
after the observation, determined according to Eq.(6). As
the observation ye1 does not affect the information about the
edges e2, or e3, the two lowest rows of Eq.(23) can be solved
at once. Let us denote the edge providing minimum of those
as e∗ and the corresponding value function of JCG and JDG
as J∗G.

As µ̃e1(ye1) = µe1 + Y (ye1), a critical value Ycr for the
observation data, is given as

Ycr =µe∗ − µe1
+ α

(
σ2
e∗ − σ̃2

e1

)
+ (J∗G − JBG).

(24)

The critical value Ycr separates which of the two post-
observation actions is preferred: if the observed value
Y (ye1) is lower than the critical value Ycr, the optimal ac-
tion after observation is to traverse the observed edge e1,
otherwise the optimal action is to traverse the non-observed
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Figure 3: Example of the value functions of Eq.(23). The
gray line is the critical value Ycr. In this example e∗ = e2.
Hence, Ycr is the value of the observation Y (ye1) at which
the two options a2 = ge1 and a2 = ge2 are equally attractive.

edge e∗ i.e. e2 or e3 depending on which one has the lower
value of JAG. Hence

a2 (ye1) =

{
ge1 if Y (ye1) ≤ Ycr
ge∗ otherwise (25)

Figure 3 gives an example of the critical value and the value
functions of Eq.(23).

The optimal edge cost from node A to node G is dis-
tributed according to:

F (TAG|ye1) ={ ∫∞
−∞N(TAG − t; µ̃e1(ye1), σ̃2

e1)fBG(t)dt∫∞
−∞N(TAG − t;µe∗, σ̃2

e∗)f∗G(t)dt,
(26)

where the upper denotes the condition Y (ye1) ≤ Ycr and the
lower the condition Y (ye1) > Ycr. The distributions fBG(t)
and f∗G(t) are expected priors of posterior optimal costs.
For further computation, it is sufficient to known only their
mean and variance. If the edge e1 is chosen to observe, the
prior expectation of the mean and variance of the posterior
cost-to-target solved according to Eq.(16) are as follows

µig(oe1) = (µe∗ + µ∗G)

(
1− F01

(
Ycr
σYe1

))

+ (µe1 + µBG)F01

(
Ycr
σYe1

)

− σYe1
N01

(
Ycr
σYe1

)
(27)

σig(oe1)
2 =

(
σ2
e∗ + σ2

∗G + (µe∗ + µ∗G)
2
)
(
1− F01

(
Ycr
σYe1

))

+
(
(µe1 + µBG)

2 + σ̃2
e1 + σ2

BG + σ2
Ye1

)
F01

(
Ycr
σYe1

)

− σYe1
(2(µe1 + µBG) + Ycr)N01

(
Ycr
σYe1

)
− µig(oe1)2.

(28)
F01 and N01 refer to standard normal cumulative distribu-
tion and probability density function, respectively. Here it
is noted that the variance of prior-expected travel time is not
the prior-expected variance.

A similar result is obtained for actions a1 = oe2 and a1 =
oe3 . The value function JAG is solved according to Eq. (22)
and the optimal policy according to:

π∗ = argmin
π
JAG. (29)

The optimal policy for a node defines the first action a1, i.e.
which edge is traversed or observed first. If the first action is
observation, the optimal policy defines the second action ac-
cording to Eq. (25). The second action is always traversing.
For describing the function a2(ye), three values are needed:
observed edge ei, critical value Ycr and alternative edge e∗.

The mean and variance to be used when computing nodes
that node A is a descendant to are

µAG =





µe1 + µBG
µe2 + µCG
µe3 + µDG
µAG(oe1) + ce1
µAG(oe2) + ce2
µAG(oe3) + ce3

σ2
AG =





σ2
e1 + σ2

BG

σ2
e2 + σ2

CG

σ2
e3 + σ2

DG

σAG(oe1)
2

σAG(oe2)
2

σAG(oe3)
2

(30)

depending on which of the options in Eq.(22) provides the
minimum. As the analysis above shows, Eq.(30) is sufficient
information about the prior expectation of the posterior op-
timal distribution for solving the predecessor nodes of the
node A. It is independent on the actual functional form of
the distribution. As a result, the solution is given analyti-
cally as a function of the edge parameters from node A to
nodes B, C, and D, and previously solved optimal objective
function, i.e. mean and variance of the cost-to-target of the
descendant nodes B, C, and D.

Case studies
The following subsections present two simulated case stud-
ies illustrating the path planning with optimization of obser-
vations. Case 1 is a simple DAG consisting of four nodes
and six edges. The purpose is to illustrate how the optimiza-
tion of observations affects the solution. Case 2 is a larger
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Figure 4: Case study 1: DAG with four nodes and six edges.

Table 1: Edge parameters used in the case study. Start and
end refer the nodes where the edge starts and ends, respec-
tively. µe is the expected travel time, σ2

e is the variance, ce
the observation cost and σ2

obs the observation uncertainty of
the edge.

edge start end µe σ2
e ce σ2

obs

1 A B 20 2 0.21 0.2
2 A C 30 1 0.31 0.3
3 A D 40 3 0.41 0.4
4 B D 20 2 0.21 0.2
5 B C 10 2 0.11 0.1
6 C D 10 2 0.11 0.1

DAG showing how the method presented in this paper can
be applied to more complicated problems.

Case 1: simple case
Let us examine a case study of a DAG presented in Fig-
ure 4. The DAG consists of four nodes denoted as A,...,D,
and six edges denoted as 1,...,6. Table 1 presents the pa-
rameter values associated with each edge. The objective
is to travel from the node A to the target node D. Let
us first examine the problem without the observing possi-
bility. If the objective is to minimize the expected travel
time, i.e. the path planning is a LET problem, all the routes
are equally good and the expected travel time is 40. If the
objective is to minimize the linear combination of the ex-
pected travel time and its weighted variance (see Eq.(5)),
paths A→C→D and A→D are equally good with variance
3. The paths A→B→D and A→B→C→D are worse due
to the higher variance 4 and 6, respectively. The objective
function is:

Jad = min





40 + 4α
40 + 5α
40 + 3α
40 + 3α

(31)

For α = 0.1, the value of the objective function is 40.3 units.
If observing is possible, the expected value of the objec-

tive function is 39.787 units. That is 0.513 units lower than
the value without observing. Table 2 summarizes the opti-
mal actions at each node. According to Table 2, the optimal

Table 2: Optimal actions and critical value. The first column
indicates the node. The second and third column indicate
the optimal first action. If the optimal first action is to ob-
serve an edge, columns 4 and 5 present the critical limit of
the observed value and the alternative edge. If the observed
value Y (ye) is lower than Ycr, the optimal second action is
to travel the observed edge. Otherwise the optimal second
action is to travel the alternative edge.

node action 1 edge 1 Ycr edge 2

A observe 1 0.463 2
B observe 5 -0.0095 4
C traverse 6

Table 3: Paths used in a set of 100000 simulations. Left are
the paths with their occurrence probabilities and the mean
value of the objective function.

path % J

A→C→D 37 40.50
A→B→D 32 39.79
A→B→C→D 31 38.77

action at node A is first to observe edge 1 (A→B). Then
if the observed value Y (y1) (see Eq.(7)) is less or equal to
the critical value Ycr = 0.46, the optimal action is to tra-
verse edge 1, otherwise the optimal action is to traverse edge
2 (A→C). Respectively, the optimal action at node B is
to first observe edge 5 (B→C), and if the observed value
Y (y5) ≤ −0.0095, to traverse edge 5, otherwise the optimal
action is to traverse edge 4 (B→D). It is notable that the
edge 3 (A→D) is not optimal in any case.

For testing the optimization, a numerical simulator was
implemented. For each simulation, the real values of the
edge cost T reale are sampled randomly according to the a
priori values N(µe, σ

2
e). Furthermore, the observed values

are sampled randomly such that ye ∼ N
(
T reale , σ2

obs

)
. As

the real values as well as the observed values vary between
simulations, the optimal paths are not same. In a set of
100000 simulations with same initial values, the most com-
mon path was A→C→D, which was used in 37% of the
simulations. The pathsA→B→D andA→B→C→D were
used in 32% and 31% of the simulations, respectively. The
mean value of the objective function for the whole simula-
tion was J = 39.786 units. The paths and their occurrence
probabilities together with the mean value of the objective
function are given in Table 3. The value of the objective
function is highest for path A→C→D and lowest for path
A→B→C→D. That is due to the fact that path A→C→D
is never observed whereas edges A→B and B→C are al-
ways observed if path A→B→C→D is chosen. Hence,
path A→C→D is chosen because the observed value of
path A→B is high, but as path A→C is not observed, the
real value of it can be high.
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Figure 5: Case study 2: DAG with 26 nodes and 45 edges.

Case 2: larger case
Let us examine a case study of a DAG presented in Figure
5. The DAG consists of 26 nodes denoted as A,...,Z, and 45
edges denoted as 1, ..., 45. The optimization of the actions
needs to be solved only for nodes with at least two edges
leaving from the node. In this case there are 15 such nodes.
For the remaining 11 nodes with none or only one edge leav-
ing, there is no optimization about the actions to be made.

Table 4 presents the expected travel time (µe), variance
(σ2
e ), observation cost (ce), and observation uncertainty

(σ2
obs) of each edge. The variance is defined as σ2

e = 0.2µe.
The edge 17 is an exception as its variance is σ2

17 = 0.4µ17.
During the traverse, an external sensing agent may observe
the edge travel time, but the observations are uncertain. The
observation uncertainty is related to the expected travel time
of the edge as σ2

obs = 0.01µe. The maximum observation
time is 40 i.e. the observation time is min(40, µe). Hence,
the edges with expected travel time longer than 40 are ob-
served only partly. The observation cost consists of a con-
stant part (0.01) and a part depending the observation time
(0.01min(40, µe)), i.e. ce = 0.01 + 0.01min(40, µe).

Table 4: Edge parameters used in the case study. Start and
end refer the nodes where the edge starts and ends, respec-
tively. µe is the expected travel time, σ2

e is the variance, ce
the observation cost and σ2

obs the observation uncertainty of
the edge.

edge start end µe σ2
e ce σ2

obs

1 A B 11 2.2 0.12 0.11
2 A C 10 2 0.11 0.1
3 A D 15 3 0.16 0.15
4 B J 19 3.8 0.2 0.19
5 B G 7 1.4 0.08 0.07
6 B I 17 3.4 0.18 0.17
7 C I 19 3.8 0.2 0.19
8 C P 40 8 0.41 0.4
9 D N 26 5.2 0.27 0.26
10 D K 17 3.4 0.18 0.17
11 D H 24 4.8 0.25 0.24
12 E J 16 3.2 0.17 0.16
13 F K 12 2.4 0.13 0.12
14 G O 36 7.2 0.37 0.36
15 G N 24 4.8 0.25 0.24
16 H P 11 2.2 0.12 0.11
17 H Z 60 24 0.61 0.4
18 I N 12 2.4 0.13 0.12
19 J R 32 6.4 0.33 0.32
20 J O 25 5 0.26 0.25
21 K P 18 3.6 0.19 0.18
22 K Q 34 6.8 0.35 0.34
23 L Q 11 2.2 0.12 0.11
24 M O 14 2.8 0.15 0.14
25 N O 14 2.8 0.15 0.14
26 N S 38 7.6 0.39 0.38
27 N Y 45 9 0.46 0.4
28 N P 11 2.2 0.12 0.11
29 O S 26 5.2 0.27 0.26
30 O U 38 7.6 0.39 0.38
31 P U 42 8.4 0.43 0.4
32 P Y 35 7 0.36 0.35
33 P T 17 3.4 0.18 0.17
34 Q W 9 1.8 0.1 0.09
35 R V 17 3.4 0.18 0.17
36 R S 17 3.4 0.18 0.17
37 S X 12 2.4 0.13 0.12
38 S U 13 2.6 0.14 0.13
39 T W 9 1.8 0.1 0.09
40 U Z 8 1.6 0.09 0.08
41 V Z 23 4.6 0.24 0.23
42 V X 13 2.6 0.14 0.13
43 W Y 11 2.2 0.12 0.11
44 X Z 10 2 0.11 0.1
45 Y Z 16 3.2 0.17 0.16
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Table 5: Optimal actions if observing is not possible. The
first column indicates the node. The second the cost from
the node to the target node Z. Columns 3 and 4 indicate the
optimal first action, i.e. the optimal edge to traverse.

node J action edge

A 102.96 traverse 1
B 91.52 traverse 6
C 93.60 traverse 8
D 88.40 traverse 9
E 89.44 traverse 12
F 83.20 traverse 13
G 85.28 traverse 14
H 63.44 traverse 16
I 73.84 traverse 18
J 72.80 traverse 19
K 70.72 traverse 21
L 48.88 traverse 23
M 62.40 traverse 24
N 61.36 traverse 26
O 47.84 traverse 30
P 52.00 traverse 31
Q 37.44 traverse 34
R 39.52 traverse 36
S 21.84 traverse 38
T 37.44 traverse 39
U 8.32 traverse 40
V 23.92 traverse 41
W 28.08 traverse 43
X 10.40 traverse 44
Y 16.64 traverse 45
Z 0.00

Optimization Let us choose the node Z as the target.
Once the topology is solved, the optimal actions for each
node can be solved according to the strategy presented in
the previous Section. Tables 5 and 6 present the expected
cost-to-target node, the optimal actions and the critical val-
ues for the case with observation option and without it.

Let us choose node A as the starting point. Hence, the
target is to travel from node A to node Z with minimal
costs. Let us first examine the problem without observ-
ing possibility. If the objective is to minimize only the
expected travel time, paths A→B→I→N→S→U→Z and
A→D→H→Z are equally good, with 99 as the expected
travel time. If the objective is to minimize the linear combi-
nation of the expected travel time and its variance as in Eq.
(5), the path A→B→I→N→S→U→Z is optimal. Note,
that path A→D→H→Z is no longer optimal due to the
higher variance. For α = 0.2, the value of the objective
function for the optimal path is with 102.96 units, whereas
for A→D→H→Z it is 105.36 units.

If observing is an option, the expected value of the ob-
jective function is 101.40 units. Hence, the expected travel
cost is 1.5% lower using the observation when compared to
the case without observation. The difference increases if the
uncertainty associated with the edge information increases.

Table 6: Optimal actions and critical value if observing is
possible. The first column indicates the node and the second
the cost from the node to the target node Z. Columns 3 and
4 indicate the optimal first action. If the optimal first action
is to observe an edge, columns 5 and 6 present the critical
limit of the observed value and the alternative edge. If the
observed value Y (ye) is lower than Ycr, the optimal second
action is to travel the observed edge. Otherwise the optimal
second action is to travel the alternative edge.

node J action 1 edge 1 Ycr edge 2

A 101.40 observe 3 0.20 1
B 90.39 observe 6 1.37 5
C 91.94 observe 8 1.24 7
D 86.60 observe 9 0.77 11
E 88.61 traverse 12 0.00 0
F 82.67 traverse 13 0.00 0
G 84.16 observe 14 2.17 15
H 62.42 observe 17 1.25 16
I 73.04 traverse 18 0.00 0
J 71.97 observe 19 2.01 20
K 70.19 observe 22 -1.30 21
L 48.88 traverse 23 0.00 0
M 61.84 traverse 24 0.00 0
N 60.56 observe 26 2.11 25
O 47.28 observe 30 2.31 29
P 51.49 observe 31 2.56 32
Q 37.44 traverse 34 0.00 0
R 39.21 observe 35 -0.83 36
S 21.66 observe 38 1.54 37
T 37.44 traverse 39 0.00 0
U 8.32 traverse 40 0.00 0
V 23.14 observe 41 0.88 42
W 28.08 traverse 43 0.00 0
X 10.40 traverse 44 0.00 0
Y 16.64 traverse 45 0.00 0
Z 0.00
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Table 7: Simulation example 1.

node action 1 edge Y (ye) action 2 edge

A observe 3 1.45 traverse 1
B observe 6 -2.09 traverse 6
I traverse 18
N observe 26 0.1 traverse 26
S observe 38 0.46 traverse 38
U traverse 40

Table 8: Simulation example 2.

node action 1 edge Y (ye) action 2 edge

A observe 3 -1.34 traverse 3
D observe 9 2.08 traverse 11
H observe 17 8.57 traverse 16
P observe 31 -4.48 traverse 31
U observe 40

Also the observation uncertainty and the observation cost af-
fect significantly the benefit of the observation.

Simulation For testing the optimization, a numerical sim-
ulator was implemented. For each simulation, the real val-
ues of the edge travel times T reale are sampled randomly
according to the a priori values N(µe, σ

2
e). Furthermore,

the observed values are sampled randomly such that ye ∼
N
(
T reale , σ2

obs

)
. As the real values as well as the observed

values vary between simulations, the optimal paths are not
same. Tables 7 and 8 show results of two independent sim-
ulations. In the first simulation, the optimal path is through
nodes A→B→I→N→S→U→Z, in the second simulation
through nodes A→D→H→P→U . Both are based on the
same optimal policy.

According to Table 6, the optimal action in the node A is
to observe edge 3 (A→D), and if the observed value is lower
than the critical value Ycr = 0.20, the optimal next action is
to travel edge 3, otherwise the optimal next action is to travel
edge 1 (A→B). In the simulation 1 (Table 7), the observed
value is Y (y3) = 1.45 which is higher than the critical value
Ycr = 0.20. Hence, it is not profitable to travel edge 3 and
the optimal next action is to traverse edge 1 (A→B). In the
node B, the optimal action is to observe edge 6 (B→I) and
as the observed value is lower (-2.09) than the critical value
(1.37), edge 6 is traveled. In node I , there is only one edge
leaving the node, hence edge 18 (I→N ) is traveled without
observation. In the following steps edges 26 (N→S), and
38 (S→U ) are observed and edges 26, 38, and 40 (U→Z)
traveled.

In the simulation 2 (Table 8), edge 3 is again observed
first. The observed value Y (y3) = −1.35 is lower than the
critical value, and the observed edge is traveled. In node D,
edge 9 (D→N ) is observed. As the observed value Y (y9) =
2.08 is higher than the critical value Ycr = 0.77, the optimal
action is to travel edge 11 (D→H). In node H , the optimal
action is to observe edge 17 (H→Z). This is long edge with

Table 9: Paths used in a set of 100000 simulations. In left are
the paths with their occurrence probabilities and the mean
value of the objective function.

path % J

A→B→I→N→S→U→Z 23.0 100.51
A→D→N→S→U→Z 22.6 99.21
A→D→H→Z 12.5 100.44
A→B→G→O→U→Z 6.4 102.03
A→D→H→P→U→Z 6.3 102.32
A→D→N→O→U→Z 6.2 101.30
A→B→I→N→O→U→Z 6.1 102.59
A→D→N→S→X→Z 4.5 100.90
A→B→I→N→S→X→Z 4.4 102.25
A→B→G→N→S→U→Z 1.4 103.80
A→D→H→P→Y→Z 1.3 104.79
A→B→I→N→O→S→U→Z 1.3 104.44
A→B→G→O→S→U→Z 1.3 104.10
A→D→N→O→S→U→Z 1.2 103.23
A→B→G→N→O→U→Z 0.39 106.11
A→B→G→N→S→X→Z 0.26 106.02
A→B→G→O→S→X→Z 0.25 106.28
A→D→N→O→S→X→Z 0.24 104.67
A→B→I→N→O→S→X→Z 0.23 106.44
A→B→G→N→O→S→U→Z 0.06 108.08
A→B→G→N→O→S→X→Z 0.01 110.33

60 segments. As the maximum observing distance was set
to 40 segments, the edge can be observed only partly. In
this simulation, the observed value is exceptionally large,
Y (y17) = 8.57 to compared with the critical value Ycr =
1.25, hence the optimal action is to travel the non-observed
edge 16 (H→P ). In the following steps, edge 31 (P→U )
is observed and traveled and finally in the node U , edge 40
(U→Z) is traveled.

In a set of 100000 simulations with same initial val-
ues, 21 paths were used. The most common path was
A→B→I→N→S→U→Z which was used in 23% of the
simulations. This is the same path that was optimal also
without observations. Almost as common was the path
A→D→N→S→U→Z with portion of 22.6%. The path
A→D→H→Z that was optimal when only expected travel
time was concerned, is third most common with portion of
12.5%. The paths and their occurrence probabilities are
given in Table 9. The mean value of the objective function
for the whole simulation was J = 101.38 units. This is a bit
lower than the value obtained in optimization J = 101.40
units (see Table 6). In the similar simulation without obser-
vation possibility, the mean value of the objective function
was J = 102.94 units while the value obtained in optimiza-
tion was J = 102.96 units. Hence, the case including ob-
servations provided 1.56 units (1.5 %) lower value than the
case without observation.

For comparing the results for cases without observa-
tion, Table 10 gives more detailed information about
the three most common paths. It shows the a pri-
ori values of the expected travel time and the expected
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Table 10: Paths used in a set of 1000000 simulations. In left
are the paths and the mean value of the objective function.
The columns 3 and 4 present the expected travel time (a pri-
ori) and expected value of the objective function (a priori) of
the path

path J µp µp + ασ2
p

A→B→I→N→S→U→Z 100.51 99 102.96
A→D→N→S→U→Z 99.21 100 104
A→D→H→Z 100.44 99 105.36

value of the objective function. As pointed out ear-
lier, paths A→B→I→N→S→U→Z and A→D→H→Z
are equally good if only expected travel time is consid-
ered (99 units), but path A→D→H→Z is no longer op-
timal if the variance is included to the objective func-
tion. The a priori value of the objective function of path
A→D→H→Z is 105.36 units whereas the same value for
path A→B→I→N→S→U→Z is 102.96 units and for
pathA→D→N→S→U→Z 104 units. However, if observ-
ing is possible, path A→D→H→Z becomes favorable as
the variance can be decreased by observations. Although
only 40 of its 60 segments can be observed, still the vari-
ance decreases significantly. It is notable that due to the high
variance, the realized travel time can be remarkably lower of
higher than the a priori travel time.

An interesting feature is that even though the a priori val-
ues of the path A→D→N→S→U→Z were not optimal,
the realized value of the objective function is lowest. That
is due to the fact that four of its edges is observed. In nodes
A, D, N , and S, always the edges belonging to the path
A→D→N→S→U→Z are observed. Hence, the edges are
chosen only when the travel time along them is proven to be
low.

Discussion and conclusion
We have examined path planning in a stochastic environ-
ment with online observation options. We considered an
autonomous agent (working machine) which path we seek
to optimize, and an external sensing agent which provides
additional up-to-date information for the dynamic optimiza-
tion. In this paper, we provided an exact solution for opti-
mizing both the path of the working machine and the use of
the external sensing agent. Our plan is to test the results of
this study with an autonomously operating wheel loader that
is assisted by an unmanned hexacopter. The hexacopter is
equipped with stereo camera system and other sensors pro-
viding up-to-date information about the operating environ-
ment.

In our study, the stochastic environment is described as a
directed acyclic graph. This is a rather strong assumption
as it means that the working machine is not allowed to turn
back even if the following edges are exceptionally unfavor-
able to travel. However, in our intended case with working
machine on a rough terrain, turning back is very time con-
suming or even impossible and hence the assumption is jus-
tified. Furthermore, in a case turning back is unavoidable,

the problem can be re-planned for allowing returning to the
previous location.

As the information about the travel times is uncertain, the
decision maker’s attitude towards risk must be taken into
account. We have studied the problem using a risk-averse
objective function which penalizes uncertainty. The penal-
ization is done by an objective function which minimizes the
linear combination of the expected travel time and its vari-
ance. In a sequential paper to this article (Lauri, Ropponen,
and Ritala 2016), we present a solution to a stochastic path
planning problem in which the objective is to maximize the
probability of arriving on time.

In this paper, we have examined observing mode which
allows observing at most one of the edges in a junction. This
is justified for example if the sensing agent has limited en-
ergy resources and it need to be recharged after each obser-
vation mission. The solution could be further improved by
enabling more edges to be observed. Observation mode al-
lowing options that either none of the edges is observed or
all the edges leaving a node are observed is straightforward
to solve. The problem becomes more complicated if both
the number and order of edges to be observed is optimized.
That means that the routing policy defines whether it is op-
timal to observe other edges after the first observation. The
decision depends on the value attained from the first obser-
vation and hence the optimal routing policy and the critical
limits are functions of the observed values. That is stud-
ied in (Lauri, Ropponen, and Ritala 2016) for DAG with at
most two edges leaving the nodes. However, the exact solu-
tion with more than two outgoing edges becomes arduous,
hence approximated solutions are required for solving larger
cases. The solution presented in this paper is a starting point
for seeking the approximated solutions.

Other interesting generalizations for future studies in-
clude e.g. time-dependent edge costs as well as statistically
dependent edge costs. The former means that the expected
travel time of an edge depends on the arrival time to the
node. The latter means that the information about the ex-
ecuted travel time of one edge, affect the prior information
of all the other edges. This might be the case for example if
the recent weather conditions cause correlations to the edges
near to each other. Both the time-dependent and statistically
dependent edge costs increase the complexity of the prob-
lem, and approximations are needed for solving these.
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Abstract

This paper presents a new method to learn online poli-
cies in continuous state, continuous action, model-free
Markov decision processes, with two properties that
are crucial for practical applications. First, the policies
are implementable with a very low computational cost:
once the policy is computed, the action corresponding to
a given state is obtained in logarithmic time with respect
to the number of samples used. Second, our method is
versatile: it does not rely on any a priori knowledge of
the structure of optimal policies. We build upon the Fit-
ted Q-iteration algorithm which represents the Q-value
as the average of several regression trees. Our algo-
rithm, the Fitted Policy Forest algorithm (FPF), com-
putes a regression forest representing the Q-value and
transforms it into a single tree representing the policy,
while keeping control on the size of the policy using
resampling and leaf merging. We introduce an adapta-
tion of Multi-Resolution Exploration (MRE) which is
particularly suited to FPF. We assess the performance
of FPF on three classical benchmarks for reinforcement
learning: the ”Inverted Pendulum”, the ”Double Integra-
tor” and ”Car on the Hill” and show that FPF equals
or outperforms other algorithms, although these algo-
rithms rely on the use of particular representations of
the policies, especially chosen in order to fit each of the
three problems. Finally, we exhibit that the combination
of FPF and MRE allows to find nearly optimal solutions
in problems where ε-greedy approaches would fail.

1 Introduction
The initial motivation for the research presented in this pa-
per is the optimization of closed-loop control of humanoid
robots, autonomously playing soccer at the annual Robocup
competition 1. We specifically target to learn behaviors on
the Grosban robot, presented in Figure 1. This requires the
computation of policies in Markov decision processes where
1) the state space is continous, 2) the action space is conti-
nous, 3) the transition function is not known. Additionally,
in order to provide real-time closed-loop control, the pol-
icy should allow to retrieve a nearly optimal-action at a low
computational-cost. We consider that the transition function
is not known, because with small and low-cost humanoid

1http://wiki.robocup.org/wiki/Humanoid League

Figure 1: The Grosban robot

robots, the lack of accuracy on sensors and effectors makes
the system behavior difficult to predict.

More generally, the control of physical systems naturally
leads to models with continous-action spaces, since one typ-
ically controls the position and acceleration of an object
or the torque sent to a joint. While policy gradients meth-
ods have been used successfully to learn highly dynami-
cal tasks such as hitting a baseball with an anthropomor-
phic arm (Peters and Schaal 2008), those algorithms are not
suited for learning on low-cost robots, because they need to
provide a motor primitive and to be able to estimate a gradi-
ent of the reward with respect to the motor primitive parame-
ters. While model-based control is difficult to apply on such
robots, hand-tuned open-loop behaviors have proven to be
very effective (Behnke 2006). Therefore, model-free learn-
ing for CSA-MDP appears as a promising approach to learn
such behaviors.

Since the transition and the reward functions are not
known a priori, sampling is necessary. While an efficient ex-
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ploitation of the collected samples is required, it is not suf-
ficient. A smart exploration is necessary, because on some
problems, nearly-optimal strategies requires a succession of
actions which is very unlikely to occur when using unifor-
mous random actions. On extreme cases, it might even lead
to situation where no reward is ever seen, because the prob-
ability of reaching a state carrying a reward while follow-
ing a random policy is almost 0. This problem is known as
the combinatory lock problem and appears in discrete case
in (Koenig and Simmons 1996) and in continuous problems
in (Li, Littman, and Mansley 2009).

For control problems where the action set is discrete and
not too large, there are already existing efficient algorithms
to tackle the problem of producing an efficient policy from
the result of previous experiments. Of course, these algo-
rithms can be used in the continous action space case, by dis-
cretization of the action sets. However this naive approach
often leads to computational costs that are too high for prac-
tical applications, as stated in (Weinstein 2014).

The specificity of continuous action space has also been
adressed with specific methods and particularly encouraging
empirical results have been obtained thanks for example to
the Binary Action Search approach (Pazis and Lagoudakis
2009), see also (Busoniu et al. 2010). These methods re-
quire to design functional basis used to represent the Q-
value function, which we prefer to avoid in order to obtain
versatile algorithms.

A recent major-breakthrough in the field of solving CSA-
MDP is Symbolic Dynamic Programming which allows to
find exact solutions by using eXtended Algebraic Deci-
sion Diagrams (Sanner, Delgado, and de Barros 2012), see
also (Zamani, Sanner, and Fang 2012). However, those al-
gorithms requires a model of the MDP and rely on several
assumptions concerning the shape of the transition function
and the reward function. Additionally, those methods are
suited for a very close horizon and are therefore not suited
for our application.

While local planning allows to achieve outstanding con-
trol on high-dimensionnal problems such as humanoid lo-
comotion (Weinstein and Littman 2013), the computational
cost of online planning is a burden for real-time application.
This is particularly relevant in robotics, where processing
units have to be light and small in order to be embedded.
Therefore, we aim at global planning, where the policy is
computed offline and then loaded on the robot.

Our own learning algorithms are based on the Fitted Q It-
eration algorithm (Ernst, Geurts, and Wehenkel 2005) which
represents the Q-value as the average of several regression
trees. We first present a method allowing to extract approx-
imately optimal continuous action from a Q-value forest.
Then we introduce a new algorithm, Fitted Policy Forest
(FPF), which learn an approximation of the policy function
using regression forests. Such a representation of the pol-
icy allows to retrieve a nearly optimal action at a very low
computational cost, therefore allowing to use it on embed-
ded systems.

We use an exploration algorithm based on MRE (Nouri
and Littman 2009), an optimistic algorithm which repre-
sents the knownness of state and action couples using a kd-

tree (Preparata and Shamos 1985). Following the idea of
extremely randomized trees (Geurts, Ernst, and Wehenkel
2006), we introduce randomness in the split, thus allowing
to grow a forest in order to increase the smoothness of the
knownness function. Moreover, by changing the update rule
for theQ-value, we reduce the attracting power of local max-
ima.

The viability of FPF is demonstrated by a perfor-
mance comparison with the results proposed in (Pazis and
Lagoudakis 2009) on three classical benchmark in RL: In-
verted Pendulum Stabilization, Double Integrator and Car
on the Hill. Experimental results show that FPF drastically
reduce the computation time while improving performance.
We further illustrate the gain obtained by using our version
of MRE on the Inverted Pendulum Stabilization problem, we
finally present the results obtained on the Inverted Pendu-
lum Swing-Up, using an underactuated angular joint. This
last experiment is run using Gazebo simulator in place of
the analytical model.

This paper is organized as follows: Section 2 introduces
the notations used for Markov decision processes and regres-
sion forests, Section 3 presents the original version of Fitted
Q-Iteration and other classical methods in batch mode RL
with continuous action space, Section 4 proposes algorithms
to extract informations from regression forest, Section 5 in-
troduces the core of the FPF algorithm. Section 6 presents
the exploration algorithm we used. The efficiency of FPF
and MRE is demonstrated through a series of experiments
on classical RL benchmarks in section 7, the meaning of the
experimental results is discussed in Section 8.

2 Background
2.1 Markov-Decision Process
A Markov-Decision Process, or MDP for short, is a 5-tuple
〈S,A,R, T, γ〉, where S is a set of states, A is a set of ac-
tions, R is a reward function (R(s, a) denotes the expected
reward when taking action a in state s), T is the transition
function (T (s, a, s′) denotes the probability of reaching s′
from s using a) and γ ∈ [0, 1[ is a discount factor.

A Deterministic Policy is a mapping π : S 7→ A, where
π(s) denotes the action choice in state s. Thereafter, by “pol-
icy”, we implicitely refer to deterministic policy. The Q-
value of a couple (s, a) under a policy π with an horizon
H is denoted QπH(s, a) and is defined as the expected cu-
mulative and discounted reward by applying a in state s and
then choosing actions according to π:

QπH(s, a) = R(s, a) + γ
∑

s′∈S
T (s, a, s′)QπH−1(s

′, π(s′))

We further abreviateQπ∞ byQπ for short. The greedy policy
with respect to Q is denoted πQ and always selects the ac-
tion with the highestQ-value; i.e. πQ(s) = argmax

a∈A
Q(s, a).

Considering that the action space is bounded to an interval,
such a limit exists, although it is not necessarily unique.

It is known that an optimalQ-value function exists (Puter-
man 1994): Q∗ = max

π
Qπ . The optimal policy π∗ is greedy

with respect to Q∗: π∗ = πQ∗ .
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Figure 2: A simple regression tree

Given a complete and finite MDP, standard algorithms
exists for finding the optimal policy, including value itera-
tion, policy iteration and linear programming. However, if
the transition function or the reward function are unknown,
it is necessary to use samples to learn an approximation of
the Qvalue denoted Q̂. If the state space or the action space
are continuous, it is also necessary to approximate the solu-
tion.

When solving offline a MDP while having no direct ac-
cess to the transition function, it is necessary to use a set
of gathered samples. Samples are defined as 4-tuples of the
form: 〈s, a, r, s′〉 where s is the starting state, a the action
used, r the reward received and s′ the successor state.

2.2 Regression Forests
A regression tree is a representation of the approximation
of a function f : X 7→ Y where X ∈ Rk and Y ∈ R.
It has a decision tree structure where every non-leaf node
is a function mapping X to its children and every leaf is a
basic function φ : X 7→ Y . A simple regression tree with
piecewise constant (PWC) approximation is presented in
Figure 2. Several algorithms exist to extract regression trees
from training set, for a complete introduction, refer to (Loh
2011). Predicting the output y from an entry x requires to
find the leaf corresponding to x and then to compute φ(x),
with φ the basic function found at the leaf corresponding to
x. We will further refer to the value predicted by a tree t
for input x by t(x) for short. While some algorithms uses
oblique split (Li, Lue, and Chen 2000), the algorithms pre-
sented here are only valid for orthogonal splits (splits of the
form xi ≤ v). We will further note LC(n) and UC(n) the
lower and upper children of node n, concerning xi ≤ v and
xi > v respectively.

If we define the space X as a hyperrectangleH, each leaf
will concern a different part of H. We will further refer to
the minimun and maximum value ofH along the dimension
i as Hi,m and Hi,M respectively. We define the size of a

hyperrectangle H by |H| =
dimX∏
i=1

Hi,M − Hi,m. We use

an abusive notation of the norm ‖H‖ in place of ‖Hi,M −
Hi,m‖.

A regression forest is a set of regression trees: F =
{t1, . . . , tM}. It has been exhibited in (Breiman 1996) that
using multipe trees to represent the function leads to a more
accurate prediction. The value predicted by a forest F for an

input x is F (x) =
M∑
k=1

tk(x)
M .

2.3 Kd-trees
Kd-trees are a data structure which allows to store points
of the same size while providing an O(log(n)) ac-
cess (Preparata and Shamos 1985). At each leaf of the tree,
there is one or several points and at each non-leaf node, there
is an orthogonal split. Let X be the space on which the kd-
tree τ is defined, then for every x ∈ X , there exist a single
path from the root of the kd-tree to the leaf in which xwould
fit. This leaf is denoted leaf(τ, x) is defined on the space X .
Each leaf l contains a set of points noted points(l) and con-
cerns an hyperrectangleH = space(l).

3 Previous Work
The use of regression forests to approximate theQ-value of a
continuous MDP has been introduced in (Ernst, Geurts, and
Wehenkel 2005) under the name of Fitted Q Iteration. This
algorithm uses an iterative procedure to build Q̂H , an ap-
proximation of the Q-value function at horizon H . It builds
a regression forest by using Q̂H−1 and a set of 4-tuples using
the rules given at Equations 1 and 2.

x = (s, a) (1)

y = r +max
a∈A

Q̂H−1(s
′, a) (2)

While this procedure yields very satisfying results when
the action space is discrete, the computational complexity
of the max part in equation 2 when using regression forest
makes it become quickly inefficient. Therefore, in (Ernst,
Geurts, and Wehenkel 2005), action spaces are always dis-
cretized to compute this equation, thus leading to an inap-
propriate action set when optimal control requires a fine dis-
cretization.

Binary Action Search, introduced in (Pazis and
Lagoudakis 2009) proposes a generical approach al-
lowing to avoid the computation of the max part in
equation 2. Results presented in (Pazis and Lagoudakis
2009) show that Binary Action Search strongly outperforms
method with a finite number of actions on two problems
with rewards including a cost depending on the square
of the action used: Inverted Pendulum Stabilization and
Double Integrator. On the other hand, binary action search
yields unsatisfying results on Car on the Hill, a problem
with an optimal strategy known to be “bang-bang” (i.e.
optimal strategy is only composed of two actions).

4 Approximation of the Q-value forest
In this part, we propose new methods to extract information
from a regression forest while choosing a trade-off between
accuracy and computational cost. First, we introduce the al-
gorithm we use to grow regression forest. Then we present
an algorithm to project a regression tree on a given subspace.
Finally we propose a method allowing to average a whole re-
gression forest by a single regression tree whose number of
leaf is bounded.
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4.1 Extra-Trees
While several methods exists to build regression forests from
a training samples, our implementation is based on Extra-
Trees (Geurts, Ernst, and Wehenkel 2006). This algorithm
produces satisfying approximation at a moderate computa-
tional cost.

The main characteristic of Extra-trees is that k split di-
mensions are chosen randomly, then for each chosen split
dimension the position of the split is picked randomly from
an uniformous distribution from the minimal to the maximal
value of the dimension along the samples to split. Finally,
only the best of the k random splits is used; the criteria used
to rank the splits is the variance gain brought by the split.
The original training set is splitted until one of the terminal
condition is reached. The first terminal condition is that the
number of samples remaining is smaller than nmin, where
nmin is a parameter allowing to control overfitting. There
are two other terminal conditions: if the inputs of the sam-
ples are all identical or if the output value is constant.

4.2 Improving Extra-trees
We provide two improvements to Extra-trees, in order to
remedy two problems. First, due to the terminal conditions,
large trees are grown for parts of the space were the Q-value
is almost constant because if the Q-value is not strictly con-
stant, the only terminal condition is that the number of sam-
ples is lower than nmin. We remedy this problem with the
help of a new parameter Vmin which specifies the minimal
variance between prediction and measure necessary to allow
splitting. A naive implementation of Extra-Trees leads to a
second problem: it may generate nodes with very few sam-
ples, which paves the way to overfitting and is bad for lin-
ear interpolation. Therefore, we changed the choice of the
split values. Instead of choosing it uniformly from the mini-
mum to the maximum of the samples, our algorithm choose
it uniformly between the nmin-th smallest and highest val-
ues, which guarantees that each node of the split tree con-
tains at least nmin samples.

4.3 Projection of a regression tree
Let consider a tree t : S × A 7→ R, we can define the pro-
jection of the tree t on the state s as another tree P(t, s) =
t′ : A 7→ R. Since s is known, t′ does not contain any split
depending on s value and therefore contains only splits re-
lated to the action space. It is easy to create a hyperrectangle
H corresponding to state s.

H(s) =




s1 s1
...

...
sDS

sDs

min(A1) max(A1)
...

...
min(ADA

) max(ADA
)




The pseudo-code for tree projection is shown in Algo-
rithm 1.

Algorithm 1 The tree projection algorithm
1: function PROJECTTREE(t,H)
2: return projectNode(root(t),H)
3: end function
4: function PROJECTNODE(node,H)
5: if isLeaf(node) then
6: return node
7: end if
8: d← splitDim(node)
9: v ← splitVal(node)

10: if v > Hd,M then
11: node← projectTree(LC(node),H)
12: else if v ≤ Hd,m then
13: node← projectTree(UC(node),H)
14: else
15: LC(node)← projectTree(LC(node),H)
16: UC(node)← projectTree(UC(node),H)
17: end if
18: return node
19: end function

4.4 Weighted average of regression trees
Let t1 and t2 be two regressions trees mapping X to Y ,
weight respectively by w1 and w2, we define the weighted
average of the trees as a tree t′ = µ(t1, t2, w1, w2) such as:

∀x ∈ X, t′(x) = t1(x)w1 + t2(x)w2

w1 + w2

A simple scheme for computing t′ would be to root a repli-
cate of t2 at each leaf of t1. However this would lead to
an overgrown tree containing various unreachable nodes. As
example, a split with the predicate x1 ≤ 3 could perfectly
appear on the lower child of another node whose predicate
is x1 ≤ 2.

Therefore, we designed an algorithm which merges the
two trees by walking simultaneously both trees form the root
to the leaves, and performing on-the-fly optimizations. The
algorithm pseudo-code is shown in Algorithm 2. An exam-
ple of input and output of the algorithm is shown in Figure 3.
By this way, we also tend to keep an original aspect of the re-
gression tree which is that the top-most nodes carry the most
important splits (i.e. splits that strongly reduce the variance
of their inner sets of samples).

4.5 Pruning trees
Although our merging procedure helps to reduce the size
of the final trees, the combination of M trees might still
lead to a tree of size O(|t|M ). Therefore we developed a
pruning algorithm which aims at removing the split nodes
which bring the smallest change to the prediction function.
The only nodes that the algorithms is allowed to remove are
nodes that are parent of two leafs. We define the loss L to
the prediction function for a node n concerning a hyperrect-
angleHn as:

L =

∫

x∈Hl

(φ′(x)− φl)dx+

∫

x∈Hu

(φ′(x)− φu)dx (3)
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Figure 3: An example of tree merge

Algorithm 2 The averaging tree algorithm
1: function AVGTREES(t′,t1,t2,w1,w2,H)
2: avgNodes(root(t’),root(t1), root(t2),w1,w2,H)
3: end function
4: function AVGNODES(n′, n1, n2, w1, w2,H)
5: if isLeaf(n1) then
6: if isLeaf(n2) then
7: φn′ =

w1φn1
+w2φn2

w1+w2

8: else
9: avgNodes(n′, n2, n1,w2,w1,H)

10: end if
11: else
12: d← splitDim(n1)
13: v ← splitVal(n1)
14: vm ← Hd,m
15: vM ← Hd,M
16: if vM ≤ v then
17: avgNodes(n′,n2, LC(n1),w2,w1,H)
18: else if vm < v then
19: avgNodes(n′,n2, UC(n1),w2,w1,H)
20: else
21: split(n′)← split(n)
22: Hd,M ← v
23: avgNodes(LC(n′),n2, LC(n1),w2,w1,H)
24: Hd,M ← vM
25: Hd,m ← v
26: avgNodes(UC(n′),n2, UC(n1),w2,w1,H)
27: Hd,m ← vm
28: end if
29: end if
30: end function

Where l and u are the lowerchild and upperchild of n re-
spectively, and:

φ′ =
|Hu|φu + |Hl|φl

|H| (4)

The prediction function φ′ given by equation 4 is a
weighted average of the prediction functions of both chil-
dren weighted by the size of the space concerned by each
one. This choice reduces the impact of the prediction on a
leaf when merged with a bigger leaf. Our definition of the
loss L in equation 3 also considers the size of the spaces
since we compute the integral. The main interest of this
method is to reduce the average error on the whole tree by
weighting the cost of an error by the size of its space. While
most prunning procedures in litterature are centered about
reducing the risk of overfitting, our algorithm (Algorithm 3)
cares only about reducing the size of the tree, ensuring that
the complexity of the representation does not go above a
given threshold. Since this procedure is not based on the
training set used to grow the forest, it is not necessary to have
an access to the training set in order to prune the tree. When
merging theM trees of a forest, it is crucial to prune the tree
resulting of two merge before applying another merge.

Algorithm 3 The tree pruning algorithm
1: splits = {} . Map from (node,L) to φ,

ordered by L
2: for all n ∈ preLeafs(t) do
3: L = getLoss(n) . See Eq. 3
4: φ = getAverageFunction(n) . See Eq. 4
5: add ((n,L), φ)) to splits
6: end for
7: nbLeafs← countLeafs(t)
8: while nbLeafs > maxLeafs do
9: ((n,L), φ))← popFirst(splits)

10: φn ← φ
11: removeChild(n)
12: if isLastSplit(father(n)) then
13: n← father(n)
14: L = getLoss(n) . See Eq. 3
15: φ = getAverageFunction(n) . See Eq. 4
16: add ((n,L), φ)) to splits
17: end if
18: nbLeafs← nbLeafs− 1
19: end while

5 Approximation of the optimal policy

In this section, we propose three new methods used to
choose optimal action for a given state based on an estima-
tion of the Q-value by a regression forest. While learning of
the policy can be computationally demanding since it is per-
formed offline, it is crucial to obtain descriptions of the poli-
cies that allow very quick computation of the action, given
the current state.
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5.1 Learning the continuous policy
In order to compute the best policy given an approximation
of the Q-value Q̂ by a regression forest F , we need to solve
the following equation:

π̂∗(s) = argmax
a∈A

F ((s, a)) (5)

Given s, the most straightforward way to compute π̂∗(s)
consists in merging all the trees of F projected on s into
a single tree t′. Since the size of t′ can grow exponentially
with the number of trees, we compute an approximation of
t′, denoted t̂′ by imposing a limit on the number of leafs us-
ing Algorithm 3. Then it is possible to approximate the best
actions by simply iterating on all the leafs of t̂′ and comput-
ing the maximum of the function φ of the leaf in its interval.
While this solution does not provide the exact policy which
would be induced by F , it provides a roughly good approx-
imation. We refer to this method by Fitted Q-Iteration, FQI
for short.

The FQI is computationally too expensive to be used in
online situation: the computation of a single action requires
exploring a potentially large number of leaves. Therefore,
in order to provide a very quick access to the optimal ac-
tion for a given state, we propose a new scheme. By de-
composing the policy function π : S 7→ A into several
functions πj : S 7→ Aj where j is a dimension of the ac-
tion space, we can easily generate samples and use them to
train regression forests which provide estimates of the pol-
icy for each dimension. We named this process Fitted Pol-
icy Forest and abreviate it by FPF. We use two variants,
one using a piecewise constant model for the nodes, PWC
for short, and another using piecewise linear model for the
nodes, PWL for short. We refer to these two methods by
FPF:PWC and FPF:PWL respectively. Policies resulting of
the FPF algorithm provides a quick access. If such a policy
is composed of M trees with a maximal number of nodes n,
the complexity of getting the action is O(M log(n)). Since
the values used for M does not need to be high to provide
a good approximation (Ernst, Geurts, and Wehenkel 2005),
this complexity makes FPF perfectly suited for real-time ap-
plications where online computational ressources are very
limited, such as robotics.

6 Exploration
While MRE (Nouri and Littman 2009) provide a strong ba-
sis to build exploration algorithm, we found that its perfor-
mance can be strongly improved by bringing three modifi-
cations. First we change the equation used to compute the
knownness, second we use bagging technic to improve the
estimation of the knownness, and third we modify the rule
used for Q-value update.

6.1 Original definition
Multi Resolution Exploration (Nouri and Littman 2009) pro-
pose a generic algorithm allowing to balance the exploration
and the exploitation of the samples. The main idea is to build
a function κ : S × A 7→ [0, 1] which estimate the degree of
knowledge of a couple (s, a) ∈ S×A. During the execution

S = {(s0, a0, r0, s′0), . . . }

T S = {(x0, y0), . . . }
evaluateSamples(S, Q0)

Q̂h

learnForest(T S,PWC)

h < H

evaluateSamples(S, Qh)

Q̂

h = H

FQI

T Sπ = {(s0, a0), . . . }
generateSamples(S, Q̂)

FPF:PWC

learnForest(T Sπ,PWC)

FPF:PWL

learnForest(T Sπ,PWL)

Figure 4: A flowchart of the different methods

of the algorithm, when action a is taken in state s, a point
p = (s1, . . . , sdimS , a1, . . . , adimA) is inserted in a kd-tree,
called knownness-tree. Then, the knownness value accord-
ing to a knownness-tree τ at any point p can be computed by
using the following equation:

κ(p) = min


1,
|P |
ν

1⌊
k
√
nk/ν

⌋

‖H‖∞


 (6)

where ν is the maximal number of points per leaf, k =
dim(S × A), n is the number of points inside the whole
tree, P = points(leaf(τ, p, )) and H = space(leaf(τ, p, )).
A crucial point of this equation is the fact that the known-
ness value depends on three main aspects: the size of the
cell, the number of points inside the cell and the number of
points inside the whole tree. Therefore, if the ratio between
the number of points contained in a cell and its size does not
evolve, its knownness value will decrease.

The insertion of points inside the kd-tree follows this rule:
if adding the point to its corresponding leaf l0 would lead to
a number of points greater than ν, then the leaf is splitted
into two leafs l1 and l2 of the same size, and the dimension
is chosen using a round-robin. Then the points stored in l0
are attributed to l1 and l2 depending on their value.

MRE also changes the update rule by using an optimistic
rule which replace equation (2) by equation (7):

y′ = κ(s, a)y + (1− κ(s, a))Rmax

1− γ (7)

whereRmax is the maximal reward which can be awarded in
a single step and y is the result obtained by equation (2). This
update can be seen as adding a transition to a fictive state
containing only self-loop and leading to a maximal reward
at every step. This new transition occurs with probability
1− κ(s, a).
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6.2 Computation of the knownness value
Initial definition of the knownness is given at Equation (6).
Since this definition does only depend on the biggest dimen-
sion, we have the following. Consider a leaf l0 with a known-
ness τ0, then adding a point can result in creating two new
leafs l1 and l2 with respective knowledge of k1 and k2 with
k0 > k1 and k0 > k2. This leads to the unnatural fact that
adding a point in the middle of other points can decrease the
knowledge of all these points.

We decide to base our knowledge on the ratio between the
density of points inside the leaf and the density of points.
Thus replacing Equation (6) by Equation (8):

κ(p) = min


1,

|points(leaf(τ,p))|
|leaf(τ,p)|

n
|S×A|


 (8)

where n is the total number of points inside the tree. This
definition leads to the fact that at anytime, there is at least
one leaf with a knownness equal to 1. It is also easy to see
that there is at least one leaf with a knownness strictly lower
than 1, except if all the cells have the same density.

6.3 From knownness tree to knownness forest
In order to increase the smoothness of the knownness func-
tion, we decided to aggregate several kd-trees to grow a for-
est, following the core idea of extra-trees (Geurts, Ernst,
and Wehenkel 2006). However, in order to grow different
kd-trees from the same input, the splitting process needs to
be stochastic. Therefore, we implemented another splitting
scheme based on extra-trees.

The new splitting process is as follows: for every dimen-
sion, we choose at uniformous random a split between the
first sample and the last sample. Thus, we ensure that every
leaf contains at least one point. Then we use an heuristic to
choose the best split.

Once a knownness forest is grown, it is easy to compute
the knownness value by averaging the result of all the trees.

6.4 Modification of the Q-value update
The Q-value update rule proposed by MRE improve the
search speed, however it has a major drawback. Since it only
alters the training set used to grow the regression forest, it
can only use the knownness information on state action com-
bination which have been tried. Therefore, even if for a state
s and an action a, κ(s, a) ≈ 0, it might have no influence at
all.

In order to solve this issue, we decided to avoid the modi-
fication of the training set creation, thus using Equation (2).
In place of modifying those samples, we simply update the
regression forest by applying the following modificator on
every leaf of every tree:

v′ = vκ(c) +Rmax(1− κ(c)) (9)

with c the center of the leaf, v the original value and v′ the
new value.

7 Experimental results
We present experimental results under two different learn-
ing setup. First, the results obtained by FPF in a batch re-
inforcement learning, second, the performances obtained by
combining MRE and FPF for online learning.

7.1 Batch reinforcement learning
We used three benchmark problems classical in RL to eval-
uate the perfomances of the FPF algorithms. While all the
methods share the same parameters for computing the Q-
value forest, we tuned specifically parameters concerning
the approximation of the policy using the Q-value forest.
We compared our results with those presented in (Pazis and
Lagoudakis 2009), however we do not have access to their
numerical data, and rely only on the graphical representation
of these datas. Thus, the graphical lines shown for BAS are
approximative and drawn thicker than the other to highlight
the noise in measurement. We present the result separately
for the three benchmarks while discussing results specific
to a problem as well as global results. On all the problems,
performances of FPF:PWL are better or at least equivalent
to those achieved by BAS in (Pazis and Lagoudakis 2009).
This is remarkable, because BAS uses a set of basic func-
tions specifically chosen for each problem, while our method
is generic for all the problems. The computation cost of re-
trieving actions once the policy has been calculated appears
as negligeable and therefore confirms that our approach is
perfectly suited for high-frequency control in embedded sys-
tems.

Inverted pendulum stabilization The inverted pendulum
stabilization problem consists of balancing a pendulum of
unknown length and mass by applying a force on the cart
it is attached to. We use the description of the problem
given in (Pazis and Lagoudakis 2009). The state space is
composed of the angular position of the pendulum θ and
the angular speed of the pendulum θ̇, the action space is
[−50, 50] Newtons, an uniform noise in [−10, 10] Newtons
is added. The goal is to keep the pendulum perpendicular to
the ground and the reward is formulated as following:

R(θ, θ̇, f) = −
(
(2θ/π)2 +

(
θ̇
)2

+

(
f

50

)2
)

except if |θ| > π
2 , in this case the reward is −1000 and the

state is considered as terminal. We set the discount rate γ to
0.95. The transitions of the system follow the nonlinear dy-
namics of the system described in (Wang, Tanaka, and Grif-
fin 1996):

θ̈ =
gsin(θ)− αml

(
θ̇
)2

sin(2θ)
2 − αcos(θ)u

4l
3 − αmlcos2(θ)

where g is the constant of gravity 9.8[m/s2], m = 2.0[kg]
is the mass of the pendulum, M = 8.0[kg] is the mass of the
cart, l = 0.5[m] is the length of the pendulum, α = 1

m+M
and u is the final (noisy) action applied. We used a control
step of 100[ms] and an integration step of 1[ms] (using Eu-
ler Method). The reward used in this description of the prob-
lem ensure that policies leading to a smoothness of motion
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Figure 5: Performance on the Inverted Pendulum Stabiliza-
tion problem

and using low forces to balance the inverted pendulum are
rated higher than others.

The training sets were obtained by simulating episodes
using a random policy, and the maximal number of steps for
an episode was set to 3000. The performances of the poli-
cies were evaluated by testing them on episodes of a max-
imal length of 3000 and then computing the cumulative re-
ward. In order to provide an accurate estimate of the perfor-
mance of the algorithms, we computed 50 different policies
for each point displayed in Figure 5 and average their cumu-
lative reward (vertical bars denote 95% confidence interval).
The parameters used to produce the policies are shown in
Table 1.

Learning a policy from the Q-value tree clearly outper-
form a direct use on this problem and PWL approximations
outperform PWC approximations. Results for BAS (Pazis
and Lagoudakis 2009) rank systematically lower than both
FPF methods. The huge difference of learning speed be-
tween FQI and FPF suggests that using regression forest to
learn the policy from the Q-value can lead to drastical im-
provements. On such a problem where the optimal policy
requires a fine choice of action, it is not surprising that using
linear models to represent the policy provide higher results
than constant models.

The best value for nmin, the minimal number of samples
per leaf, is pretty high (17 for PWC and 125 for PWL). Our
understanding of this phenomena is that the Q-value tree
tend to slightly overfit the data, additionally, it uses PWC
approximation. Therefore, using it directly lead to an impor-
tant quantization noise. Using a large value for nmin might
be seen as applying a smoothing, which is considered as nec-
essary for regression trees sampling a stochastic function ac-
cording to (Ernst, Geurts, and Wehenkel 2005). The need for
a large number of samples is increased for FPF:PWL, be-
cause providing an accurate linear interpolation of a noisy
application requires a lot of samples.

Double integrator In order to provide a meaningful com-
parison, we stick to the description of the problem given
in (Pazis and Lagoudakis 2009) where the control step has
been increased from the original version presented in (San-
tamaria, Sutton, and Ram 1997). The double integrator is
a linear dynamics system where the aim of the controller

Table 1: Parameters used for Inverted Pendulum Stabiliza-
tion

Parameter FQI FPF:PWC FPF:PWL
Nb Samples NA 10’000 10’000
Max Leafs 50 50 50
k NA 2 2
nmin NA 17 125
M NA 25 25
Vmin NA 10−4 10−4

Figure 6: Performance on the Double Integrator problem

is to reduce negative quadratic costs. The continuous state
space consist of the position p ∈ [−1, 1] and the velocity
v ∈ [−1, 1] of a car. The goal is to bring the car to an equilib-
rium state at (p, v) = (0, 0) by controlling the acceleration
α ∈ [−1, 1] of the car. There are two constraints: |p| ≤ 1 and
|v| ≤ 1. In case any of the constraint is violated, a penalty of
50 is received and the experiment ends. In all other case, the
cost of a state is p2 + a2. The control step used is 500[ms]
and the integration step is 50[ms], the discount factor was
set to γ = 0.98.

The training sets were obtained by simulating episodes
using a random policy, and the maximal number of steps for
an episode was set to 200. The performances of the policies
were evaluated by testing them on episodes of a maximal
length of 200 and then computing the cumulative reward. In
order to provide an accurate estimate of the performance of
the algorithms, we computed 100 different policies for each
point displayed in Figure 6 and average their results. The
parameters used for learning the policy are shown in Table 2.

On this problem, although none of the proposed meth-
ods reach BAS performance when there are more than 300
learning episodes, FPF:PWL learns quicker than BAS with
a small number of episodes. It is important to note that
while our basic function approximator is constant, a poly-
nome is used for Least-Square Policy Iteration in (Pazis and
Lagoudakis 2009), fitting the fact that the optimal policy is
known to be a linear-quadratic regulator (Santamaria, Sut-
ton, and Ram 1997).

Car on the hill While there has been several definitions
of the Car on the Hill problem, we will stick to the version
proposed in (Ernst, Geurts, and Wehenkel 2005) which was
also used as a benchmark in (Pazis and Lagoudakis 2009).
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Table 2: Parameters used for Double Integrator

Parameter FQI FPF:PWC FPF:PWL
Nb Samples NA 10’000 10’000
Max Leafs 40 40 40
k NA 2 2
nmin NA 100 1500
M NA 25 25
Vmin NA 10−4 10−4

In this problem an underactuated car must reach the top of a
hill. The state space is composed of the position p ∈ [−1, 1]
and the speed s ∈ [−3, 3] of the car while the action space
is the acceleration of the car u ∈ [−4, 4]. If the car violate
one of the two constraints: p ≥ −1 and |s| ≤ 3, it receives
a negative reward of −1, if it reaches a state where p > 1
without breaking any constraint, it receive a reward of 1, in
all other states, the reward is set to 0. The car need to move
away from its target first in order to get momentum.

It is well known that the solution to this problem is a bang-
bang strategy, i.e. a nearly optimal strategy exists which
uses only the set of actions {−4, 4}. As stated in (Pazis and
Lagoudakis 2009), this problem is one of the worst case for
reinforcement learning with continuous action space, since
it requires to learn a binary strategy composed of actions
which have not been sampled frequently. It has been shown
in (Ernst, Geurts, and Wehenkel 2005) that introducing more
actions usually reduce the performance of the controller.
Therefore, we do not hope to reach a performance compara-
ble to those achieved with a binary choice. This benchmark
is more aimed to assess the performance of our algorithms,
in one of the worst case.

While the sample of the two previous algorithms are
based on episodes generated at a starting point, the samples
used for the Car on the hill problem are generate by sam-
pling uniformly the state and action spaces. This procedure
is the same which has been used in (Ernst, Geurts, and We-
henkel 2005) and (Pazis and Lagoudakis 2009), because it is
highly improbable that a random policy could manage to get
any positive reward in this problem. Evaluation is performed
by observing the repartition of the number of steps required
to reach the top of the hill from the initial state (−0.5, 0).

We show the histogram of the number of steps required
for each method at Figure 7. For each method, 200 different
strategies were computed and tested. There is no significant
difference in the number of steps required to reach the top of
the hill between the different methods. For each method, at
least 95% of the computed policies led to a number of step
in the interval [20, 25]. Thus we can consider that an FPF
or FQI controller take 20 to 25 steps on average while it is
mentioned in (Pazis and Lagoudakis 2009) that BAS con-
troller requires 20 to 45 steps on average. Over the six hun-
dred of experiments gathered across three different methods,
the maximal number of steps measured was 33. Therefore,
we can consider that our results strongly outperforms BAS
results.

Car on the Hill is the only problem on which we have

Figure 7: Performance on the Car on the Hill problem

not experienced significant difference between FPF and FQI.
Since one of the main advantage of FPF approach is to re-
duce the quantization noise of the FQI method, this result
is logical. Although the number of steps required is not re-
duced by the FPF approach, the online cost is still reduced
by around two orders of magnitude. Therefore, we can af-
firm that FPF is highly preferable to FQI on this problem.

Computational cost As mentioned previously, a quick ac-
cess to the optimal action for a given state is crucial for real-
time applications. We present the average time spent to re-
trieve actions for different methods in Figure 8 and the av-
erage time spent for learning the policies in 9. Experiments
were runned using an AMD Opteron(TM) Processor 6276
running at 2.3 GHz with 16 GB of RAM running on Debian
4.2.6. While the computer running the experiments had 64
processors, each experiment used only a single core.

We can see that using FPF reduces the average time
by more than 2 orders of magnitude. Moreover, FPF:PWL
presents a lower online cost than FPF:PWC, this is perfectly
logical since representing a model using linear approxima-
tion instead of constant approximations requires far less
nodes. While the results are only displayed for the “Double
Integrator” problem due to the lack of space, similar results
were observed for the two other problems.

It is important to note that the cost displayed in Figure 8
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Figure 8: Evaluation time by episod for the Double Integra-
tor

Figure 9: Learning time by episod for the Double Integrator

represents an entire episode simulation, thus it contains 200
action access and simulation steps. Therefore, it is safe to
assume that the average time needed to retrieve an action
with FPF:PWC or FPF:PWL is inferior to 50µs. Even if the
CPU used is two orders of magnitude slower than the one
used in the experiment, it is still possible to include an action
access at 200Hz.

The additional offline cost of computing the polices re-
quired by FPF is lower than the cost of computing the Q-
value using FQI when the number of training episode grows,
as presented in Figure 9. Therefore, when it is possible to use
FQI, it should also be possible to use FPF without increasing
too much the offline cost.

7.2 Online reinforcement learning

We evaluated the performance of the combination of MRE
and FPF on two different problems. First, we present the
experimental results on the Inverted Pendulum Stabilization
problem and compare them with the results obtained with
random exploration. Second, we exhibit the results on the
Inverted Pendulum Swing-Up problem. Since online learn-
ing on robots can be expensive in time and resources, we
did not allow for an early phase of parameter tuning and
we used simple rules to set parameters for both problems.
In both problems, the policy is updated at the end of each
episode, in order to ensure that the system is controlled in
real-time. In this section, we denote by trial a whole execu-
tion of the MRE algorithm on the problem.

Figure 10: Reward repartition for online learning on Inverted
Pendulum Stabilization

Inverted pendulum stabilization This problem is exactly
the same as defined in Section 7.1, but it is used in a con-
text of online reinforcement learning. The result presented
in this section represent 10 trials of 100 episodes. Each trial
was used to generate 10 different policies, every policy was
evaluated by 50 episodes of 3000 steps. Thus, the results
concerns a total of 5000 evaluations episodes.

The repartion of reward is presented in Figure 10. The re-
ward obtained by the best and worst policy are shown as thin
vertical lines, while the average reward is represented by a
thick vertical line. Thus, it is easy to see that there is a huge
gap between the best and the worst policy. Over this 5000
episodes, the average reward per run was −171, with a min-
imum of−1207 and a maximal reward of−128. In the batch
mode settings, after the same number of episodes, FPF-PWL
obtained an average reward of−172, with a minimal reward
of −234 and a maximal reward of −139. While the aver-
age reward did not significantly improve, the dispersion of
reward has largely increased and in some cases, thus lead-
ing to better but also worst policy. While this might be per-
ceived as a weakness, generating several policies from the
computed Q-value is computationally cheap. Then, a few
episodes might be used to select the best policy. From the
density of reward presented in Figure 10, it is obvious that
by removing the worst 10% of the policies, the average re-
ward would greatly improve.

Another point to keep in mind is the fact that the param-
eters of FPF have not been optimized for the problem in the
MRE setup, while they have been hand-tuned in the Batch
setup. Therefore, reaching a comparable performance with-
out any parameter tuning is already an improvement.

Inverted pendulum swing-up For this problem, instead
of using a mathematical model, we decided to use the sim-
ulator Gazebo2 and to control it using ROS3. Since these
two tools are widely accepted in the robotic community, we
believe that exhibiting reinforcement learning experiments
based on them can contribute to the democratization of RL
methods in robotics. We developed a simple model com-
posed of a support and a pendulum which are bounded by

2http://gazebosim.org
3http://www.ros.org
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an angular joint. The angular joint is controled in torque and
is underactuated, i.e. the available torque is not sufficient
to maintain the pendulum in an horizontal state. The main
parameters are the following: the mass of the pendulum is
5[kg], the length of the pendulum is 1[m], the damping coef-
ficient is 0.1[Nms/rad], the friction coefficient is 0.1[Nm],
the maximal torque is τmax = 15[Nm], the maximal angu-
lar speed is θ̇max = 10[rad/s] and the control frequency is
10[Hz]. The reward function used is the following

r = −
(∥∥∥∥

θ

π

∥∥∥∥+
(

τ

τmax

)2
)

(10)

Where θ is the angular position of the pendulum (0 denote
an upward position), and τ represent the torque applied on
the axis. If

∥∥∥θ̇
∥∥∥ > θ̇max, a penalty of 50 is applied and the

episode is terminated.
While the system only involves two state dimensions and

one action dimension, it presents two main difficulties: first,
random exploration is unlikely to produce samples where
θ ≈ 0 and θ̇ ≈ 0 which is the target, second, it requires
the use of the whole scale of action, large actions in order
to inject energy in the system and fine action in order to
stabilize the system.

The result presented in this section represent 5 trials of
100 episodes. Each trial was used to generate 10 different
policies, every policy was evaluated by 10 episodes of 100
steps. Thus, there is a total of 500 evaluation episodes.

We present the repartition of the reward in Figure 11. The
average reward is represented by a thick vertical line and the
best and worst policies rewards are shown by thin vertical
lines. Again, we can notice a large difference between the
best and the worst policy. We exhibit the trajectory of the
best and worst evaluation episode in Figure 12. While the
worst episode has a cumulated reward of −101, the worst
policy has an average reward of−51. According to the repar-
tition of the reward, we can expect that very few policies lead
to such unsatisfying results, thus ensuring the reliability of
the learning process if multiple policies are generated from
the gathered samples and a few episodes are used to discard
the worst policy.

8 Discussion
Our results show that using FPF does not only allow to dras-
tically reduce the online computational cost, it also tend to
outperforms FQI and BAS, especially when the transition
function is stochastic as in the Inverted Pendulum Stabiliza-
tion problem.

Although using piecewise linear function to represent the
Q-value often leads to divergence as mentioned in (Ernst,
Geurts, and Wehenkel 2005), the same problem did not ap-
pear on any of the three presented problems. In two of the
three presented benchmarks, FPF:PWL yields significantly
better results than FPF:PWC and on the last problem, re-
sults were similar between the two method. The possibility
of using PWL approximations for the representation of the
policy holds in the fact that the approximation process is per-
formed only once. Another advantage is the fact that on two

Figure 11: Reward repartition for online learning on Inverted
Pendulum Swing-Up

Figure 12: Best and worst episode for Inverted Pendulum
Swing-Up

of the problem, the policy function is continuous. However,
even when the optimal policy is bang-bang (Car on the hill),
using PWL approximation for the policy does not decrease
the general performance.

Our experiments on the combination of MRE and FPF
showed that we can obtain satisfying results without a
parameter-tuning phase. Results also show the strong vari-
ability of the generated policies, thus leading to a natural
strategy of generating multiple policies and selecting the
best in a validation phase.

9 Conclusion
This article introduces Fitted Policy Forest, an algorithm ex-
tracting a policy from a regression forest representing theQ-
value. FPF presents several advantages: it has an extremely
low computational cost to access the optimal action, it does
not require expert knowledge about the problem, it is par-
ticularly successful at solving problems requiring fine ac-
tions in stochastic problems and it can be used with any al-
gorithm producing regression forests. The effectiveness of
our algorithm in a batch setup is demonstrated in three dif-
ferent benchmarks. The use of FPF in online reinforcement
learning is also discussed and assessed by using MRE as an
exploration strategy. Experimental results suggest that ex-
ploration can lead to satisfying results without requiring any
tuning on the parameters. In the future, we also would like
to apply this approach to closed-loop control of Robocup
humanoid robots.
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Abstract

Modern industrial robotics is characterised by a need for flex-
ibility in robot design, in order to minimise programming and
development time when a robot’s tasks must be changed. To
address this problem, a recent approach has proposed that
robots be equipped with a set of general, reoccurring oper-
ations called ‘skills’, e.g., picking, placing, or driving. This
paper presents a method for automatically generating plan-
ning problems from existing skill definitions such that the re-
sulting problems can be solved using off-the-shelf planning
software, and the solutions can be used to control robot ac-
tions in the world. As a result, a robot can therefore perform
new tasks simply by specifying the task’s goals via a GUI.
The approach is demonstrated on a set of common tasks in
a simulated industrial environment and has also been tested
successfully on a real-world robotic platform.

Introduction
Robot autonomy is becoming increasingly important in
modern industrial robotics, where factory robots often pos-
sess low degrees of autonomous operation at the task level,
with a relatively large proportion of time spent on robot pro-
gramming, compared with the time the robots spend per-
forming tasks. This has important consequences for the cur-
rent trend towards flexible manufacturing which requires
frequent changeovers to new products: when a changeover
occurs, the robots must be reprogrammed for the new tasks.

Task-level programming provides one way of simplifying
the robot control problem. In this paradigm, a human pro-
grammer specifies what the robot should do in terms of the
high-level actions and objects involved in a task, rather than
focusing on the low-level details of the robot or its operating
space. Actions are abstracted in a way which hides the com-
plexity of the lower layers from the programmer, allowing
users to focus on the task itself. The result is a powerful way
to speed up programming, even with complex robots.

One proposal for implementing such a programming
framework is based on defining tasks as sequences of skills,
where skills are identified as the re-occurring actions needed
to execute standard operating procedures in a factory (e.g.,
operations like pick ‘object’ or place at ‘location’) (Madsen
et al. 2015; Pedersen et al. 2016). Embedded within the skill
definitions are the sensing and motor operations, or primi-
tives, that accomplish the goals of the skill, as well as a set

Figure 1: A robot operating in a factory environment using
the SkiROS system. The robot is executing a six-step plan to
place two parts in the white kitting box it is carrying.

of condition checks that are made before and after execu-
tion to ensure robustness. This methodology also provides a
process for specifying high-level parameters for skills, while
low-level parameters for the primitive operations are mostly
inferred through autonomous reasoning by the robot.

While skills have been shown to be a useful tool for
human operators to programme robot tasks (Madsen et al.
2015), the goal of increased robot autonomy in the factory
environment also relies on the robots themselves being able
to automatically sequence skills to perform tasks. For in-
stance, when a new skill is introduced to a robot, a skills
expert must specify the skill in terms of its input parame-
ters, how it should be executed using low-level primitives,
the conditions that must hold of the world state, and the in-
tended changes to the world model. Previous work (Peder-
sen and Krüger 2015) showed how skill definitions of this
form enabled planning problems to be created by hand and
used to drive robot actions.

This paper instead introduces techniques for automating
the creation of planning domains from the robot’s skills and
world model, so that the entire process of robot control can
itself be automated. In particular, this work focuses on how
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a planning problem can be automatically generated from the
skill definition itself and, given a world model and a set of
goals, how a sequence of parameterised skills can be con-
structed to achieve these goals. This has important conse-
quences for robot control: using this system, and provided
the appropriate skills are implemented, only the goals of
the task need to be specified for a robot to complete a new
task. This process is demonstrated with a set of skills (e.g.,
drive, pick, and place) implemented in a skills framework
called SkiROS (Rovida and Krüger 2015), for a simulated
robot system designed for a real factory environment. This
approach has also been tested in a factory setting using a real
robot and the same set of skills (see Figure 1).

The rest of this paper is organised as follows. First, the
related work is considered. Then, the system architecture is
introduced including a description of the skills framework.
The world model is then outlined, followed by a description
of the task planner and the process for converting skills to
PDDL. The paper concludes with a set of experiments per-
formed in simulation that demonstrate the system function-
ing in a mock factory environment resembling the real-world
environment for which this system has been implemented.

Related Work
During the last three decades, three main approaches to
robot control have dominated the research community: re-
active, deliberative, and hybrid control (Kortenkamp and
Simmons 2008). Reactive systems rely on a set of con-
currently running modules, called behaviours, which di-
rectly connect input sensors to particular output actuators
(Arkin 1998; Brooks 1986). In contrast, deliberative sys-
tems employ a sense-plan-act paradigm, where reasoning
plays a key role in an explicit planning process. Hybrid sys-
tems attempt to exploit the best of both worlds, through
mixed architectures with a deliberative high level, a reac-
tive low level, and a synchronisation mechanism in the mid-
dle that mediates between the two (Firby 1989). Most mod-
ern autonomous robots use a hybrid approach (Gat 1998;
Ferrein and Lakemeyer 2008; Bensalem and Gallien 2009;
Magnenat 2010), with researchers focused on finding ap-
propriate interfaces between declarative high-level reason-
ing and procedural low-level control.

SkiROS (Skills-ROS) (Rovida and Krüger 2015), the skills
architecture used in this paper, is a hybrid framework fol-
lowing concepts from model-driven software engineering
(Vanthienen, Klotzbücher, and Bruyninckx 2014; Schlegel
et al. 2015). SkiROS splits the robot programming process
into several layers of abstraction, with two main goals: (i)
provide a state-of-the-art architecture for autonomous robot
control, and (ii) make high-level robot programming simple
and accessible even to non-experts.

Knowledge representation also plays a fundamental role
in cognitive robotic systems (Vernon, von Hofsten, and
Fadiga 2010), especially with respect to defining world mod-
els formalised in an ontology. A prominent example of
knowledge processing in robotics is the KnowRob system
(Tenorth and Beetz 2012; 2013), which combines knowl-
edge representation and reasoning methods for acquiring
and grounding knowledge in physical systems. KnowRob

uses a semantic library which facilitates loading and access-
ing ontologies represented in the Web Ontology Language
(OWL). KnowRob uses the ontology to store semantic repre-
sentations of the world scene in order to reason about object
positions in space and time, along with models of the robot
hardware and the robot skills. A similar approach is pre-
sented in (Björkelund et al. 2012; Stenmark and Malec 2013;
Bjørkelund and Edstrom 2011) as part of the Rosetta project,
which focuses on how skills should be modelled for indus-
trial assembly tasks. A similar study in (Huckaby 2014) de-
fines a precise taxonomy of skills. However, none of these
projects integrate skills into a consistent framework.

Automated planning has also been used for autonomous
robot control since the days of Shakey (Nilsson 1984).
While early approaches largely separated symbolic plan-
ning from other forms of planning like geometric plan-
ning, it was recognised that solutions often benefited from
a hybrid approach (Cambon, Alami, and Gravot 2009). Re-
cently, robot task planning has become an active research
area, with approaches taken from diverse areas such as
sampling-based motion planning (Plaku and Hager 2010;
Barry 2013), integration of symbolic planning with robot-
level processes (Dornhege et al. 2009), and probabilistic
back-chaining (Kaelbling and Lozano-Pérez 2013).

A typical approach to robot task planning is to evaluate
symbolic actions in a forward manner, sampling geometric
choices and backtracking on failure. For instance, (Cambon,
Alami, and Gravot 2009) use a symbolic planner that follows
several heuristics to guide a geometric search. Symbolic
and geometric searches are interleaved, with backtracking
in both layers, and probabilistic roadmaps created for all
combinations of robot manipulators and objects to repre-
sent the search space. Approaches like (Eiter et al. 2006;
Dornhege et al. 2009; Erdem et al. 2011; Gaschler et al.
2013) add robot-level functions to a symbolic planning prob-
lem through an interface that allows external processes to be
invoked during high-level planning. Other approaches like
(Srivastava et al. 2014) solve scenarios given symbolic ex-
planations for all failures in the geometric search, which
are fed back to the symbolic search. Kaelbling and Lozano-
Pérez (2013) perform a hierarchical, back-chaining search,
combining geometric abstractions at the robot level with be-
lief space planning.

Other approaches that attempt to bridge the gap between
high-level and low-level robotics actions include ROSco
(Nguyen et al. 2013) and Smach (Bohren and Cousins 2010)
which use Hierarchical Finite State Machines as opposed to
the planning approach taken in this paper. Approaches that
use planning include ROSPlan (Cashmore et al. 2015) and
the work of Vaquero et al. (2015). The former requires man-
ual definition of planning domains, while the latter uses a
translation approach specific to their application domain. In
contrast, SkiROS is designed so that the user can define and
modify skills on the fly, and the planning domains built to
use these skills will be automatically generated.

Skills and the SkiROS Architecture
This section introduces the system architecture and skills
model used in this work. Developing a robot system is, at
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Figure 2: An overview of the SkiROS architecture. The robot
presents an external interface from the task manager and the
world model, accessed in this case by a GUI. The robot
is composed of several subsystems, each one composed of
a skill, primitive, and device manager. A skill coordinates
the execution of several primitives to realise a world state
change. The primitives implement atomic behaviours and in-
terface to the hardware using standardised interfaces.

some level, a software engineering problem. However, robot
architectures are distinguished from other software architec-
tures by the special needs of robot systems. The most salient
of these requirements, from a system design standpoint, is
that robot systems must interact asynchronously and in real
time with an uncertain, dynamic environment. At the same
time, there is a need to define the tasks the robot can perform
in a declarative way, in order to simplify task specification
for end users. The skills model attempts to bridge this gap,
with skills forming high-level building blocks that can be
combined to solve complex tasks, yet containing all the nec-
essary reasoning and control information to be executed by
the robot in real time in a dynamic environment.

Skills Model
Robot skills like the ones in (Pedersen et al. 2016) can be
thought of as general and robust software constructs that
model self-contained, re-occurring operations that a robot
might perform. Skills are intended to be designed such that
they map easily to simple intuitive tasks. For example, a
system might include calibration skills, manipulation skills
for operations like picking and placing, as well as driving
skills for mobile robots. Skills are implemented by experts
to contain the necessary sensing and action operations for
self-contained execution on the robot platform.

One benefit of a skills-based system is that non-experts
can typically programme a robot task in a straightforward
manner by selecting an appropriate skill sequence that re-
sults in the desired state changes to the robot’s environment.
This paper further removes the need for a non-expert user,
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Figure 3: The conceptual model of a SkiROS skill.

and shows how skill sequences can be constructed using
planning techniques in a completely automated way.

The skills framework used in this paper, SkiROS (Skills-
ROS), is a Robot Operating System (ROS)1 package imple-
mented as an architecture with several layers of abstraction,
as shown in Figure 2. The SkiROS architecture is designed
to serve several tasks, including: (i) separating the bottom
reactive layers from the top deliberative layers of the robot
system, (ii) supporting hardware abstraction, and (iii) mod-
ularising robot programming to make it scalable.

The conceptual model of a robot skill is shown in Fig-
ure 3. A skill takes as input a set of parameters and a repre-
sentation of the world state; it outputs a set of state changes.
A skill contains both precondition and postcondition checks
which monitor the environment, either through sensing or
based on the world model. These checks allow the task layer
to infer the likely causes of execution failures. For example,
a precondition check for a pick skill might be that the item
to be picked must be visible to a camera, and a postcondition
check might be that the picked item must be in the gripper.

Skills Framework
The SkiROS framework is organised into four layers, each
of which is represented by a manager. At the lowest layer
is the device manager, which loads proxies (drivers which
conform to a standard interface) and presents standard in-
terfaces for similar devices (e.g., gripper, arm, camera, etc.).
Standardised device interfaces extend the portability of all
code, allowing drivers to be changed on the fly, for instance
in the case of hardware changes like an updated end-effector.
They also greatly simplify the switch between simulation
and real-world execution.

The second layer contains the primitive manager, which
contains motion primitives, software blocks that realise
movement controlled with multi-sensor feedback, and ser-
vices, software blocks that perform a generic computation.
The modules are parameterised and loaded in the same way
as a skill, but they don’t have pre/postconditions and consist
only of a parameters specification and execution part.

The third layer, the skill manager, loads skills and pro-
vides interfaces to the layer above. It also registers the robot
subsystem on the world model, specifying the hardware,

1http://www.ros.org/
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Figure 4: A simplified world model instance with physical
(blue) and abstract (orange) objects. All physical objects are
connected by a spatial relation in a scene graph structure.

available modules, and available skills. A skill’s execution
is usually implemented as a finite state machine which coor-
dinates the execution of several parameterised primitives.

Finally, the fourth layer of the architecture is the task
manager which monitors the presence of subsystems via
the world model and acts as a general coordinator. The task
manager is the interface for external systems, designed to be
connected to a GUI or the manufacturing execution system
(MES) of a factory. In this paper, the task manager is ex-
tended with an integrated task planner that takes as input a
goal and snapshot of the world model and returns a sequence
of skills to achieve the current task. The task planner, skills,
primitives and proxies are imported as plug-ins using ROS.

World Model
In addition to skills, a key part of SkiROS is the world
model, which acts as a knowledge integration framework.
The world model is a vertical cross-layer component which
links all layers together by gathering information from ev-
ery subsystem at run time, allowing the modules to maintain
a shared working memory, and storing the environment and
skills information that are used to create the planning do-
main. In terms of the architecture, the world model can be
read and modified from almost every part of the system.

The world state is partially predefined by a human oper-
ator in the ontology, partially abstracted from the robot by
perception, and completed with the procedural knowledge
embedded in the skills and primitives. Each skill manager in
the system is responsible for keeping the world model up-
dated with its subsystem information (e.g., hardware, avail-
able primitives, skill state, etc.). Similarly, each primitive
and skill can extend the scene information with the results
of robot operation or sensing. In special cases, the ontology

can be extended automatically by the robot, to learn new
concepts in a long-term memory (e.g., a new grasping pose).

Knowledge Integration
The core part of the robot’s knowledge is organised into an
OWL-DL ontology that can be efficiently embedded, edited,
and extracted from the system. The SkiROS ontology is
comprised of a set of classes C, a set of elements E, a set of
relations R, and a set of properties P . Elements are individ-
uals in a particular instance of the world model, for example
a box or an alternator. Relations (OWL object properties) are
binary relations that link two elements together, while prop-
erties (OWL data properties) are binary relations that link an
element to a piece of typed data.

Every object in the world is represented in the scene as an
Element class, which has the properties type, id, and label,
along with a flexible list of other potential properties. The
id links the Element to the scene, while the type and label
categorise it in the ontology. The type is the most important
property to this paper as it is used as the object’s type in the
planning translation. All other data associated with the Ele-
ment are collected into the properties using a list of variants
defined as parameters. For example, the Gripper element has
the property is_empty which is initially set to true specify-
ing that the gripper is empty. It is defined as a precondition
check in the Pick skill to ensure that the gripper does not try
to pick up an object while already holding one.

The set R of relations contains a special subset of
spatial relations. Apart from the root scene element
(which has no parent), each element in the world model
has a spatial relation to exactly one parent element
which ensures that the world model instantiation forms
a tree (when only considering edges that represent spa-
tial relations). This is particularly convenient for mod-
elling the objects’ spatial transformations. Example spa-
tial relations from the current SkiROS ontology include
RobotAtLocation, Holding, Contains, and Carrying.
We write RobotAtLocation(robot-1,largebox-1) and
say that robot-1 is the subject and largebox-1 is the ob-
ject. It follows from the properties of this tree structure that
an element cannot be both held by one element and con-
tained in another at the same time, or that the robot cannot
be in two locations at once.

Figure 4 shows an example instance of a world model.
The tree formed by the spatial relations forms the scene
graph, a data structure commonly used by modern computer
games to arrange the logical and spatial representation of a
graphical scene. In this structure, an object’s pose is always
defined with respect to the parent frame. The skills are con-
nected to robot elements by the non-spatial relation hasSkill.

Skills are object-centric models that are parameterised
with element types, while their instantiations are expected
to link directly to elements of the appropriate type. A condi-
tion on a skill must specify either a relation or a property of
an element in the world model. If a skill updates the world
model by removing a spatial relation property, then it must
also state the new subject related to that object as this cannot
necessarily be inferred. Type information in skill relations
must also be consistent with the world model.
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Drive(MobileBase, Container) :
add: RobotAt(Container, MobileBase)

Pick(Gripper, Object, Container) :
pre: empty(Gripper)
pre: robotAt(Container, Robot)
pre: objectAt(Container, Object)
del: empty(Gripper)
add: contains(Gripper, Manipulatable)

Figure 5: Skill definitions in the SkiROS ontology.

Figure 6: Overview of the task planning process and the cre-
ation of its internal planning representation.

Figure 5 shows the parameters, preconditions, and post-
conditions for the Drive and Pick skills, as defined in
SkiROS. The preconditions (similarly, postconditions) are
based on the expected and testable requirements of the state
of the world prior to execution (similarly, after execution).
Relations or properties for which postcondition checks are
expected to be false become delete effects, and those ex-
pected to be true become add effects. Parameters are formed
from the inputs needed for the skill’s execution block.

Task Planner
The task planner has three main functions in SkiROS: it cre-
ates a PDDL representation of the skills, current state and
goals; it calls an external planner to attempt to find a plan
for the current goals; and, if a plan is found, it returns a se-
quence of skills to the task manager. The task planner creates
a planning domain (and problem) written in PDDL 1.2 with
only the types requirement. This means that the output is
suitable for use with almost all modern planning systems. In
what follows we use the standard definition of STRIPS-like
planning actions (Fikes and Nilsson 1971) with pre, add, and
del denoting the preconditions, add effects, and delete effects
of an action, respectively.

An overview of the task planner is shown in Figure 6.
This process is invoked (with the internal planning repre-
sentation reset) every time the task manager requires a plan
for completing the current set of goals. This is either trig-
gered by an operator adding a goal via the SkiROS GUI, or
by an external system (e.g., integrated with a factory MES)
when SkiROS is deployed as part of a larger system. The

Algorithm 1: Planning Domain Creation
Input : SkiROS World Model (wm), Goals (goal)
Output: Initial Planning Representation
// Parse Skills

1 foreach Skill s : wm do
2 types.addAllNewTypes(s)
3 predicates.addAllNewPredicates(s)
4 actions.addNewAction(s)
// Add Goal State

5 foreach Goal g : goal do
6 goals.add(g);
// Parse World Model State

7 foreach Predicate p: predicates do
8 initState.addAllTrueGroundings(p, wm)
9 objects.addAllNewObjects(p,wm)

central part of Figure 6 shows the task planner’s planning
library, which contains all the necessary structures to create
a PDDL planning problem from the world state, skills, and
goals. Specifically, this includes structures for types, predi-
cates (both ground and unground), actions, and (typed) ob-
jects. In particular, the main body of a skill as shown in Fig-
ure 3 (surrounded by a black box) is not accessible to the
task planner. Instead, the task planner uses the information
accessible from the world model as shown in Figure 4.

Initial PDDL Creation
The process of creating the initial planning representation is
given in Algorithm 1, which represents the left hand side of
Figure 6 and involves three main steps. The first step is to
parse the skills that exist in the world model. This involves
adding all types and predicates that appear in the skills defi-
nitions to the planning library and also creating an action for
each skill, which has a direct copy of the preconditions and
effects. All relations, properties, and types that do not appear
in a skill are therefore not included in the planning library.

The second step instantiates the goal. As goals are spec-
ified in the SkiROS GUI using the same predicates and ob-
jects in the world model that the skills use, they are simply
added to the goal for the planning domain. If the goals con-
tain a predicate or object that has not already been added to
the planning library, then the planner returns an error mes-
sage as no plan can exist given the defined skills.

Finally, the third step of the translation is to obtain the
initial state of the planning problem from the current state
of the world model. This process iterates over the predi-
cates added in the previous step and queries the world model
(through the SkiROS API) to find all ground instances of the
predicates that are true. The objects contained in these pred-
icates are added to the planning library as they are found.

The process of iterating through the skills and querying
the world model to find true predicates may result in a plan-
ning library with less elements and types than in the world
model. The omitted data can safely be ignored (and an error
given for an incorrect goal) due to the following:

Lemma 1: Any object with a type that does not appear in a
skills definition can never appear in a solution plan.
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Algorithm 2: Planning Domain Refinement
Input : Initial Planning Representation
Output: Final Planning Representation
// Add Capabilities

1 foreach Action a : actions do
2 predicates.add(can_a ?robot)
3 a.pre.add(can_a ?robot)
4 foreach Robot r : hasSkill(a, r) do
5 initState.add(can_a r)
// Spatial Relation Constraints

6 foreach Action a do
7 foreach Spatial Relation S(o, s) ∈ a.add do
8 if @S ∈ a.pre AND @S ∈ a.del then
9 s.params.add(x, s.type)

10 s.pre.add(S(o, x))
11 s.del.add(S(o, x))
12 else if @S ∈ a.pre then
13 s.pre.add(S(o, s))
14 else if @S ∈ a.del then
15 s.del.add(S(o, s))

Proof Sketch: It is impossible to change the truth value of a
predicate that does not appear in an action’s effects, and the
truth value of a predicate that does not appear in any action’s
preconditions can never be required for a change in state.

Domain Modification
The right hand side of Figure 6 deals with encoding the prop-
erties of the world model in the planning domain. The first
part makes sure that skills are only usable by the correct el-
ements, by querying the hasSkill relation from the world
model. For each action, a new predicate (can_a ?robot) is
added to the planning representation. This predicate is added
as true in the initial state for each robot that can perform a
particular skill and is invariant. An additional precondition
(can_a ?robot) is added to each action to ensure that it
can only be instantiated to the correct robots. If the Robot
parameter is missing from the skill definition then this is
added to the action parameters at this time.

The second part of the transformation step adds any pre-
conditions and delete effects that are necessary to maintain
the tree structure of the spatial relations in the world model.
SkiROS contains methods for internally updating its world
model so that it remains consistent, and these methods need
to be included in the planning domain as they are not always
made explicit in the skill definitions. For instance, referring
to the skills in Figure 5, the Drive skill only contains a single
predicate which specifies the new location of the robot. This
is because the input for the execution block of the drive skill
is only the goal location to which the robot has to move. The
drive action must then be modified so that robotAt is true
of only one grounding for the robot performing the drive
skill, so the old instantiation must be found (it becomes a
precondition) and added as a delete effect of the action.

The algorithm performs the steps in the previous example
in a general manner that works for all spatial relations. It it-
erates over the skills in the planning library and checks each
spatial relation in the add effects. If no corresponding spatial

(:action drive
:param (?R - Agent ?T - Location
* ?preT - Location)

:pre (and
* (can_drive ?R)
* (RobotAtLocation ?R ?preT))

:eff (and
* (not (RobotAtLocation ?R ?preT))
(RobotAtLocation ?R ?T)))

(:action pick
:param ( ?A - Arm ?C - Location ?G - Gripper

?O - Manipulatable ?R - Agent)
:pre (and

(EmptyHanded ?G)
(RobotAtLocation ?R ?C)
(ObjectAtLocation ?C ?O)

* (can_pick ?R))
:eff (and

(not (EmptyHanded ?G))
* (not (ObjectAtLocation ?C ?O))
(Holding ?G ?O)))

Figure 7: The actions from Figure 5 after translation to
PDDL. The asterisked lines are added by the translation.

relation exists, in either the preconditions or delete effects
of the action (i.e., no predicate with matching relation and
subject as in the case of the drive skill), then a new predicate
of the same spatial relation and the same object, but a new
subject variable, is created and added to the preconditions
and delete effects of the action. If a related spatial relation
exists in just one of the preconditions and delete effects then
it is added (with the same subject) to the other.

Figure 7 shows the skills from Figure 5 after translation
to PDDL. Note that in terms of implementation, the param-
eter added to the drive skill is removed when returning the
parameterised skill to the task manager. The translation adds
three new preconditions and two new delete effects over the
two actions. The following lemma shows that these additions
ensure the world model’s tree structure is maintained:
Lemma 2: Performing an action created by the task planner
on a problem whose spatial relations form a tree will result
in a state in which the spatial relations still form a tree.
Proof Sketch: All that needs to be shown is that any deletion
of a spatial relation property inserts it elsewhere with the
same object (and therefore moves the whole subtree), and
that every addition has a corresponding deletion. The former
is a constraint on the skill definition. For the latter, every
time a new spatial relation appears in the add effects then,
by construction of the algorithm, a spatial relation with the
same subject must appear in the delete effects. This spatial
relation must match the only occurrence of that object in a
spatial relation in the current state otherwise the action could
not be performed as this must exist (again by construction)
as a precondition to the action.

Once the translation is complete, the planning problem is
written to domain and problem files in PDDL for use with an
external planner. The planner’s output (a sequence of instan-
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Figure 8: A visualisation of the simulated environment,
showing an excerpt of the navigation map containing the
robot idle location (I), a number of pallets (P), a pallet with
two boxes of parts (2B), and the robot (R).

tiated actions) is parsed and converted back to parameterised
skills to be sent to the task manager for robot execution.

Experiments
Figure 8 depicts the simulated environment used for test-
ing.2 In this setup, kits can contain six different parts: engine
support, thermal shield, compressor, tube, alternator, and
starter. Four parts (compressor, tube, alternator, and starter)
are located in individual pallets; the two remaining parts (en-
gine support and thermal shield) are located in smaller adja-
cent boxes on a single pallet.

In order to specify this setup in the robot’s world model
within SkiROS, the 2D poses (including orientation) of each
pallet, and the parts contained within, need to be specified
manually. The poses are defined in the world model coordi-
nate system, and the transform between this frame and the
robot navigation map frame is known. This information can
be extracted automatically from the manufacturing execu-
tion system (MES) in real-world deployment; for obvious
reasons, this is not possible for the simulated environment.
The kit that is mounted on the robot is specified as a set of
coordinate frames, with one parent frame defining the kit
with respect to the robot, and the rest defining the individual
compartments in the kit with respect to the kit itself. A part
type is associated with each compartment in the kit.

The experiments used a simulated version of a mobile ma-
nipulator with an articulated robot arm mounted on a mobile
platform. The robot arm was equipped with a 2-finger par-
allel gripper and an RGB-D camera mounted on the gripper.
The execution of skills was simulated using the ROS inter-
faces employed by the real hardware drivers that were re-
placed. For example, the MoveIt arm motion planner (that
outputs joint trajectories for an arm) and the navigation soft-
ware (that outputs velocity commands to a mobile base)
were not modified. Figure 4 shows a (slightly) simplified
version of the spatial relations and components used in the
experiment, with picking, placing, and driving skills.

2Visualisation was performed using rviz, a 3D tool for ROS
(http://wiki.ros.org/rviz).

drive mobbase-2 loc-1 lbox-10
pick lbox-10 gripper-6 t_shield robot-3
drive mobbase-2 lbox-10 lbox-9
place grip-6 t_shield celld-19 kit-15 robot-3
pick lbox-9 gripper-6 starter robot-3
place grip-6 starter cellb-17 kit-15 robot-3

Figure 9: The plan found for the goal of placing two parts
(thermal shield and starter) into a kit.

It is not possible, nor necessary, to simulate sensor infor-
mation in this experiment. However, an inherent part of the
skills is that they perform the necessary sensing operations
to complete the skill. For this reason, a simple simulated ob-
ject detection primitive is added, that places an object in the
world model that is immediately in front of the robot.

This level of simulation makes it possible to visualise the
robot system as it performs the skills, using the same skills
that would be running on a real robot system. In terms of
Figure 2, only the device layer and a single primitive (i.e.,
the object detection primitive) is simulated. Therefore the
system uses, and is completely integrated in, a complete ver-
sion of SkiROS, with the same skills as a real robot.

For the experiments, the FastDownward planner (Helmert
2006) was used, with A* search and the landmark-cut
heuristic. Since the planning problems created by the trans-
lation process did not test the limits of the external planner,
and are solved in less than a second (including world model
querying, extraction, and translation), there was no benefit
in comparing different planners. Instead, any state-of-the-art
planner that supports the required features could be used.

Results
The first experiment tested a two skill setup in which only
the robotic arm and the pick and place skills were used. The
robot was placed in front of a pallet with two smaller boxes
containing thermal shields and engine supports. The system
was tested with the goal that one of each of the two dif-
ferent types of parts must be placed in the robot’s kit. The
extraction of the planning domain, and the planning itself,
was completed in 0.6s, resulting in a plan with four skills
that was successfully executed in 78s.3 The experiment was
then rerun with the goal specifying parts that were not in the
vicinity of the robot. In this case, the task planner correctly
returned that no plan could be found.

The second experiment introduced a second robot subsys-
tem, the mobile base (which carries the robotic arm) and its
associated drive skill. In this case, the task planner automat-
ically included the drive skill in its planning domain. With
this addition, a plan could be found for the previously un-
solvable problem in which the parts are inaccessible without
the ability to drive between locations. When the goal was
specified to build a complete kit with six parts, with the robot
finishing at an idle location, the PDDL extraction and plan-
ning took 0.9s. The resulting plan (with 18 skills) executed

3Planning, motion planning, simulation, SkiROS, and visuali-
sation ran on a 2011 laptop with an i7@2.7GHz processor.
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correctly in 371s. Figure 9 shows the plan for the goal of
filling a kit with two parts (a thermal shield and a starter).

Overall, these experiments demonstrated that the task
planning process is able to work as an integrated compo-
nent in the SkiROS system and that the process is robust
enough to find correct plans when different subsets of the
currently implemented skills are enabled. The experiments
also showed that the planning time is not a significant bot-
tleneck (less than one second in all cases), especially when
compared to execution time for these types of tasks.

Conclusions and Future Work
This paper presented a fully implemented software frame-
work for deploying autonomous robot systems in an indus-
trial setting. The system uses a skills model, called SkiROS,
to bridge the gap between low-level robot control and high-
level planning. Skills are declared explicitly and passed to a
task planner which automatically generates the PDDL plan-
ning domain. The resulting system was shown to operate
successfully in a simulated factory environment and has also
been tested in a real-world factory setting. From an end-user
perspective, the robot is programmed to perform new tasks
by specifying goal conditions; new skills are added by speci-
fying constraints on the world model with no explicit knowl-
edge of planning required.

Work is progressing to test more skill implementations
and further explore the relationship between skills and plan-
ning. Failure handling will be improved by extending the
interaction of the planner with the task manager, to allow for
replanning in the case of unsatisfied pre/postconditions and
execution failures. To optimise cycle time, the assumption of
sequential skill execution will be relaxed, allowing parallel
skill execution from temporal plans.

Acknowledgements
The research leading to these results has received funding
from the European Union’s Seventh Framework Programme
under grant no. 610917 (STAMINA, stamina-robot.eu).

References
Arkin, R. C. 1998. Behavior-based Robotics. Cambridge,
MA, USA: MIT Press, 1st edition.
Barry, J. L. 2013. Manipulation with Diverse Actions. Ph.D.
Dissertation, MIT, USA.
Bensalem, S., and Gallien, M. 2009. Toward a more de-
pendable software architecture for autonomous robots. IEEE
Robotics and Automation Magazine 1–11.
Bjørkelund, A., and Edstrom, L. 2011. On the integration of
skilled robot motions for productivity in manufacturing. In
IEEE International Symposium on Assembly in Manufactur-
ing.
Björkelund, A.; Malec, J.; Nilsson, K.; Nugues, P.; and
Bruyninckx, H. 2012. Knowledge for Intelligent Industrial
Robots. In AAAI Spring Symposium on Designing Intelligent
Robots: Reintegrating AI.

Bohren, J., and Cousins, S. 2010. The smach high-level ex-
ecutive [ros news]. Robotics & Automation Magazine, IEEE
17(4):18–20.
Brooks, R. A. 1986. A robust layered control system for
a mobile robot. Journal of Artificial Intelligence Research
2(1):14–23.
Cambon, S.; Alami, R.; and Gravot, F. 2009. A hybrid ap-
proach to intricate motion, manipulation and task planning.
International Journal of Robotics Research 28(1):104–126.
Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder,
B.; Carrera, A.; Palomeras, N.; Hurtos, N.; and Carreras, M.
2015. ROSPlan: Planning in the robot operating system. In
Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS).
Dornhege, C.; Gissler, M.; Teschner, M.; and Nebel, B.
2009. Integrating symbolic and geometric planning for
mobile manipulation. In IEEE International Workshop on
Safety, Security and Rescue Robotics (SSRR), 1–6.
Eiter, T.; Ianni, G.; Schindlauer, R.; and Tompits, H. 2006.
Effective integration of declarative rules with external eval-
uations for semantic-web reasoning. In The Semantic Web:
Research and Applications, 273–287.
Erdem, E.; Haspalamutgil, K.; Palaz, C.; Patoglu, V.; and
Uras, T. 2011. Combining high-level causal reasoning
with low-level geometric reasoning and motion planning for
robotic manipulation. In IEEE International Conference on
Robotics and Automation (ICRA).
Ferrein, A., and Lakemeyer, G. 2008. Logic-based robot
control in highly dynamic domains. Robotics and Au-
tonomous Systems 56(11):980–991.
Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new
approach to the application of theorem proving to problem
solving. Artificial Intelligence 2(3-4):189–208.
Firby, R. J. 1989. Adaptive Execution in Complex Dynamic
Worlds. Ph.D. Dissertation, Yale University, USA.
Gaschler, A.; Petrick, R. P. A.; Giuliani, M.; Rickert, M.; and
Knoll, A. 2013. KVP: A knowledge of volumes approach
to robot task planning. In Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
IROS, 202–208.
Gat, E. 1998. On three-layer architectures. In Artificial
Intelligence and Mobile Robots. MIT Press.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research 26:191–246.
Huckaby, J. 2014. Knowledge Transfer in Robot Manipu-
lation Tasks. PhD thesis, Georgia Institute of Technology,
USA.
Kaelbling, L. P., and Lozano-Pérez, T. 2013. Integrated task
and motion planning in belief space. International Journal
of Robotics Research 32(9–10):1194–1227.
Kortenkamp, D., and Simmons, R. 2008. Robotic systems
architectures and programming. In Springer Handbook of
Robotics. Springer. 187–206.
Madsen, O.; Bøgh, S.; Schou, C.; Andersen, R. S.;
Damgaard, J. S.; Pedersen, M. R.; and Krüger, V. 2015. In-

56



tegration of mobile manipulators in an industrial production.
Industrial Robot: An International Journal 42(1):11–18.
Magnenat, S. 2010. Software integration in mobile robotics,
a science to scale up machine intelligence. PhD thesis, École
polytechnique fédérale de Lausanne, Switzerland.
Nguyen, H.; Ciocarlie, M.; Hsiao, K.; and Kemp, C. C.
2013. Ros commander (rosco): Behavior creation for home
robots. In IEEE International Conference on Robotics and
Automation (ICRA), 467–474. IEEE.
Nilsson, N. J. 1984. Shakey the robot. Technical Report
323, AI Center, SRI International.
Pedersen, M., and Krüger, V. 2015. Automated planning
of industrial logistics on a skill-equipped robot. In Work-
shop on Task Planning for Intelligent Robots in Service and
Manufacturing at IROS 2015.
Pedersen, M. R.; Nalpantidis, L.; Andersen, R. S.; Schou,
C.; Bøgh, S.; Krüger, V.; and Madsen, O. 2016. Robot skills
for manufacturing: From concept to industrial deployment.
Robotics and Computer-Integrated Manufacturing 37:282–
291.
Plaku, E., and Hager, G. D. 2010. Sampling-based mo-
tion planning with symbolic, geometric, and differential con-
straints. In IEEE International Conference on Robotics and
Automation (ICRA), 5002–5008.
Rovida, F., and Krüger, V. 2015. Design and development
of a software architecture for autonomous mobile manipula-
tors in industrial environments. In IEEE International Con-
ference on Industrial Technology (ICIT).
Schlegel, C.; Lotz, A.; Lutz, M.; Stampfer, D.; and Vicente-
Chicote, C. 2015. Model-Driven Software Systems Engi-
neering in Robotics: Covering the Complete Life-Cycle of a
Robot. it - Information Technology 57(2):85–98.
Srivastava, S.; Fang, E.; Lorenzo, R.; Chitnis, R.; Russell, S.;
and Abbeel, P. 2014. Combined task and motion planning
through an extensible planner-independent interface layer.
In IEEE International Conference on Robotics and Automa-
tion (ICRA).
Stenmark, M., and Malec, J. 2013. Knowledge-based indus-
trial robotics. Scandinavian Conference on Artificial Intelli-
gence.
Tenorth, M., and Beetz, M. a. 2012. Knowledge Processing
for Autonomous Robot Control. Proceedings of the AAAI
Spring Symposium on Designing Intelligent Robots: Reinte-
grating AI.
Tenorth, M., and Beetz, M. 2013. KnowRob: A knowledge
processing infrastructure for cognition-enabled robots. The
International Journal of Robotics Research 32(5):566–590.
Vanthienen, D.; Klotzbücher, M.; and Bruyninckx, H.
2014. The 5C-based architectural Composition Pattern:
lessons learned from re-developing the iTaSC framework for
constraint-based robot programming. Journal of Software
Engineering for Robotics 5(1):17–35.
Vaquero, T.; Mohamed, S. C.; Nejat, G.; and Beck, J. C.
2015. The implementation of a planning and scheduling ar-
chitecture for multiple robots assisting multiple users in a

retirement home setting. In AAAI Workshop on Artificial In-
telligence Applied to Assistive Technologies and Smart En-
vironments.
Vernon, D.; von Hofsten, C.; and Fadiga, L. 2010. A
Roadmap for Cognitive Development in Humanoid Robots.
Springer.

57



1 

 

 

 

Autonomous Search by a Socially Assistive 

Robot in a Residential Care Environment for Multiple Elderly Users 

Using Group Activity Preferences  

Sharaf C. Mohamed and Goldie Nejat  

Autonomous Systems and Biomechatronics Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, 
Toronto, ON M5S 3G8, Canada  

sharaf.mohamed@mail.utoronto.ca; nejat@mie.utoronto.ca 

 

 

 

Abstract 

In this paper, a novel activity-based search approach is pro-
posed for a socially assistive robot to autonomously search 
for and find multiple elderly users who are living in a resi-
dential care facility within a required time frame. The search 
maximizes the number of users found within the time frame 
by utilizing a predictive user model. The model uniquely con-
siders the spatial-temporal preferences of each user, as well 
as the spatial-temporal preferences of other users sharing the 
environment and the activities that the users are performing 
throughout the day in the environment. Since multiple users 
living in the same environment can have similar activity pat-
terns, these activity patterns can be used to learn mutual pref-
erences (i.e., group influence on individual users). Further-
more, the activities themselves motivate specific regions in 
the environment where they are performed. As the robot is 
deployed in a human-centered environment, it autonomously 
conducts the search for the multiple users while following hu-
man etiquette rules. Numerous simulated experiments con-
ducted on a floor of our collaborating residential care facility 
are presented comparing our proposed activity-based search 
approach to an approach that only considers the spatial-tem-
poral preferences of the user of interest. Our results show that 
our proposed search approach is able to find more users 
across varying time frames and varying user set sizes by con-
sidering both the specific user’s spatial-temporal activity 
preferences and mutual preferences among all users. Experi-
ments implemented with a physical robot verify the feasibil-
ity of the search being implemented in a real environment. 

 Introduction  

Socially assistive robots are envisioned to co-exist in human 
centered environments with the elderly in order to provide 
needed assistance and support. These environments include 
retirement homes, long-term care facilities, as well as private 
homes. Our research focuses on the development of autono-
mous socially assistive robots capable of providing both so-
cial and cognitive assistance to the elderly in order to assist 
with activities of daily living (Louie et al., 2014a; Louie et 

al., 2014b; Vaquero et al., 2015). The motivation behind the 
development of such autonomous robots is to effectively in-
tegrate robots that can complete a variety of assistive tasks 
throughout the day in the aforementioned environments, con-
sidering the preferences and behavior patterns of the multiple 
users they interact with. 

To-date there have been a handful of user studies that have 
shown the positive benefits of socially assistive robots 
providing either social or cognitive stimulation to elderly us-
ers living in retirement or long-term care facilities (Oida et 
al., 2011; Khosla et al., 2012; Hamada et al., 2008; McColl, 
Louie and Nejat, 2013; Montemerlo et al., 2002). However, 
the majority of these robots do not move around in their en-
vironments, i.e., from one room to another, and only use local 
motion within a defined activity space to implement activity 
specific actions, i.e., on top of a table. An exception is the 
Pearl robot (Montemerlo et al., 2002) which is able to guide 
users to appointments. Furthermore, none of these robots (in-
cluding Pearl) actively search in their environment for users 
who are not collocated with the robot. 

The ability to autonomously search for users of interest 
within their environments increases the number of activities 
for which socially assistive robots can provide assistance. 
For example, in a residential care environment (e.g. retire-
ment home or long-term care facility), a robot can find and 
provide assistance to one elderly user in his/her private room, 
and then find another group of elderly users in the recreation 
room to remind them of an upcoming activity. 

In this paper, we present a novel user search approach in 
order to allow a socially assistive robot to autonomously 
search for and find, within a time frame, a specific set of mul-
tiple users living within a residential care facility in order to 
provide assistance. Our approach models the search as a trav-
elling thief problem, and generates a search plan using dy-
namic programming and the shortest path in a directed acy-
clic graph (DAG). The main contribution of our unique 
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search approach is that in addition to the user’s spatial-tem-
poral preferences, it also directly considers the following 
within the predictive user model: 1) the spatial-temporal 
preferences of other users sharing the environment, and 2) 
the activity patterns of all the users throughout the day. The 
activity patterns associate tasks, start times and end times 
with the spatial-temporal preferences. Multiple users sharing 
the same environment can have similar activity patterns and 
these patterns can be used to learn mutual preferences among 
the users. Namely, activity patterns of the group can influ-
ence individual activity preferences. Our approach models 
the influence of others on the future activity patterns of one 
another. In addition, research into human activity recognition 
has shown that activities can motivate locations (Sheng et al., 
2015), hence, herein the robot explicitly considers the activ-
ity locations when generating search plans. Furthermore, the 
robot follows human etiquette rules when searching for users 
in the intended human-centered environment. 

Robot Search of People 

A significant amount of research has addressed the problem 
of using a robot to detect and track people in structured in-
door environments while they are collocated in the same re-
gion as the robot, e.g. (Montemerlo et al., 2002; Bennewitz, 
Burgard and Thrun, 2003; Hu, Ma and Dai, 2009; Park and 
Kuipers, 2013). However, to the authors’ knowledge, only a 
handful of researchers have focused on robotic search of peo-
ple within indoor environments, when the robot has to ac-
tively search the environment to find people that are not col-
located with the robot. The literature in this area can be cat-
egorized into the search for 1) static or 2) dynamic persons. 

Robotic Search for Static Persons 
In (Elinas, Hoey and Little, 2003), the HOMER robot used a 
person finding technique in order to be able to deliver a mes-
sage to a recipient who was assumed to be at a static location. 
The robot used a location likelihood function for finding the 
person at a location in the map of the environment. The robot 
would visit the closest locations to it first as the best locations 
and then continue to visit all other possible locations. The 
search stopped if HOMER found the recipient or all possible 
locations had been searched. In (Volkhardt and Gross, 2013), 
a set of navigation points were given to a robot to search for 
a static person at a particular location in a three-room home 
environment. The robot iteratively moved to the closest nav-
igation point using a combination of adaptive Monte Carlo 
planning, E* path planning and motion control via a dynamic 
window approach. In (Lau, Huang and Dissanayake, 2005), 
a dynamic programming approach was used for the search of 
multiple static targets in an environment. The search strategy 
focused on minimizing the expected average time for detect-
ing each target. The expected proportion of targets in each 
region was used as information about the targets. 

Robotic Search for Dynamic Persons 
In (Tipaldi and Arras, 2011), a robot used a spatial affordance 
map which modelled the spatial-temporal behavior of peo-
ple. A finite-horizon Markov Decision Process (MDP) was 

used to generate robot paths which maximize the probability 
of an encountering a person in an office environment. With 
respect to finding specific users of interest, in (Bovbel and 
Nejat, 2014), the Casper robot utilized a predictive search 
strategy to find a dynamic user in the home environment. The 
search approach prioritized search locations based on previ-
ous patterns of user locations and behaviors. In particular, a 
Hidden Markov Model was used to determine the relation-
ship between a user’s location and behavior at a specific 
time. While the robot searched the environment, prior loca-
tion beliefs and the resulting search prioritization were up-
dated based on new observations of the environment. In 
(Hollinger et al., 2009), a Partially Observable Markov De-
cision Process (POMDP) model was used to generate search 
plans using spatial-temporal information of dynamic targets. 
The objective was to minimize the robot’s expected capture 
time when finding first respondents in an indoor search and 
rescue scenario. Lastly, our own previous work was the first 
to focus on the problem of a robot finding a specific set of 
multiple dynamic people in an indoor environment. The ap-
proach used spatial-temporal likelihood functions for the 
people which considered their daily schedules, the layout of 
the environment and direct observations by the robot 
(Schwenk et al., 2014). An MDP was then used to maximize 
the number of residents found within a deadline time. 

 Our proposed robot search approach is unique compared 
to the other existing robotic search approaches as it aims to 
consider all of the following: 1) finding a specific group of 
multiple dynamic users, 2) not only considering the location 
and time preferences for each user separately to define a 
search plan, but explicitly considering: a) the mutual prefer-
ences of all users sharing the environment, and b) the activity 
patterns for all these users (the influence of group prefer-
ences), and 3) taking into account etiquette conventions of 
space sharing and interaction during robot search. When im-
plementing any of the aforementioned robot search ap-
proaches presented in the literature, etiquette rules with re-
spect to robot speed, position and orientation in shared spaces 
with humans, in particular older adults, were not considered. 
Guidelines for these have been presented in (Walters et al., 
2005; Woods et al., 2006) and have been incorporated into 
our proposed robotic search approach. 

Robot Search Problem 

Our search problem consists of a mobile socially assistive 
robot that needs to find a set of multiple users in an indoor 
residential environment during time frames throughout the 
duration of a day in order to interact with them, i.e., provide 
or obtain information from users. The problem details are 
presented below. 

Activities: An activity, 𝐴𝑚, represents a task a user is under-
taking. In the residential care facility 𝐴𝑚 can be categorized 
as the following common activities during the day: sleeping, 
reading, listening to music, playing games, watching televi-
sion and eating. 
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Residential Environment: The search takes place in an en-
vironment divided into regions ℛ (𝑅1, 𝑅2, …, 𝑅𝐼). Each re-
gion is defined by physical boundaries, i.e. walls, and is of a 
square or rectangular shape. If a region is physically accessi-
ble from another region, without passing through a third re-
gion, i.e. contains a shared doorway, these regions are said to 
be neighbors. 𝑡𝑅𝑖,𝑅

𝑖′  is the time the mobile robot will take to 

travel from 𝑅𝑖 to 𝑅𝑖′ , ∀ {𝑖 ∈ 𝑅, 𝑖′ ∈ 𝑅}, determined using 
the shortest path between regions, where each subsequent re-
gion in a path must be a neighbor of the previous region. 
Each region 𝑅𝑖 is categorized based on the rooms/regions 
that are present in a residential care facility: a resident’s own 
private bedroom, a hallway, entrance lobby, recreation room, 
dining room, kitchen, garden, nurses’ station and robot 
charging station. Depending on the region category, different 
activities can be performed by the residents in a region. 

Users: The users 𝑈 (𝑈1, 𝑈2, …, 𝑈𝑁) are all residents living 
in the shared environment. Users perform activities in re-
gions during time intervals, throughout each day. 

Search query: The search query 𝑆 specifies the set of users 
𝑈′ (𝑈1

′ , 𝑈2
′ , …, 𝑈𝑍

′ ) that the robot needs to find between a 
certain time frame, 𝑡𝑠𝑡𝑎𝑟𝑡 to 𝑡𝑒𝑛𝑑 . This time frame is made-
up of discrete time intervals 𝑇 (𝑇1, 𝑇2, …, 𝑇𝛺) of fixed length 
𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 , where 𝑇𝑗,𝑘 refers to a subset of 𝑇 containing all the 

time intervals, 𝑇𝜔, between 𝑇𝑗 and 𝑇𝑘. 

Mobile Robot: The mobile socially assistive robot will exe-
cute the search query S in the environment. The specific ac-
tions that the robot can execute are: travel between regions, 
search a region, interact with user and wait. The navigation 
plan, 𝑃∗, is the sequence of robot actions to implement for 
the overall search process. The travel between regions action 
allows the robot to move from one region to another. The 
search a region action has the robot execute a local search 
procedure in the specified region. The interact with user ac-
tion allows the robot to approach the user and perform the 
necessary interaction. The wait action stops the robot from 
moving. The robot will navigate the environment at a speed 
of v=1.35 m/s, defined to be the average comfortable walking 
pace for older adults ages 50-70 years old (Bohannon, 1997). 
Since the robot is intended for a human-centred environment, 
the robot implements its actions adhering to social etiquette 
rules. 

Social Etiquette Rules: 𝑃∗ is subject to safety constraints, 
interaction constraints, and navigation constraints. Safety 
constraints are prioritized over interaction constraints, which 
are prioritized over navigation constraints. 

A) Safety Constraints: To ensure the safety of the robot, as 
well as users, the following etiquette rule is considered: 

1) The robot will delay the planning of 𝑃∗ and execute the 
wait action if any user enters within a distance, 𝑑𝑠, to the ro-
bot, where 𝑑𝑠 = 0.5𝑚. 

B) Interacting with a user: while moving to interact with us-
ers, the following etiquette rules are considered in order of 
priority: 

1) Direct interactions with users will take place at a distance 
of 𝑑𝑖 between the robot and user, where 1.25𝑚 ≤ 𝑑𝑖 ≤
2.5𝑚 based on previous studies of comfort levels of people 
(Woods et al., 2006). 

2) When approaching a user of interest, the robot will ap-
proach him/her from the frontal direction with an offset of 𝜃 

to either the right or left, where 30° ≤ 𝜃 ≤ 70°as defined in 
(Woods et al., 2006). 

C) Travelling between regions: while moving between re-
gions, the following etiquette rules are considered in order of 
priority: 

1) When following a user, the robot will be at a distance 𝑑𝑓, 

where 1.2𝑚 ≤ 𝑑𝑓 ≤ 3.6𝑚. This range represents the ac-

ceptable conversation distances between robots and humans 
(Walters et al., 2005). 

2) The robot will navigate on the right side of a hallway.  

3) When navigating, the robot will be at a distance of 𝑑𝑛 from 
users in the environment with whom it is not interacting, 
where 𝑑𝑛 ≥ 2.5𝑚. 

When planning 𝑃∗, if a path that follows all of the above eti-
quettes cannot be found, the constraints will be removed, one 
at a time, from lowest priority to highest priority, until a path 
is found. If a path is not found and only the safety constraint 
remains, the robot will execute the wait action until it is safe 
to continue. 

Autonomous Activity-Based Search for     

Multiple Users 

The objective of the proposed search approach is to deter-
mine the search plan that the robot should execute in order to 
maximize the expected number of users of interest found 
within a given time frame. 

Environment and User Information Gathering 

Since our objective is to develop an autonomous robot capa-
ble of searching an environment finding users of interest, we 
also consider that the robot should be able to autonomously 
obtain any previous knowledge needed to achieve its goal. 
Therefore, prior to implementing the proposed search ap-
proach, the robot gathers information about the environment 
and the users. Firstly, the robot autonomously explores the 
environment in order to generate a 2D map detailing the to-
pology of the environment. The map is generated using the 
simultaneous localization and mapping (SLAM) algorithm 
called gmapping (Grisetti, Stachniss and Burgard, 2007) us-
ing laser scans provided from an onboard laser range finder 
and odometry information. This map can then be used by the 
robot during user search. 

The robot also partakes in an observation stage, defined as 
the user information gathering stage, in which it follows a 
user around to identity activity patterns. The robot meets the 
user at his/her private room in the morning, and follows 
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him/her for the remainder of the day. To follow the user, the 
robot uses silhouette detection, identifying head and shoul-
ders in the contours which are classified using Support Vec-
tor Machines. At the end of the day the robot returns to its 
charging station. The robot will follow each user in the envi-
ronment, for a given number of days, recording the user’s 
activity patterns. These activity patterns will be used to gen-
erate a database of activity patterns for all users 𝐷 (𝐷1, 𝐷2, 
…, 𝐷𝑌). 𝐷𝑦  represents a single activity pattern which is de-

fined as a tuple containing: a user, a region, an activity, and 
a time interval. 

Proposed Robot Search Approach 

Based on the search query provided to the robot, the pro-
posed search approach defines a search plan, 𝛼, which in-
cludes: 1) a subset of regions to search and the order in which 
to search these regions, 𝑅 = {𝑅1 … , 𝑅𝐻}, 2) the length of 

time to search each region, 𝑇𝑠𝑒𝑎𝑟𝑐ℎ = {𝑡1
𝑠𝑒𝑎𝑟𝑐ℎ , . . ., 𝑡𝐻

𝑠𝑒𝑎𝑟𝑐ℎ}, 
and 3) the navigation plan P* which consists of the explicit 
actions of the robot. The search plan α is achieved using a 
reward-based technique. Namely, the robot receives a reward 
for searching a particular region for a specified amount of 
time, given a time interval for the search, 

𝑊(𝑅ℎ, 𝑡ℎ
𝑠𝑒𝑎𝑟𝑐ℎ| 𝑇𝑗,𝑘). The goal is to choose 𝑅 and 𝑇𝑠𝑒𝑎𝑟𝑐ℎ  in 

order to maximize the total reward acquired over the total 
search for the specified time frame: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ (𝑊(𝑅ℎ, 𝑡ℎ
𝑠𝑒𝑎𝑟𝑐ℎ| 𝑇𝑗,𝑘(𝑡𝑗(ℎ), 𝑡𝑘(ℎ))))ℎ∈𝑅 , 

where, 

𝑡𝑗(ℎ) = ∑ (𝑡𝑅𝑔−1

𝑅𝑔  + 𝑡𝑔
𝑠𝑒𝑎𝑟𝑐ℎ)ℎ−1

𝑔=1 + 𝑡𝑅ℎ−1

𝑅ℎ , and 

𝑡𝑘(ℎ) = 𝑡𝑗(ℎ) + 𝑡ℎ
𝑠𝑒𝑎𝑟𝑐ℎ, 

and 

∑ (𝑡𝑅ℎ−1

𝑅ℎ  + 𝑡ℎ
𝑠𝑒𝑎𝑟𝑐ℎ)ℎ∈𝑅  ≤  𝑡𝑒𝑛𝑑 − 𝑡𝑠𝑡𝑎𝑟𝑡. 

(1a) 

 

(1b) 

 

 

 

(1c) 

𝑅𝑔, where 𝑔 = 0, is defined as the previous location of the 

robot before a search query is executed. 𝑡𝑗(ℎ) is defined as 

the search start time for 𝑅ℎ and is determined by summing 

over the prior travel and search times. 𝑡𝑘(ℎ) is the search end 

time for 𝑅ℎ. 𝑇𝑗,𝑘(𝑡𝑗(ℎ), 𝑡𝑘(ℎ)) is defined as the shortest time 

interval that contains both 𝑡𝑗(ℎ) and 𝑡𝑘(ℎ). 

Predictive User Model 

To model the probability of user, 𝑈𝑛, occupying region, 𝑅𝑖, 

during time interval, 𝑇𝑗,𝑘, the following probability function 

is defined to consider all ongoing activities: 
𝑃[𝑅𝑖| 𝑇𝑗,𝑘 , 𝑈𝑛] = ∑ 𝑃[𝑅𝑖 , 𝐴𝑚|𝑇𝑗,𝑘 , 𝑈𝑛]𝑚∈𝐴 , 

where, 

𝑃[𝑅𝑖 , 𝐴𝑚|𝑇𝑗,𝑘 , 𝑈𝑛] = 

𝑃[𝐴𝑚| 𝑇𝑗,𝑘 , 𝑈𝑛] 𝑃[𝑅𝑖| 𝑇𝑗,𝑘 , 𝑈𝑛 , 𝐴𝑚]. 

(2) 

For each user, 𝑈𝑛, the following two probabilities are as-

signed: 1) P[𝐴𝑚|𝑇𝑗,𝑘 , 𝑈𝑛], which represents the probability 

that 𝑈𝑛 performs activity 𝐴𝑚 during 𝑇𝑗,𝑘, and 2) 

P[𝑅𝑖| 𝑇𝑗,𝑘, 𝑈𝑛 , 𝐴𝑚], which represents the probability that 𝑈𝑛 

occupies 𝑅𝑖 during 𝑇𝑗,𝑘, given that 𝑈𝑛 performs activity 𝐴𝑚 

during 𝑇𝑗,𝑘. Both these probabilities are inferred using a 

weighted sum between the four likelihood functions 

𝐿𝐴𝑚
[𝑇𝑗,𝑘 , 𝑈𝑛], 𝐿𝐴𝑚

[𝑇𝑗,𝑘] 𝐿𝑅𝑖
[𝐴𝑚, 𝑇𝑗,𝑘, 𝑈𝑛], and 𝐿𝑅𝑖

[𝐴𝑚, 𝑇𝑗,𝑘] 
discussed below.  

User Preferences: 𝐿𝐴𝑚
[𝑇𝑗,𝑘, 𝑈𝑛] represents the likelihood of 

observing 𝑈𝑛 undertaking 𝐴𝑚 during 𝑇𝑗,𝑘within the activity 

patterns 𝐷. 𝐿𝑅𝑖
[𝐴𝑚, 𝑇𝑗,𝑘, 𝑈𝑛] represents the likelihood of ob-

serving 𝑈𝑛 undertaking 𝐴𝑚 during 𝑇𝑗,𝑘 in region 𝑅𝑖 within 

the activity patterns 𝐷. 

Group Preferences: 𝐿𝐴𝑚
[𝑇𝑗,𝑘] represents the likelihood of 

observing any user undertaking 𝐴𝑚 during 𝑇𝑗,𝑘within the ac-

tivity patterns 𝐷. 𝐿𝑅𝑖
[𝐴𝑚, 𝑇𝑗,𝑘] represents the likelihood of 

observing any user undertaking 𝐴𝑚 during 𝑇𝑗,𝑘 in region 𝑅𝑖 

within the activity patterns 𝐷. 

Combining the Likelihoods: We combine both the user 

preference and the group preference for 𝐴𝑚 in order to deter-

mine P[𝐴𝑚|𝑇𝑗,𝑘 , 𝑈𝑛]:  

P[𝐴𝑚|𝑇𝑗,𝑘, 𝑈𝑛] =  
𝐿𝐴𝑚[𝑇𝑗,𝑘,𝑈𝑛]+𝐿𝐴𝑚[𝑈𝑛] 𝐿𝐴𝑚[𝑇𝑗,𝑘] 

2
, 

(3) 

where the weighting 𝐿𝐴𝑚
[𝑈𝑛] applied to the group prefer-

ence for 𝐴𝑚 represents the likelihood of observing 𝑈𝑛 under-

taking 𝐴𝑚 within the activity patterns 𝐷. We use this 

weighting since a user who frequently performs 𝐴𝑚 at other 

time intervals, is likely to perform 𝐴𝑚 at the time interval  

𝑇𝑗,𝑘 if other users are also performing 𝐴𝑚 (i.e., group influ-

ence on an individual). For example, a user who normally 

plays cards in the afternoon, is now playing cards in the 

morning since a number of other users in the group play cards 

then.  

 We combine both the user preference and the group pref-

erence for 𝑅𝑖 in order to determine 𝑃[𝑅𝑖| 𝑇𝑗,𝑘 , 𝑈𝑛, 𝐴𝑚]:  

𝑃[𝑅𝑖| 𝑇𝑗,𝑘 , 𝑈𝑛, 𝐴𝑚] =  
𝐿𝑅𝑖

[𝐴𝑚,𝑇𝑗,𝑘,𝑈𝑛]+𝐿𝑅𝑖
[𝐴𝑚,𝑈𝑛]𝐿𝑅𝑖

[𝐴𝑚,𝑇𝑗,𝑘] 

2
, 

(4) 

where the weighting 𝐿𝑅𝑖
[𝐴𝑚, 𝑈𝑛] applied to the group pref-

erence for 𝑅𝑖 represents the likelihood of observing 𝑈𝑛 un-

dertaking 𝐴𝑚 in region 𝑅𝑖 within the activity patterns 𝐷. We 

use this weighting as a user who frequently occupies 𝑅𝑖 when 

performing 𝐴𝑚 in other time intervals, is likely to occupy 𝑅𝑖 

to perform 𝐴𝑚 during 𝑇𝑗,𝑘 if others in the group are doing the 

same. For example, a user who usually listens to music in the 

garden, now joins other users in the group in the recreational 

room to listen to music with them.  

Rewards 

We use a combination of region rewards and search cover-

age to determine the total reward acquired for searching re-

gion, 𝑅𝑖, during time interval 𝑇𝑗,𝑘 for a duration of 𝑡𝑖
𝑠𝑒𝑎𝑟𝑐ℎ:  

𝑊(𝑅𝑖| 𝑇𝑗,𝑘, 𝑡𝑖
𝑠𝑒𝑎𝑟𝑐ℎ) = 𝑊(𝑅𝑖| 𝑇𝑗,𝑘)Sr(𝑅𝑖 , 𝑡𝑖

𝑠𝑒𝑎𝑟𝑐ℎ). (5) 
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Region Rewards: Each region, 𝑅𝑖, is assigned a reward with 

respect to the probability of finding users of interest in that 

region during time interval, 𝑇𝑗,𝑘:  

𝑊(𝑅𝑖| 𝑇𝑗,𝑘) = ∑ P[𝑅𝑖| 𝑇𝑗,𝑘 , 𝑈𝑧
′]𝑧∈𝑈′ . (6) 

Search Coverage: Given an allotted time, 𝑡𝑖
𝑠𝑒𝑎𝑟𝑐ℎ, the per-

centage of reward that can be acquired from a region, 𝑅𝑖 is 

based on the total area of the region 𝑅𝑖
𝑎𝑟𝑒𝑎:  

Sr(𝑅𝑖 , 𝑡𝑖
𝑠𝑒𝑎𝑟𝑐ℎ) = 𝑓(𝑡𝑖

𝑠𝑒𝑎𝑟𝑐ℎ , 𝑅𝑖
𝑎𝑟𝑒𝑎), (7) 

where Sr(𝑅𝑖 , 𝑡𝑖
𝑠𝑒𝑎𝑟𝑐ℎ) is a function of the local search tech-

nique used. For example, when using a grid-based minimal 

cost tour (coverage) technique the function can be linear. Our 

approach can use a variety of local search techniques to 

search within a particular region, one of which we have im-

plement in the simulated experiments and robot experiments 

sections below for completeness.  

Obtaining the Search Plan 

To determine the search plan 𝛼, 𝑅 and 𝑇𝑠𝑒𝑎𝑟𝑐ℎ  are selected 
in order to maximize Eq. (1a), without violating Eq. (1c). 
This maximization problem is called the travelling thief 
problem (Bonyadi, Michalewicz and Barone, 2013) which 
consists of two interdependent, np-hard, sub-problems: 1) the 
knapsack problem, and 2) the travelling salesman problem. 
An approximate solution to the travelling thief problem can 
be found by solving each sub problem independently in an 
iterative manner. 

Knapsack Problem: The knapsack problem is defined as 

determining the optimal search plan that maximizes the total 

reward found over the search, without accounting for the 

travel time between regions:  

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ (𝑊(𝑅ℎ, 𝑡ℎ
𝑠𝑒𝑎𝑟𝑐ℎ| 𝑇𝑗,𝑘(𝑡𝑗(ℎ), 𝑡𝑘(ℎ))))ℎ∈𝑅 , 

where, 

𝑡𝑗(ℎ) = ∑ (𝑡𝑔
𝑠𝑒𝑎𝑟𝑐ℎ)ℎ−1

𝑔=1 , and 

𝑡𝑘(ℎ) = 𝑡𝑗(ℎ) + 𝑡ℎ
𝑠𝑒𝑎𝑟𝑐ℎ, 

and 

∑ (𝑡ℎ
𝑠𝑒𝑎𝑟𝑐ℎ)ℎ∈𝑅  ≤  𝑡𝑒𝑛𝑑 − 𝑡𝑠𝑡𝑎𝑟𝑡. 

(8a) 

 

(8b) 

 

 

(8c) 

In order to solve the knapsack problem we select a subset of 

regions of ℛ defined to be 𝑟𝜔 = (𝑟𝜔,1, 𝑟𝜔,2, … , 𝑟𝜔,𝐵) in order 

to search at each time interval, 𝑇𝜔 , and a set of search times 

𝑇𝜔
𝑠𝑒𝑎𝑟𝑐ℎ = (𝑡𝜔,1

𝑠𝑒𝑎𝑟𝑐ℎ , … , 𝑡𝜔,𝐵
𝑠𝑒𝑎𝑟𝑐ℎ) for each 𝑟𝜔. 𝑟𝜔  and 𝑇𝜔

𝑠𝑒𝑎𝑟𝑐ℎ
 

are assigned such that the total reward acquired over the over-

all time frame of the search is maximized, without exceeding 

the allotted search time 𝑡MAX_𝑒𝑙𝑎𝑝𝑠𝑒𝑑  during each time interval 

𝑇𝜔:  

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ ∑ (𝑊(𝑟𝜔,𝑏 , 𝑡𝜔,𝑏
𝑠𝑒𝑎𝑟𝑐ℎ|𝑇𝜔))𝑏∈𝑟𝜔𝜔∈𝑇 , 

where, 

∑ (𝑡𝜔,𝑏
𝑠𝑒𝑎𝑟𝑐ℎ)𝑏∈𝑟𝜔

 ≤  𝑡 MAX_𝑒𝑙𝑎𝑝𝑠𝑒𝑑 , ∀𝜔 ∈ 𝑇. 

(9a) 

 
(9b) 

Assigning increments in minutes for 𝑡𝜔,𝑏
𝑠𝑒𝑎𝑟𝑐ℎ

 allows for the 

enumeration of all possible combinations of search times. 
Therefore, this allows us to solve the special case of the knap-
sack problem using dynamic programming and shortest path 
algorithm for a directed acyclic graph (i.e., shortest DAG). 
Figure 1 shows the DAG for our problem. The nodes 

𝑁
𝑡1

𝑒𝑙𝑎𝑝𝑠𝑒𝑑
,…,𝑡𝛺

𝑒𝑙𝑎𝑝𝑠𝑒𝑑
𝑖  represent each possible pairing of region 

and elapsed times, and the edges which represent the time 

spent searching 𝑅𝑖 in each time interval, 𝐸
𝑡𝑖

𝑠𝑒𝑎𝑟𝑐ℎ,1
,…,𝑡𝑖

𝑠𝑒𝑎𝑟𝑐ℎ,𝛺
𝑖 , 

are used to connect two nodes, i.e. 𝑁
𝑡1

𝑒𝑙𝑎𝑝𝑠𝑒𝑑
,…,𝑡𝛺

𝑒𝑙𝑎𝑝𝑠𝑒𝑑
𝑖  to 

𝑁
𝑡1

𝑒𝑙𝑎𝑝𝑠𝑒𝑑
+𝑡𝑖

𝑠𝑒𝑎𝑟𝑐ℎ,1
,…,𝑡𝛺

𝑒𝑙𝑎𝑝𝑠𝑒𝑑
+𝑡𝑖

𝑠𝑒𝑎𝑟𝑐ℎ,𝛺
𝑖+1 . 𝑅𝐼+1 is the terminal 

state needed to solve for the shortest DAG. A reward is as-
signed to each edge based on the search time of each interval:  

𝐸
𝑡𝑖

𝑠𝑒𝑎𝑟𝑐ℎ,1,…,𝑡𝑖
𝑠𝑒𝑎𝑟𝑐ℎ,𝛺

𝑖 = ∑ 𝑊(R𝑖, 𝑡𝑖
𝑠𝑒𝑎𝑟𝑐ℎ,𝜔|𝑇𝜔)𝜔∈𝑇 . (10) 

To determine the optimal solution to the knapsack problem 
we find the path with the maximum reward from 𝑁0,…,0

1  to 

𝑁𝑡𝑀𝐴𝑋_𝑒𝑙𝑎𝑝𝑠𝑒𝑑,…,𝑡𝑀𝐴𝑋_𝑒𝑙𝑎𝑝𝑠𝑒𝑑
𝐼+1 :  

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝐸
𝑡𝑖

𝑠𝑒𝑎𝑟𝑐ℎ,1
,…,𝑡𝑖

𝑠𝑒𝑎𝑟𝑐ℎ,𝛺
𝑖

𝑖∈ℛ . (11) 

The resulting plan is a set of unordered subsets 𝑟𝜔. Each 𝑟𝜔 

contains 𝑅𝑖 if 𝐸
𝑖 has 𝑡𝑖

𝑠𝑒𝑎𝑟𝑐ℎ,𝜔 ≠ 0 and has a corresponding 

search time 𝑡𝑖
𝑠𝑒𝑎𝑟𝑐ℎ,𝜔

. 

 

Figure 1: directed acyclic graph for the knapsack problem, 

where 𝑡𝜔
𝑒  represents 𝑡𝜔

𝑒𝑙𝑎𝑝𝑠𝑒𝑑
, 𝑡𝑖

𝑠,𝜔
 represents 𝑡𝑖

𝑠𝑒𝑎𝑟𝑐ℎ,𝜔
, and 

𝑡𝑀𝐴𝑋_𝑒 represents 𝑡𝑀𝐴𝑋_𝑒𝑙𝑎𝑝𝑠𝑒𝑑. 

Travelling Salesman Problem: The travelling salesman 
problem is used to determine the order in which to search the 
subsets 𝑟𝜔. Every permutation of 𝑟𝜔  is considered and the 
permutation that results in the shortest travel time is chosen:  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ (𝑡𝑟𝜔,𝑏−1

𝑟𝜔,𝑏 )𝑏∈𝑟𝜔𝜔∈𝑇 . (12) 
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𝑟𝜔,𝑏, where 𝜔 = 0 and 𝑏 = 0, is defined as the current region 

that the robot is in when a search query is executed. 𝑟𝜔,𝑏, 
where 𝜔 ≠  0 and 𝑏 = 0, is defined as the last region of the 

previous time interval, 𝑟𝜔−1,𝐵. 

 If the search time and travel time are longer than 𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 , 

we implement an iterative knapsack problem with a reduced 

value for 𝑡MAX_𝑒𝑙𝑎𝑝𝑠𝑒𝑑  until the below condition is satisfied: 

∑ (𝑡𝑟𝜔,𝑏−1

𝑟𝜔,𝑏 + 𝑡𝜔,𝑏
𝑠𝑒𝑎𝑟𝑐ℎ)𝑏∈𝑟𝜔

≤  𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 , ∀𝜔 ∈ 𝑇. 
(13) 

Simulated Experiments  

We developed a simulator in order to test the performance of 
our proposed activity-based multi-user search approach. The 
simulation environment consists of the layout of a floor of 
our collaborating residential care facility where twenty-six 
users are sharing the environment, Fig. 2. We define a single 
day to start at 7 am and end at 9pm. Both the common rooms 
and private rooms are used throughout the day by the elderly 
residents to perform different activities. There are defined 
time periods for the activities. Namely, eating a meal occurs 
three times a day for a duration of an hour. Recreational ac-
tivities (reading, listening to music, playing games and 
watching TV) can occur in either the morning or afternoon. 
Sleeping can occur after meals as well as early morning and 
night. Both recreational activities and sleeping can have var-
ying lengths of time with a minimum time of 15 minutes. An 
example of the robot finding a user of interest in the recrea-
tional room in the simulated environment is shown in Fig. 3. 

User Simulated Activity Patterns 

To simulate the activity patterns of the users for the simula-
tions, each activity has: 1) a lower bound on its minimum 
duration and an upper bound on its maximum duration, 2) a 
set of regions in which the activity can occur, and 3) the time 
periods over which it can occur. Each user is given a random 
preference for each activity, a random minimum and maxi-
mum duration within the aforementioned bounds for which 
the activity will last, and random preferences of all the pos-
sible regions the activity can be performed in. For each user, 
a set of activities is generated for the duration of the day 
based on the random preferences defined above. After com-
pleting an activity, the user’s preference for the activity is 
reduced by half for the remainder of the day. The duration of 
and the region where the activity takes place are chosen ran-
domly from the bounds and preferences given for each user.  

User Information Gathering 

The robot follows each user in the environment mapped out 
by the robot for 1 day and stores all their activity patterns in 
D. 

Local Search within a Region 

For the local search of each region, 𝑅𝑖 is subdivided into grid 
cells, 𝐶𝑖 = {𝐶𝑖,1, 𝐶𝑖,2, … , 𝐶𝑖,𝑄}, of size 3m x 3m. The size of 

each cell corresponds to the robot’s sensory range for detect-
ing and identifying users. The time it takes for the robot to 
move between two adjacent cells 𝐶𝑖 and 𝐶𝑗 is a function of 

the robot’s speed v=1.35 m/s, and defined to be 2.22s. The 
time it takes to search a cell to identify if 𝑈𝑧

′  is occupying the 
cell is defined to be 10s. To search a region, the robot imple-
ments a minimum cost tour of the grid cells using a heuristic 

approach. Depending on the allotted search time 𝑡𝑖
𝑠𝑒𝑎𝑟𝑐ℎ, the 

robot searches as many cells along the planned tour as possi-
ble. Utilizing this local search technique, the search coverage 
defined in Eq. (7) becomes: 

Sr(𝑅𝑖 , 𝑡𝑖
𝑠𝑒𝑎𝑟𝑐ℎ) =  

1

12.22

𝑡𝑖
𝑠𝑒𝑎𝑟𝑐ℎ

𝑅𝑖
𝑎𝑟𝑒𝑎 , 

(14) 

where 𝑅𝑖
𝑎𝑟𝑒𝑎  is in 𝑚2, and 𝑡𝑖

𝑠𝑒𝑎𝑟𝑐ℎ is in seconds. 

 

 

  

Figure 2: The map of the floor layout of the simulated resi-
dential care facility with the following room categories and 

sizes: Lobby (L) is 15m x 15m; Private Room (PR), 
Nurses’ Station (NR) and Robot Charging Station (CS) are 

6m x 6m; Hallway (H)- each section of H is 3m x 12m; 
Garden (G) and Dining Room (DR) are 15m x 12m; Recre-
ational Room (RR) is 12m x 12m; and Kitchen (K) is 6m x 
12m. Red dotted line represents an example robot path from 

region to region. 

 

Figure 3: Robot (orange) finding a user of interest in the 
recreational room. The user is sitting on a red chair reading. 

Implementation  

We compared the performance of our activity-based search 
approach which considers both single user and group prefer-
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ences to an approach that considers only single user prefer-
ences to determine a search plan. Both search approaches 
were tested with 25 different search queries 𝑆 with 
𝑈′=1,3,5,8 and with 𝑡𝑒𝑛𝑑 − 𝑡𝑠𝑡𝑎𝑟𝑡= 4,8,12,15,25 minutes. 
The start times were selected to be both in the morning and 
afternoon (i.e., 10 am, 11:30 am, 1pm, 2:30pm and 4:30 pm) 
and the time frame is divided into three discrete time inter-
vals (𝑇1,𝑇2, 𝑇3). As the focus of this work is on the global 
search between regions, both approaches used the heuristic 
local search approach to obtain the minimum cost tour of the 
grid cells when searching within a region. The performance 
metrics used for the comparison were: 1) the success rate for 
the different time frames, and 2) the success rate for the set 
of users to find. 

Results 

The results for both approaches are presented in Figure 4. 
Fig. 4(a) shows that, overall, our proposed approach has 
higher success rates for finding the users of interest across all 
search time frames, and Fig. 4(b) shows that, overall, our pro-
posed approach is able to find more users across varying user 
set sizes. The detailed results for each user set and time frame 
for our activity-based proposed approach are also presented 
in Fig. 4(c). 

 

(a) 

 

(b) 

 

(c) 

Figure 4: (a) success rate with respect to search time frame 
averaged across number of users, (b) success rate with re-

spect to number of users to find averaged across time 
frames, (c) success rate for each user set with respect to the 

time frame for our proposed activity-based approach. 

Robot Experiments  

Experiments with our socially assistive robot were conducted 
to verify the use of our search approach in a real environment 
finding real people. The robot has a differential drive mobile 
base with a human-like upper torso. The robot obtains infor-
mation about its environment and users within the environ-
ment using a variety of sensors including a laser range finder, 
encoders, two 2D cameras and a 3D camera. The robot is also 
capable of autonomously navigating in an indoor environ-
ment using the ROS navfn planner (ROS, 2014). User detec-
tion is achieved through the detection of head and shoulder 
contours using depth and 2D images from the 3D sensor 
(within a range of 0.5m-4.5m). User identification is 
achieved using the OKAOTM Vision software library (Om-
ron, 2007) by finding facial features within 2D images pro-
vided from one of the robot’s 2D cameras. More details on 
the robot can be found in (Louie et al., 2014b). 

The experimental environment was a scaled down version 
of the floor layout above consisting of 8 regions defined to 
be a combination of private and common rooms connected 
by hallways. The size of each region ranged from 50 to 144 
m2. Five experiments were conducted in order to have the 
robot find five users of interest within 15 minutes and pro-
vide them with a reminder of an upcoming activity. We in-
vestigated the ability of the robot to successfully execute the 
overall search plan 𝛼 in order to find these users. 

In each experiment, the robot was able to follow the gen-
erated search plan by navigating from region to region and 
searching the specified locations within each region. Exam-
ples of the robot’s actions and etiquette behaviors are pre-
sented in Fig. 5. The overall success rate for finding users 
was 88%. Table 1 represents the success rate for each of the 
five different scenarios with respect to the regions the users 
were located in. The lower success rate for experiment 1 was 
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a result of the fact that since the physical robot used a con-
servative obstacle avoidance technique which took it longer 
to navigate through the regions that were more cluttered, it 
did not have enough time to search all regions in its plan. 
Namely, there needs to be a balance between how conserva-
tive the physical robot’s movements are in the real environ-
ment with respect to the search time frame. In general, the 
success rate was higher for the experiments than the simula-
tions due to the smaller environment and room sizes. 

Table 1: Experimental Results 

Experiment # User Distribution 
within the 8 Regions 

Success 
Rate of 
Finding Us-
ers 

1 [1,1,1,1,0,1,0,0] 60% 

2 [1,2,0,0,1,1,0,0] 80% 

3 [0,2,2,0,1,0,0,0] 100% 

4 [3,0,0,2,0,0,0,0] 100% 

5 [0,0,5,0,0,0,0,0] 100% 

 

 

 

 

 

 

 

Figure 5: Example Robot Actions and Etiquette Behavior 
(from top left to bottom right): robot following a person to 
gain information; robot travelling between regions; robot 

entering a region; robot searching a region; and robot inter-
acting with user. 

Conclusion 

In this paper, we address the problem of an autonomous so-
cially assistive robot searching for a set of multiple elderly 
users who are living in a residential care facility within a 
required time frame, in order for the robot to provide them 
with assistance. We present the development of a novel ac-
tivity-based search approach which maximizes the expected 

number of dynamic users of interest that need to be found 
within a given time frame during the day. We model the 
problem as a travelling thief problem. Our approach is 
unique in that it considers the spatial-temporal preferences 
of each user, the spatial-temporal preferences of other users 
sharing the environment (group preferences) and the activi-
ties that the users are performing throughout the day in the 
environment in order to determine a global search plan. Fur-
thermore, robot etiquette behaviors for human-centered en-
vironments are considered when executing a plan. We have 
compared our activity-based search approach to a common 
approach that only considers the spatial-temporal prefer-
ences of the users of interest in simulated experiments con-
ducted on a floor of a residential care facility. The results 
show that our proposed search approach has higher success 
rates in finding users of interest across varying time frames 
and varying user set sizes. The experiments with a physical 
robot are promising and show the feasibility of the search 
approach being implemented in a real environment. 
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Abstract

The Instinct Planner is a new biologically inspired re-
active planner, based on an established behaviour based
robotics methodology and its reactive planner compo-
nent — the POSH planner implementation. It includes
several significant enhancements that facilitate plan de-
sign and runtime debugging. It has been specifically de-
signed for low power processors and has a tiny mem-
ory footprint. Written in C++, it runs efficiently on both
ARDUINO (ATMEL AVR) and MICROSOFT VC++ en-
vironments and has been deployed within a low cost
maker robot to study AI Transparency. Plans may be au-
thored using a variety of tools including a promising vi-
sual design language, currently implemented using the
DIA drawing package.

INTRODUCTION
From the 1950’s through to the 1980’s the study of embodied
AI assumed a cognitive symbolic planning model for robotic
systems — SMPA (Sense Model Plan Act) — the most well
known example of this being the Shakey robot project (Nils-
son, 1984). In this model the world is first sensed and a
model of the world is constructed within the AI. Based on
this model and the objectives of the AI, a plan is constructed
to achieve the goals of the robot. Only then does the robot
act. Although this idea seemed logical and initially attrac-
tive, it was found to be quite inadequate for complex, real
world environments. Generally the world cannot be fully
modelled until the robot plan is underway, since sensing the
world requires moving through it. Also, where environments
change faster than the rate at which the robot can complete
its SMPA cycle, the planning simply cannot keep up. Brooks
(1995) provides a more comprehensive history, which are
not repeated here.

In the 1990’s Rodney Brooks and others (Breazeal and
Scassellati, 2002) introduced the then radical idea that it was
possible to have intelligence without representation (Brooks,
1991). Brooks developed his subsumption architecture as a
pattern for the design of intelligent embodied systems that
have no internal representation of their environment, and
minimal internal state. These autonomous agents could tra-
verse difficult terrain on insect-like legs, appear to inter-
act socially with humans through shared attention and gaze
tracking, and in many ways appeared to posses behaviours

similar to that observed in animals. However, the systems
produced by Brooks and his colleagues could only respond
immediately to stimuli from the world. They had no means
of focusing attention on a specific goal or of executing
complex sequences of actions to achieve more complex be-
haviours. The original restrictions imposed by Brooks’ sub-
sumption architecture were subsequently relaxed with later
augmentations such as timers, effectively beginning the tran-
sition to systems that used internal state in addition to sen-
sory input in order to determine behaviour.

Following in-depth studies of animals such as gulls in
their natural environment, ideas of how animals perform ac-
tion selection were originally formulated by Nico Tinber-
gen and other early ethologists (Tinbergen, 1951; Tinbergen
and Falkus, 1970). Reactions are based on pre-determined
drives and competences, but depend also on the internal
state of the organism (Bryson, 2000). Bryson (2001) har-
nessed these ideas to achieve a major step forwards with
the POSH (Parallel Ordered Slipstack Hierarchy) reactive
planner and the BOD (Behaviour Oriented Design) method-
ology, both of which are strongly biologically inspired. It
is important to understand the rationale behind biologically
inspired reactive planning. It is based on the idea that bio-
logical organisms constantly sense the world, and generally
react quickly to sensory input, based on a hierarchical set
of behaviours structured as Drives, Competences and Ac-
tion Patterns. Their reactive plan uses a combination of sen-
sory inputs and internal priorities to determine which plan
elements to execute, ultimately resulting in the execution
of leaf nodes in the plan, which in turn execute real world
actions. For further reading see Gurney, Prescott, and Red-
grave (1998), Prescott, Bryson, and Seth (2007) and Seth
(2007).

At run-time, the reactive plan itself is essentially fixed.
Various slower reacting systems may also be used to modify
priorities or other parameters within the plan. These slower
reacting systems might be compared with emotional or en-
docrinal states in nature that similarly affect reactive prior-
ities (Gaudl and Bryson, 2014). Similarly the perception of
senses can be affected by the internal state of the plan, an
example being the latching (or hysteresis) associated with
sensing (Rohlfshagen and Bryson, 2010).

In nature, the reactive plan is subject to possible learn-
ing that may change the plan parameters or even modify the
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structure of the plan itself as new skills and behaviours are
learned. This learning may take place ontogenetically, i.e.
within the lifetime of an individual, or phylogenetically, by
the process of natural selection, across the lifetimes of many
individuals. Bryson’s BOD approach suggests that humans
provide most of the necessary learning in order to improve
the plan over time, in place of natural selection. However,
Gaudl (manuscript in preparation) successfully uses genetic
algorithms to automate part of this learning process, albeit
within a computer game simulation.

A reactive plan is re-evaluated on every plan cycle, usu-
ally many times every second, and this requires that the in-
quiries from the planner to the senses and the invocation
of actions should respond quickly. This enables the reac-
tive plan to respond quickly to changes in the external en-
vironment, whilst the plan hierarchy allows for complex se-
quences of behaviours to be executed. Applying these ideas
to robots we can see that for senses, this might imply some
caching of sense data. For actions, it also implies that long
running tasks (relative to the rate of plan execution), need
to not only return success or failure, but also another status
to indicate that the action is still in progress and the plan
must wait at its current execution step before moving on to
its next step. The action may be executing on another thread,
or may just be being sampled when the call to the action is
made. This is implementation specific and does not affect
the functioning of the planner itself. If re-invoked before it
completes, the action immediately returns an In-Progress re-
sponse. In this way, longer running action invocations do not
block the planner from responding to other stimuli that may
still change the focus of attention by, for example, releasing
another higher priority Drive.

Each call to the planner within the overall scheduling loop
of the robot starts a new plan cycle. In this context an action
may be a simple primitive, or may be part of a more complex
pre-defined behaviour module, such as a mapping or trajec-
tory calculation subsystem. It is important to note that the
BOD methodology does not predicate that all intelligence is
concentrated within the planner. Whilst the planner drives
action selection, considerable complexity can still exist in
sensory, actuation and other probabilistic or state based sub-
systems within the overall agent (Bryson, 2001).

The computer games industry has advanced the use of
AI for the simulation of non player characters (Lim, Baum-
garten, and Colton, 2010). Behaviour trees are similarly hi-
erarchical to POSH plans, but have additional elements that
more easily allow logical operations such as AND, OR,
XOR and NOT to be included within the plan. For exam-
ple it is possible for a goal to be reached by successfully
executing only one of a number of behaviours, trying each
in turn until one is successful. Bryson’s original design of
POSH does not easily allow for this kind of plan structure.

Behaviour trees are in turn simplifications of Hierarchi-
cal Task Network (or HTN) planners (Ghallab, Nau, and
Traverso, 2004). Like POSH, HTN planners are able to cre-
ate and run plans that contain recursive loops, meaning that
they can represent any computable algorithm. An interesting
parallel can be drawn here with Complexity theory. Holland
(2014) argues that a Complex Agent System (CAS) is often

characterized by the fact that it can be decomposed into a
set of hierarchical layers, with each layer being Turing com-
plete. For a biological entity Holland identifies these layers
as existing at the levels of DNA, organelle, cell, organ, or-
ganism and social levels. For an artificial agent we can iden-
tify these layers as computer hardware, operating system,
application programming language, reactive planner, plan,
agent and social levels. Thus we can argue that to create an
artificial agent truly capable of emergent implicit behaviour,
we should strive to ensure that the Planner on which its be-
haviour depends should be Turing complete, particularly al-
lowing looping and recursion.

THE INSTINCT PLANNER
The Instinct Planner is a reactive planner based on Bryson’s
POSH (Bryson, 2008, 2001). It includes several enhance-
ments taken from more recent papers extending POSH
(Rohlfshagen and Bryson, 2010; Gaudl and Bryson, 2014),
together with some ideas from other planning approaches,
notably Behaviour Trees (BT — Lim, Baumgarten, and
Colton, 2010). A POSH plan consists of a Drive Collection
(DC) containing one or more Drives. Each Drive (D) has a
priority and a releaser. When the Drive is released as a result
of sensory input, a hierarchical plan of Competences, Action
Patterns and Actions follows.

• Action Pattern (AP): Action patterns are used to reduce
the computational complexity of search within the plan
space and to allow a coordinated fixed sequential exe-
cution of a set of elements. An action pattern—AP =
[α0, . . . , αk]—is an ordered set of Actions that does not
use internal precondition or additional perceptual infor-
mation. It provides the simplest plan structure in POSH
and allows for the optimised execution of behaviours. An
example would be an agent that always shouts and moves
its hand upwards when touching an hot object. In this
case, there is no need for an additional check between the
two Action primitives if the agent should always behave in
that manner. APs execute all child elements before com-
pleting.

• Competence (C): Competences form the core part of
POSH plans. A competence C = [c0, . . . , cj ] is a
self-contained basic reactive plan (BRP) where cb =
[π, ρ, α, η], b ∈ [0, . . . , j] are tuples containing π, ρ, α
and η: the priority, precondition, child node ofC and max-
imum number of retries. The priority determines which of
the child elements to execute, selecting the one with the
highest priority first. The precondition is a concatenated
set of senses that either release or inhibit the child node
α. The child node itself can be another Competence or
an Action or Action Pattern. To allow for noisy environ-
ments a child node can fail a number of times, specified
using η, before the Competence ignores the child node for
remaining time within the current cycle. A Competence
sequentially executes its hierarchically organised child-
nodes where the highest priority node is the competence
goal. A Competence fails if no child can execute or if an
executed child fails.
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• Drive (D): A Drive—D = [π, ρ, α,A, v]—allows for the
design and pursuit of a specific behaviour as it main-
tains its execution state. The Drive Collection determines
which Drive receives attention based on each Drive’s π,
the associated priority of a Drive. ρ is the releaser, a set
of preconditions using senses to determine if the drive
should be pursued. α is either an Action, Action Pat-
tern or a Competence and A is the root link to the Drive
Collection. The last parameter v specifies the execution
frequency, allowing POSH to limit the rate at which the
Drive can be executed. This allows for coarse grain con-
currency of Drive execution (see below).

• Drive Collection (DC): The Drive Collection—DC—is
the root node of the plan—DC = [g,D0, . . . , Di]. It con-
tains a set of Drives Da, a ∈ [0 . . . i] and is responsible
for giving attention to the highest priority Drive. To allow
the agent to shift and focus attention, only one Drive can
be active in any given cycle. Due to the parallel hierarchi-
cal structure, Drives and their sub-trees can be in different
states of execution. This allows for cooperative multitask-
ing and a quasi-parallel pursuit of multiple behaviours at
the Drive Collection level.

For a full description of the POSH reactive planner see
Bryson (2001).

Enhancements and Innovations
The Instinct Planner includes a full implementation of what
we term Drive Execution Optimisation (DEO). DEO avoids
a full search of the plan tree at every plan cycle which would
be expensive. It also maintains focus on the task at hand.
This corresponds loosely to the function of consciousness
attention seen in nature (Bryson, 2011). A form of this was
in Bryson’s original POSH, but has not been fully imple-
mented in subsequent versions. The Drive, Competence and
Action Pattern elements each contain a Runtime Element ID.
These variables are fundamental to the plan operation. Ini-
tially they do not point to any plan element. However, when
a Drive is released the plan is traversed to the point where
either an Action is executed, or the plan fails at some point
in the hierarchy. If the plan element is not yet completed it
returns a status of In Progress and the IDs of the last suc-
cessful steps in the plan are stored in Runtime Element ID
in the Drive, Competence and Action Pattern elements. If
an action or other sub element of the plan returns success,
then the next step in the plan is stored. On the next cycle of
the drive, the plan hierarchy is traversed again but continues
from where it got to last plan cycle, guided by the Runtime
Element IDs. A check is made that the releasers are still ac-
tivated (meaning that the plan steps are still valid for execu-
tion), and then the plan steps are executed. If a real world
action fails, or the releaser check fails, then the Runtime El-
ement ID is once again cleared. During execution of an Ac-
tion Pattern (a relatively quick sequence of actions), sensory
input is temporarily ignored immediately above the level of
the Action Pattern. This more closely corresponds to the re-
flex behaviour seen in nature. Once the system has started
to act, then it continues until the Action Pattern completes,
or an element in the Action Pattern explicitly fails. Action

Patterns are therefore not designed to include Actions with
long running primitive behaviours.

In addition to these smaller changes there are three major
innovations in the Instinct Planner that increase the range of
plan design options available to developers:

• Firstly, the idea of runtime alteration of drive priority.
This implementation closely follows the RAMP model of
Gaudl and Bryson (2014) which in turn is biologically in-
spired, based on spreading activation in neural networks.
Within the Instinct Planner we term this Dynamic Drive
Reprioritisation (DDR). DDR is useful to modify the pri-
ority of drives based on more slowly changing stimuli, ei-
ther external or internal. For example, a recharge battery
drive might be used to direct a robot back to its charging
station when the battery level becomes low. Normally this
drive might have a medium priority, such that if only low
priority drives are active then it will return when its bat-
tery becomes discharged to say 50%. However, if there
are constantly high priority drives active, then the battery
level might reach a critical level of say 10%. At that point
the recharge battery drive must take highest priority. A
comparison can be drawn here with the need for an ani-
mal to consume food. Once it is starving the drive to eat
assumes a much higher priority than when the animal ex-
periences normal levels of hunger. For example, it will
take more risks to eat, rather than flee from predators.

• Secondly, the idea of flexible latching provides for a more
dynamic form of sense hysteresis, based not only on plan
configuration, but also the runtime focus of the plan.
This implementation follows the work of Rohlfshagen
and Bryson (2010). Within the Instinct Planner we term
it Flexible Sense Hysteresis (FSH). This hysteresis pri-
marily allows for noise from sensors and from the world,
but Rohlfshagens paper also has some basis in biology to
avoid dithering by prolonging behaviours once they have
begun. If the Drive is interrupted by one of a higher pri-
ority, then when the sense is again checked, it will be the
Sense Flex Latch Hysteresis that will be applied, rather
than the Sense Hysteresis.

• Thirdly, we enhance the Competences within the plan,
such that it is possible to group a number of competence
steps by giving them the same priority. We refer to this
as a priority group. Items within a group have no defined
order. Within a priority group, the Competence itself can
specify whether the items must all be successfully exe-
cuted for the Competence to be successful (the AND be-
haviour), or whether only one item need be successful (the
OR behaviour). In the case of the OR behaviour, several
items within the group may be attempted and may fail, be-
fore one succeeds. At this point the Competence will then
move on to higher priority items during subsequent plan
cycles. A Competence can have any number of priority
groups within it, but all are constrained to be either AND
or OR, based on the configuration of the Competence it-
self. This single enhancement, whilst sounding straight-
forward, increases the complexity of the planner code sig-
nificantly, but allows for much more compact plans, with
a richer level of functionality achievable within a single
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Competence than was provided with the earlier POSH im-
plementations.

Multi Platform
The Instinct planner itself is able to run both within MI-
CROSOFT VISUAL C++ and the ARDUINO development
environments (Arduino, 2016) as a C++ library. The AR-
DUINO uses the ATMEL AVR C++ COMPILER (Atmel Cor-
poration, 2016a) with the AVR LIBC library (Atmel Corpo-
ration, 2016b) — a standards based implementation of gcc
and libc. This arrangement harnesses the power of the VI-
SUAL C++ Integrated Development Environment (IDE) and
debugger, hugely increasing productivity when developing
for the ARDUINO platform, which has no debugger and only
a rudimentary IDE. We have a complete implementation of
the Instinct Planner on an ARDUINO based robot named R5.
The robot runs using various test plans, see figure 1. Due to
the very compact memory architecture of Instinct, the plan-
ner is able to store plans with up to 255 elements within
the very limited 8KB memory (RAM) available on the AR-
DUINO MEGA (ATMEL AVR ATMEGA2560 MICROCON-
TROLLER). The 255 element limitation arises from the use
of a single byte to store plan element IDs within the AR-
DUINO environment.

Figure 1: The R5 ARDUINO based Maker Robot in a laboratory
test environment. The camera mounted on the robot is used to
record robot activity, but is not used by the robot itself.

The robot itself has active infrared and ultrasonic dis-
tance sensors, a head capable of scanning its environment,
a passive infrared (PIR) sensor to assist in the detection of
humans interacting with it, and proprioceptive sensing of
odometry (distance travelled) and drive motor current. It has
simple and more complex underlying behaviours that can be
invoked by the planner, such as the ability to turn in the di-
rection of the most clear pathway ahead, or to use its head to
scan for the presence of a human. It also has a multicoloured
headlight that may be used for signalling to humans around
it. Finally, it has an electronically erasable programmable
read only memory (EEPROM) that permanently stores both
the robot’s configuration parameters and the Instinct plan.

This leverages the planner’s ability to serialise plans as a
byte stream, and then reconstitute the plan from that stream
at startup.

Memory Management
In order to produce a planner that operates effectively in
an environment with severely limited working memory re-
sources (RAM), considerable design effort has been applied
to the memory management architecture within the planner.
There are 6 separate memory buffers, each holding fixed
record length elements for each element type in the plan —
Drives, Competences, Competence Elements, Action Pat-
terns, Action Pattern Elements and Actions. An instance of
Instinct has a single Drive Collection — the root of the plan.

Within each plan element, individual bytes are divided
into bit fields for boolean values, and the data is nor-
malised across elements to avoid variable length records.
This means, for example, that Competence Elements hold
the ID of their parent Competence, but the Competence it-
self does not hold the IDs of each of its child Competence
Elements. At runtime a search must be carried out to identify
which Competence Elements belong to a given Competence.
Thus, the planner sacrifices some search time in return for a
considerably more compact memory representation. Fortu-
nately this search is very fast, since the Competence Ele-
ments are stored within a single memory buffer with fixed
length records. Testing shows the time taken by this search-
ing was negligible in comparison with the plan cycle rate of
the robot.

Plan elements, senses and actions are referenced by
unique numeric IDs, rather than by name. The memory stor-
age of these IDs is defined within the code using the C++
#typedef preprocessor command, so that the width of
these IDs can be configured at compile time, depending on
the maximum ID value to be stored. This again saves mem-
ory in an environment where every byte counts. Considera-
tion of stack usage is also important, and temporary buffers
and similar structures are kept to a minimum to avoid stack
overflow.

Fixed strings (for example error messages) and other data
defined within programs are usually also stored within work-
ing memory. Within a microcontroller environment such as
ARDUINO this is wasteful of the limited memory resource.
This problem has been eliminated in the Instinct Planner im-
plementation by use of AVR LIBC functions (Atmel Corpo-
ration, 2016b) that enable fixed data to be stored in the much
larger program (flash) memory. For code compatibility these
functions have been replicated in a pass-through library so
that the code compiles unaltered on non-microcontroller
platforms.

Instinct Testing Environment
As a means to test the functionality of the Instinct Planner
within a sophisticated debugging environment, we have an
implementation of the planner within MICROSOFT VISUAL
C++, and have tested a very simple simulation of a robot
within a grid based world. The world allows multiple robots
to roam, encountering one another, walls and so on. This
could be extended in future, with a graphical user interface
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to better show both the world and the real time monitor-
ing available from within the plan. However our current re-
search focusses on the real time debugging of actual robots
(Wortham, Theodorou, and Bryson, 2016). Building trans-
parency into robot action selection can help users build a
more accurate understanding of the robot, see below.

The Instinct Planner code is not fundamentally limited
to 255 plan elements, and will support much larger plans
on platforms with more memory. In MICROSOFT VISUAL
C++ for example, plans with up to 65,535 nodes are sup-
ported, simply by redefining the instinctID type from
unsigned char to unsigned int.

Instinct Transparency Enhancements
The planner has the ability to report its activity as it runs,
by means of callback functions to to a monitor C++ class.
There are six separate callbacks monitoring the Execution,
Success, Failure, Error and In-Progress status events, and the
Sense activity of each plan element. In the VISUAL C++ im-
plementation, these callbacks write log information to files
on disk, one per robot instance. This facilitates the testing
and debugging of the planner. In the ARDUINO robot, the
callbacks write textual data to a TCP/IP stream over a wire-
less (wifi) link. A JAVA based Instinct Server receives this
information, enriches it by replacing element IDs with ele-
ment names, and logs the data to disk. This communication
channel also allows for commands to be sent to the robot
while it is running.

With all nodes reporting all monitor events over wifi, a
plan cycle rate of 20Hz is sustainable. By reducing the level
of monitoring, we reduce the volume of data sent over wifi
and plan cycle rates of up to 40Hz are achievable. In practice
a slower rate is likely to be adequate to control a robot, and
will reduce the volume of data requiring subsequent process-
ing. In our experiments a plan cycle rate of 8Hz was gener-
ally used.

Figure 2 shows how the planner sits within the robot
software environment and communicates with the Instinct
Server.

Instinct Command Set
The robot command set primarily communicates with the
planner which in turn has a wide range of commands, allow-
ing the plan to be uploaded and altered in real time, and also
controlling the level of activity reporting from each node in
the plan. When the robot first connects to the Instinct Server,
the plan and monitoring control commands are automati-
cally sent to the robot, and this process can be repeated at
any time while the robot is running. This allows plans to be
quickly modified without requiring any re-programming or
physical interference with the robot.

Creating Reactive Plans with iVDL
POSH plans are written in a LISP like notation, either us-
ing a text editor, or the ABODE editor (Brom et al., 2006;
Bryson, 2013). However, Instinct plans are written very dif-
ferently, because they must use a much more compact nota-
tion and they use IDs rather than names for plan elements,

SERVER ROBOT

Plan Manager

Reactive 
Planner

Action 
Selection

Behaviour 
Library

Sensor model

Internal 
Robot State

TCP/IP over WiFi

Plan 
Monitor

WORLD

Instinct 
Planner

Figure 2: Software Architecture of the R5 Robot showing inter-
faces with the World and the Instinct Server. The Instinct Planner
provides the action selection subsystem of the robot.

senses and actions. We have developed the Instinct Visual
Design Language (iVDL) based on the ubiquitous Unified
Modelling Language (UML) notation. UML is supported by
many drawing packages and we have developed a simple
PYTHON export script to allow plans to be created graphi-
cally within the DIA drawing tool (Macke, 2014). The ex-
port script takes care of creating unique IDs and allows the
plans to use named elements, thus increasing readability.
The names are exported alongside the plan, and whilst they
are ignored by the planner itself, the Instinct-Server uses this
export to convert IDs back into names within the log files
and interactive display.

Figure 3 shows the Instinct plan template within Dia. We
use the UML class notation to define classes for the six types
of element within the Instinct plan, and also to map the exter-
nal numerical identifiers (IDs) for senses and robot actions
to names. We use the UML aggregation connector to iden-
tify the connections between the plan elements. This can be
read, for example, as “A Drive can invoke an Action, a Com-
petence or an Action Pattern”.

Figure 4 shows a plan for the R5 robot. At this level of
magnification the element details are not legible, but this
screen shot gives an impression of how plans can be laid
out.

This particular plan searches the robot’s environment,
avoiding objects and adjusting its speed according to the
space around it. As it moves around it attempts to detect
humans within the environment. The robot also temporarily
shuts down in the event of motor overload, and it will period-
ically hibernate when not in open space to conserve battery
power. Such a plan might be used to patrol hazardous areas
such as industrial food freezers, or nuclear facilities.

The plan was designed and debugged within the space of
a week. During the debugging, the availability of the trans-
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Figure 3: Instinct Plan element types and their relationship, shown
within the DIA drawing tool.

parency data logged by the Instinct Server was extremely
useful, because mere observation of the robot’s emergent be-
haviour is frequently insufficient to determine the cause of
plan malfunction.

The actual positioning of plan elements within the draw-
ing is entirely up to the plan designer. Since Dia is a gen-
eral purpose graphical editor, other symbols, text and im-
ages can be freely added to the file. This is useful at design
time and during the debugging of the robot. It also provides
an additional vehicle for the creation of longer term project
documentation. We suggest that an in-house standard is de-
veloped for the layout of plans within a development group,
such that developers can easily read one another’s plans.

Plan Debugging and Transparency
Currently, work is underway within the Artificial Models of
Natural Intelligence (AmonI) research group at the Univer-
sity of Bath1 to create a new version of the ABODE plan
editor (Theodorou, Wortham, and Bryson, 2016). This ver-
sion directly writes Instinct plans, and also reads the real-
time transparency data emanating from the Instinct Planner,
in order to provide a real-time graphical display of plan exe-
cution. In this way we are beginning to explore both runtime
debugging and wider issues of AI Transparency.

CONCLUSIONS AND FURTHER WORK
The Instinct planner is the first major re-engineering of
Bryson’s original work for several years, and allows deploy-
ment in practical real time physical environments such as
our ARDUINO based maker robot.

1AmonI — http://www.cs.bath.ac.uk/ai/AmonI.html

Figure 4: The plan used by the R5 robot to enable it to explore
an environment, avoid obstacles, and search for humans. The plan
also includes emergency behaviours to detect and avoid excessive
motor load, and to conserve battery by sleeping periodically.

By using a very lean coding style and efficient memory
management, we maximise the size of plan that can be dy-
namically loaded and the performance in terms of execution
rate.

The transparency capabilities, novel to this implementa-
tion of POSH, provides the necessary infrastructure to de-
liver real time plan debugging. Work is currently underway
to leverage this architecture with a real time visual debug-
ging tool, initially to assist the work of reactive plan design-
ers, but also as a research tool for the investigation of wider
AI Transparency issues.

The Visual Design Language (iVDL) is a novel represen-
tation of reactive plans, and we demonstrate that such plans
can be designed using a standard drawing package and ex-
ported with a straightforward plug-in script. We envisage the
development of similar plug-ins for other drawing tools such
as MICROSOFT VISIO.

Although primarily developed for physical robot imple-
mentations, the Instinct Planner has obvious applications in
teaching, simulation and game AI environments. We envis-
age extending the current Instinct Testing Environment to
provide a richer, GUI based test platform for Instinct, and
for use as a teaching tool to teach the concepts of reactive
planning in general and the Instinct Planner in particular.

Finally, we would like to see the implementation of In-
stinct on other embedded and low cost Linux computing en-
vironments such as the RASPBERRY PI (Raspberry Pi Foun-
dation, 2016). With more powerful platforms such as the PI,
much larger plans can be developed and we can test both
the runtime performance of very large plans, and the design
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efficiency of iVDL with multi-user teams.
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Abstract

Planning plays a role in achieving long-term behaviour (per-
sistent autonomy) without human intervention. Such be-
haviour engenders plans which are expected to last over many
hours, or even days. Such a problem is too large for cur-
rent planners to solve as a single planning problem, but is
well-suited to decomposition and abstraction planning tech-
niques. We present a novel approach to bottom-up decompo-
sition into a two-layer hierarchical structure, which dynami-
cally constructs planning problems at the abstract layer of the
hierarchy using solution plans from the lower layer.
We evaluate this approach in the context of persistent au-
tonomy in autonomous underwater vehicles, showing that
compared to strictly top-down approaches the bottom-up ap-
proach leads to more robust solution plans of higher quality.

1 Introduction
This paper introduces a novel technique for planning in
the context of persistent autonomous systems within tight
deadlines and energy constraints. Persistent autonomy en-
tails planning long-term behaviour for one or more au-
tonomous vehicles achieving purposeful and directed activ-
ity over hours, days, or even weeks without human interven-
tion. This includes many challenges, including robust exe-
cution, detection of errors and recovery (Faria et al. 2014;
Cashmore et al. 2014). However, there is a challenge that
precedes execution: generating plans for missions that ex-
tend over hundreds or thousands of actions, within hours or
days of activity.

We show in Section 5 that such a problem is too large
for current planners to solve as a single planning problem,
but is well-suited to decomposition and abstraction planning
techniques. Decomposition into a hierarchical structure is
exploited by HTN planners (Erol, Hendler, and Nau 1994;
Nau, Ghallab, and Traverso 2015), which rely on a top-down
approach, exploiting pre-constructed plans to tackle separate
component elements of the hierarchy. In contrast we propose
dynamically decomposing the problem in two layers using a
bottom-up approach. The tactical layer at which task plans
are constructed from the original actions in the domain, and
the strategic layer, which encapsulated actions that represent
the completion of a task. The original problem is decom-
posed into disjunct tasks using a clustering algorithm, each
task is planned for independently at the tactical layer and

forms a pre-constructed plan. Then a problem is composed
at the strategic layer, to find an execution order of the pre-
constructed plans that satisfies the original planning prob-
lem.

We explore this approach in the context of the FP7 project
PANDORA, managing a fleet of Autonomous Underwater
Vehicles (AUVs). These vehicles are tasked with maintain-
ing a seabed facility unsupervised. The structures on the
seabed must be inspected on a regular basis. The AUVs must
interact with control panels within set time windows to man-
age the site within time and resource constraints, refueling
autonomously.

Decomposing a task, in general, is not trivial. Planners
like SGPlan (Chen, Wah, and wei Hsu 2006) and RE-
ALPlan (Srivastava 2000) have explored this in the past with
mixed success. The latter decomposes a plan based on the
number of resources available, e.g. it crease a different plan
for each available robot. In contrast, the decomposition ap-
proach used in the PANDORA project is based on “local-
ity”. The observation we exploit is that many of these long-
term autonomy missions involve located executives interact-
ing with their environment to achieve goals. These goals can
be clustered, geographically and temporally, into a set of dis-
crete tasks. A task can be associated with the area in which
operations will be performed to accomplish its goals.

The key difference in our approach is in the construction
of the strategic model. Similar to an HTN model, the strate-
gic level contains macro actions that encapsulate plans at the
tactical level. However, these plans are not constructed top-
down, but automatically generated by a planner, bottom-up.
A planner is used to construct plans for each task. The ex-
pected time and resource requirements to complete the task
are taken automatically from the plan. These values are used
as costs for the corresponding strategic action encapsulat-
ing this task. The strategic problem can then be constructed
using these abstracted task-actions.

The paper is organized as follows. In Section 2 we give an
overview of the relevant background of persistent autonomy
and planning for long horizons. In Section 3 we describe
our decomposition and abstraction technique in more detail.
Then, in Section 4 we describe how a strategic mission plan
can be executed, and some efficiency that can be gained. Fi-
nally, in Section 5 we describe the evaluation method for
testing our framework and include the results of our evalua-
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tion.

2 Related Work
Integrating planning systems with robotic systems for on-
board planning in long-term missions is not a new concept,
for example NASA’s EUROPA framework was used for the
EO-1 mission (Sherwood et al. 2006). Related to AUVs
specifically a planning system was developed in cooperation
with MBari to track algae blooms (Fox, Long, and Maga-
zzeni 2012), within T-REX (Teleo-Reactive EXecutive) for
reasoning onboard AUVs (McGann et al. 2008b), and using
ROSPlan to integrate a planner with the COLA2 control ar-
chitecture for AUVs in subsea intervention tasks (Cashmore
et al. 2015; Palomeras et al. 2012).

We take the ideas introduced in these works and ap-
proach the challenge of persistent autonomy: missions that
require robust planning and execution, with horizons of
days, or even weeks. Alternative strategies for long term
autonomy typically focus on execution monitoring or on-
board replanning (eg (Smith, Rajan, and Muscettola 1997;
McGann et al. 2008b; 2008a; Cashmore et al. 2015)). Nev-
ertheless, these approaches are founded on the same ambi-
tion for long term autonomous behaviour and recognise the
role of planning in achieving it. The contribution of this pa-
per is in the formulation of a decomposed planning problem,
through a bottom-up decomposition approach.

3 Bottom-Up Top-Down Strategic Missions
In this section we formalise the planning problem and the
decomposition of it. We use PDDL2.1 (Fox and Long 2003)
to describe our example domain and problems. In general
the approach is not tied to choice of description language.
Definition 1. PDDL2.1 Planning Problem. A PDDL2.1
planning problem is the tuple Π := {P, V,A, Tp, Tv, I, G},
where P is a set of propositions; V is a vector of real vari-
ables, called fluents; both are manipulated byA, a set of du-
rative and instantaneous actions. I(P, V ) is a fuction over
P ∪ V which describes the initial state of the problem. Sim-
ilarly G(P, V ) is a function that describes the goal condi-
tion. Tp is the set of time initial literals (TILs). A TIL (t, p)
describes that proposition p becomes true at time t. Tv is
the set of time initial fluents (TIFs). A TIF (t, v, x) describes
that fluent v is assigned the value x ∈ R at time t.

A durative action a is described as a tuple: a :=
{prea, effa, dura} where prea represents the action’s pre-
conditions – conditions that must hold for the action to be
applied – effa represents the action’s effects, and dura is
a duration constraint, a conjunction of numeric constraints
corresponding to the duration of the action a.

A single condition is either a single proposition p ∈ P ,
or a numeric constraint over V . A precondition is a con-
junction of zero or more conditions. Each durative action A
has three subsets of preconditions: pre`a, pre↔a, preaa ∈
prea. These represent the conditions that must hold at its
start, throughout its execution, and at the end of the action,
respectively.

Action effects are described by eff+`a, eff
−
`a, effects

which add and remove propositions at the start of the

action, respectively. Similarly eff+aa, eff
−
aa add and re-

move propositions at the end of the action. Numeric effects
effnum`a , effnumaa assign values to fluents at the start and
end of the action. Finally, continuous numeric effects eff↔a

describe continuous change throughout the action’s dura-
tion. (Fox and Long 2003).

A solution to a planning problem is a sequence of ac-
tions and timestamps 〈(a0, t0), (a1, t1) . . . , (an, tn)〉 appli-
cable in I for which the resultant state S′ satisfies the goal:
S′ := G.

A planning problem can contain fluents which are re-
sources (Coles et al. 2014), we define resources as follows:

Definition 2. Resource. Given a planning problem Π a re-
source is defined as a numerical fluent v ∈ V whose value
can be altered by the effect of an action a ∈ A and also ap-
pears in the precondition of an action or is contained by a
goal. A special resource is time as it can be constrained by
TILs in the domain.

An example of a resource in a logistical domain might
be fuel, which can altered by consuming it or produced by
refuelling.

Decomposition into Tasks
Given a planning problem Π we search for a decomposition
that separates the goal G into a set of tasks T where each
task task ∈ T is task ⊆ G. For each task we construct
new planning problem Π′ = Π, where Π′G = task. At the
tactical planning stage we do not know how many resources
are available for each task, so we remove any constraints on
these. These constraints are imposed on the planner at the
strategic level.

We define a task’s initial state to be a subset I ′ ⊆ P de-
scribing the requirements for beginning the task. These re-
quirements for beginning each task must be carefully cho-
sen, we need to make sure that these requirements are reach-
able after the execution of any other task. In our work we
rely on a domain expert to assign an initial state to each task.
For example, in the PANDORA domain we identify, for each
task, a location that is close to the area within which that task
will be performed, L(task). We call this the jump off point
for task. The initial state I ′ of each task is that the AUV is
located at the jump off point. These jump off points are lo-
cated above the seabed structures, which makes them easily
reachable. The task’s initial state is used in the generation of
the strategic problem, discussed in the next section.

Each problem Π′ is passed to a planner, and a plan found.
The solution plan plan(Π′) and its resource requirements
are saved.

Whilst in general many decompositions are possible, it is
sensible to decompose a problem such that related goals are
combined in a single task. Decomposition of goals can be
computed using a clustering algorithm or can be hand coded
based on expert information of the domain. In PANDORA
we exploit the fact that the domain is already separated into
multiple seabed structures. While part of the same seabed fa-
cility, the structures are separated spatially, and are a simple
way to split the goals into sets based on location. Moreover,
control panels can be interacted with only within certain
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time windows. If we create a task containing a goal with an
associated time window with any other goal, then we might
impose artificial constraints on the strategic level, leading
to an unsolvable strategic problem. For example, consider
the goals g1, g2, and g3 that have non-overlapping time win-
dows, such that g1 needs to be achieved before g2 and g2
needs to be achieved before g3. If we create a task that com-
bines g1 and g3 and another task that contains g2 then we
render the planning problem unsolvable. For this reason we
put those goals that are dependent on deadlines in separate
tasks.

Generating a Strategic Problem
In order to generate the strategic problem, first an estimate
of the resource use for each task must be computed. These
estimates are computed from the tactical plans plan(Π′).
The strategic domain and problem describe the execution
of a task in an abstracted way, similar to HTN planning,
by encapsulating the task plan as a single action. Therefore,
the plan(Π′) is encapsulated in an abstract action atask for
which:
• prea models the bounds on the resources used by
plan(Π′), and the initial state I ′.

• effnuma describes the change in resource over plan(Π′).
• eff+a ∪ eff−a describes the change in distinct variables

over plan(Π′).
• dura is the duration of plan(Π′).

The domain and an example problem file from PAN-
DORA are shown in figures 1 and 2 respectively. The com-
plete mission actions correspond to the tactical plans for a
single task. The duration of these actions is determined by
the function mission duration, which is defined in the initial
state. These mission durations (along with any other possi-
ble resource requirements) are set in the initial state to be
equal to the duration of the corresponding task plan. For ex-
ample, in figure 2 the duration of each mission is assigned
in the initial state, eg:
(= (mission duration Mission10) 117.739)

As a precondition of the complete mission action, the exec-
utive vehicle must be at the mission jump-off location L(T )
for the task t, and there must still be enough resource and
time available to achieve the task completely.

4 Efficient Execution of Strategic Missions
There are some improvements we can add in the way that
the strategic plan is executed. It is possible to simply re-
place the strategic complete mission actions with the tactical
plans they represent. However, a more efficient plan can be
found by replanning the tactical problem during execution
of the strategic plan. Example strategic and tactical plans
are shown in figures 3 and 4.

There are several reasons to replan the tactical problem
before its encapsulating complete mission action is executed
in the strategic plan.

1. depending on the execution of previous tactical plans, the
current amount of available resource might differ from
what was expected to be available;

(define (domain strategic)

(:requirements ...)

(:types waypoint mission vehicle)

(:predicates

(connected ?wp1 ?wp2 - waypoint)

(at ?v - vehicle ?wp - waypoint)

(vehicle_free ?v - vehicle)

(in ?m - mission ?wp - waypoint)

(completed ?m - mission)

(active ?m - mission)

...

)

(:functions

(distance ?wp1 ?wp2 - waypoint)

(mission_duration ?m - mission)

(charge ?v - vehicle)

(mission_total)

)

(:durative-action complete_mission

:parameters (?v - vehicle ?m - mission ?wp - waypoint)

:duration ( = ?duration (mission_duration ?m))

:condition (and

(over all (vehicle_free ?v))

(over all (active ?m))

(at start (in ?m ?wp))

(at start (at ?v ?wp))

(at start (>= (charge ?v) (mission_duration ?m)))

)

:effect (and

(at start (not (at ?v ?wp)))

(at end (increase (mission_total) 1))

(at end (decrease (charge ?v) (mission_duration ?m)))

(at end (completed ?m))

(at end (at ?v ?wp))

)

)

(:durative-action do_hover ...

(:durative-action dock_auv ...

(:durative-action recharge ...

(:durative-action undock_auv ...

))

Figure 1: A fragment of a strategic domain. The body of
some domain-specific operators is ommitted for space. The
complete mission operator corresponds to the tactical plan
of a task.

2. similarly, the complete mission (strategic) action might
be dispatched earlier or later than was anticipated, which
might have knock-on effects on deadlines in the tactical
task;

3. depending on the direction of approach from the previous
action of the (strategic) plan, the tactical plan might be
planned differently to exploit better routes between ele-
ments of the task.
The execution of a tactical plan, including any tactical re-

planning, or rescheduling, is handled by an onboard exec-
utive, in our evaluation we use ROSPlan (Cashmore et al.
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(define (problem strategic_mission)

(:domain strategic)

(:objects

v - vehicle

mission_site_start_point_0 wp_auv0

... - waypoint

Mission0 Mission1 Mission10 Mission12

Mission13 Mission14 Mission15

... - mission

)

(:init

(vehicle_free v)

(at auv wp_v0)

(= (charge v) 1200)

(= (mission_total) 0)

(recharge_at mission_site_start_point_0)

(active Mission0)

(active Mission1)

(active Mission10)

(active Mission12)

(active Mission13)

(active Mission14)

(active Mission15)

...

(at 4100 (not (active Mission0)))

(at 7100 (not (active Mission1)))

(at 86400 (not (active Mission10)))

(at 86400 (not (active Mission12)))

(at 86400 (not (active Mission13)))

(at 86400 (not (active Mission14)))

(at 86400 (not (active Mission15)))

...

(in Mission0 mission_site_start_point_1)

(in Mission1 mission_site_start_point_1)

(in Mission10 mission_site_start_point_1)

(in Mission12 mission_site_start_point_1)

(in Mission13 mission_site_start_point_1)

(in Mission14 mission_site_start_point_1)

(in Mission15 mission_site_start_point_1)

...

(= (mission_duration Mission0) 261.868)

(= (mission_duration Mission1) 242.065)

(= (mission_duration Mission10) 117.739)

(= (mission_duration Mission12) 154.668)

(= (mission_duration Mission13) 157.892)

(= (mission_duration Mission14) 151.502)

(= (mission_duration Mission15) 135.29)

...

(connected mission_site_start_point_0 wp_v0)

(= (distance mission_site_start_point_0

wp_v0) 56.7891)

...

)

(:metric maximize (mission_total))

(:goal (> (mission_total) 0))

)

Figure 2: A fragment of an example strategic problem.

2015). In our tactical domain, we use a conservative model
of action duration and cost, so we expect that most tasks will

0.000: (do_hover auv wp_auv0 wp0) [291.548]

291.548: (complete_mission auv mission9 wp0) [194.639]

486.188: (complete_mission auv mission8 wp0) [236.909]

723.098: (do_hover auv wp0 wp1) [270.416]

993.516: (dock_auv auv wp1) [20.000]

1013.516: (recharge auv wp1) [1800.000]

2813.517: (undock_auv auv wp1) [10.000]

2823.517: (do_hover auv wp1 wp0) [270.416]

3093.934: (complete_mission auv mission11 wp0) [284.545]

3378.481: (complete_mission auv mission10 wp0) [293.488]

3671.970: (do_hover auv wp0 wp1) [270.416]

3942.387: (dock_auv auv wp1) [20.000]

3962.387: (recharge auv wp1) [1800.000]

5762.388: (undock_auv auv wp1) [10.000]

5772.388: (do_hover auv wp1 wp0) [270.417]

6042.806: (complete_mission auv mission1 wp0) [342.707]

6385.514: (do_hover auv wp0 wp1) [270.417]

6655.931: (dock_auv auv wp1) [20.000]

6675.931: (recharge auv wp1) [1800.000]

8475.932: (undock_auv auv wp1) [10.000]

8485.932: (do_hover auv wp1 wp0) [270.416]

8756.350: (complete_mission auv mission0 wp0) [381.766]

9138.117: (do_hover auv wp0 wp1) [270.416]

9408.534: (dock_auv auv wp1) [20.000]

9428.534: (recharge auv wp1) [1800.000]

11228.535: (undock_auv auv wp1) [10.000]

Figure 3: A strategic plan for the abstract level. The com-
plete mission action corresponds to the tactical plan of a
task.

% 0.000: (do_hover auv wp0 wp1) [34.547]

% 34.548: (check_panel auv wp1 ip0) [10.000]

% 44.549: (correct_position auv wp1) [10.000]

% 55.208: (valve_state auv wp1 p0) [10.000]

% 70.000: (do_hover auv wp0 wp2) [9.921]

% 79.922: (turn_valve auv wp2 p0 v0) [30.000]

% 109.923: (correct_position auv wp2) [10.000]

% 149.924: (turn_valve auv wp2 p0 v1) [30.000]

% 179.925: (correct_position auv wp2) [10.000]

Figure 4: A tactical plan for a single task. This plan is gener-
ated to provide resource estimates in the construction of an
abstract strategic problem, and encapsulated at that level in
a complete mission action.

be completed within the estimated time. However, when ex-
ecuting plans onboard a physical platform there is always
the chance that actions might fail, take longer than expected,
or be accomplished more quickly.

To take advantage of extra or diminished resource (1), or
alteration in deadline (2), we replan a tactical task before
it is executed. This process takes 10 seconds, and can be
performed in parallel with other strategic actions.

When planning tactical tasks in the construction of the
strategic problem, the task jump-off point L(t) is used as the
intial position of the executive. After the strategic plan has
been generated, the initial position of the executive can be
improved by considering the previous actions in the strategic
plan. Thus, the executive no longer needs to visit the jump
off point, but can move directly to the most convenient first
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location in the execution of the task.
To ensure efficient linkage to the next task, the latest desti-

nation in the strategic plan can be used as the initial location
for the executive in the task to be replanned. L(t) will be ig-
nored and replaced with the necessary connecting navigation
actions to get between the latest destination in the strategic
plan and the best entry point in the next task.

Finally, it is necessary to revalidate the strategic plan af-
ter the replanning or completion of any tactical task. It is
possible that a tactical plan takes longer to complete than
expected, and from the current time the strategic plan no
longer respects the task deadlines. Similarly, a tactical plan
might take more resource than accounted for by our conser-
vative action model, and there is no longer enough resource
to complete subsequent actions in the strategic plan.

To account for these points, we use the ROSPlan exec-
utive for dispatch of the strategic, as well as tactical plan.
More generally, execution monitoring techniques developed
for tactical plans can be used for the execution of plans at
both levels in the hierarchy.

5 Results
We tested this approach in the context of the FP7 project
PANDORA, managing a fleet of Autonomous Underwater
Vehicles (AUVs). In order to do this, we have built an under-
water environment simulation. The simulator possesses an
in-built editor used to model missions with very long hori-
zons, allowing us to experiment with multi-hour and multi-
day missions, combining multiple tasks, such as inspection
of a complex site (figure 5) and valve turning, under dead-
lines and resource constraints. The simulation provides un-
certainty about action durations, creates unpredictable fea-
tures such as marine life, simulates currents, and allows the
AUV to discover new features in the environment.

We compare against a selection of top-down decompo-
sitions to show that the tactical information gathered by
the bottom-up top-down (BUTD) approach leads to heigher
quality, and more robust solutions. We compare against a
purely tactical approach to demonstrate that the scenario is
too large to solve as a single planning problem, and some
heirarchical decomposition is a possible solution.

We used the BUTD decomposition approach to separate
a set of missions into tasks, with results between 10 and
30 tasks. We then found strategic solutions to these prob-
lems. To compare, we used the same set of tasks in a top-
down decomposition, in which the tactical missions had not
been planned, and their estimated resource usage computed.
As the top-down approach has not yet planned on the tac-
tical level, another estimate of each task’s resource require-
ments is required. We expect that some prior knowledge of
resource use would be known, and so use the estimated re-
source usage computed from the BUTD decomposition as
this a priori knowledge, and used it in four different esti-
mates of task resource usage:

• mean: a naive strategy that takes the mean resource use
over all tasks, and assigns this to all tasks;

• conservative a conservative strategy that assigns to all
tasks the 80th percentile of resource use over all tasks;

• bucket-mean: the tasks were divided into sets of similar
type – inspection, valve-turning, etc. – and size. Then, the
mean resource use from each set was assigned as the esti-
mated resource use for each task in that set;

• bucket-conservative: the tasks were divided in the same
was as bucket-mean, but the 80th percentile from each set
was used instead of the mean.

We used the planner POPF (Coles et al. 2010). POPF is a
temporal and metric planner, which allows us to model the
synchronisation aspects of our problems (including dead-
lines for interaction with valves), the constraints on energy
over long missions, and optimise plans based on a metric
function. The metric to be optimised was the number of
tasks completed. POPF was given 1800 seconds and 8GB
of RAM to find the best possible solution. In the BUTD ap-
proach POPF was given 10 seconds per tasks to perform tac-
tical planning for each task. This reduced the amount of time
given to solving the BUTD strategic problem.

Due to the extra information from the tactical level, we ex-
pected that the strategic solutions generated using the BUTD
approach would plan more efficient solutions in terms of
number of tasks completed. Moreover, as the tasks had al-
ready been tactically planned, the resource usages of fewer
tasks would have been underestimated, and the solutions are
expected to be more robust.

Table 1 compares the number of tasks solved by BUTD
and the various top-down strategies. As can be seen from
the table, BUTD solves more tasks than any of the top-down
strategies. Table 2 shows the number of tasks for which the
resource usage is underestimated. In the strategic problems
generated by the top-down strategies, these tasks have as-
signed resource estimates lower than that derived from plan-
ning a tactical solution. As a result, these tasks are very
likely to run out of time and resource before successfully
completing.

In the top-down approaches, the conservative approach
performs the poorest, which is to be expected – the large
uniform estimates for the resource usage of every task leads
to a solution with many unnecessary refueling actions and
missed deadlines. Both mean and bucket-mean strategies
lead to higher quality solutions, but are not robust, under-
estimating the resource use of 32% and 27% of tasks re-
spectively. The bucket-conservative approach performs best
of the top-down appraches. The approach is the most robust,
underestimating the resource requirements of only 14% of
tasks, and generating the highest quality strategic solutions
amongst all top-down approaches.

BUTD outperforms all top-down approaches, confriming
our expectations. The variance in the resource usage be-
tween tasks of similar type and size is due to constraints that
are only visible at the tactical level of the original domain,
and as such are not available prior to planning the task itself.
With this information, the BUTD strategic solutions are the
most robust – none of the tasks are guaranteed to fail – and
of the highest quality.

Table 3 shows the results for attempting to plan missions
without decomposing into a tactical/strategic heirarchy. The
number of tactical goals achieved by the best plan. It is clear
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Figure 5: The simulation (left) and current plan (right) of a tactical mission for an inspection task.

that a purely tactical approach is insuffiecient for these sizes
of problem.

6 Conclusion
We have presented an novel approach to the heirarchical de-
composition a planning problem in the context of persistent
autonomy. Our approach constructs an abstracted “strategic”
layer of the heirarchy from solutions to the tactical tasks
planned at the level of the original domain. The resulting
problems can be solved and dispatched using a breadth of
execution frameworks already available for executing plans
onboard a robotic platform.

We briefly described the decomposition of a mission into
a set of tasks, based on geographical and temporal cluster-
ing. This simple solution enables us to generate the problem
heirarchy, but is not necessarily the best approach. In fact,
any decomposition sacrifices the possibility or more optimal
solutions that are formed from the interweaving of action in
multiple tasks. Moreover, our spatial and temporal decom-
position is specific to our domain. We propose to investigate
the use of more general decompositions in future work.

In generating an strategic layer there is a trade-off when
estimating the resource constraints of abstracted actions that
encapsulate collections of lower-level behaviour. A more
conservative approach is more robust, but over-estimation
of resource use leads to less efficient plans that do not utilise
all of the time and resource actually available. We show that
it is possible to precompute much of this information in the
automatic generation of the strategic layer, creating tighter
bounds on resource use that remain robust.

We demonstrate these benefits, simulating long-term mis-
sions by autonomous underwater vehicles in a dynamic en-
vironment.
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Tasks Completed
number of Top-down

tasks BUTD conservative bucket-mean mean bucket-conservative
10 10 6 10 10 10
10 10 6 10 10 10
10 10 6 10 10 10
15 15 4 15 15 15
15 15 5 15 15 15
15 15 5 15 15 15
20 20 4 20 20 14
20 20 4 20 20 14
20 20 4 20 20 20
25 24 4 16 13 18
25 23 4 16 13 18
25 25 4 14 10 24
30 25 3 11 10 22
30 15 3 11 10 22
30 25 3 11 10 23

Table 1: Comparing BUTD and Top-down performance over long missions. The number of tasks completed in strategic missions
of varying size.

Tasks Underestimated
number conser bucket bucket con
of tasks -vative mean mean -servative

10 1 5 4 2
10 0 3 2 1
10 2 3 2 3
15 1 7 6 2
15 0 3 3 1
15 4 5 4 5
20 1 9 8 2
20 0 5 4 1
20 4 5 4 5
25 1 11 10 2
25 0 6 5 1
25 6 7 6 7
30 1 13 12 2
30 0 7 6 1
30 6 7 6 7

Table 2: The quality of the different top-down representa-
tions, in terms of number of tasks given a duration that is
shorter than the actual estimate of time required to complete
the task. These tasks are likely to run out of time during ex-
ecution.

Goals achieved
goals BUTD Separate tasks
106 106 9
106 106 9
106 106 9
150 150 9
150 150 9
150 150 9
212 212 14
212 212 9
212 212 9
265 258 11
265 250 9
265 265 9
310 270 8
310 190 9
310 270 10

Table 3: Comparing the BUTD decomposition against plan-
ning for each goal separately. The number of goals achieved
by the best plan.
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Opportunistic Planning for Increased Plan Utility

Michael Cashmore, Maria Fox, Derek Long, Daniele Magazzeni, and Bram Ridder∗

Abstract

This paper explores the execution of planned missions in sit-
uations in which opportunities to achieve additional utility
can arise during execution. The missions are represented as
temporal planning problems, with hard goals and time con-
straints. Opportunities are soft goals with high utility. The
probability distributions for the occurrences of these oppor-
tunities are not known, but it is known that they are unlikely
so it is not worth trying to anticipate their occurrence prior to
plan execution. However, as they are high utility, it is worth
trying to address them dynamically when they are encoun-
tered, as long as this can be done without sacrificing the
achievement of the hard goals of the problem. We formally
characterise the opportunistic planning problem, introduce a
novel approach to opportunistic planning and compare it to
an on-board replanning approach in an example domain in-
volving autonomous underwater vehicles.

1 Introduction
There are many examples of long-horizon control prob-
lems in which the goal is to complete specific tasks un-
der time and resource constraints. To do so requires goal-
achieving activities to be planned. An executive system
then executes the resulting plan in the physical world to
bring about the desired goals. This picture is complicated
by the fact that most physical environments are dynamic,
leading to uncertainty about the effects of actions (Pau-
los et al. 2015). One way to handle this uncertainty is to
build a plan as a policy (a mapping from states to ac-
tions), allowing reactive control during execution, but the
current Reinforcement Learning-based approaches to pol-
icy construction (Kaelbling, Littman, and Cassandra 1995a;
Pineau, Gordon, and Thrun 2006a; Sanner and Boutilier
2009; Ong et al. 2009) do not scale to handle long-horizon
tasks. It is computationally most efficient to plan without
taking uncertainty into account. When large parts of a plan
can be expected to execute without incident, it is more effi-
cient to exploit the strategy of replanning on failure, rather
than to try to plan ahead for contingencies. During the exe-
cution of a plan, execution activity will divert from the origi-
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nal plan when failures occur and actions to achieve the orig-
inal goals are replanned from the resulting unexpected state.

Another motivation for diverting from an original plan
arises when unforeseen opportunities to achieve additional
utility present themselves. Replanning on failure is a widely
recognised technique, but responding to opportunities de-
mands a different behaviour. In contexts in which these op-
portunities are unlikely, and might arise without warning
during execution of a plan, the construction of a policy or
a contingent plan that can exploit them is generally im-
practical. An example of a domain in which opportunities
can arise is in the pursuit of planetary space science, where
an unexpected high-value science phenomenon might occur
during the execution of a long traverse. Instead of missing
the phenomenon and having to be directed back by human
experts (as was the case when the Mars rover, Opportunity,
missed Block Island in 2009), the intelligent vehicle should
autonomously detect the phenomenon and determine, with-
out recourse to human advice, whether there are resources
available to devote to it.

The domain we consider in this paper is the autonomous
inspection and maintenance of underwater installations. We
begin, in Section 2, by briefly introducing the field of Auto-
mated Planning, the technology we have exploited to address
opportunistic planning. In Section 3, we then describe the
operational context, introducing the relevant concepts and
explaining the planning problem. In Section 4 we explain
what we mean by opportunistic planning, and in Section 5
we formalise this problem. In Section 6 we discuss proba-
bilistic approaches to similar problems. In Section 7 we ex-
plain how we have addressed opportunistic planning within
a deterministic planning framework. We then present results
for a number of experiments and discuss future work direc-
tions.

2 Automated Planning
Planning is the process of considering and organising ac-
tions to achieve goals, before starting to execute them. In
planning, the actions that must be performed are not pre-
determined by the goals, but are selected, from amongst a
typically large number of alternative actions. The choice is
guided by an effort to achieve the goals whilst optimising
various metrics. Ordering choices and resource allocations
are made, and evaluated, as part of the selection process.
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The selection of a particular action affects choices that can
be made subsequently, so has an important impact on the
quality of the eventual plan. The consequence of this ap-
proach is that neither the number of actions in a plan, nor
the makespan or resource allocation of the plan, are predeter-
mined. This distinguishes planning from scheduling, where
the actions to be performed are predetermined but the timing
of actions, and the allocation of resources to them, are not.

Planning relies on the use of a model of the available ac-
tions to support both prediction of their effects on a state
and the identification of states from which the actions are
applicable. A standard modelling language used to repre-
sent actions for this purpose is the Planning Domain De-
scription Language (PDDL), originally developed in 1998
by a committee led by Drew McDermott (McDermott et al.
1998), but later extended through several variants, includ-
ing PDDL2.1 (Fox and Long 2003), PDDL2.2 (Edelkamp
and Hoffmann 2004), PDDL3 (Gerevini et al. 2009) and
PDDL+ (Fox and Long 2006). The extensions of most rele-
vance to us here are PDDL2.1 and PDDL2.2, which intro-
duced actions with duration and the opportunity for con-
currency and management of deadlines. In this language, a
planning problem is formally described by providing two
files: the domain and the problem. The problem file consists
of two parts: the initial state and the goals.

Definition 1 A state is a set of known true facts consist-
ing of boolean and numeric variables. A Boolean variable
is expressed as a proposition consisting of a predicate and a
vector of typed arguments, which is assigned the value True
or False. A numeric variable is expressed as a function ap-
plied to a vector of typed variables, which is assigned to a
numeric value.

Definition 2 An action is a tuple 〈P,A,D〉, representing a
function from state to state, described in terms of its pre-
conditions, P , and effects, A ∪D. The Boolean effects in A
are the facts that are added by the action, while the Boolean
effects in D are the facts that are removed by the action.
The numeric effects in A ∪ D are to increase or decrease a
numeric variable by some numeric quantity, or to assign a
value to a numeric variable. An action may be applied in any
state in which the preconditions are true, and it produces a
state in which the effects are true.

Definition 3 A planning problem is a tuple, 〈D, I,G〉,
where D is the domain file specifying the types, functions
and predicates required to describe the problem, and con-
taining the set of action schemas available to the planner. I
is the initial state, consisting of all the facts that are known
to be true when planning begins.G is the goal state, consist-
ing of the hard goal conditions that must be achieved by the
planner. The problem instance description varies, depend-
ing on the problem to be solved, while the domain is a fixed
description of what the planner can do to change the state
of the world.

A temporal planning problem is an extension of a plan-
ning problem in which actions have duration. An action, A,
is specified as having a start and an end, and the temporal
constraint, that the start precedes the end (Astart < Aend),

is always enforced. The duration of an action might be flex-
ible, so that the planner can choose it dynamically. Durative
actions can specify invariant conditions that must hold over
their entire interval. When durative actions are present, the
planner must maintain a simple temporal network (Dechter,
Meiri, and Pearl 1991) to enable the enforcement of tempo-
ral consistency during planning.

The actions used to model a domain usually encapsulate
a behaviour that is managed, in execution, by one or more
controllers, handling sensing and actuation to achieve a spe-
cific effect. The planner is concerned not with the execution
of actions, but their organisation into larger collections in
order to efficiently achieve a collection of goals. Thus, an
action to navigate between waypoints will be implemented
by controllers that attempt to use motors and localise via
sensing, while the planner is concerned with deciding which
locations to visit, for what purpose and in what order.

3 The Operational Context: Underwater
Maintenance and Inspection Tasks

In this paper, we focus on long-term maintenance and in-
spection of underwater installations, using an Autonomous
Underwater Vehicle (AUV). This work was carried out in
the EU FP7 project, PANDORA1. The PANDORA project
explored the achievement of persistent autonomy, through
planning, task learning, plan execution within resource lim-
its and adaptive response to unanticipated events.

The PANDORA project considers an underwater oil in-
stallation, consisting of manifolds, pipelines, valves and
welds, requiring regular inspection and maintenance. The
installation must be maintained over long periods, such as
days or weeks, without human intervention. Because of en-
ergy and time constraints, mission plans must ensure that the
best use is made of limited resources such as on-board en-
ergy. The situation is complicated by the fact that environ-
mental conditions (such as currents and marine life) might
affect how long tasks take to complete, and when they are
available for completion. There is also uncertainty, both in
the layout of the installation and the condition of its compo-
nents (both of which might have changed since the construc-
tion of the installation).

The overall objective of the PANDORA project is for a
suitably equipped AUV to: (i) construct long-term mission
plans to ensure an effective monitoring of the site over time,
and (ii) to execute the operations in these mission plans
whilst managing uncertainty and responding to unexpected
events. The AUV is equipped with a retractable gripper for
turning valves, and a water jet for cleaning.

The daily operations to be performed by the AUV in-
clude: inspecting pillars, manifolds, welds and pipelines,
reading valve-sensors, turning valves, cleaning components
exposed to bio-fouling, and updating the mapped layout of
the site. This latter task involves investigating objects that
appear in unexpected locations, such as collapsed pillars,
buried chains and pipeline segments, and other phenomena
that could affect the welfare of the installation.

1http://persistentautonomy.com/
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4 Opportunistic Planning
During the execution of a plan by an AUV, unexpected
events might occur that provide opportunities for the vehi-
cle to increase the overall utility of its operations. An ex-
ample is that a part-submerged section of an anchor chain,
or other structure, might be spotted during the execution of
a mission. This event provides an opportunity to perform
an unplanned inspection, or chain-following activity, pro-
vided that resources permit the execution of the necessary
extra actions. Opportunities are not modelled or anticipated
by the planner, and they can be managed without requiring
the planner to reason with probabilities. They can be treated
as dynamically occurring soft goals. These are distinguished
from the goals specified in the problem instance description,
which are treated as hard goals that must be satisfied.

To manage unexpected opportunities within a determin-
istic planning framework, we use a conservative planning
approach. Conservative planning is a method that seeks to
exploit the classical planning framework, while simultane-
ously recognising the underlying, but unknown, stochastic
behaviour of the execution environment. This means that
well-researched methods in temporal-metric planning can be
exploited. In this approach, rather than seeking to produce a
plan with optimal utility, we seek to produce a robust plan,
in which we can have very high confidence that the goals
will be achieved within the time and energy budget of the
vehicle. We then use opportunities to increase the utility of
the plan during its execution.

To construct the mission plans, we use the POPF
planner (Coles et al. 2010), which takes planning do-
main models written in the temporal planning language
PDDL2.2 (Edelkamp and Hoffmann 2004). A temporal
planner is required because the valve-turning tasks impose
temporal constraints. They are constrained to be turned
within specified time windows. For example, in a given mis-
sion it might be necessary to reset a valve within a one-
hour window timed to occur six hours into the future from
the start of the plan. These constraints necessitate reasoning
with deadlines and synchronisation of activities. Thus, al-
though we consider only a single AUV executing actions in
sequence, and therefore no concurrent activity, these dead-
lines raise synchronisation issues which make online meth-
ods such as the online receding horizon approach (Burns et
al. 2012; Ross et al. 2008) impractical.

We assume that opportunities are rare, but offer high util-
ity gain when they are spotted and exploited. Thus, op-
portunities in this framework are somewhat similar to high
impact, low probability events (HILPs) (Lee, Preston, and
Green 2011), although in this setting we are considering
rare events with a positive value, while HILPs are typically
treated as risks that threaten execution. We further assume
that the probability density function governing the distribu-
tion of these opportunities in the physical space is unknown,
so we cannot plan to anticipate them or determine their ex-
pected utility.

Our conservative planning strategy is based on the as-
sumption that, when executed, the actions in a plan will have
durations that are normally distributed around their means,
and that actions will in fact take much longer than their mean

durations. To build a robust plan we therefore use estimated
durations for the actions that are longer than the means. For
example, to have 95% confidence, we use 1.65 standard de-
viations from their means as the estimated durations of the
actions. 1.65 standard deviations from the mean is the 95th
percentile of the Gaussian distribution.

As a plan containing multiple actions is executed, the use
of the 95th percentile as an estimate for the nominal ex-
ecution time of each action leads to an accumulating ex-
pected error. So, if k actions all with independently dis-
tributed mean execution times m and standard deviations s
are executed in sequence, the sum of the estimated durations
will yield a total time for execution of k(m + 1.65s). The
time actually required to achieve the 95th percentile for the
combined sequence of actions is only km+1.65s

√
k, show-

ing that the estimate based on individual 95th percentiles
yields a 1.65s(k −

√
k) over-estimate of the time required

for 95% confidence in execution of the entire sequence. Our
proposed opportunistic planning method is designed to ex-
ploit this over-estimate for other tasks that arise opportunis-
tically.

As a practical example, suppose that navigating the tra-
verse between two waypoints on the installation has a mean
time of 11,507 seconds (3.2 hours), and a standard devia-
tion of 925 seconds (about 15 minutes). If 5 successive tra-
verses between waypoints are to be executed, the use of the
nominal time estimates will yield an estimated duration of
65,166 seconds (about 18 hours). The 95th percentile for the
estimated duration of the combined sequence is 60,948 sec-
onds, so using the 95th percentile for nominalisation will
lead to an expected overestimate for the execution time of
4,218 seconds: just over an hour, which is about 7% of the
95th percentile time for the execution of the complete se-
quence.

Opportunities can only be spotted and exploited during
the execution of preemptible actions, or at points between
the execution of actions. In our application, the only pre-
emptible actions are the navigation actions (of different
types, corresponding to different modes of movement). We
consider opportunities that are physically located in space,
so it is generally the case that they will arise during move-
ment between locations, when large areas are scanned as part
of the navigation action.

With these points in mind, the opportunistic planning
problem is as follows:

• The problem is a temporal planning problem, with deter-
ministic actions and a collection of hard goals specified in
the problem instance description.

• The problem exists in a 3-dimensional space, with tasks
requiring the executive to perform actions at particular lo-
cations and actions allowing the executive to move be-
tween locations (possibly in more than one way).

• The initial state is uncertain in a limited way: there is
a possibility that, at random locations, instances of ob-
jects exist that offer high reward if certain actions are per-
formed at their locations, but their existence and locations
are not known to the planner. There is also uncertainty
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about whether these objects will be observed, even if the
executive passes close to them.

• Although the probability distribution of opportunities is
unknown, it is assumed that they are rare and it is there-
fore entirely likely that the plan for the original goals will
be completely executed without an opportunity ever being
encountered.

• The executive is required to satisfy the hard goals of the
original problem, and to collect as much reward as pos-
sible from opportunities, given that the hard goals are
achieved.

Since the durations of actions can be longer than ex-
pected, the goals might not be achieved when executing a
plan that is expected to satisfy them, due to failure to meet
deadlines. In fact, during execution actions can fail for var-
ious reasons and the goals might become unachievable as a
consequence. In this paper we do not focus on what happens
when actions fail. Instead, we are interested in the possibil-
ity that a conservative assumption about the time required to
execute actions used in the original plan might lead to slack
time that can be used to pursue opportunities.

In this paper we formalise the opportunistic planning
problem, we propose a way to obtain good quality solutions
to it and we compare the proposed approach with the simple
alternative to replan whenever the observed state diverges
from the predicted state during execution.

5 The Opportunistic Planning Model
We present a formal description of the opportunistic plan-
ning problem. We assume that P is a temporal planning
problem, consisting of a domain and a problem instance, ex-
pressible in PDDL2.2 (Edelkamp and Hoffmann 2004). The
domain provides a finite, enumerated type representing lo-
cations, W , in a 3-dimensional space. In the PDDL family of
languages, the members of this type are all explicitly named
in the definition of the planning problem instance. We sup-
pose that P represents a problem in which goals are associ-
ated with locations (for example, pillars are located at way-
points), so that the executive must visit those locations in
order to complete the achievement of the goals. We further
suppose that the domain file of P contains at least one ac-
tion schema that allows an executive to move between loca-
tions (possibly subject to accessibility constraints, restrict-
ing which pairs of locations are directly connected).

Definition 4 An opportunity is a tuple, 〈T,Og, U〉, where
T is the name of a PDDL enumerated type in P , (x, y, z);
Og is a goal, with one free variable, v of type T ; and U is a
utility value in R. The goal Og[v] is called an opportunistic
goal.

An opportunity is a soft goal schema that is associated
with objects of a particular type, T , appearing in the domain
of P . The idea is that instances of T can be discovered and
added to the world during plan execution, each leading to
the creation of a new soft goal by instantiation of free vari-
able v in the opportunistic goal, Og. For example, Og might
be an inspection goal, and v might be instantiated by the
object “pillarA” of type Pillar, resulting in a new soft goal

to have inspected pillarA. In this work, we assume that soft
goals always correspond to performing operations on single
objects. An opportunistic planning domain consists of the
original domain, P , and a collection of opportunities.

In a real world situation, opportunities are distributed in
some way around the physical area being explored. In a sim-
ulation, they can be placed randomly around in the space. In
both cases, they exist to be discovered, but are not modelled
by the planner. They arise when new objects are identified
at locations that may have been previously unmapped and
inaccessible. If an opportunity is present, it can only be dis-
covered if the executive passes within sensing distance of its
location (a distance dependent on the type and effectiveness
of sensors available) and with some associated probability,
which is unknown.

The modelling language PDDL2.2 provides a feature
called Timed initial literals (TILs) which record, in the prob-
lem instance description, time windows during which goals
are achievable.

Definition 5 An opportunistic planning problem is a tu-
ple 〈P, I,G,A,Opps,R〉, where P is a temporal planning
problem (as described above), I is the initial state (including
timed initial literals that determine deadlines for goals), G
is a set of hard goals (they must all be achieved in any goal
state), A is a distinguished subset of actions in P that are
preemptible, Opps is a set of opportunities, and R is a func-
tion giving the mean and standard deviation of the duration
of any grounded instance of an action in P . The durations
of action instances are specified at the 95th percentile of the
distributions whose parameters R reports.

If an opportunity is discovered, replanning is initiated and
an extended initial state is constructed. If the opportunity is
discovered at time t, the TILs in the extended initial state
must be displaced by t (to allow for the time that has passed
since the start of execution). Any TIL with time earlier than t
are discarded and those later than t have their times reduced
by t. We call these time-corrected TILs. For example, con-
sider a TIL with an original time of t, when replanning is
initiated 30 minutes into the execution of the plan. The TIL
t occurs at (t − 30) minutes from the extended initial state.
Hence, the time of the time-corrected TIL is (t− 30).

Definition 6 A monotonic extension of an initial state de-
scription, I , extends I with a new collection of objects and
waypoints, O = {o : T} ∪ {w : W} and facts F , such that
each f ∈ F includes at least one object in O, and new soft
goalsOg, formed by grounding the opportunities associated
with type T using objects in O. Connectivity is added, link-
ing the new waypoints so that the newly added opportunity
can be reached. The extended initial state, I ′, adds O to the
objects in I and records the opportunity utility as a reward
for actions achieving goals in Og. I ′ contains all the facts
and time-corrected TILs in I as well as facts F .

The extended initial state will locate discovered opportu-
nities at new locations and new paths will be available by
which they can be accessed. According to the topography of
the space, some paths might require additional intermediate
locations to have been added to the state.
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Definition 7 An opportunistic plan fragment in state S is
a plan constructed to achieve a grounded opportunistic goal
from state S.

Our approach integrates opportunistic plan fragments
with the original plan, in order to exploit an opportunity
within the context of achieving the hard goal set. Oppor-
tunistic plan fragments, once integrated with a plan, can be
visualised as sub-plans (which might be long chains of ac-
tions) that branch off from the main plan trajectory, finally
returning to the main plan at a point enabling its continued
execution to result in the achievement of the hard goal set.
The means by which this integration is achieved is discussed
in Section 7.

6 Relationship to other Probabilistic Models
Earlier work (Fox and Long 2002; Gough, Fox, and Long
2004) explores a different model of opportunities in which
the opportunities and their locations are known in advance
of starting the execution of the plan. Opportunistic plan frag-
ments are computed offline, and executed online if their re-
source requirements are met. Woods et al. (Woods et al.
2009) assume that the types of opportunities that can arise
are known, and that all opportunities of the same type can
be exploited by the same opportunistic plan fragment. Plan
fragments are precomputed and stored in a plan library. The
relevant plan fragment is then inserted into the plan when-
ever an opportunity of its type is identified, and resources
allow.

The opportunistic planning problem can be seen as a spe-
cial case of a Partially-Observable Markov Decision Prob-
lem (POMDP), with an infinite state space (due to the con-
tinuous 3-dimensional distribution of locations of possible
opportunities). A general solution to such a problem is a pol-
icy, mapping each possible state to an action. If the probabil-
ity distribution over the opportunity space were known, the
problem could be modelled as an explicit POMDP (Kael-
bling, Littman, and Cassandra 1995b). Whether or not to
pursue an opportunity in a certain belief state amounts to
whether the expected utility of pursuing the opportunity, in
addition to achieving the hard goal set, all within the re-
source envelope available, exceeds the expected utility of
completing the current plan under execution with lower re-
source pressure. The problem can be modelled but, even
with recent work on improving efficiency (Ong et al. 2009;
Pineau, Gordon, and Thrun 2006b; Ross et al. 2008), the
decision-theoretic approach will not scale to the sizes of
problems that arise in practical applications. Moreover, the
offline decision-theoretic reasoning cannot be done at all in
the absence of knowledge about the probability distribution
over the opportunity space. A further problem in creating
a POMDP model is that states must record histories in or-
der to capture the fact that repeated observations of a part of
the physical space do not have independent probabilities of
leading to discovery of an opportunity: if nothing is seen on
one observation, then the probability that there is anything
there to be seen is much lower. Finally, the continuous space
presents a very significant challenge in representing the state
space, since we cannot know in advance which locations are

of interest, or, therefore, which areas of the space might be
observed or even become accessible.

Although a POMDP model appears very difficult to re-
alise and a full policy impossible to achieve with current ap-
proaches, a partial policy might be more tractable. One pos-
sible partial policy structure is a contingent plan in which
alternative branches are built explicitly into the plan struc-
ture (Pryor and Collins 1996; Drummond, Bresina, and
Swanson 1994). Contingent planning is very expensive, so
various methods have attempted to limit the number of con-
tingent branches constructed. In particular, Coles (Coles
2012) considers over-subscription planning with resource
uncertainty. In her approach, the configuration of the world
and all goals, including opportunities and their locations, are
known in the initial state, which makes it unsuitable for tack-
ling the problem we have characterised.

Burns et al (Burns et al. 2012) use an online receding hori-
zon approach to consider anticipatory on-line planning in
which plans take into account goals that are likely to arise,
in order to be better prepared for achieving them efficiently.
This is a relevant idea, but the difficulty in applying it to the
problem we present is that, in our model, opportunities are
assumed to be rare, making it unlikely that investment of re-
source in searching for an opportunity, rather than in simply
completing the main mission goals, will pay dividends.

All of these approaches rely on some knowledge of the
PDF over opportunities. By contrast, replanning does not re-
quire any knowledge about probability distributions, either
over the opportunity space or over the use of resources by
actions. In a reactive online method, a replanning strategy
responds to an opportunity by throwing away the plan un-
der execution, and building a new, conservative, plan for the
union of the hard goal set and the opportunity. It then exe-
cutes this plan instead, whenever its available resources are
sufficient to achieve the new goal set.

Replanning is therefore a plausible approach to our prob-
lem. However, we hypothesise that replanning will be un-
necessarily expensive, because it will replan parts of the
problem for which there is already a detailed, and resource-
valid, plan structure in place.

7 The Proposed Approach
We propose an approach to solving the opportunistic plan-
ning problem (Definition 5) as described in Section 5. Our
approach tackles opportunities (Definition 4) by inserting
opportunistic plan fragments (Definition 7) into an existing
robust plan, generated using conservative planning.

In our implementation of opportunistic planning, we con-
sider the distributions of the action durations and plan at the
95th percentiles of these distributions. This provides a sta-
ble baseline for robust confidence in the completion of the
plan. Conservative planning seems an inefficient way of al-
locating time to tasks, but this apparent inefficiency is offset
by the fact that plan utility is likely to be improved upon
at execution time. The executive may decide to use any re-
source gained during execution to carry out extra tasks, such
as pursuing opportunities, on top of the basic plan.

We manage execution of an opportunistic plan via the use
of an execution stack. When a decision is made to pursue
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an opportunity, the tail of the executing plan is pushed onto
the stack. The initial state is monotonically extended (Defi-
nition 6) and replanning is initiated so that an opportunistic
plan fragment is constructed. As long as this successfully
completes within the planning time bound, and the resulting
plan fragment can be executed within allocated resources,
execution of the opportunistic plan fragment begins. When
the opportunistic plan fragment has finished executing, the
remainder of the main plan is popped off the stack, and its
execution is then resumed. With this execution method, it is
possible for an opportunistic plan fragment under execution
to be suspended and stacked, if a new opportunity is detected
during its execution. This is illustrated in figure 2.

When an opportunistic plan fragment is incorporated,
some steps from the main plan might become redundant.
In this case, some reasoning is needed to return to the
latest possible state on the main plan trajectory (obviat-
ing as many redundant steps as possible). There is much
work on the task of plan merging, e.g. (Alami et al. 1998;
Alami, Ingrand, and Qutub 1998). In our approach we sim-
ply prune redundant steps and insert the plan fragment. In
particular, when an opportunity is planned, the main plan
suffix is pruned by removing all of the navigation actions at
the front of the suffix. Figure 1, part (a), shows an oppor-
tunistic plan fragment that has been inserted into the plan,
while part (b) shows the structure of a contingent branching
plan. It can be seen that, in principle, opportunistic planning
explores many fewer states.

(a)

(b)

Figure 1: (a) The main plan with an opportunistic plan frag-
ment attached. The fragment rejoins the plan suffix at the
first necessary point for completion of the hard goal set. (b)
The structure of a contingent plan. Each branch leads to a
different goal set, depending on resource availability at the
branch nodes.

7.1 The Implementation
In our implementation, the types of opportunities that can
be identified are inspections and investigations. In particu-

Figure 2: Plan execution with opportunity insertion. Actions
2, 3, and 4 of the main plan are navigation actions (or more
generally ”support actions”) which are subsumed by the op-
portunistic plan fragment, and may be skipped. The oppor-
tunistic plan achieves the ”weakest preconditions” of the tail
end of the main plan, while adhering to the deadline con-
straints.

lar, we restrict our attention to pillar inspections and a par-
ticular kind of investigation called chain-following. New ob-
jects of types Chain and Pillar are detected during AUV op-
erations. When a new object is spotted, a new opportunity
is created, by instantiating the corresponding opportunistic
goal, as described in definition 4. The consequent construc-
tion processes, by which the extended initial state and the
new soft goal are set up, are described in Definition 6. Our
implementation of the Opportunistic Planning method be-
haves as follows, and is detailed in Algorithm 1:

• construct a sequential strategic plan to achieve the goal set
(top level missions) within a conservative resource bound;

• start executing that plan under operational control, keep-
ing track of unspent resources;

• branch off the plan to handle an opportunity within the
unspent resource bound, storing the plan suffix (this is re-
cursive);

• return to the plan suffix as soon as possible.

The execution of this algorithm, showing the management
of the plan stack, is shown in Figure 3.

A limitation of our approach so far is that we treat navi-
gation actions as different from any other actions. They are
only needed to move the AUV to places where tasks can be
done, and are never in the plan to achieve top-level goals.
They can therefore always be safely removed from the suf-
fix as long as we can reach the next interesting waypoint
after completion of an opportunistic plan fragment. Integrat-
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Figure 3: The execution of the algorithm, showing how plan suffixes are stacked. We start at the currently executing plan. When
an opportunity is detected, the support actions are pruned and the plan suffix is stacked. Then we plan for the opportunity. If
the opportunistic planning is successful, then the opportunistic plan becomes the new currently executing plan, otherwise the
support actions are executed.

ing opportunistic plan fragments becomes more complex if
other actions are preemptible, and we will consider such ex-
tensions in our further work.

In Algorithm 1:

• input: time limit in seconds, missionID identifies the mis-
sion goals;

• line 1: now() is the current time. (at AUV MissionEnd-
Point) is included as a goal;

• line 3: replanRequested can be set true by external pro-
cesses;

• line 12: We set by hand which actions can dispatch early
(all except for turn valve);

• line 16: AUVs are busy while still executing an action;
• line 18: An action’s default timeout can be chosen per op-

erator, either as duration*T for some T, or duration+T for
some other T;

• line 22: opportunistic plan requested is a communication
variable that is declared and initialised externally, and
then set true by an external process;

• lines 26-29: These lines find the finishing location for the
opportunistic plan, and remove the “goto” actions from
the parent plan;

• line 32: If the opportunistic mission was not possible, then
the “goto” actions are reinserted at the start.

A final point about the implementation is that we do not
currently use the utility component of an opportunity. This is
because we have restricted the system to detecting and con-
sidering only one opportunity at a time, and an opportunity
will always be pursued if time and resources allow. However,
in general there might be several opportunities available, in
which case a means is required for distinguishing them. Util-
ity provides a way in which opportunities can be ranked for
consideration. One approach would be to rank the opportu-
nities by utility, then execute the first one in the ranking that

fits into the available time and resources. Again, this is a
topic for future work.

8 Experiments
Our hypothesis is that the opportunistic planning approach,
just described, is more efficient than replanning the entire
hard and soft goal set every time a new soft goal is identified.
This might seem to be a “straw man” comparison, because
it might seem obvious that replanning is apparently facing
a much harder challenge than that oof planning to achieve
a local opportunity within a well-defined context. However,
this is not always the case. When replanning, the planner
throws away all of the constraints of the defunct plan and has
complete freedom about the timing of activities, as long as
they fit within their respective time windows. This allows the
planner to optimise activity around deadlines. By contrast,
opportunistic planning has to fit all activity into the local
time and resource envelopes of the global plan, which neces-
sitates a myopic approach to opportunities (now or never),
and might be over-constraining.

We therefore contrast our approach with a replanning
method, to identify whether we gain any significant advan-
tage, in terms of overall plan utility and resources spent plan-
ning, from the opportunistic approach.

In the case where no opportunity is observed during exe-
cution, the replanning strategy and the opportunistic plan-
ning strategy will both simply execute the main plan to
achieve the hard goals, with no deviation (except in response
to plan failure, which we ignore here). Therefore, the differ-
ences lie only at the point where an opportunity is discov-
ered. In the replanning case, we construct a new initial state
and replan for the entire goal set. In the opportunistic plan-
ning case, we plan only for the opportunity, together with a
goal to return to the start of the plan suffix. Both approaches
begin by constructing the monotonically extended initial and
goal states. The opportunistic approach benefits from what
is usually a simpler planning problem in exchange for los-
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Algorithm 1: opportunisticPlanningMethod
input : timelimit : Int, missionID : Int, missionEndPoint :

Waypoint
output : boolean

1 problem← generateProblemFile(now(), missionID,
missionEndPoint);

2 plan← makePlan(problem);
3 replanRequested← false;
4 freeTime← 0;
5 if plan.length() > timelimit then
6 return false;
7 end
8 else
9 while plan.length() > 0 do

10 currentAction← plan.pop();
11 dispatchTime← currentAction.dispatchTime;
12 if !canDispatchEarly(currentAction) and

now() < dispatchTime and !replanRequested then
13 wait();
14 end
15 currentAUV← currentAction.AUV;
16 while AUV.isBusy() and !replanRequested do
17 wait();
18 if now() > currentAction.timeout then
19 dispatch(cancelAction);
20 replanRequested← true;
21 end
22 if opportunistic plan requested then
23 opportunistic plan requested← false;
24 currentEndPoint←

currentLocation();
25 prunedActions← {};
26 while plan.first() == ”goto” do
27 currentEndPoint←

plan.first().destination;
28 prunedActions.push back(plan.pop());

29 end
30 plans.push back(plan);
31 if

!opportunisticPlanningMethod(freeTime,
opportunisticMissionID, currentEndPoint)
then

32 plans.insert(prunedActions, 0);
33 end
34 plans.pop(plan);
35 end
36 end
37 if !replanRequested then
38 dispatch(currentAction);
39 freeTime← now() - dispatchTime;
40 end
41 else
42 replanRequested← false;
43 problem←

generateProblemFile(now());
44 plan← makePlan(problem)
45 end
46 end
47 end
48 return true

ing the possibility of finding a better plan by exploiting the
remaining resources to achieve the opportunity and original
goals together. Our experiments consider the situation at a
point at which an opportunity has been discovered.

We perform the comparison by setting up a main mission,
with hard goals, and an opportunity. The main mission is
taken to be a valve-turning mission, possibly involving many
valves, and the opportunity mission is an inspection (we do
not consider investigations in this experiment). In the valve-
turning mission, the AUV is required to approach and set
two valves within a deadline. The effect of setting a dead-
line is to bound the resource available for exploiting oppor-
tunities. The inspection mission is not time-limited. When it
arises as an opportunity, a plan to exploit it must fit within
the available resource envelope. Inspection missions are of
several sizes, ranging between 2 and 32 inspection points.

In our simulation, the main mission elements and the op-
portunities are located within an area 50m by 50m and set at
least 5m apart. They are positioned successively, with uni-
form probability over the available area. The deadlines for
valves are set to different values, making the planning prob-
lems harder as the deadlines are tightened. The opportunistic
planning strategy requires the opportunity to be exploited
within the free resource window, before the completion of
other mission components. The replanning strategy does not
require this, but both strategies require the overall plan to be
completed by the mission deadline.

In Table 1 we report our results for a collection of ran-
domly generated problem instances. The opportunistic plan-
ner is given 10 seconds to solve the problem. In general, the
window of opportunity is short, partly because it is most of-
ten the case that we will discover an opportunity while navi-
gating, in which case we do not want to stop the vehicle un-
less we decide to pursue the opportunity, and partly because
the energy and computational resources on board the AUV
is limited. It is also important that the time taken evaluat-
ing an opportunity should not be significant compared with
execution time of actions, otherwise we endanger the main
mission itself by wasting resources on multiple opportunity
evaluations. This latter problem arises if the signal process-
ing that leads to recognition of an opportunity is unable to
determine that multiple sightings of the same object are ac-
tually not distinct opportunities.

The replanning strategy was allowed 30 minutes of CPU
time to generate a best possible plan. We report the best plan
found in that time, with the time it took to find that plan
(POPF2 uses an anytime strategy of plan improvement, re-
porting plans as they are found).

The bolded results are the cases in which the combined
mission is solvable with a higher quality solution within the
30 minute bound. In four of these cases, the replanning strat-
egy would outperform the opportunistic strategy, but in the
bold and italicised case, the plan takes so long to find that
the combined planning and execution time exceeds the time
available for the complete plan. Indeed, in almost all cases,
the complete plan is so much longer than the opportunistic
plan that it would not be possible to complete within the du-
ration of the intended mission time for the whole problem.

Part of the difficulty for the replanning strategy arises
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from the forward search paradigm of POPF2. The existence
of deadlines leads to the planner pushing activity later along
the time line than is appropriate and it fails to search the parts
of the search space in which the short plans exist. In future
work we will explore alternative temporal planning strate-
gies in order to better understand the impact of this planning
artefact on the qualit of the plans.

In one of our test cases the opportunistic planner failed to
find a plan within 10 seconds, so the plan reverts to the main
mission plan. In this case, the replanning strategy takes 3
minutes to find a plan that is far too long to be used in place
of the main mission plan, so this represents a waste of the
time spent in this attempt.

These results show very clearly that the cost of a com-
plete replan is much higher than the cost of planning for an
opportunity alone. Even though planning for the combined
mission should offer, in principle, a chance to find a better
quality solution than the one found by simply linking the
opportunistic plan fragment to the front of the existing plan,
the reality is that it is very hard to achieve this. A more ca-
pable planning strategy might be more successful in finding
better plans, but the time taken to do so would certainly be
far greater than the time required to find the opportunistic
plan. Each such plan construction attempt spends the very
resource that is required to exploit the opportunity itself, so
it is an impractical approach to repeatedly evaluate opportu-
nities by using a full replanning approach.

9 Conclusions and Future Work
In this paper we have defined the concept of opportunistic
planning, a method for robust planning and plan execution
under limited uncertainty. We have presented a fully imple-
mented method for opportunistic planning of missions and
the interleaving of mission execution with utility-increasing
opportunities. The results of our experiments show that op-
portunistic planning is a good compromise between scala-
bility and robustness, allowing the practical management of
uncertainty. We have demonstrated that, in terms of time to
plan and resulting plan utility, opportunistic planning signif-
icantly outperforms a replanning method.

In this paper we focus on long-term maintenance and in-
spection of underwater installations, using an Autonomous
Underwater Vehicle (AUV). The locality of goals and the
presence of low probability/high-reward opportunities make
this domain an ideal target for the opportunistic planning
technique. These aspects are also present in many other
robotics domains (e.g. ground robots for disaster recovery).
One avenue of future work is to investigate other types of
scenario, to discover how the opportunistic planning ap-
proach could be generalised to other planning domains.

Our current approach to opportunistic planning demon-
strates improvements over a replanning strategy, but has
some limitations. In particular: we do not evaluate the ex-
pected gain, in terms of accumulated resource, of reducing
our confidence in achievement of the hard goal set. For ex-
ample if, at some point p, into the execution of a plan, we
are willing to reduce our confidence in successful execution
of the plan suffix to the 94th percentile, how much resource
could we save for spending on an opportunity spotted at p?

As an alternative to allowing the expected accumulation
of resources following the execution of a sequence of ac-
tions it would be possible to adjust the sum of the nominal
durations to account for the length of the sequence. So, for k
actions each with identical mean and standard deviation, the
nominal durations can be reduced to m+ 1.65s√

k
.

More generally, where several actions are sequenced to
achieve a goal it is possible to discount the sum of the nomi-
nal durations to allow for the expected accumulated benefits
of using the 95th percentile as the nominal durations of the
individual components.

In our future work we intend to experiment with trading
off confidence against utility, by doing this reasoning online
at the point at which we have evaluated an opportunity. The
actions in the plan suffix are not changed, but the confidence
in completing it successfully is traded for the benefits of the
opportunity. For a very high value opportunity it might even
be worth, in order to free up more resource, requesting the
sacrifice of a component mission from the command level
planner.
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Mission Opp plan Full replan Plan duration
Main Opp time time Opp Mission Complete Opp Plan Replanned plan
V2 400 I 16 0.36 38.18 851.384 1265.032 2437.496
V2 500 I 16 5.54 7.46 1541.168 2076.155 2596.156
V2 600 I 16 5.34 7.28 1541.168 2117.136 2269.701
V2 700 I 16 5.32 9.56 1541.168 2117.136 2283.134
V2 800 I 16 5.38 6.24 1541.168 2117.136 2048.833
V2 900 I 16 5.4 9.16 1541.168 2117.136 1900.069
V2 1000 I 16 0.38 21.42 851.384 1265.032 2615.245
V2 1100 I 16 0.34 7.28 888.554 1302.202 2048.833
V2 1200 I 16 2.4 11.9 1440.568 1854.216 2511.960
V2 1300 I 16 0.36 6.34 851.384 1265.032 2772.985
V2 1400 I 16 0.42 6.28 851.384 1265.032 2772.985
V2 1500 I 16 0.34 7.82 851.384 1265.032 2946.391
V2 1600 I 16 0.38 14.54 851.384 1265.032 2175.901
V2 1700 I 16 0.4 15.6 851.384 1265.032 2897.665
V2 1800 I 16 0.42 6.24 851.384 1265.032 2772.985
V2 1900 I 16 0.38 6.44 851.384 1265.032 2772.985
V2 2000 I 16 0.36 2.62 851.384 1265.032 2490.490
V2 400 I 32 5.08 148.17 2233.961 2564.254 3531.784
V2 500 I 32 2.2 165.62 1768.98 2129.213 5332.514
V2 600 I 32 3.7 78.19 1777.177 2137.41 3623.974
V2 700 I 32 4.08 272.84 1815.849 2176.082 4877.45
V2 1000 I 32 4.66 104.04 2686.638 3093.992 4263.605
V2 2000 I 32 4.32 100.16 2457.922 2865.276 3778.601
V2 2500 I 32 4.67 68.78 2457.922 2865.276 4212.37
V2 3000 I 32 4.36 132.32 2469.124 2876.478 3948.493
V2 3500 I 32 4.21 119.14 1861.244 2191.537 4925.07
V2 5000 I 32 5.16 81.04 1997.34 2327.633 5460.531
V2 1000 I 2 0.02 3.36 141.138 678.167 580.58
V2 1000 I 6 0.06 182.02 374.415 911.444 774.337
V2 1000 I 8 0.06 4.82 504.346 863.481 977.001
V2 1000 I 10 0.1 135.62 582.795 1017.846 1383.791
V2 2000 I 10 0.1 7.44 700.198 1294.007 1585.303
V2 2000 I 12 0.14 3.38 772.926 1545.852 1414.551
V2 2000 I 14 0.14 3.70 675.458 1141.406 2040.448
V2 2000 I 16 0.14 2.60 676.458 1142.406 2490.490
V2 2000 I 18 0.18 44.68 878.395 1470.264 3116.591
V2 2000 I 20 0.44 15.18 1231.22 1767.021 3358.226
V2 2000 I 22 1.08 17.42 1752.10 2152.423 4114.774
V2 2000 I 24 0.98 34.48 1643.92 2017.172 2914.554
V2 2000 I 26 2.6 289.40 2141.87 2485.068 6029.480
V2 2000 I 28 3.38 265.72 3088.31 3667.984 5987.822
V2 2000 I 30 - 179.76 - 398.45 4187.185
V2 2000 I 32 4.14 218.74 2689.84 3057.283 4475.005
V2 2000 I 34 5.24 89.32 3125.49 3621.695 4615.062

Table 1: Table of experimental results. Planning time and plan durations are measured in seconds.
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Abstract

In complex and dynamic scenarios, autonomous vehicles
often need to intelligently adapt their behavior to unex-
pected changes in the their environment. Goal Reasoning
provides a methodology for autonomous agents to delib-
erate and adapt their goals to more intelligently react to
changing conditions. This paper implements a Goal Rea-
soning system based on the Goal Lifecycle, and grounds
the implementation in the information measures and ex-
pectations used by the vehicles to asses their performance.
The implemented system, termed Goal Reasoning with
Information Measures (GRIM), is demonstrated using a
disaster relief scenario in which a small team of vehicles
is tasked with surveying a pre-defined set of geographi-
cal regions. This demonstration shows how area search
goals can be progressively refined, and how they can be
adapted to resolve problems encountered by the vehicles
during execution.

1 Introduction
Complex applications of robotics often require one
or more autonomous vehicles to react intelligently to
changes in the operational scenario. A change in the
observed state of the environment (e.g., the robot senses
an unexpected event) or the internal state of the vehicle
(e.g., the vehicle is consuming fuel faster than expected)
may necessitate a change in the robot’s behavior. This
change can manifest as a change to the vehicle’s plans,
tasks, or even the underlying goals that it is trying to
achieve. Intelligent adaptation to unexpected changes is
vital to the design of autonomous systems for complex
applications.

Goal Reasoning (GR) research aims to develop au-
tonomous agents that can deliberate on, and change,
their own goals (Vattam et al. 2013). Such agents would
be able to adapt to new and unexpected observations
about their environment by creating new goals to pursue.
Similarly, they would be able to modify their existing
goals to account for unplanned changes by reprioritiz-
ing and reordering their goals. Such capabilities become
even more valuable in applications where multiple robots
must act collaboratively to accomplish their goals; GR

would allow the robots to adjust their goals to align with
those of the other agents, or to leverage the assistance of
other robots.

An example application that would benefit from GR
is the control of autonomous vehicles in the Foreign Dis-
aster Relief (FDR) domain (U.S. Department of Defense
2011). The FDR domain focuses on providing human-
itarian aid in the wake of natural disasters, and is an
area that could greatly benefit from the deployment of
autonomous vehicles. In such situations, autonomous ve-
hicles could be used to provide rapid surveys of the disas-
ter area, identifying important locations and traversable
routes for the responders. Additionally, the vehicles
could be used to enhance the reliability and range of
communications, by serving as mobile communication
relay points.

To apply GR techniques to applications like FDR op-
erations, it is important for them to be grounded in the
information and capabilities that regulate the behavior
of the vehicles. That is, deliberation about the goals
of an autonomous agent should be performed based on
the metrics that define and govern those goals. This
paper investigates that by grounding the systems de-
scribed in Roberts et al. (2015a)1 and Apker, Johnson,
and Humphrey (2016). This grounding frames the goal
refinement process in terms of information gathered dur-
ing the execution of the goal, and is implemented in a
system called Goal Reasoning with Information Mea-
sures (GRIM). The GRIM system also includes a set of
strategies to resolve problems that arise during execu-
tion.

The work here presents early steps in creating a full
GR system for a team of robots assisting with FDR op-
erations with multiple, possibly conflicting, goals for
the system. The paper demonstrates a multi-vehicle sys-
tem performing GR with respect to a set of area-survey
goals. An extended version of this paper, including a pre-
liminary evaluation of the effectiveness of the RESOLVE
strategies, can be found in Johnson et al. (2016).

1ActorSim, an implementation of the Goal Lifecycle, is
available online at http://makro.ink/actorsim/
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Figure 1: Map of the example scenario. Two vehicles
begin in a base region, and are tasked with surveying
three different regions of interest: the Airport and the
two Office Buildings.

The paper is structured as follows. Section 2 describes
a motivating example. Section 3 provides a more in-
depth description of GR and the instantiation that is
extended in this work. Section 4 demonstrates the GRIM
system with respect to the motivating example. Section 5
discusses this work in the scope of other, related work,
as well as the future expansion of the system. Finally,
Section 6 concludes the paper.

2 Motivating Example
Consider, as a motivating example, an unmanned FDR
mission where a team of Unmanned Air Vehicles (UAVs)
must survey several pre-defined regions to identify and
locate an important official. Figure 1 shows a map of
such a scenario, in which a team of UAVs must survey
three different regions, each with different characteris-
tics. The Airport is the largest of the regions, composed
primarily of flat, open space. Each of the two Office
Buildings, on the other hand, are significantly smaller
and have considerably more complicated terrain. There
is also a Base region, where the UAVs begin the scenario.

The system’s first task is to search the regions to locate
the official. Once the location of the official is known,
the system must then establish and maintain a commu-
nications relay for that official. The establishing of a
relay is made more difficult in the Office Buildings (in
comparison to the Airport) due to the more complicated

and cluttered terrain.
These goals are further complicated by other restric-

tions and factors involved in the mission, such as:

• The need for the UAVs to refuel at the nearby base
station.

• Changes to the set of resources (e.g., vehicles) that
are available to the system.

• The presence of uncontrolled or adversarial environ-
mental factors (e.g., wind or road blockages).

• Additional goals, with varying or dynamic priori-
ties/importance (e.g., the discovery of a medical emer-
gency that must be immediately addressed).

The system controls a team of two UAVs and can
assign them to any of the search areas. Furthermore, due
to uncontrolled factors, it is assumed that the vehicles
will under-perform their expectations during execution,
resulting in slower-than-expected searches of the areas.

3 Goal Reasoning and the Goal Lifecycle
GR focuses on developing agents that can deliberate on
and modify their goals during execution within a dy-
namic environment. The work presented here leverages
and adapts the Goal Lifecycle of Roberts et al. (2014),
Roberts et al. (2015a), and Roberts et al. (2015b), an
adaptation of which is shown in Figure 2. This pro-
vides a framework for the refinement of goals and the
resolution of problems that arise during execution.

The set of goals (“goal nodes” in (Roberts et al.
2015b)) G are stored in a data structure called the Goal
Memory. GR is performed by transitioning each goal
g ∈ G through the modes (represented by boxes) of
the Goal Lifecycle via strategies (the arcs). Progres-
sion through the modes in the Goal Lifecycle represents
increasing refinement in the goal detail. The step-like
structure of the goal modes enforces the concept that
each mode builds on the previous mode: each transi-
tion strategy can only occur from specific modes in the
Lifecycle.

The remainder of this section briefly summarizes the
key strategies of the Goal Lifecycle; specific details are
given in Section 4, as the strategies relate to the goals for
the motivating scenario described in Section 2. For the
remainder of the paper, transition strategies are denoted
with small caps (e.g., FORMULATE) and the resulting
goal modes are denoted by monospace small caps (e.g.,
FORMULATED).

The FORMULATE strategy determines when a new goal
g is created and enters the Goal Lifecycle from an exter-
nal source (e.g., user input, or a triggering event). This
strategy takes an abstract goal as an input, and transi-
tions it to a FORMULATED mode, by defining the initial
constraints, the measures defining success or failure, and
its prerequisites. The result of FORMULATE is that a new

2
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Figure 2: An adapted version of the Goal Lifecycle, from Roberts et al. (2015a). Goals transition through the modes
(boxes) via the strategies (arcs), where higher-level modes represent a higher level of goal refinement.

goal is entered into the Goal Memory with the infor-
mation (i.e., constraints , measures, and prerequisites)
required for further refinement.

The SELECT strategy takes a FORMULATED goal g,
and determines whether the system activates it. A goal
transitions to SELECTED (meaning that it will be ac-
tively pursued by the system) only if its prerequisites are
satisfied and the system has the available resources to
pursue, both of which are defined by the FORMULATE
strategy. As such, some goals may not be SELECTED

and will instead remain in the FORMULATED mode un-
til their prerequisites are met and the required resources
become available.

The EXPAND strategy takes a SELECTED goal g and
generates one or more expansions (i.e., plans) x ∈ X to
achieve the goal. An EXPANDED goal defines how the
system can satisfy the constraints that were created dur-
ing the FORMULATE strategy, and generates expectations
for how each expansion will perform when executed. If
one or more feasible plans are created, the goal transi-
tions to an EXPANDED mode. Otherwise, the EXPAND
strategy fails and the goal remains in the SELECTED

mode.
Once a goal g has been successfully EXPANDED the

COMMIT strategy chooses one of the feasible expan-
sions x for execution. Such a choice involves assess-
ing the costs of each of the expansions, as well as the
likelihood that they will successfully execute the goal
(per the FORMULATED constraints). A COMMITTED

expansion defines how the system will satisfy g, and
provides the set of expectations for the performance of
the plan’s execution.

The DISPATCH strategy sends the COMMITTED ex-
pansion x to the executive to run. This process amounts
to allocating resources and generating metrics for plan
execution. A successfully DISPATCHED expansion de-
fines the criteria by which a goal is evaluated to ensure
that it detects and reacts to discrepancies in the expected
performance of the expansion.

During execution, two strategies manage updates that
impact the mode of the goal g. First, EVALUATE is a
passive strategy that is called whenever new information
impacts the goal. It can be called by an external process
or by the goal itself. In contrast, the MONITOR strategy,
when enabled, proactively tracks the execution of the
DISPATCHED expansion x to ensure that its expected
performance will still result in successful completion
of the goal. Additionally, MONITOR ensures that the
prerequisite conditions for the goal remain met and that
the allocated resources remain available. If MONITOR
detects a problem, it triggers EVALUATE directly, and
x progresses to an EVALUATED mode, indicating that
there is some discrepancy in the performance of the
expansion that should be addressed.

When a goal transitions to EVALUATED, the RESOLVE
strategy assesses any discrepancies that were detected,
and determines how the system should resolve the dis-
crepancy (i.e., which mode the goal should transition to).
If the EVALUATED goal g is determined to have met
all of the constraints and success-conditions that were
generated during the goal formulation, it is resolved with
FINISH and marked as completed. If g violates the for-
mulated constraints, DROP marks it as unsuccessful (it
can then be reformulated with new constraints). Both
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FINISH and DROP results in the removal of g from Goal
Memory.

Otherwise, if g still meets its formulated constraints
but does not meet its success conditions, the RESOLVE
strategy transitions the goal to one of the earlier modes
in the Goal Lifecycle. If EVALUATE determines that
the DISPATCHED plan x is still feasible, the goal is
resolved back to the DISPATCHED mode (referred to
as CONTINUE). If the COMMITTED plan can be fixed
without major changes by reallocating system resources,
it resolves back to the COMMITTED mode (REPAIR). If
the committed plan is infeasible, but another feasible
plan x̄ ∈ X exists, the goal g is resolved back to the
EXPANDED mode and commits to a different, feasible
plan x̄ (REEXPAND). If no feasible expansion exists given
the currently available resources, g is resolved back to
the SELECTED mode, where it can be expanded once
the necessary resources become available (DEFER). Fi-
nally, if the goal no longer meets its prerequisites for
selection, but it still satisfies its constraints, it is resolved
back to a FORMULATED mode until the prerequisites
for selection are met once again (UNSELECT).

4 Goal Refinement with
Information Metrics

Goal Refinement for unmanned FDR missions can be
framed in terms of refining a set of constraints and ex-
pectations for a set of measurable information measures.
This section describes a GR system, called Goal Rea-
soning with Information Measures (GRIM), and demon-
strates this system via simulation. The GRIM system
instantiates the Goal Lifecycle (discussed in Section 3),
and provides centralized control for a small team of 2
UAVs. Returning to the motivating example, described
in Section 2, the goal refinement strategies of the Goal
Lifecycle are defined here for the area search goals,
while the relay goal (which will be the focus of future
research) is only included as an abstract goal (i.e., it is
not specified below). The information measures for an
area search goal, defined in this section, describe the
degree to which the defined region has been “searched”.

The metric used to evaluate the uncertainty in an area
search will differ based on the sensors and algorithms
used to conduct the search. For simplicity, the vehicles
conduct searches in this example by following a lawn-
mower waypoint pattern, and the information measure
used is the length of that search pattern that has yet to be
traversed, though this metric could easily be adjusted to
a more accurate measure of uncertainty. This measure
was chosen as a simple approximation for the informa-
tion gathered during the survey task, and future work
will explore more accurate measures of the uncertainty
in an area survey.

Formulate

The FORMULATE strategy, in the case of the area survey,
defines three parameters that describe the constraints
under which each can be considered as successful or
failed. These parameters are:

1. maximum uncertainty: the upper bound on the uncer-
tainty in the search area (i.e., the uncertainty of the
area before any information has been gathered),

2. acceptable uncertainty: the level of uncertainty at
which the goal is considered complete, and

3. deadline: the time by which the search must be com-
plete.

The maximum uncertainty specifies amount of uncer-
tainty in the search area prior to any search, and repre-
sents the total information that can be gathered about
an area during a survey. The acceptable uncertainty pa-
rameter defines the level of uncertainty at which the area
can be reliably deemed to be empty of an official (i.e., a
finishing criteria for the search). Finally, the deadline is
set by estimating the time required to arrange follow-on
interactions with a located official, as a function of the
area’s type and terrain. It defines the point in time at
which the search must be finished, in order for it to be
considered successful. For both (1) and (2), the con-
straints are defined by the metric used for uncertainty:
the length of the search path (in meters) that has yet to
be traversed by the vehicles. For (3), the constraint is
defined in terms of mission time (seconds).

Figure 3 displays the constraints on each of the for-
mulated goals as a function of the area uncertainty (in
meters of untraversed search path) and the execution
time. Each of the dashed lines in this figure represents
the allowable area of uncertainty for a survey area (i.e.,
the Airport and the Office Buildings) at a given time. Be-
cause of the more complicated interactions of the Office
Buildings, the deadline (i.e., the time at which the area
uncertainty must be within the defined acceptable level
of uncertainty) for each of these is earlier than the dead-
line for the Airport. At all times up until the deadline, no
constraint is placed on the allowable area of uncertainty,
so it is set as the full length of the search path for each
of the search areas (28,267 meters for the Airport, and
10,303 and 7,537 meters for the smaller Office Build-
ings). At the deadline, the area of uncertainty is required
to not exceed the defined acceptable level of uncertainty.
This acceptable level of uncertainty was defined as 500
meters for each of the search areas, but is omitted from
Figure 3 for clarity.

The result is a FORMULATED goal g ∈ G, which
defines the constraints on the execution of the goal (max-
imum uncertainty and deadline), as well as the criteria
for successful completion of the goal (acceptable uncer-
tainty).
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Figure 3: Maximum uncertainty and deadline constraints
for the Airport and Office Building search goals. The per-
formance of each goal must remain within the pictured
constraints during execution, by reaching the acceptable
uncertainty level before the deadline.

Select
The next strategy in the Goal Lifecycle is for GRIM
to SELECT one or more goals to pursue. The SELECT
strategy requires comparing high-level estimates of ex-
pected performance and value (cost/reward) for each
goal, and assessing the available resources for the sys-
tem. This strategy determines which goals are opera-
tional (i.e., those that are selected). For the motivating
example presented here, only a single goal is allowed to
be SELECTED at a given time.

Figure 4 shows the results of this process, where
GRIM elects to pursue the Airport search goal because
it is deemed most likely to be successfully searched
within the formulated constraints. For this example, the
SELECT strategy choses the goal with the smallest ra-
tio of maxuncertainty

deadline . Due to the significantly longer
deadline, the ratio for the Airport is (despite the larger
uncertainty) smaller than the ratio for the Office Build-
ings, and GRIM selects the Airport goal.

In short, a SELECTED goal g is one that is being pur-
sued by the GRIM system via later strategies in the Goal
Lifecycle, while a goal that is not SELECTED remains
paused in the FORMULATED mode.

Expand
After selecting a particular goal g, EXPAND generates a
set of plans2 X to accomplish it. For each plan x ∈ X
that is generated, a set of expectations is also generated
that describe its expected performance with respect to the
metrics used in the formulation strategy. A successful

2The original Goal Lifecycle (Roberts et al. 2015a) used
the term expansion to refer to the possible plans that could be
applied to a goal; the remainder of this paper uses the term
plan interchangeably with the term expansion.

Figure 4: GRIM selects the Airport search goal g, while
the Office Building search goals remain unselected. The
selected search goal progresses progresses to the EXPAND
strategy.

EXPAND strategy generates at least one feasible plan (i.e.,
it is expected to satisfy the formulated constraints). In
the example used here, a feasible plan is one where the
expected value of the uncertainty at the deadline is no
greater than the defined acceptable uncertainty.

Figure 5 displays the expectations of four feasible
plans that are generated during the EXPAND strategy, for
the selected goal g. The expectations are shown as the
expected change in the uncertainty of g (i.e., the length
of the search pattern that has been traversed) over time,
and each expanded plan uses the same set of waypoints.
The resulting plans are for a single vehicle moving at
normal speed (“1vehicleNorm”), a single vehicle moving
at a faster speed (“1vehicleFast”), two vehicles moving
at normal speed (“2vehicleNorm”), and two vehicles
moving at a faster speed (“2vehicleFast”). It is assumed
that a faster vehicle speed improves the search rate at the
cost of higher fuel consumption and that, for each plan,
the bulk of the UAVs effort will be expended determining
where the official is not located (i.e., a nearly complete
search of the area will be required).

The result is an EXPANDED goal g, which has one
or more feasible plans x ∈ X , each with a set of perfor-
mance expectations that satisfy the completion criteria
generated by the FORMULATE strategy.

Commit
Once the goal g has been EXPANDED into a set of fea-
sible plans, GRIM must COMMIT to a single plan. To
do so, it assesses the costs (i.e., the expended resources,
including time) of each feasible plan, and commits to
the least costly plan.

Figure 6 highlights the COMMITTED plan (“1vehi-
cleNorm”), which was chosen because the expectations
lie well within the formulated constraints while conserv-
ing the most resources. By using only a single vehicle,
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Figure 5: Plots of expected survey performance for each
expansion x of the Airport search goal. The “fast” plans
increase the vehicle speed to result in a quicker expected
completion time, at a higher fuel cost.

Figure 6: GRIM commits to the 1-vehicle, normal-speed
expansion. This plan was selected to conserve resources
while still resulting in successful completion.

GRIM leaves the second vehicle available in reserve,
and by committing to the plan that moves the vehicle
at the normal speed the system preserves fuel for other
tasks, such as searching another area or providing a relay
for a discovered official.

In short, the COMMITTED expansion x ∈ X is the
plan that GRIM chooses to enact in order to pursue the
goal g.

Dispatch
Once GRIM has a COMMITTED plan, it must then DIS-
PATCH that plan to the appropriate vehicles. To do this,
it must also determine the expected performance bounds
for successful plan execution. These bounds represent
the worst-case scenario from which the plan can still be
expected to satisfy the formulated constraints. To gener-
ate these bounds, GRIM uses the expected performance

Figure 7: GRIM dispatches the committed expansion x
(with expectations) to the applicable vehicle. As part
of the plan dispatch, the system generates worst-case
bounds on the successful performance of the plan.

of the plan adjusted such that it is expected to just barely
satisfy the constraints; that is, the worst-case bounds
represent the execution for which the expectations reach
the acceptable level of uncertainty at the deadline. If
the performance exceeds these bounds during execution,
GRIM will need to adapt the goal g, by applying the
RESOLVE strategies described in Section 3. Figure 7 dis-
plays the expectations and worst-case execution bounds
of the dispatched plan.

In GRIM, a plan is dispatched by scheduling pre-
defined commands for execution by vehicles. When
the vehicles receive these commands, they are passed
to a synthesized Finite State Automaton (FSA) that is
running on the vehicle, and executed according to the
rules that were used to synthesize that FSA. A more
thorough description can be found in Apker, Johnson,
and Humphrey (2016). In the case of the dispatched
“1vehicleNorm” plan, the command to search the Air-
port region is sent to a single vehicle, and the vehicle’s
speed is left at its default, more fuel-efficient value. The
other vehicle is allowed to determine its own behavior
(it proceeds to search a different area).

The DISPATCHED plan x is the one that is being
enacted by GRIM, and defines both the expected perfor-
mance of the plan and bounds on when that expected
performance will fail to satisfy the constraints and com-
pletion criteria of the formulated goal g.

Monitor
During execution, GRIM will actively MONITOR the
progress of the DISPATCHED expansion to ensure that
it will satisfy the constraints of the selected goal. Fig-
ure 8 shows the system’s estimate of the search area
uncertainty over time, as well as the constraints, expecta-
tions, and worst-case bound. In Figure 8a the execution
is proceeding slower than expected, but still remains
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within the worst-case bound; if the execution were to
proceed from this point forward at the expected rate,
it would satisfy the formulated constraints on the goal.
Figure 8b shows the execution at a later point in time,
where it first exceeds the worst-case bound; if it were
to continue to execute at the expected rate, it would not
complete the search within the formulated constraints.
As such, MONITOR triggers the EVALUATE strategy.

In summary, the MONITOR strategy actively tracks the
execution performance of the dispatched plan x, and
triggers the EVALUATE strategy when the performance
violates any of the goal’s constraints or the plan’s worst-
case bounds.

Evaluate and Resolve
Once the monitor detects that an execution has vio-
lated some constraint or bound, it passes the goal to
the EVALUATE strategy. If the execution had satisfied
the acceptable level of uncertainty constraint that was
generated during formulation, the goal would be passed
to the FINISH strategy, where it would be marked as suc-
cessfully completed. If it violated the other formulated
constraints (i.e., it passed the deadline without reaching
the acceptable level of uncertainty), the DROP strategy
would mark it as failed. In this example, the execution vi-
olates the worst-case bound generated during DISPATCH
and the goal g is passed to the RESOLVE strategy, where
GRIM attempts to change the execution such that it may
still satisfy the constraints on g.

The RESOLVE strategy attempts to fix g by working
through previous modes in the Goal Lifecycle. In the sys-
tem described here, the RESOLVE strategy set is limited
to the REPAIR, REEXPAND, and UNSELECT strategies.

First, GRIM attempts to REPAIR the expansion by ad-
justing the expansion chosen in the COMMIT strategy.
This involves changing the vehicle speed by committing
to a different instance of the 1-vehicle plan from the
original expansion: “1vehicleFast”. The new instance
of the expansion is COMMITTED, and it is dispatched
and monitored as before. Figure 9 shows the expectation
and worst-case bound for the newly repaired plan, which
now requires the vehicle to move more quickly and ex-
pend more fuel. However, as the execution continues,
the repaired plan also fails to meet expectations, and at
time 39,975 the system execution crosses the new bound
and triggers the EVALUATE strategy, again activating the
RESOLVE strategies.

This time, when GRIM attempts to RESOLVE the fail-
ing goal, it finds that neither instance of the originally
expanded plan can be expected to satisfy the formulated
constraints. Thus, it cannot REPAIR the expansion, and it
instead attempts to REEXPAND goal g. Doing so allows
GRIM to attempt to generate new plans that might be fea-
sible by incorporating resources that were not used by the
current expansion. In the example shown here, the sec-
ond vehicle (which was not used in the originally com-

mitted expansion) is available for the newly expanded
plans. As a result, the re-expansion strategy finds two
new feasible plans (the single-vehicle plans are deemed
infeasible): using both vehicles at their default (“2vehi-
cleNorm”) and fast (“2vehicleFast”) speeds. With these
new plans, the goal g returns to the EXPANDED mode,
and progresses through the Goal Lifecycle again, com-
mitting and dispatching the “2vehicleNorm” plan.

Figure 10 shows the expectation and worst-case
bounds for the newly re-expanded and DISPATCHED

plan p, which now assigns both vehicles to search the
area. Because the 2nd UAV must first traverse to the
search region, it does not arrive in time to assist the
search before the deadline, and the new plan also fails to
meet expectations. At time 43,670 the execution violates
the bounds of the new expansion, and GRIM uses the RE-
PAIR strategy to increase the speed of both vehicles. At
time 44,380 MONITOR again triggers the EVALUATE and
RESOLVE strategies, but both the REPAIR and REEXPAND
strategies fail. GRIM then proceeds to UNSELECT the
Airport search goal and consider other goals to pursue.
In this case, which was designed specifically to fail (in
order to demonstrate the RESOLVE strategies), both of the
other search goals have already passed their deadlines,
and are dropped as they are deemed to have failed. Once
the execution time passes the deadline for the Airport
search goal, it will also be dropped.

The EVALUATE strategy assesses the performance of
the goal and determines which RESOLVE strategy to acti-
vate; the RESOLVE strategy will FINISH a completed goal,
DROP a failed goal, or REPAIR, REEXPAND, or UNSELECT
a goal with an infeasible expansion.

5 Discussion
This paper describes initial efforts towards grounding a
GR system, termed GRIM, in the information measures
used by the controlled vehicles during execution. In par-
ticular, this work adapts the Goal Lifecycle introduced
in Roberts et al. (2014; 2015a) and instantiates it in the
GRIM system: a centralized GR system that provides
commands to independent vehicles. Each vehicle in-
terprets the commands via a play-calling architecture
that leverages a formally synthesized FSA and executes
the required behaviors via an application of artificial
physics, termed physicomimetics; more details can be
found in Apker, Johnson, and Humphrey (2016) for the
play-calling architecture, Kress-Gazit, Fainekos, and
Pappas (2009) for the controller synthesis process, and
Apker and Martinson (2014) for physicomimetic vehicle
control.

Other implementations of GR systems have been de-
veloped. Vattam et al. (2013) describes a GR agent as
an autonomous agent that is “aware of its own goals and
[can] deliberate upon them,” and provides a useful survey
of related GR research. Autonomous agents that delib-
erate on their goals are not an isolated concept, and sig-
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(a) Execution monitor at time 15,000. (b) Execution monitor at time 32,824.

Figure 8: GRIM monitors the performance of the dispatched plan during execution. Violation of the goal constraints or
plan performance bounds will trigger the EVALUATE strategy, causing the system to react to the change in the goal.

Figure 9: After a violation of the original plan’s bounds,
the plan is repaired to increase the UAV speed), and new
expectations and bounds are generated for the repaired
plan. GRIM continues to monitor the execution of the
goal until time 39,975.

Figure 10: After a violation of the repaired plan’s bounds,
the goal is reexpanded and the 2-vehicle plan is selected.
New expectations and bounds are generated for the reex-
panded plan, and GRIM continues to monitor the execu-
tion of the goal until time 43,670.
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nificant research has been conducted towards those ends
(Norman and Long 1996; Altmann and Trafton 2002;
Cox 2007; Molineaux, Klenk, and Aha 2010; Thangara-
jah et al. 2010; Harland et al. 2014).

The individual strategies used in the Goal Lifecycle
are, themselves, important research topics, and each
can be accomplished in a variety of ways. Goal for-
mulation, for example, may occur externally to the
system (i.e., a user may provide a goal), or may be
conducted autonomously during execution. For exam-
ple, Klenk, Molineaux, and Aha (2013) present a GR
system in which the autonomous agent automatically
detects and explains discrepancies during execution,
which then facilitates the generation of new goals for
the agent. Alternatively, new goals can also be learned
or guided by human input through methods such as
case-based reasoning (Weber, Mateas, and Jhala 2012;
Jaidee, Muoz-Avila, and Aha 2013). As with goal for-
mulation, the specific method for goal selection can
vary widely, from domain-specific rule-based selection
(Shapiro et al. 2012; Thangarajah et al. 2010) to the
evaluation of domain-independent heuristics (Wilson,
Molineaux, and Aha 2013), or goal priorities (Young
and Hawes 2012).

Similarly, the plan generation strategy can vary among
applications or systems, and may involve trajectory
generation (Yilmaz et al. 2008; LaValle and Kuffner
2001) or occur at a more abstract level (Blythe 1999;
Kress-Gazit, Fainekos, and Pappas 2009). In many cases,
plan generation will also generate expectations for the
plan’s execution performance, though in some cases it
may be necessary to generate expectations separately, as
in Auslander et al. (2015).

The Goal Lifecycle provides a formal structure for
these strategies, such that the resulting system can delib-
erate on and adapt its goals to dynamic and unpredictable
events. This paper extends the Goal Lifecycle within the
FDR domain by grounding its implementation using the
vehicle’s information measures, and by implementing
and demonstrating the RESOLVE strategies. This work fo-
cused specifically on area survey goals within a disaster
relief scenario, though other related goals exist that must
also be characterized in a similar fashion. For example,
once an official is located by the vehicles conducting the
area search it may be necessary to provide a continuous
communications relay for that official, which involves
formulating a goal of a new type (relay) in GRIM. Like-
wise, other potential goals (e.g., medical evacuation or
logistics supply delivery) may arise during execution
of the FDR scenario. Each goal should be defined in
the Goal Lifecycle and grounded in the metrics used to
evaluate its performance. These are topics for future
extensions of the GRIM system.

Future extensions will also investigate the use of more
complex algorithms and metrics in the implementation
of the Goal Lifecycle. A more accurate measurement

of the uncertainty remaining in an area survey will al-
low GRIM to improve its performance estimates and
react accordingly. Additionally, more complex strategies
would improve the system’s capabilities. For example,
a planner or scheduler could be used to SELECT goals
while accounting for the likelihood of discovering an of-
ficial in each region, thus enabling GRIM to more intelli-
gently choose which goals to pursue. Likewise, adapting
the plan expectations (i.e., recognizing that the vehicles
are not completing the survey at the expected rate, and
changing the expectations accordingly) would enable
GRIM to more quickly identify and evaluate problems,
and thus improve the likelihood that it could RESOLVE
any discrepancies.

6 Conclusion
This paper demonstrated, via simulation, how a GR sys-
tem can FORMULATE, SELECT, EXPAND, COMMIT to, and
DISPATCH area search goals to a team of autonomous
vehicles using the team’s information measures and ex-
pectations. The system, GRIM, will then MONITOR the
performance of these vehicles with respect to their goals,
and trigger the EVALUATE strategy when a problem is
detected in the execution. When the execution perfor-
mance violates the pre-determined bounds for the plan,
GRIM automatically attempts to RESOLVE the problems
by repairing the plan or re-expanding the goal into a new
set of plans.

This demonstration showed how a GR system can be
useful for autonomous systems operating in dynamic
environments, and how to ground it to the information
measures used by the system to evaluate its performance.
Future work on this subject will extend the system to
process additional goal types, and use additional and
more complex strategies. This will enable a more thor-
ough evaluation of the benefits of such a system via an
experiment with randomly generated scenarios.
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Abstract
Despite the existence of powerful formal languages for writ-
ing robot controllers, most existing functional modules are
written using standard programming languages. The exis-
tence of such a code base raises critical challenges: 1. How
to enable automated analysis, monitoring, and reuse of ex-
isting code? 2. How to convey to customers the expected
level of performance of an autonomous robot? 3. Perhaps
most crucial: how to quickly identify abnormal behavior of
autonomous robots? To address these issues we suggested the
use of performance-level profiles (PLPs) (Brafman, Shani,
and Shimony, 2014), a formal, yet intuitive, language for
specifying the expected properties of functional modules, de-
signed with the above aims in mind. PLPs add novel el-
ements to action specification languages that are important
for robotic applications, such as update frequency, run-time
statistics, progress measures, and trigger conditions, taking
into account the different roles modules can play. In re-
cent years, we further developed their language and designed
tools that utilize their power. Besides automated monitoring-
code generation, we provide a PLP2PDDL compiler that
generates planning domains automatically and a PLP based
action dispatcher that supports true separation between a
replanning-based controller and the underlying modules, pro-
viding plug&play functionality. We describe the updated PLP
form, the tools we provide for automated code-schema gen-
eration for monitoring, statistics gathering, planning domain
generation, action dispatching and our experience in using
them in two robotics projects.

INTRODUCTION
The robotics research community has made much progress
designing software engineering tools that make it easier to
develop robotic modules and controllers (e.g., Ingrand et al.
(1996); Simmons and Apfelbaum (1998); Ingham, Ragno,
and Williams (2001) to name a few). Many of these tools
(e.g., BIP Basu, Bozga, and Sifakis (2006); Basu et al.
(2008)) are based on formal concepts and formal languages
that provide added benefits in the form of guarantees about
the properties of the resulting code, and constructs for com-
posing different modules, and allow proving and inferring
properties of the actual system. An ideal situation would
be for practitioners to adopt such technology. Yet, in prac-
tice, functional modules are often built using standard pro-
gramming languages, even if on top of infrastructure such as
ROS.

Unfortunately, as noted by Abdellatif et al. (2012): ”Sys-
tems built by assembling together independently developed
and delivered components often exhibit pathological behav-
ior. Part of the problem is that developers of these systems
do not have a precise way of expressing the behavior of
components at their interfaces, where inconsistencies may
occur.”

Addressing this issue is crucial to our ability to deploy au-
tonomous robots in open environments. If we cannot define
normal behavior precisely, how will we identify abnormal
behavior? Certainly, we would not want to wait until the
last moment where some evidently undesirable outcome oc-
curs, nor is the public likely to tolerate such performance.
Moreover, even before deployment, customers would want
to understand what they are getting before spending large
amounts of money on an autonomous robot. Non-paying
customers, such as users of open-source code, would greatly
benefit from having such information, too.

Finally, another pragmatic consideration is that the lack
of machine readable behavior specification prevents the de-
velopment and use of tools that utilize such specifications to
automatically support monitoring, validation, and planning.

We encountered some of these issues in an ongoing
project led by Israel Aerospace Industries (IAI) seeking to
build an autonomous compact track loader (CTL) for discov-
ery and evacuation of land-mines. For IAI, replacing its own
code base and methodology was not an option, yet it con-
stantly grappled with the question of how to provide clear
performance guarantees to the CTL’s potential customers.
With the text based SSS (System/Subsystem requirements
Specification) specification format their engineers use, it
was difficult to foresee how each module would behave, and
various performance problems encountered at run-time were
identified at a late stage, although with appropriate monitor-
ing earlier warnings could have been issued.

Motivated by these considerations, we defined a formal
language for specifying what we call performance-level pro-
files (PLPs) (Brafman, Shani, and Shimony, 2014). PLPs de-
scribe a number of key aspects of the performance of func-
tional modules.1 They combine ideas from planning lan-
guage, such as PDDL 2.1 (Fox and Long, 2003), probabilis-

1We use the term ”module” loosely referring to some piece of
software, or even hardware, that provides some functionality. Start-
ing with a sensor that provides raw data, a software module that
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tic PDDL (Younes and Littman, 2004), and RDDL (San-
ner, 2010), diverse goal notions, such as achievement and
maintenance goals (Ingrand et al., 1996; Kaminka et al.,
2007), and a new repeat construct aimed at making explicit
the frequency by which input parameters are read and out-
put parameters are published. Unlike action languages that
are limited expressively because they are closely tied to the
state-of-the-art in planning technology, PLPs seek to pro-
vide expressivity that can be used for other tasks, such as
performance monitoring.

PLPs have a number of potential roles. At the design
stage, PLPs can replace less formal text-based specifications
such as the SSS (systems/subsystem requirements specifica-
tion). SSS are often used by system engineers to describe re-
quirements from a software module. They have rigid struc-
ture, but field content is textual. Second, as noted above,
PLPs can be used as a basis for describing the commit-
ments made by module designers to module users, whether
customers or other developers. Perhaps more importantly,
thanks to the more rigid, machine readable syntax of PLPs,
they can be manipulated automatically for the purpose of
online monitoring, validation, and planning.

In the past few years, based on our experience in the
CTL project, we added new features to this language and
developed tools for automated code-schema generation for
monitoring, statistics gathering, and planning. These tools
play an important role in our long-term agenda of provid-
ing plug&play functionality for autonomous robots. Given
a PLP, we can generate planning operators, currently in
PDDL, that can be used by a planner. The code-generation
software queries the user for appropriate information that
”glues” the PLPs parameters to the underlying ROS ele-
ments. Using the information in the PLP, the generated ac-
tion dispatcher can receive an execution engine’s requests
and dispatch the relevant modules code with appropriate pa-
rameters. This dispatcher code uses the information in the
PLP’s associated ”glue” file to determine how to trigger the
underlying model, i.e what should be sent to which ROS
topics.

We describe the current form of PLPs and the tools we
developed, and explain how PLPs together with ROSPLAN
help provide an abstract planning layer. We also explain how
we integrate techniques from the area of plan compilation to
allow the use of a classical planner in a domain with uncer-
tainty and partial observability (Palacios and Geffner, 2009;
Albore, Palacios, and Geffner, 2009; Shani and Brafman,
2011).

PLPs
The primary objective of a PLP is to clarify the role and ex-
pected behavior of a module. As a simple example, imagine
a module designed to grasp an object. The expected out-
come is that the object is held by the arm. However, in
most realistic settings, this effect is not guaranteed. There is

generates some higher-level data from it, simple code that gener-
ates basic motion, or more complex code that provide complex mo-
tion that is informed by some sensor input, and higher level func-
tionality that performs a clear task.

some probability of failure, and failure can come with some
side effects, such as the object falling, or being broken. And
while the running time is most likely not deterministic, we
can try to describe properties of its distribution. We can also
describe its rate of progress. For instance, the grasping mod-
ule is usually not static until the object is captured, and so we
expect its position to change at some minimal rate. More-
over, the probability of success and failure may depend on
various properties, such as the shape and size of the object.
Furthermore, in certain settings it may be unrealistic to spec-
ify the success probability, as too many external things could
impact it. For example, if another arm is attempting to catch
the object at the same time, it may difficult to predict which
one will succeed.

PLPs are described in XML-based format. Each XML
document must conform to the schema defined for the cor-
responding PLP type (achieve, maintain, observe, detect).
These schema are described using XML Schema Defini-
tion (XSD) files. XML and XSD were chosen for their
simplicity and wide-spread use and support. Any tool
for editing XML and verifying its structure based on an
XSD file can be used as a PLP editor. The precise syn-
tax of the four schema is laborious, and can be found in
https://github.com/PLPbgu/PLP-repo together with an ex-
ample of a PLP of each type. Below we provide an infor-
mal description of the information contained in the respec-
tive XML documents.

Overview
PLPs have two abstract components. The first circumscribes
the conditions under which the profile is provided – condi-
tions that must hold for it to be valid. Such conditions in-
clude various properties of the world before and during ex-
ecution as well as available resources. The second specifies
the effect of the action – what success means, what are the
possible failure modes, what is the probability of each, what
is the distribution over running times, and what is its rate of
progress. More generally, it can specify a statistical profile
of various aspects of normal module behavior at run-time.

There are four types of PLP, corresponding to four types
of functional modules. Achieve modules attempt to achieve
a new state of the world or generate a new object. For ex-
ample, changing the orientation of the robot to some goal
orientation. Maintain modules attempt to maintain some
property. For example, a module that maintains some ori-
entation; or, a module that ensures that the robot remains
within some confined area. Observe modules attempt to rec-
ognize some property of the current state of the world. For
example, the robot’s location, or whether there is a cup on
the table. Finally, Detect modules monitor the state of the
world until some condition holds.

Many robotic modules operate by repeatedly updating or
modifying some data-structure or signal based on informa-
tion that is constantly being updated. To model such con-
structs we introduce the repeat wrapper for the achieve and
observe modules. For example, a path-planning module may
update the path as it obtains updated maps. It can be viewed
as performing an achieve task repeatedly.

104



Variables and Resources
The formal definition of PLPs rests on the specification of
properties of states of the world. These are defined by spec-
ifying properties of various state variables. It is desirable to
have a coherent specification of such variables, so that the
relationship between modules is clear.

In addition, each module may need access to certain re-
sources. These resources could be energy or memory, or
they could be some actuator, or some region of space. These
must be specified, much like state variables, and coherent
and consistent use of these names is required. In fact, re-
sources can be viewed as a special class of state variables,
whose state indicates the status of the resource (e.g., avail-
able, > 100 gallons, etc.). However, because we believe
that they carry special significance to programmers and op-
erators, we distinguish them from other variables.

Common Elements
All modules specify the following elements:
Parameters: Variables supplied to the module as input or
provided by the module as its output. Some input parameters
can also be output parameters (i.e., after undergoing some
processing). There are some special classes of parameters:
• Error parameters. That is, parameters that specify the ac-

curacy of other parameters. For example, if localization
is performed using a Kalman filter, an error estimate can
be obtained from its co-variance matrix.

• Execution parameters. These parameters are considered
the trigger for the underlying modules execution. For ex-
ample, the target location for a navigation action.

• Unobservable parameters. Some parameters’ value is un-
known and cannot be sensed before the action is executed.
For example, a navigation module that cannot avoid ob-
stacles not in its initial map. Its PLP will specify this,
e.g., using a Boolean parameter ”clear path”, whose value
is not observable prior to the execution of the navigation
command. Although the robot cannot act on this parame-
ter, the user must be aware of this requirement.

Set of variables: Local variables and their range.
Application Context: Conditions specifying the contexts in
which the PLP is valid. It contains the following elements:
• Required resources: List of resources required. If the re-

source is quantifiable, a required quantity is mentioned. If
the resource is needed for operation and then freed (e.g.,
memory, some tool, some actuator), the requirement sta-
tus must be mentioned. Possible values are ”exclusive” or
some frequency of use.

• (Optional) Maximal rate of change: Maximal change in
resource level per time unit.

• Preconditions: conditions on the world at the start of ex-
ecution time under which the PLP is defined. These con-
ditions can refer only to parameters.

• Concurrency conditions: conditions on the world at ex-
ecution time under which the PLP is defined. They can
also refer to the rate of change of parameters. For exam-
ple, stating that successful navigation requires respecting
some maximal speed limit.

• Concurrent modules: conditions on modules that must
or must-not be executed concurrently.

• (optional) Parameter frequency: The frequency by
which each parameter must be read or written. The fre-
quency by which a parameter is updated together with its
accuracy (which is available if an error parameter exists)
can affect the accuracy of output. For example, a naviga-
tion module that aims to reach a specified position may
need to obtain position information with certain rate and
certain accuracy to ensure success.

Side-effects: Each module has an intended effect, or role.
However, it may also have side-effects that are a result of
executing this module, but are not a measure of its success
or failure. For example, if the module consumes some re-
source, a natural side effect is that the level of this resource
is reduced. Side effects are described by a conditional as-
signment to a parameter, which could depend on a local vari-
able (such as running time, or distance traveled). Intuitively,
side-effects are changes caused by the module that could po-
tentially impact other modules.
Expected Progress Rate: Some modules perform continu-
ous work to achieve or maintain their goals. For example,
when navigating, the position will change at some rate as
long as the robot is not at its destination. Or, when grasp-
ing an object, the hand will move closer to the object. In
this field, one specifies the minimal rate of change per time
unit, as well as the time unit itself (e.g., ∆(x) ≥ 1 meter
every 1 minute). This field was recently added both because
it is consistent with our goal of providing as much informa-
tion about module behavior, and because it helps recognize
problematic behavior earlier on. Suppose, for example, that
we predict that the robot will arrive at the next way-point
in 10 minutes, yet it gets stuck somewhere in between for
some reason. Without progress measures, we would typi-
cally raise an alert after more than 10 minutes (e.g., two stan-
dard deviations beyond the expected running time). How-
ever, with progress measures, we can recognize the problem
much earlier.

PLP Types
There are four PLP types: achieve, maintain, observe, de-
tect. We briefly describe each type. See the link provided
for more information.

Achieve modules attempt to reach a state of the world in
which some desirable property holds. For example, fuel tank
is full, robot is standing, plane has landed, etc. Achieve also
covers cases where the goal is to generate some virtual ob-
ject, such as a map or a path. Beyond the common elements,
their PLP contains the following: the achievement goal –
a Boolean condition defined over suitable parameters, fail-
ure modes – which are various ways the module could fail
to achieve the goal, the probabilities associated with suc-
cess and each failure mode, and the running time distribution
given success and given failure.

Maintain modules attempt to maintain the value of a vari-
able or the truth value of some more complex condition, e.g.,
maintain heading, maintain speed, maintain perimeter clean,
etc. The condition need not be true initially, and so the mod-
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ule may need to initially attain the condition, as in a closed-
loop controller that always attempts to decrease some dis-
tance to the desired goal condition. For this reason we do
not want to force users to split such cases into achieve and
then maintain. Our goal is to describe code, not to force a
certain architecture.

In addition to common elements, the PLP of maintain
modules contains: the condition to be maintained, whether
it is initially true,termination conditions, one for successful
termination and one for failure, failure modes, the probabil-
ity of successful termination and different failure modes, and
the runtime distribution given success and failure. A success
termination condition is not necessary, and the run-time dis-
tribution will often be memoryless (i.e., exponential).

Sometimes, one needs to maintain some condition in or-
der to achieve a goal. For example, one may reach a target
position by maintaining a pre-computed path to the goal, ei-
ther by iteratively reaching way-points, or by ensuring that
the heading is always in the direction of the path. One can
model this behaviour using an achieve module whose goal
is to reach the target position, or as a maintain module that
maintains heading along the path direction, with the success
termination condition being ”at-the-goal”. The latter defini-
tion is less abstract, and clarifies what the module actually
needs to do. Given this definition, we can detect problems by
alerting the operator or system whenever the actual heading
is not in the direction of the path, rather than only when the
goal is not reached. Of course, ultimately, the user decides
which model suits her best.

Observe modules attempt to identify the value of some
variable(s) or a Boolean condition in the current world state.
For example: observe distance to wall, observe whether
robot is standing, observe whether object is held. Beyond
the common elements, observe PLPs contain an observa-
tion goal – a Boolean condition to be verified or a parameter
whose value is to be observed. We also describe the proba-
bility of failure to observe, the probability the observation is
correct (if Boolean) or some form of error specification, such
as confidence interval and confidence level, the running-time
distribution given success and given failure.

Detect modules attempt to identify some condition that is
either not true now, or that is not immediately observable.
For example, detect intruder, detect temperature change, de-
tect motion, detect obstacle, etc. In addition to the common
elements, detect modules contain the detection goal, i.e., the
condition being detected, and the probability the condition
will be detected given that it holds (true positive) and given
that it does not hold (false positive).

REPEAT
In many robotic applications, various modules run contin-
uously, updating some data-structure, such as a map, or a
path, or monitoring the environment for some trigger, such
as detection of an intruder. Such modules are essentially
loops that execute some underlying routine many times, e.g.,
map and path update, or repeatedly analyze some input until
a condition holds. While, in code terms, they offer nothing
special, in terms of their spec, they raise a number of issues
– for example, the rate by which updates occurs, the rate in

which input is expected to be received, and the termination
condition. For this purpose we provide a special Boolean
repeat field for achieve and observe PLP. When its value is
true, additional information must be supplied including:
Execution Frequency – How many times per second is the
underlying module executed. We assume that if the module
has an output parameter, then the frequency by which it is
updated is the same as the execution frequency.
Input Frequency – For each input parameter that can trig-
ger a repetition, it is possible (optional) to specify its mini-
mal expected update frequency. One can view this as a spe-
cial type of concurrency condition.
Termination Condition – Once this condition is true, the
module stops executing the loop.

Repeat can be used to implement detect and maintain us-
ing repeated observe and achieve with a suitable termination
condition. For example, detect can be implemented using
an observe module that observes the detect condition, re-
peatedly, until it is true. Since our philosophy is to provide
constructs that map naturally to functional modules, rather
than to educate users in using some minimal vocabulary, we
allow both options.

An interesting issue regarding repeat modules is the au-
tomated derivation of the parameters of the entire module
given the properties of the repeat construct (frequencies, ter-
mination condition) and the properties of the module that is
repeatedly executed (i.e., success probability, running time).
For example, suppose that one has computed a map of the
environment with some accuracy, and has now generated a
path based on this map. At some positions along this path,
the distance to the nearest obstacle is 50cm. This implies
that the localization error must be smaller than 50cm. This,
in turn, likely requires more accurate localization, that can
potentially be obtained by increasing the rate by which im-
ages, or scanner readings are obtained and analyzed. We
believe that automatic inference of such constraints could be
valuable in many applications, and we pose this problem as
an interesting question for future work.

ROS-BASED PLP MONITORING TOOLS
We developed two main tools so far: PLP schema files writ-
ten in XSD, and automated code generation for run-time
monitoring and statistics gathering. We briefly describe
each. The code-generation software as well as code sam-
ples can be found at https://github.com/PLPbgu/
PLP-repo. The code generator is written in Java and out-
puts a ROS package containing Python scripts for a ROS
node, a PLP object, and additional auxiliary classes. The
ROS node, called PLP ROS harness, is responsible for com-
municating with the ROS environment, and detecting trig-
gers. The PLP object is responsible for the calculations and
has no direct connection with the ROS environment. This
decoupling allows programmers to use the PLP object of-
fline and makes it easy to modify the code to work in other
environments.

Editor Friendly PLP Schema
We developed an XML-based language for describing PLPs,
and provide a formal definition of it in the form of an XML
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Figure 1: Class diagram of the PLP package, and how it re-
lates to the ROS environment. The class structure resembles
the structure of the PLP file. Object ownership is directional,
from the ROS node to the PLP classes. Calls from the PLP
class back to the ROS node are done via a callback mecha-
nism, decoupling the PLP logic from the ROS environment.

schema document (XSD file). This allows developers to use
their tool of choice for writing and validating PLPs. We be-
lieve this approach serves PLP users better than creating a
bespoke editor, since developers value productivity, which
normally suffers when a new tool is introduced. As many
text editors and IDEs, such as Emacs, NetBeans, and Visu-
alStudio, offer XSD-based validation and code completion,
an XSD language definition is directly usable for most pro-
grammers.

Code Generation for Monitoring
Given a PLP file, our tools can generate a ROS package,2
comprised of a single ROS node, a PLP object, and auxiliary
classes. When executed, the node monitors the performance
of the module described by the PLP. Figure 1 describes the
generated classes and how they relate to each other.

The generated code structure is designed to allow both on-
line (interacting with a ROS environment) and offline (out-
side of ROS) use of the PLP logic. Additional goals are
making the code reusable and easy to comprehend. To this
end, the generated classes reflect the structure of the PLP
file: Specific classes for the PLP parameters and variables,
a single class for the PLP logic, and a class for a specialized
ROS node, called the harness node. To allow offline us-
age, the PLP node is not directly aware of the harness node
(which is a part of a ROS environment). Rather, it commu-
nicates with it using a callback mechanism. During offline
usage, client code can provide a PLP object with a different
callback, or use the PLP logic directly.

For generating the harness node, we use a glue file that
contains the mapping between PLP parameters to their loca-

2We do not support code generation for repeat constructs, yet.

Figure 2: The triggering sequence of a PLP. Note that a trig-
ger may result in initiating a PLP, recording the PLP parame-
ters at trigger time to file, or both.

tion in ROS (e.g., the topic). The glue file also contains the
required imports in order to work with the needed messages
and classes.

This generated ROS package performs the following
functionality: The PLP Harness saves the most recent value
of each parameter as referred to by the given glue file. Each
time a value is updated, the PLP Harness checks whether the
PLP trigger holds (start condition). When it does, the har-
ness node creates a PLP object (see Figure 2). The newly
created PLP object is updated whenever one of its parame-
ters are updated, and uses the harness to publish alerts and
predictions regarding the task it monitors. In particular, it
can send alerts when preconditions, concurrency conditions,
progress measures or other required conditions are violated,
and can generate predictions regarding the success probabil-
ity and expected execution time. For PLPs that require peri-
odical update, the harness node generates a timer requesting
periodical PLP evaluations. Figures 3 and 4 show the call
sequences resulting from a message arriving at the harness
node and a timer event, respectively.

There are two main parts that are left as “templates” for
the programmer to implement:

1. Variable updaters – when a parameter is updated, the
methods for recalculating the variables will be called.
These functions are left to be filled in by the user.

2. Condition validation functions – each function checks if
some basic condition specified somewhere in the PLP
holds. The user is asked to fill-in code that validates only
the bare essential conditions.

Each of these functions is generated with comments describ-
ing what needs to be implemented in a clear and simple man-
ner.
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Figure 3: When a message arrives at the PLP ROS harness,
it triggers a sequence of calls and callbacks. The result may
be the PLP publishing predictions and progress measures,
or detecting a termination condition.

Figure 4: A PLP whose evaluation requires periodical mea-
surements can use a ROS timer.

Code Generation for Data Gathering
An important component of a PLP is a statistical profile of
some of its properties, such as success rate and run-time
distribution. Our statistics collecting code is generated au-
tomatically from a PLP and is, in fact, an operating mode
of the aforementioned ROS harness node. When started in
”data gathering mode,” the ROS harness node records the
parameters when the PLP’s trigger condition becomes true
(see Figure 2). This allows for the following technique: run
multiple simulations of a given task, with the ROS harness
in data gathering mode. For each iteration, in addition to the
file generated by the ROS harness node, record the final re-
sult (success and failure probabilities, run-time distributions,
etc.) and use this data set for predictive analysis using PLP
parameters.

Use Methodology
Our suggested methodology of use for PLPs is described
in Figure 5. A PLP can be used instead, or in addition
to traditional specification languages by the system archi-
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Identified

Online

update

Figure 5: Suggested Use Methodology

tect. By using a PLP, he/she is required to provide more
precise, quantifiable requirements, possibly providing more
guidance to the programmer. For example, if the expected
success rate of the grasping module is high, the program-
mer may want to update the trajectory of the arm during its
motion based on input from the gripper camera. Next, the
code is written, and a PLP describing its expected properties
is defined (or modified, if defined earlier). Then, using au-
tomated code generation, data-gathering code is generated
and integrated into the ROS package. Whenever the mod-
ule executes, it triggers the measurement of various run-time
and success statistics which are used to update the predictive
analysis carried out by the PLP object. At any point that a
PLP is available, one can use the automated code generator
to generate monitoring code. If the code changes, one can
edit the PLP to reflect such changes, and regenerate the code.
The generated code works online, monitoring the module’s
behavior and/or gathering statistics.

Using PLPs for Planning
PLPs can be viewed as a rich action representation language.
As such, they contain the information required to generate
planning operators of various types. We exploit this in order
to facilitate automated planning, providing developers with
yet another advantage for using PLPs as a specification/de-
scription language. In this context, PLPs provide an abstract
layer on top of the actual system that makes its integration
with a planner simpler, and allows for plug&play capabili-
ties, where new capabilities, whether software of hardware
based, can easily be integrated and orchestrated through the
use of a more abstract planning layer. While we are not
there, yet, ROSPLAN Cashmore et al. (2015) took an im-
portant step in this direction, and PLPs with their support
tools take us closer to realizing this vision.

The process we envision is as follows: First, system en-
gineers provide PLPs for their modules. The PLP2PDDL
compiler generates planning domain descriptions from these
PLPs. The domain files are now provided to the planner/ex-
ecutor, ROSPLAN in our case, which is able to plan, and
modify plans. Using the information in the glue files, we
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generate a PLP dispatcher that connects the execution en-
gine’s request, i.e ROSPlan, to the PLPs underlying mod-
ules. If new capabilities are added, all that is required is to
add the new PLPs, and rerun the process. At present, our
compilation is a batch process, but we hope to make the pro-
cess modular, so that only the new PLPs will require compi-
lation.

In what follows we describe our PLP2PDDL transforma-
tions that address the inherent discrepancy between the nat-
urally partially observable domain of robotics with the clas-
sical model specified in PDDL. Then, we explain the more
technical aspect of our integration with ROSPLAN.

Generating Planning Domains from PLPs
PLPs capture information about uncertainty and partial ob-
servability. For example, observe and detect modules have
no immediate counterparts in PDDL, which assumes a clas-
sical, and thus deterministic, fully observable domain. To
address this, we provide two compilation modes. In the first,
we assume that the domain is almost fully observable. Sens-
ing is used only to supply the value of parameters for actions.
For example, the location of a cup to be grasped. The sec-
ond is a more sophisticated compilation that mimics some of
the ideas used to compile conformant and contingent plan-
ning problems into classical problems (Palacios and Geffner,
2009; Albore, Palacios, and Geffner, 2009; Shani and Braf-
man, 2011)

Our PLP2PDDL compiler takes as input PLP specifica-
tions and outputs a PDDL domain and a template problem
file. In the near-fully-observable mode we add one new kind
of proposition. For every parameter par, which value can
be sensed by an observe PLP, we add: KV par which intu-
itively stands for pars value is known. The initial state is
given by the user, and is transformed into the initial state of
for the problem under the closed-world assumption. Thus,
initially, ¬KV par holds for every parameter.

The PDDL action generated from a PLP contains all pre-
conditions and concurrency conditions that appear in the
PLP. For conditions whose value cannot be altered by any
other PLP, a message will be prompted to the user, asking if
this condition is needed. We do this because some of these
conditions might be unnecessary for planning, adding un-
wanted complexity. For PLPs which require an input param-
eter, par, for which a sensing action exists, a precondition
KV par is added to the PDDL actions preconditions to en-
sure that the sensing action will be executed before applying
that action. PLP side effects, both conditional and uncondi-
tional are added as effects to the PDDL action. Other effects
are determined by the type of module:

1. Achieve PLPs: the goal condition is added as an effect.
2. Maintain PLPs: if the maintained condition is initially

false, it is added as an effect. If it is initially true, we
ignore it because it has no significance in non-temporal
planning.

3. Detect PLPs: if the action finished successfully, the de-
tected condition holds. In the non-temporal case, we can
view it as an action that achieves a condition. Thus, the
detection goal is added as an effect.

4. Observe PLPs: if the observation goal is a parameter par,
KV par is added as an effect. If the observation goal is a
condition, it is of no significance in this compilation mode
because we assume it is known.
In the partially observable mode we follow the basic com-

pilation rules described in the near-fully-observable mode,
with some new additions and changes. We generate a do-
main with a richer set of variables: for every ground predi-
cate p, we add two new predicates: Kp and K¬p, for p is
known and ¬p is known.

Initial State Using the user’s input initial state, we gen-
erate a new initial state as follows: For every literal l that
holds in the user provided initial state, we include l and Kl
in the generated initial state. In addition, we optimistically
close the initial state for every primitive proposition that is
unknown as follows:

1. If there is a sensing action for p or an action that achieves
p, we optimistically assume that p holds and add p to the
generated initial state, but not Kp. Instead, we include
¬Kp ∧ ¬K¬p.

2. If p cannot be sensed or produced, we optimistically add
p and Kp.

Actions Every action that requires p as a precondition, will
instead require p∧Kp. Regarding the effects of the actions,
there are three main cases:

1. Sensing parameter values: We handle this case as de-
scribed in the near-fully-observable mode.

2. Sensing conditions: in observe PLPs that sense whether
a primitive proposition p holds or not have the following
conditional effects: (p,Kp∧¬K¬p), (¬p,K¬p∧¬Kp).

3. Every deterministic effect p is augmented byKp∧¬K¬p.
4. Every conditional effect (p, q) is augmented by (Kp,Kq)

and (¬K¬p,¬K¬q).
The result is a classical planning problem in which the

planner acts based on assumptions on the value of all propo-
sitions. However, because of the modified form of the op-
erators, it must verify its assumptions when possible (i.e.,
via a sensing action or using a deterministic effect). This
forces the planner to add sensing actions, which are useless
in standard classical planning. Of course, the assumptions
may be wrong, at which point the execution engine (i.e., the
dispatcher) will stop plan execution and will replan with the
new information. Very roughly, one can view this compila-
tion scheme as a simplified version of the compilation used
by the SDR planner (Shani and Brafman, 2011). A more
sophisticated compilation would require more information
about the initial belief state.

ROSPlan Integration
Another tool we built is a plan dispatcher to be used for the
domain generated by the PLP2PDDL compiler. In ROSPlan,
part of the Planning System responsibilities is to generate a
plan and dispatch the actions according to the plan. The ac-
tion dispatch is achieved using a shared ROS topic, which
every action node subscribes to. The message published on
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this topic specifies the name of the action that needs to be ex-
ecuted. Every node that is subscribed to this topic, receives
the message and checks whether or not it is responsible for
the given action. In addition, the actions themselves are
responsible for updating the Planning System of success/-
failure and updating the Knowledge Management System,
which holds the current state of the world. This design is
somewhat problematic for PLP module dispatch. PLPs ad-
vocate no change to the code written by the user, they are
wrappers that one can attach to one’s robotic module without
changing the code. This means that we do not want to force
the user to write code that listens to a specific topic for exe-
cution or updates the KMS. Given some PLPs’ descriptions,
a PLP dispatcher will be generated in order to dispatch a
plan containing the given PLPs. Our PLP dispatcher is com-
posed of a single node for each PLP and a launch file to run
them. Each node provides a layer of abstraction between the
Planning System and KMS, and the relevant PLPs underly-
ing module. Each PLPs dispatcher node will be responsible
for the following:

1. Listening to the required ROSPlan node that requests ac-
tion execution. Once a message is received, the dispatcher
will activate the required PLP module’s trigger (in order
to execute it).

2. Constantly monitoring the termination conditions of the
PLP’s underlying module. Once a termination condi-
tion holds, the dispatcher will update the planning system
whether the action failed or succeeded.

3. Receiving the PLP module’s output parameters and, if
needed, saving them in the ROS MongoDB. This is cru-
cial because we might need to pass them to another PLP
as part of a trigger.

4. Updating the KMS with the current state of the world ac-
cording to the results of the PLP modules execution.

5. When a domain generated in the partially observable
mode is used, if a plan failed because of a wrong assump-
tion regarding a predicate’s value, the dispatcher will up-
date the value of the predicate in the KMS and inform the
planning system that the action failed, thus triggering a
replan (in implementation stages).

This is achieved using a glue file which maps PLP parame-
ters to PDDL parameters, so that the execution parameters
can be sent to the PLPs’ modules. This abstraction layer
allows us to successfully integrate with ROSPlan while still
following the PLPs guidelines of not requiring any alteration
to the user’s code. There is currently a working demo of the
PLP dispatcher. The code generator that automatically gen-
erates the PLP dispatcher given a domain is still in imple-
mentation stages.

USE CASES
Our main use case involves the use of PLPs for monitor-
ing within the autonomous CTL, led by Israel Aerospace
Industries. To date, most work done is within the Gazebo
simulation environment, for which a CTL model and work-
ing environments were constructed. A PLP ROS package is

Figure 6: The Autonomous CTL

installed on the real CTL, but we do not have enough data
from this installation at this point.

PLPs were used to generate monitoring code for two mod-
ules: the way-point driver and the module that processes the
IBEO laser scanner. The way-point driver has an achieve
PLP whose goal is to arrive at the next way-point (provided
by the path-planner). Among some of its properties are the
following two progress conditions: the length of the planned
path should decrease during an appropriate interval, and the
aerial distance to the next way-point should decrease every
(different) interval. During testing, the ROS node based on
the way-point driver PLP helped the team find an error in
the path planning module. Even though the CTL was reach-
ing its navigation goal, the PLP node was complaining that
the planned path length did not decrease. Looking into this
issue, the team found that once the path planning module de-
cided on a given path, it did not update it while the CTL was
moving. Rather, it was re-publishing the same, initial path
over and over again, until the CTL has reached the goal.

Another ongoing project employing PLPs is an au-
tonomous service robot that uses AI planning technology
to respond to user requests. The robot can perform actions
like pressing an elevator button, moving between rooms, etc.
For each action, a PLP is defined. Besides the benefit of
automated monitoring code generation, noted earlier, here
planning plays a key role in supporting autonomy, and we
use the near-fully-observable mode. The correspondence be-
tween plan actions, PLPs, and concrete functional modules
via the PDDL compiler and the glue file, allowed us to build
a working PLP dispatcher that provides an abstraction layer
between the ROSPlan dispatcher and the PLPs underlying
modules. Our PLP dispatcher receives the PDDL actions to
execute and dispatches the plan online, as described earlier.

RELATED WORK
PLPs for achievement goals are based on existing action lan-
guages, mixing features from a number of sources. Precon-
ditions and effects go back to STRIPS (Fikes and Nilsson,
1971). Concurrency conditions were integrated into PDDL
when it was extended to handle temporal actions (Fox and
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Long, 2003), which obviously included a specification of
(deterministic) running time of operators and the ability to
specify resources and their consumption over time. PLPs
emphasize a slightly different version of concurrency con-
dition, which attempts to address the issue of action (here,
module) interaction introduced by Boutilier and Brafman
(2001). Requiring exclusive use of a resource is a tech-
nique for preventing harmful interactions, or simply inter-
actions whose effect cannot be predicted. Thus, a module
can require exclusive use of an arm, preventing other mod-
ules from interfering with its use. This idea goes back to
the classical use of mutex in concurrent systems (Dijkstra,
1965), and is implemented in some languages for concurrent
programming. A related idea appears in Structured Reactive
Controllers (Beetz, 1999) where the notion of embedability
is defined. That notion asserts that a module may be exe-
cuted concurrently with a set of other modules without their
execution interfering with its ability to reach its goal.

In addition, PLPs address uncertainty by borrowing ideas
from PPDDL (Younes and Littman, 2004) and RDDL (San-
ner, 2010). For each of these aspects (time, concurrency, un-
certainty, resources) there are languages that provide more
powerful constructs, whereas PLPs attempt to address all es-
sential aspects of the performance of a module, while pro-
viding a good trade off between expressiveness and intu-
itiveness. Thus, while PDDL2.1 can describe temporal ac-
tions, it does not describe actions with stochastic durations,
and while RDDL describes probabilistic effects, it does not
specify temporally extended actions, etc.

Maintenance goals are also a well known concept
(e.g., Ingrand et al. (1996)). In principle, a maintenance goal
could be specified using a version of temporally extended
actions (Fox and Long, 2003) in which some effects of an ac-
tion take place immediately at the beginning of its execution
and are true throughout its execution. Such specification is
a bit counter-intuitive, though, as maintain modules usually
maintain a condition that is already true. detect and observe
modules, on the other hand, are motivated by the ideas of
observation in POMDPs and contingent planning, whereas
the ideas behind the repeat module, and in particular, the
introduction of input/output frequencies appears new, to the
best of our knowledge.

The formalism that appears most similar to PLP in terms
of constructs offered is PRS (Ingrand et al., 1996). It has
achieve, maintain, and observation goals, context condi-
tions, and properties, which can mention resource consump-
tion. But herein lies a fundamental difference. PRS is part
of a large set of languages for building robotic modules and
controllers that have been developed and improved over the
years. Other well-known languages are TCA/TDL (Sim-
mons and Apfelbaum, 1998), RPML (Ingham, Ragno, and
Williams, 2001), BIP (Basu, Bozga, and Sifakis, 2006;
Basu et al., 2008), or even synthesis based tools for auto-
mated controller generation, such as Kress-Gazit and Pap-
pas (2010). PLPs on the other hand are descriptive rather
than prescriptive. This why they contain important infor-
mation about expected performance, such as success proba-
bility, expected running time, and expected progress that is
missing from the above languages. Such descriptions can

be used as a more structured, machine readable, specifica-
tion language, describing the performance that the designer
seeks, or as the input to automated tools that utilize infor-
mation about expected behaviour for monitoring, validation,
or planning. However, they are not a tool for programming
robots. However, unlike formal languages for constructing
robotic software, PLPs are not provably correct. That is, we
rely on the fact that the PLP is a faithful specification of the
written code, but we cannot guarantee it. Statistics gather-
ing tools can, to some extent, verify the correctness of this
specification, but only probabilistically.

Finally, the automated code generated from PLPs imple-
ments a middle-ware layer between the planner and the un-
derlying modules where the PLP provides the information
required to build the interface between these layers. This
allows for a plug&play-like behavior where the system can
make use of new capabilities, whether software or hardware,
by processing their PLPs. From the planner’s/controller’s
perspective, the system is composed of PLPs, and it must
combine them appropriately to achieve its task. Currently,
this combination is in the form of a classical sequential
plan+replanning, but in the future, we hope to incorporate
more complex planners that support temporal and proba-
bilistic reasoning. Similar motivation underlies the ROAR
architecture Degroote and Lacroix (2011) where the control
layer views the systems as composed of a set of resources, or
agents with capabilities, and desired behavior requires these
agents to satisfy various constraints. This architecture uses
constraint reasoning combined with pre-written recipes and
scripts. Constraint reasoning is used to make the interaction
between resources as transparent as possible to the script
writer. Our middle layer is composed of code generated
automatically that enables using a planner, hopefully in a
fully autonomous manner. Another system, Dyknow Heintz,
Kvarnström, and Doherty (2010), provides tools for gener-
ating middle-ware for knowledge processing – that is, the
generation of meaningful symbolic descriptions from sensor
information. This middle-ware, however, is very different
in flavor from ROAR and PLPs, but is rather loosely related
to our abstract notions of observe and detect. Dyknow pro-
vides a rich set of tools, aimed at generating more abstract,
symbolic ”sensors”, whereas observe and detect make no at-
tempt to provide such abstractions. That is, an observe mod-
ule may observe low level variables, and the generation of
more symbolic variables could be done by another module
that processes this data. In this respect, the two ideas are
orthogonal.

SUMMARY AND FUTURE WORK
We described performance level profiles, a language for
specifying the expected performance of functional modules.
PLPs are motivated by the need to provide more precise,
quantifiable, and machine-readable descriptions of module
behavior. With such information, one can detect abnormal
behavior more easily, generate monitoring code automati-
cally, as well as provide clear guarantees to users.

PLPs are motivated by standard planning languages, but
attempts to make the specification more intuitive and appro-
priate by resorting to the well known notions of achievement
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and maintenance goals, adding also analogous notions for
the sensing-side of robot activity. In addition, using the re-
peat wrapper, we are able to naturally give a clear role to the
notion of frequency and latency, commonly used by design-
ers of robotic hardware and software.

We developed a first set of tools for building and using
PLPs. We began by building tools for performance moni-
toring – being able to provide operators with useful infor-
mation about unexpected or problematic conditions, such as
modules operating without the required preconditions and
concurrent conditions, information about running times, and
effects of modules used online. Afterwards, we built a com-
piler that receives PLP specifications and outputs a PDDL
domain and template problem file. Finally, we built a PLP
dispatcher that provides a layer of abstraction between ROS-
Plan and the underlying modules, thus allowing planning
and plan dispatch without any change to these modules.

In defining PLPs we preferred intuitiveness and redun-
dancy to economy and succinctness. We envision that future
use will lead to additional fields describing properties that
are useful to know. Our point is that users can always decide
not to specify certain aspects of their module, and automated
reasoning tools can always use only a subset of the informa-
tion. For example, for generating PDDL planning domains,
we use only part of information in the PLP. If a stronger
planner is available, a compiler to a more informative action
can be used, instead.
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Appendix: Compilation Example
The following is an example showing the outcome of com-
pilation in the near-fully-observable mode. There are two
PLPs: observe gateway which senses the location of a re-
quired gateway and walk through gateway which moves the
robot through the required gateway. Their description ap-
pears in Figures 8 and 9. The generated PDDL domain file
and template problem file appear in Figures 7 and 10.

(define (domain PLP_DOMAIN)

(:requirements [:strips] [:adl])

(:predicates (at ?par) (connected ?par1 ?par2 ?par3)

)

(:action walk_through_gateway

:parameters (?areaA ?areaB ?gateway)

:precondition (and (at areaA)

(connected areaA areaB gateway) (K_GATEWAY_LOCATION gateway))

:effect (and (at areaB)

(forall (gw) (not (K_GATEWAY_LOCATION gw))))

)

(:action observe_gateway

:parameters (?areaA ?areaB ?gateway)

:precondition (and (at areaA) (connected areaA areaB gateway))

:effect (K_GATEWAY_LOCATION gateway)

))

Figure 7: Generated Domain File

<achieve_plp name="walk_through_gateway">
<parameters>

<execution_parameters>
<param name="areaA" />
<param name="areaB" />
<param name="gateway" />

</execution_parameters>
<input_parameters>

<param name="gateway_location" >
<field value="gateway" />

</param>
<param name="laser_scan" read_frequency="5" />
<param name="odometry" read_frequency="5" />
<param name="arm_controller" read_frequency="1" />
<param name="current_Aspeed" />
<param name="current_Lspeed" />

</input_parameters>
...

</parameters>
...
<preconditions>

<predicate_condition name="at">
<field value="areaA" />

</predicate_condition>
<predicate_condition name="connected">

<field value="areaA" />
<field value="areaB" />
<field value="gateway" />

</predicate_condition>
<formula_condition key_description="no_angular_speed">

<expression value="begin_Aspeed" />
<operator type="="/>
<expression value="0" />

</formula_condition>
<formula_condition key_description="no_linear_speed">

<expression value="begin_Lspeed" />
<operator type="="/>
<expression value="0" />

</formula_condition>
</preconditions>
...
<side_effects>
<forall_effect>

<param name="gw" />
<assignment_effect
key_description="losing_observed_locations">

<param name="gateway_location" >
<field value="gw" />

</param>
<expression value="NULL" />

</assignment_effect>
</forall_effect>
</side_effects>
...
<achievement_goal>

<predicate_condition name="at">
<field value="areaB" />

</predicate_condition>
</achievement_goal>
...

</achieve_plp>

Figure 8: Walk-Through-Gateway PLP
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<observe_plp name="observe_gateway">

<parameters>

<execution_parameters>

<param name="areaA" />

<param name="areaB" />

<param name="gateway" />

</execution_parameters>

<input_parameters>

<param name="camera_controller" />

<param name="odometry" />

<param name="arm_controller" />

<param name="begin_Aspeed" />

<param name="begin_Lspeed" />

</input_parameters>

<output_parameters>

<param name="gateway_location">

<field value="gateway" />

</param>

</output_parameters>

...

</parameters>

...

<preconditions>

<predicate_condition name="at">

<field value="areaA" />

</predicate_condition>

<predicate_condition name="connected">

<field value="areaA" />

<field value="areaB" />

<field value="gateway" />

</predicate_condition>

<formula_condition key_description="no_angular_speed">

<expression value="begin_Aspeed" />

<operator type="="/>

<expression value="0" />

</formula_condition>

<formula_condition key_description="no_linear_speed">

<expression value="begin_Lspeed" />

<operator type="="/>

<expression value="0" />

</formula_condition>

</preconditions>

<observation_goal_parameter>

<param name="gateway_location">

<field value="gateway" />

</param>

</observation_goal_parameter>

</observe_plp>

Figure 9: Observe-Gateway PLP

(define (problem PLP_PROBLEM)

(:domain PLP_DOMAIN)

(:objects OBJ1 OBJ2 ... OBJ_N)

(:init ATOM1 ATOM2 ... ATOM_N)

(:goal CONDITION_FORMULA)

)

#COMMENTS:

1. Add objects for the following predicates:

- (at ?par)

- (connected ?par1 ?par2 ?par3)

2. As confirmed with the user - assumes the following

is true in the initial state (no need to mention them):

- [begin_Aspeed = 0] @ walk_through_gateway

- [begin_Lspeed = 0] @ walk_through_gateway

- [arm_moving = FALSE] @ walk_through_gateway

- [begin_Aspeed = 0] @ observe_gateway

- [begin_Lspeed = 0] @ observe_gateway

- [arm_moving = FALSE] @ observe_gateway

Figure 10: Generated Problem File Template
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Abstract

Achieving consistently high levels of productivity for surface
exploration missions has been a challenge for Mars missions.
While the rovers have made major discoveries and accom-
plished a large number of objectives, they often require a
great deal of effort from the operations teams and achiev-
ing objectives can take longer than anticipated. This paper
describes the early stages of a multi-year project to investi-
gate solutions for enhancing surface mission productivity. A
primary focus of this early stage is to conduct in-depth stud-
ies of Mars Science Laboratory science campaigns to gain a
deeper understanding of the factors that impact productivity,
and to use this understanding to identify potential changes
to flight software and ground operations practices to increase
productivity. We present the science campaigns we have se-
lected along with a conceptual model of how surface missions
achieve objectives that is used to guide the study. We also
provide some early thoughts on the technologies, and their
interactions, which we believe will play an important role in
addressing surface mission productivity challenges.

Introduction
The Curiosity rover has been exploring Gale Crater and
Mount Sharp since its landing in August 2012. During this
time, the Mars Science Laboratory (MSL) mission has ac-
complished many significant objectives. It has achieved
the success criteria for the prime mission, collected ev-
idence that indicates Mars was once habitable, collected
over a dozen samples and driven more than 12 kilome-
ters (Grotzinger et al. 2015; Vasavada et al. 2014). Curiosity
is currently in its extended mission and continues to make
new discoveries as it explores Mount Sharp.

While the Mars rovers, including Spirit, Opportunity and
Curiosity, have demonstrated an incredible ability to survive
far beyond their designed lifetimes, they still represent lim-
ited opportunities to explore the planet. As such, there is
great interest in getting the most out of these landed assets
over the course of the missions.

Maintaining high levels of productivity for the Curiosity
rover is challenging. While the operations team has made
significant accomplishments with the rover, doing so often

Copyright c© 2016, California Institute of Technology. U.S. Gov-
ernment sponsorship acknowledged.

requires a large amount of human effort in planning, coordi-
nating, sequencing and validating the development of com-
mand products for the rover. Further, limitations in com-
munication opportunities and anomalies on the vehicle can
sometimes cause delays in accomplishing the team’s objec-
tives. These productivity challenges can result in the under-
utilization of the vehicle’s resources.

We are conducting a multi-year project to address these
productivity challenges. Beginning with in-depth case stud-
ies of key MSL campaigns, we will develop a better under-
standing of the factors that promote and hinder surface mis-
sion productivity. Based on the findings from the study, we
are developing designs for flight software and ground opera-
tions practices to address these challenges. The designs will
be prototyped on research rovers and evaluated in realistic
operations scenarios.

We are currently in the first year of the project, conducting
the MSL case studies. The remainder of this paper describes
the case studies we have selected for our investigation with
motivations for why we think they will yield interesting re-
sults. Next, we provide an overview of the mission opera-
tions process to provide context for the discussion of mis-
sion productivity. We then provide a conceptual model of
how mission objectives are accomplished. The model pro-
vides guidance in the collection and analysis of data in the
case studies and highlights some of the factors that may in-
fluence productivity. Finally, we provide our early thoughts
on the types of changes to flight software and ground oper-
ations that we anticipate will be important in attaining high
levels of surface mission productivity.

Illustrative Campaigns
We are conducting an in-depth study of some of Curiosity’s
science campaigns to help increase our understanding of the
factors that contribute to and detract from surface mission
productivity. For each campaign, we are examining how the
operations team decides what to accomplish each day, how
well these objectives are achieved and how results from one
day feed into and inform objectives for the next.

Figure 1 shows the campaigns that we have selected
for study. Curiosity began exploring Pahrump Hills (Fig-
ure 1 (a) in the fall of 2014 (Stack et al. 2015). Pahrump
Hills is an interesting case study for multiple reasons. The
light-toned outcrop of Pahrump Hills was the first exposure
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(a) Pahrump Hills (Curiosity Mastcam)

(b) Artist’s Drive (Mars Reconnaissance Orbiter HiRISE)

(c) Marias Pass (Curiosity Mastcam)

Figure 1: Examples of Curiosity’s science campaigns.

of bedrock making up the base of Mount Sharp that was
encountered during the mission. The campaign was also
significant in the way in which the exploration of this for-
mation was conducted. The science team decided to con-
duct a “walkabout”, a practice used by field geologists when
studying unexplored geological areas on Earth. The team
made multiple passes of the area with each pass inform-
ing a subsequent, more detailed study. We chose to focus
on the first walkabout which explored the region with pri-
marily remote sensing instruments (mast-mounted imagery
and spectroscopy) in order to identify locations to return
to for more detailed follow-up study with arm-mounted in-
struments. Another interesting factor was the geography of
Pahrump Hills was conducive to developing a strategic plan
for the initial walkabout. The sloping hills made it pos-
sible to see nearly the complete formation from a single
panoramic image allowing scientists and engineers to plan
a route to explore the area.

After completing investigations at Pahrump Hills, Curios-
ity departed the area in the spring of 2015 with the ob-
jective to reach higher levels of Mount Sharp for contin-
ued exploration. Curiosity followed a route referred to as
Artist’s Drive, shown in Figure 1 (b) (Jet Propulsion Labo-
ratory Press Release 2015). Along the way, the science team
conducted a science campaign to capture images of the sur-
rounding topography in order to build a record of the stratig-
raphy (i.e., layering and structure) of the sedimentary rock
layers exposed in the valley walls. The orbital imagery pro-
vided by the Mars Reconnaissance Orbiter’s HIRISE instru-
ment enabled the team to identify locations where gaps in
the surrounding terrain provided the opportunity for imag-
ing the far terrain.

While the orbital imagery enabled the team to develop a
strategic route for driving through Artist’s drive, the geogra-
phy of the region made it more challenging for day to day
(also referred to as tactical) driving. The orbital data pro-
vides good information about the general terrain the rover
will encounter, but it is not sufficient resolution for the ac-
tual drive path planning. Instead, images acquired from the
end of the previous drive are used, in conjunction with or-
bital data, to plan the next drive. Ridges and valleys in the
surrounding terrain often prevented the rover from getting
a good view of the terrain in which it would be driving the
next day, and wheel wear concerns limited the desirability of
using onboard autonomous hazard detection to extend drives
into unseen terrain. This often made it difficult for the engi-
neers to plan the next drive path.

Along the route toward higher levels of Mount Sharp, Cu-
riosity took the opportunity to explore an area where the
Murray Formation (the type of rock from Pahrump Hills)
came into contact with an overlying geological unit called
the Stimson Unit. The contact was explored in an area
named Marias Pass, shown in Figure 1 (c) (Milliken et al.
2016). This campaign has interesting similarities and con-
trasts with the earlier Pahrump Hills campaign. Both cam-
paigns sought to explore and characterize a geological area.
However, the more challenging terrain in the area and dis-
coveries made during exploration resulted in a more dy-
namic campaign than the Pahrump Hills walkabout cam-
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Figure 2: Overview of MSL operations.

paign.

Overview of MSL Mission Operations
One of the challenges a surface mission has compared to an
orbital mission is that a surface mission is impacted more
significantly by a prior unknown and changing environmen-
tal conditions. While orbital imagery provides valuable in-
formation to guide activity, it does not capture all the con-
ditions that affect the rover. For example, while orbital
imagery may indicate that exploring a particular region is
promising to achieve a science objective, the specific sci-
ence targets are not known until additional data is collected
from the rover itself, such as images from its mast-mounted
cameras. Further, orbital data is insufficient for fully predict-
ing specific terrain conditions that will impact the rover’s
traversability and its able to perform close-contact opera-
tions on targets of interest.

As such, surface operations must be reactive and respond
to the results of activity carried out during the previous sol
(Martian day). This daily planning activity is referred to as
“tactical” operations and is patterned after the tactical oper-
ations developed for the Mars Exploration Rovers (Mishkin
et al. 2006).

MSL operations are organized into three major phases:
strategic, supratactical and tactical (Chattopadhyay et al.
2014). Figure 2 illustrates the relationship among these
phases. These processes are structured to enable the team
to achieve long-term science objectives, managing the lim-
ited rovers resources, while still responding to the dynamic
nature of surface exploration.

Strategic planning focuses on developing long-term plans,
typically spanning weeks or months, to achieve high-level
objectives. For example, in the Pahrump Hills campaign
from Figure 1 (a), the strategic plan spanned several months
and specified a multi-pass approach to exploring the region
in order to achieve the high-level objectives of performing
a comprehensive study of the formation. Strategic planning
for the Artist’s Drive campaign (Figure 1 (b)) included the
development of a Strategic Traverse Route (STR) to pro-
vide guidance for selecting paths for the rover on its longer-
term objective to reach higher levels of Mount Sharp. These
strategic plans provide vital guidance in achieving mission
objectives, but they are not directly executable. They must
be adapted to take into account the current conditions and
adjusted to respond to unanticipated conditions as the rover
explores the environment. For example, while the STR pro-
vides guidance on the direction the rover should travel, the
actual tactical routes may deviate from the route in order
to respond to local terrain conditions. And in some cases,
significant alterations to the STR were required when a par-
ticular path was discovered to be non-traversable or in cases
where unexpected science objectives were identified.

The supratactical stage provides a bridge between the
long-term strategic plan and the day-to-day, highly reactive
tactical process. The process is designed to coordinate the
complex science instruments and manage the constraints and
resources required to conduct campaigns. The supratacti-
cal process produces “look-ahead plans” which span sev-
eral sols, typically a week, of activity. These plans help
maximize the use of vehicle resources. For example, if an
energy-intensive, multi-sol sampling experiment is coming
up, the look-ahead plan provides guidelines on how much
energy can be used each sol of operations. The process also
helps with coordination among the large science team spread
across the globe.

The process feeds into the tactical process by delivering
a “skeleton” plan for each sol of tactical planning. The
skeleton provides the tactical team with the major objectives
for the plan, e.g. drive toward a particular location, or per-
form close-contact operations. It includes a rough structure
of the activities, including coordination of science activities
around communications windows and other engineering ac-
tivities and guidelines on how much resources, such as en-
ergy, time and available data volume, can be expended dur-
ing the execution of the plan.

The tactical planning process forms the highly reactive
phase of surface operations. It includes an assessment of
the state of the vehicle and the performance of the previous
plan’s activities. During activity development stage, specific
science and engineering objectives are identified based on
the high-level objectives of the current campaign and guide-
lines provided in the skeleton plan. The developed activity
plan is translated into sequencing command products to be
executed on the vehicle. These command products are veri-
fied, reviewed and delivered for uplink to the rover.

Unlike the Mars Exploration Rovers (MER) mission,
which included automated planning ((Bresina, Ari K.J̃nsson,
and Rajan 2005)), the MSL mission does not currently in-
clude automated planning to assist in activity plan devel-
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opment. Instead, MSL operators employ a combination of
helper scripts and user-interface operations to support plan
development, both as part of supratactical and tactical op-
erations. Helper sequences are used to build the for a vari-
ety of purposes including, laying out communication win-
dows according to the overflight database, placing activi-
ties to representing turning on and off the CPU, and gen-
erating heating activity per the appropriate thermal table.
User-interface support includes support for laying out activ-
ities back-to-back, snapping an activity to the start or end of
another and flagging errors when the activity plan violates
rules as defined in the activity dictionary. As Bresina et al.
observed, this type of mundane planning support is often
more valuable for operations plan development than com-
plex goal achievement.

Factors Impacting Surface Mission
Productivity

In general, when we speak of mission productivity, we are
referring to how effectively the operations team is able to
achieve their objectives. This can include how much effort
is required by the team to accomplish a given objective as
well as how long it takes, e.g., number of sols, to achieve
objectives.

Given the key role of objectives on productivity, we began
our case study design by developing a conceptual model,
shown in Figure 3, of how the team achieves objectives in a
surface mission. Several of the authors have worked surface
operations on the MER and MSL missions and this model is
based on the authors’ experience. During the case study, we
will be seeing how well the model explains the data observed
in the case study as well as collecting feedback in interviews
with other operations personnel.

The general flow of the diagram begins with the team
identifying candidate activities that can be used to accom-
plish their intent. These activities are developed and refined
during operations planning until a set of command products
is ready to be uplinked to the vehicle. The vehicle exe-
cutes these activities and produces results which are con-
veyed back to Earth through telemetry and data products.
This information, in turn, is used to support the development
of subsequent activities and, potentially, new intent. The
crossed out activities illustrate typical stages in the concep-
tual model in which activity is limited in some way. During
operations planning, this can include restricting the scope of
an activity, deferring an activity to a later planning day or
even descoping an activity entirely. During execution, it can
include partial or complete failure of an activity. The fol-
lowing subsections describe each stage and the factors that
can limit productivity in more detail.

Both the Supratactical and Tactical team, from Figure 2,
perform steps (A) through (C) of Figure 3. The Supratactical
team makes these assessments when deciding what activity
to include in the high-level look-ahead plan, and feeds this
information to Tactical through the skeleton plan. The Tac-
tical team makes similar decisions with the detailed tactical
plan, taking into account the latest data from the vehicle.

Step (A): Activity Development
The diagram begins with Activity Development, in Step (A),
where the team considers activities that could be performed
that would contribute toward achieving their objectives. Ob-
jectives may be science objectives, such as characterizing a
geological formation, or engineering, such as performing a
vehicle maintenance operation of subsystem inspection.

In terms of the operations timeline discussed in the previ-
ous section, Activity Development can occur as part of the
Supratactical timeline, delivered to Tactical in the Skeleton
plan, or during the early stages of the Tactical timeline.

Throughout the planning process, the team makes use of
their knowledge of the vehicle’s capabilities to help develop
command products that the rover will be able to achieve. In
the Activity Development stage, this knowledge is used to
help determine if an activity is feasible given the abilities
and limitations of the science instruments and other actua-
tors. This includes, for example, understanding the detection
sensitivity of science instruments and knowing the range of
slopes the mobility system can safely traverse. At times,
the team will use their vehicle model to come up with cre-
ative new ways of using the vehicle’s capabilities in ways
not previously considered. For example, after landing the
team developed methods for driving and performing arm
operations with sample cached in the sampling system. In
other examples, the team developed a technique for using the
MAHLI instrument as a goniometer (Johnson et al. 2015), as
well as using the rover’s inertial measuring unit to perform
a gravimetry survey (Lewis, Peters, and Gonter 2016).

Depending on the type of activity, varying levels of
knowledge of the current state of the vehicle may be re-
quired. For example, in order to select specific targets for
the mast-mounted instruments, knowledge of the position
the rover will be in along with navigation images of the
surrounding terrain is required. Similarly, activities related
to using the arm in close contact with the surface typically
require up to date knowledge of the rover and the terrain.
In contrast, many activities such systematic survey imagery
and atmospheric measurements do not require as extensive
knowledge of the current state of the vehicle.

The level of rover state knowledge required to accomplish
an activity may prohibit certain activities from being accom-
plished on a given sol. The amount of knowledge about the
state of the vehicle may depend on the downlinked data from
the previous plan as well as activity in the current plan. For
example, the downlink which contains the latest informa-
tion about the state of the rover from the prior plan may be
delayed, or the communications window between the rover
and relay orbiter may have not transferred sufficient data to
support all the desired activity. Or, the current plan may in-
clude an event that changes the state of the vehicle, e.g. by
driving, such that insufficient state knowledge will be avail-
able for performing certain activities, e.g. ground-targeted
imaging, after the event.

The rover typically performs activities that result in sig-
nificant changes to its state during the daytime. There are
usually one or two communication windows with relay or-
biters during the latter part of the day which allow the rover
to relay its latest state and other collected data to Earth. Un-
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Figure 3: Factors impacting surface mission productivity.

der what is referred to as “nominal” operations, this data
will be received by the operations team in the morning on
Earth. The team on Earth will then have all day, during the
rover’s night on Mars, to develop command products that
will be sent to the rover during the next morning on Mars.
Mishkin has referred to this as working the Martian night
shift since the operations team works during the Martian
night (Mishkin et al. 2006).

A significant factor in the availability of vehicle state
knowledge is the relative duration of a day on Earth and a
day (aka sol) on Mars. A Martian sol is approximately 40
minutes longer than an Earth day. As such, if the opera-
tions team wishes to continue to work during the Martian
night, they must continually shift the times in which they
work on Earth. For example, if the team starts their shift
at 8:00am one day, they would start their shift at 8:40am
the next. Subsequent shift start times would be 9:20am,
10:00am, 10:40am, etc. Over the course of about a month,
the team will have transitioned their shift start times around
the clock. This mode of operations is referred as “working
Mars time” and is highly taxing to the team. Due to the
stress this mode of operations places on the team, the MER
and MSL missions limited Mars time operations to the first
3 months of the mission.

The vast majority of the surface mission is conducted with
the team restricting operations to the daytime on Earth. The
consequence is that the operations team is often out of sync
with the activity of the rover on Mars. Figure 4 illustrates
the impact this can have on the data available to the team
during planning. In the diagram, the end-of-day relay from
the rover arrives on Earth during the night. If the team had
still been working Mars time operations, they would arrive
to work at this point and begin the tactical process. Instead,
the team begins later in the day. Meanwhile the rover is
waking up for its next Mars day. The team on Earth will
not have sufficient time to develop a new set of command
products by this time. Instead, by the time the team has
completed the tactical process, they must wait for the next
Mars morning to uplink the products to the vehicle.

Full 
Activity 

Limited 
Activity 

Full 
Activity 

Planning 

Figure 4: Mars activity vs. Earth planning.

This often limits what the team can command the vehicle
to do during the middle sol of Figure 4. If the vehicle were
allowed to make significant changes to its state, in particu-
lar driving to a new location, this would significantly limit
the types of activities the team could command on the sub-
sequent sol. These limited activity sols are referred to as
“restricted sols” because the latency of data often restricts
the type of activity the team can perform.

A similar situation arises when the team takes days off for
weekends and holidays. In these cases, the team will create
plans that span multiple sols (aka multi-sol plans). Again,
activities that result in significant changes to vehicle state
are limited since they will impact the activity that can be
done in later sols of the plan.

Step (B): Plan Complexity Analysis
Step (A) discussed how the activities considered depend on
the general capability of the rover and the team’s knowledge
of its state. In Step (B), the team considers the complex-
ity involved in implementing the activities under considera-
tion. As with Step (A), this step may begin with Supratac-
tical planning and continue into the early stages of Tactical
operations. The purpose of this stage is to help ensure the
team does not take on more activities than can be completely
planned and validated during the scheduled shift duration. If
the team attempts to perform too much activity it may result
in the team not completing the tactical timeline and thus risk
missing the next uplink deadline. Or it could mean overload-
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ing the team which could lead to mistakes.
As such, the team carefully evaluates the activities it

chooses to work on such that they can be completed during
the tactical timeline. It is extremely challenging to pick an
appropriate set of activities that allows the team to maximize
what can be accomplished during the tactical shift without
exceeding the capacity of the timeline. It requires a lot of
experience and good judgment to make these decisions. Fur-
ther challenging the decision making is the fact that what can
fit in the tactical timeline is continually changing. The first
time a new type activity is performed will require more focus
and effort from the team. But after that type of activity has
been performed several times, it may consume much less of
the timeline. New ground tool developments can also result
in increasing the capacity of the tactical timeline.

Step (C): Activity Refinement
During Activity Refinement, Step (C), the team takes into
account the vehicle resources that are required to perform
the proposed activities. The resources the team considers
include energy, data volume and time available to perform
activities. This stage uses models of the rover and activities
to make predictions about the amount of resources that ac-
tivities will consume and the amount of resources available
on the vehicle.

Some of the resource constraints are more or less fixed.
For example, the team avoids depleting the battery below
a certain level and filling up the data product file system.
Other constraints are more transient. For example, the
Supratactical team often provides guidelines on the battery
state of charge to maintain at the end of the plan. This end-
of-plan battery constraint will vary from plan to plan, de-
pending on the activity in the Supratactical look-ahead plan.
Similarly, the team may self-impose tighter data collection
constraints on itself in preparation for data intensive plans
that are known to be upcoming in the near future.

The fidelity of the models used in the stage of operations
play an important role. Missions tend to be conservative in
their estimates to avoid inadvertently exceeding available re-
sources. The model may overestimate the time and energy
consumed by an activity, e.g., by allocating an overly gener-
ous margin of time around it. As a consequence, this stage
may over-prune activities because the model predicts they
would exceed resource constraints when in practice there
may have been sufficient resources available.

Step (D): Uplink
Given the complexity of communicating with a tiny robot
on a distant, spinning planet millions of kilometers away,
the missions have a remarkably reliable channel for send-
ing command products to the rover. However, problems can
arise that result in loss of activity during uplink. Noise en-
countered on the millions of kilometers trip can corrupt the
signal beyond the means of error correction codes to correct.
Equipment failures on Earth stations can occur with insuffi-
cient time to repair before the uplink window. In general, the
amount of data required to uplink is very small compared to
the amount of data downlinked from the rover. However,

there are still rare situations in which the capacity of an up-
link window is insufficient to transmit all the desired com-
mand products. In each of these cases, some or all of the
commanded activity can be lost.

Steps (E) and (F): Execution
After receiving command products from Earth, the rover be-
gins executing the new plan and collecting new data. The
commands products are mainly in the form of sequences,
files containing lists of commands to execute.

In the large majority of cases, execution proceeds as ex-
pected and the rover is able to achieve the desired results.
At other times, activities may have partial success or com-
pletely fail. There are a variety of causes of unsuccessful
execution. Sometimes the command product may have in-
cluded an uncaught command error which results in a prob-
lem during execution. Other times, the current state of the
vehicle may have been unexpected. Sometimes sequences
are written to take into account uncertainties in the state of
the vehicle, but such sequences add complexity to develop,
consuming the capacity of the timeline, and the expressivity
of the sequencing language can limit what can be sequenced.
Different activities have increased levels of autonomy to ac-
count for unexpected conditions. For example, the rover is
capable of autonomous navigation, which enables the rover
to drive to locations without a prior knowledge of the terrain
through which it will traverse.

Throughout the plan execution, the rover will produce and
collect data products which record the results of its activi-
ties. It will also generate telemetry, which includes critical
information about the state and health of the vehicle. All of
this data is stored onboard awaiting transmission to Earth.

Steps (G): Downlink
The vast majority of the data received from the rover is sent
via relay from one of the Mars orbiters. The rover must wait
for the orbiter to fly overhead before it can transmit data.
The amount of data that can be transferred to the orbiters
varies with each window depending largely on the elevation
of the orbiter in the sky as it passes over the rover. Data
is prioritized by the operations team such that information
critical to assessing the health of the vehicle and for planning
the next sol’s activities is sent earlier in the communication
window.

Once the data is onboard the orbiter, it must wait for the
orbiter to have a communication opportunity with Earth be-
fore the data can finally reach Earth and then get transferred
to the operations team for analysis. As with uplink, techni-
cal problems may occur during downlink which can result
in unexpected delays in data reaching the operations team.

The data becomes input to the next round of planning. It
may be used to support the development of further activ-
ity, e.g. an interesting target for further study may be identi-
fied in a downlinked image, and it may result in new high-
level objectives being formed, e.g. unexpected signatures in
a spectral analysis may result in a new objective to charac-
terize an area.
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Case Study Results
Using the conceptual model in Figure 3 as a guide, we devel-
oped a data collection schema that includes intent, activities,
constraints and data along with relations among these enti-
ties. We worked through each sol of the campaigns, sifting
through the plans, acquired data and telemetry, and written
reports from operations personnel to collect and organize
data with respect to this schema. The data gathering pro-
cess was a combination of manually reading through activity
plans and operations reports along with scripts we developed
to assist in the collection process. The scripts we developed
included utilities to identify links between data products and
the activities that used that data and utilities to collect data
on predicted and actual vehicle resource allocations. The ob-
jective in gathering this data is to identify cases of low and
high productivity during each campaign and to help identify
the factors that contributed to each.

A full description of the results of the case study are be-
yond the scope of this paper. Following is a brief summary
of the results. Table 1 presents a rough breakdown of the
sol-by-sol activity conducted in each campaign in terms of
how activity on each sol contributed toward campaign ob-
jectives. Sols labeled “Campaign” were those that directly
contributed to the campaign objectives with remote sensing
and/or drives. “Campaign Multi-Sol” sols are those in which
significant activity was performed toward the campaign ob-
jectives as part of a multi-sol plan, either due to a weekend
or restricted planning. The reason for calling these sols out
separately is that the presence of the multi-sol plan limited
the team’s options for these sols. For example, had there
not been a multi-sol plan, the team may have opted for to
move up activity that was performed in a subsequent plan
(e.g. a drive activity) which would have reduced the overall
number of sols required to achieve the campaign objectives.
The “Extra Drives” label denotes sols in which unexpected
drives were required. The sols labeled “Deferred” were sols
in which campaign objectives were unexpectedly deferred
due to the need to respond to an issue identified during tac-
tical plan development or in response to an event from re-
ceived downlink data. For the Pahrump Hills campaign, the
deferred sols were due to an unexpected interaction, iden-
tified during tactical planning, between Pahrump Hills ob-
jectives and high-priority observations of the comet Siding
Springs making its closest approach to Mars. For Artist’s
Drive, the deferred sol was due to the need to repeat an activ-
ity from the previous sol, un-related to the Artist’s Drive ob-
jectives, as received data showed the activity did not have the
intended result. Sols labeled “Post-Drive Multi-Sol” were
those sols in which the team was not able to achieve sub-
stantial campaign objectives due to lack of data following a
drive during a multi-sol plan. Finally, Finally, “Runout” are
sols of very low activity that used in cases the team had to
create multi-sol plans but the tactical timeline capacity did
not allow for sufficient time to develop activities for all sols
of the plan.

Comparing the campaigns in Figure 1, we note that de-
spite having different high-level objectives, the sol break-
down for Artist’s Drive and Marias Pass appear to be the
most similar. This is due to these campaigns having a sim-

ilar number of restricted plans and both being conducted in
similar, challenging terrain conditions.

Comparing the sol breakdown for Pahrump Hills with the
other two campaigns shows that restricted sols have a major
productivity impact for these types of campaigns. Table 2
shows the number of nominal vs. restricted shifts for each
campaign. Pahrump Hills had a total of 9 tactical shifts of
which 7 were during restricted periods of the mission. In
contrast Artist’s Drive and Marias Pass had more total shifts
and few restricted shifts than Pahrump Hills.

The reason for the differences in number of restricted sols
between Pahrump Hills and the other campaigns is largely
luck of campaign timing. The Pahrump Hills Walkabout
campaign happened to begin just as a restricted period was
about to start. On the other hand, the Artist’s Drive cam-
paign began just after a restricted period had ended. Marias
Pass began toward the end of a nominal period but solar con-
junction began before the restricted period began. By the
time conjunction was over and the team returned to opera-
tions, the restricted period had completed. Thus, it is only
toward the end of the Marias Pass campaign that another re-
stricted period impact operations.

The number of restricted sols is anticipated to increase
for future missions as the current fleet of sun-synchronous
orbiters are replaced with non-sun-synchronous orbiters.
There are important science motivations for non-sun-
synchronous orbiters, such as studying the Recurring Slope
Lineae (RSL). However, such an orbit does not provide the
consistent pattern of passes at the end of the rover’s day.
This will result in many sols in which the operations team
does not have sufficient time to develop new plans in re-
sponse to the latest rover data, thus increasing the number of
restricted sols.

Table 2 also highlights the significance of terrain for these
types of campaigns. Table 3 summarizes the traverses per-
formed in each campaign. Note that the Artist’s Drive tra-
verse marked as “Drive Fault” was also limited by viewshed.
Rather than double-count it, we counted it as “Drive Fault”
and not “Viewshed Limited”. The increased terrain occlu-
sions encountered during the Artist’s Drive campaign lead
to a larger number of traverses being limited by viewshed
than encountered during the Pahrump Hills Campaign. Al-
though the terrain at Marias Pass was more challenging that
Pahrump Hills, it had the same number of traverses limited
by viewshed. This is likely because the Marias Pass cam-
paign included returning the previously explored areas al-
lowing the team to make use of terrain imagery collected
on previous sols. The more challenging terrain of Artist’s
Drive and Marias Pass resulted in drive faults and the rover
stability issues in the associated campaigns.

It is interesting to compare the Pahrump Hills and Marias
Pass campaigns as they had similar high-level objectives but
were conducted with different exploration strategies. Unlike
the Pahrump Hills Walkabout, the Marias Pass campaign did
not have an extensive strategic plan to direct activity. This
was largely due to the geography of the Marias Pass val-
ley. HiRISE imagery provided a high level overview of the
region, with sufficient detail to indicate that the area con-
tact a promising contact between the Stimson formation and
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Sol Type Pahrump Hills Artist’s Drive Marias Pass

Campaign 6 9 10
Campaign Multi-Sol 2 4 4
Extra Drives 2 6 5
Post-Drive Multi-Sol 5 4 3
Deferred 3 1 0
Runout 1 0 2

Total Sols 19 24 24
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Table 1: Breakdown of sols for all campaigns.

Sol Type Pahrump Hills Artist’s Drive Marias Pass

Nominal Shifts 2 16 12
Restricted Shifts 9 4 4

Total Shifts 11 20 16

Table 2: Summary of shift types for all campaigns.

Sol Type Pahrump Hills Artist’s Drive Marias Pass

Nominal 5 6 3
Viewshed Limited 2 5 2
Drive Fault 0 1 2
Insufficient Stability 0 0 1

Total Traverses 7 12 8

Table 3: Summary of traverses for all campaigns.

Murray formation, but contained insufficient detail to form
a strategic plan for exploring the location. Because the val-
ley was elevated above the Artist’s drive route the rover had
been following, it was not possible to obtain the same type
of Mastcam panorama that was available for planning the
Pahrump Hills Walkabout.

Despite the absence of a detailed strategic plan for the
Marias Pass campaign, the team was able to make quick tac-
tical decisions and respond to new data as it arrived such
as identifying drive routes and selecting key science targets.
This can explain the why Table 1 shows a comparable num-
ber of campaign-oriented sols as Artist’s Drive. In other
words, it seems that the number of restricted shifts and ter-
rain challenges was a bigger factor that the availability of a
guiding strategic plan, given the teams ability to react.

It is also interesting to compare the walkabout approach
employed at Pahrump Hills vs. the linear approach used at
Marias Pass. Although the team intended to use a linear
strategy at Marias Pass, then ended up backtracking to ex-

plore data collected near the Sol 992 location. There was ad-
ditional backtracking in the sols that followed the end of our
case study sol range. It was suggested by one of the scien-
tists in our interviews that perhaps the Marias Pass campaign
would have been overall more efficient had it employed a
walkabout approach.

A full assessment of the benefits of these two exploration
strategies is beyond the scope of a single case study. The in-
terested reader is referred to Yingst et al. for additional dis-
cussion on this topic (Yingst et al. 2015). Their conclusion is
that a walkabout approach can take more time to execute, but
has the potential for achieving higher quality results. One of
the objectives we have with this case study is to leverage
what we have learned from these productivity challenges to
identify flight and ground approaches that can reduce the
overhead of employing a walkabout approach.

We performed a series of analyses on how the team allo-
cated vehicle resources throughout each campaign. This in-
cluded tracking of predicted and actual allocations of flight
computer duration, energy and data volume. Figure 5 shows
an example using the flight computer duration allocation
during the Pahrump Hills campaign. Multi-sol plans are in-
dicated with vertical black lines.

The analyses of resource allocations followed a similar
pattern for each of the campaigns. The impact of multi-sol
planning due to weekends and restricted sols had the largest
impact in how effectively the team was able to allocate re-
sources toward campaign activity. The analysis showed a
general decrease in overall activity across multi-sol plans.
This is likely due to limitations in how much activity can
be developed during the tactical timeline. In addition, the
team is limited in the types of activity that can be performed
after a drive without ground-in-the-loop. The analysis also
showed a significant decrease in the allocation of resources
to campaign objectives following drives during multi-sol
plans. This is because ground-in-the-loop is required to per-
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Figure 5: Allocation of flight computer duration for
Pahrump Hills Walkabout campaign.
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Figure 6: Estimate of extra duration availability for Pahrump
Hills Walkabout campaign.

form the majority of the activities needed to accomplish the
campaign objectives.

The resource analysis indicated that the team was not con-
strained by energy during this campaign. There was suf-
ficient unused energy and sufficient non-productive vehicle
awake time to support an estimated additional 72 hours of
campaign-related activity over the span of the 19 sols for
the Pahrump Hills campaign, as shown in Figure 6. Simi-
lar analysis estimated an additional 62 hours and 69 hours
of campaign activity could have been performed during the
Artist’s Drive and Marias Pass campaigns, respectively.

As part of the case study, we were also interested in under-
standing the types of decisions that were made with ground-
in-the-loop cycles. Following is a summary of common
types of ground-in-the-loop decisions across the campaigns:

• Selecting targets for ChemCam, Mastcam and contact sci-
ence: While distant imagery of terrain provided sufficient
information to indicate the value of traversing to an area,
the scientists required the higher quality imaging of the
area, obtained when the rover arrives at the site, to select
specific targets.

• Drive planning: Post-drive imagery is also used to pro-
vide the data necessary to plan the next traverse, including
allowing the scientists to refine their selection of end-of-
drive location and the engineering team to design a route
for the rover to follow.

• Stability assessment for contact science: Prior to deploy-

ing the arm and performing contact science, the team must
use data from the rover’s current position to assess the ve-
hicle’s stability.

• Responding to problems in activity executions: It is a
complicated mission and plan execution does not always
go as expected. Unexpected terrain conditions can cause
a drive to end early, resulting in the engineering team as-
sessing the reasons for the problem and re-planning the
drive. There are also cases where remote sensing ob-
servations do not work as expected. During the cam-
paigns there was a case when imagery was re-acquired
due to lighting issues with the first attempt, and cases
where ChemCam observations of extremely small fea-
tures needed to be re-acquired when previous attempts
missed.

Addressing Surface Mission Productivity
Challenges

The ultimate goal of this case study is to help identify
changes to flight software and ground operations that will
increase productivity for future missions. Based on the au-
thors’ operations experience and preliminary analysis of the
results from the case study, we have developed a broad con-
cept for the technologies we anticipate playing important
roles in addressing these productivity challenges. The gen-
eral theme of the changes we are considering is to move
more knowledge of intent and more authority for decision
making to the rover. Figure 7 provides an overview of the
concept which we refer to as a Self-Reliant Rover.

Following is a summary of the key technologies in the
concept and motivation for how we anticipate they will sup-
port increased productivity.

Goal Elaboration
We believe that an important step in increasing productiv-
ity of surface operations is changing the interface the op-
erations team uses to interact with the rover. For the most
part, the operations team interfaces with the vehicle with se-
quences which essentially provide detailed instructions on
how the vehicle is to perform the team’s desired activities.
This approach is inefficient in a variety of ways. It is a time-
consuming process to develop and validate the command se-
quences, especially in situations where the team must try to
take into account uncertainty of the state that the rover will
be in when the sequences are executed. Because the team
does not know the actual state of available resources at the
time of plan execution and because conservative resource
models are often used, this approach tends to result in under-
subscribing rover resources. In other words, the vehicle fre-
quently has more time and energy to perform activities than
predicted. Finally, this approach provides very limited abil-
ity to respond to unexpected events during execution.

We would like to move to an interface with the vehicle in
which we tell the vehicle what tasks we want it to accom-
plish, rather than telling it how to accomplish tasks. This is
important because how a task is accomplished may depend
on the current state of the vehicle which is unknown to the
operations team at plan development time.

123



Figure 7: Key technologies for a Self-Reliant Rover.

Therefore, in the Self-Reliant Rover concept, the primary
mode of interfacing with the vehicle is the specification of
the team’s goals. The rover will use goal elaboration to de-
cide how to accomplish these goals given its current state.
Further, the team can safely provide a set of goals that would
potentially over-subscribe the available resources. The rover
will use its up-to-date knowledge of its state along with
ground-provided goal priorities to select a subset of goals
that can be safely accomplished with available resources.
The rover will still perform resource predictions to estimate
resource availability for future activity, but these predictions
will be continually updated with the latest vehicle state.

This approach, of course, requires more up-front effort
in the flight software development process, to develop and
validate the onboard planning models used by the rover. But
we anticipate that it will result in a large payoff in the form of
significant reductions in tactical development and validation
of command products.

There exists a large body of work in planning and execu-
tion from which we will draw including (Chien et al. 2014;
Worle and Lenzen 2013; Fratini et al. 2013; Rajan, Py, and
Barreiro 2013; Ceballos et al. 2011; Dvorak, Amador, and
Starbird 2008).

Autonomous Science
Many of the science activities performed by the rover require
extensive knowledge of the state of the rover and its sur-
roundings at the time the activities will be performed. The
result is a significant reduction in science productivity when
that information is not available. As discussed previously,
this situation arises with restricted sols, weekends and hol-
idays. In addition, it can occur with unfavorable downlink
windows or due to unexpected downlink disruptions.

We are interested in exploring autonomous science capa-
bilities to provide a means for scientists to express their in-
tent to the vehicle without requiring up-to-date knowledge
of the vehicle’s state. The role of autonomous science is
not to replace scientists, but to enable scientists to guide

the collection of science data in situations in which they
would otherwise be unable to do so. The AEGIS system,
deployed on the MER and MSL rovers rovers, is an example
of this approach to autonomous science (Estlin et al. 2012;
Francis et al. 2015). AEGIS allows scientists to specify the
types of targets they are interested in acquiring data on fol-
lowing rover drives. We are using the case study to help
identify additional opportunities for onboard science to en-
able scientists to guide rover activity.

The autonomous science component will interact with the
rest of the system by posting new goals into the goal net-
work. Goal elaboration will select among these new goals
based on available resources.

State-Aware Health Assessment
The traditional approach to health assessment in spacecraft
has been to create fault monitors that detect pre-defined fail-
ure conditions, typically by detecting when measured val-
ues exceed some defined threshold. When a fault monitor is
tripped, a pre-defined response is taken in an attempt to iso-
late the fault. This could involve precluding further use of an
instrument or putting the entire spacecraft into a safe-mode,
until ground can intervene.

In general, health assessment has been restricted to iden-
tifying and responding to pre-defined off-nominal behavior.
We are interested in incorporating health assessment into the
nominal operation of the vehicle. In our design, health as-
sessment is an integral part of onboard evaluation of the per-
formance of activity as it is executed. This feedback will en-
able the task executive to monitor ongoing activity, enabling
it to make decisions about continuing the activity.

If problems arise, health assessment will enable the ve-
hicle to identify faults and assess their impact in order to
determine how to continue to achieve mission goals while
ensuring vehicle safety. State-aware heath assessment will
integrate with goal elaboration by updating states to reflect
the health of various vehicle devices and subsystems. This in
turn will pose new goals for longer-term fault response and
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impose constraints on how goals can be implemented. The
system will maintain a high level of productivity in the face
of faults by seeking alternative means of accomplishing im-
pacted goals, if appropriate, or substituting alternative goals
that previously did not fit within available resources.

Relevant work in this area from which the project
will draw includes (Fesq et al. 2002; Robertson, Effin-
ger, and Williams 2006; Hayden, Sweet, and Christa 2004;
Mikaelian, Williams, and Sachenbacher 2005).

Autonomous Navigation
Autonomous navigation is one of the major areas in which
rovers are provided intent and allowed to decide how to ac-
complish tasks (Maimone, Leger, and Biesiadecki 2007).
However, when autonomous navigation is used, the opera-
tors typically set conservative constraints on the conditions
under which the vehicle is allowed to continue autonomous
navigation. For example, tight limits may be set on the
amount of slip or yaw the rover is allowed to tolerate based
on expectations the operators have of the terrain the rover
will encounter. During restricted time periods of the mis-
sion, when the rover may go multiple sols without interac-
tion with the ground, this conservative strategy can result in
a significant reduction in productivity.

We will be exploring ways to make the scheduling of au-
tonomous navigation plans more robust to unexpected ter-
rain conditions. When terrain conditions deviate from ex-
pectations, the rover will assess if it is still safe to pursue its
current route, if it should plan an alternate course, if it should
halt and wait for ground interaction, or if it should give up
on its current driving objective and choose a different goal.
Decisions will be fed back to the rest of the system to enable
coordination with the overall goals of the rover. For exam-
ple, if the rover chooses to continue with the current path,
an update on the time and energy required to complete the
traverse will be made. This will be used to make an updated
resource projection to see if this expenditure of resources is
still consistent with the priorities of goals and required re-
source margins.

Ground Operations
In addition to changes to flight software, we are also inves-
tigating changes to ground operations that will enable future
surface missions to address productivity challenges. The
scope of these changes includes how the operations team
communicates their intent to the vehicle and how command
products are validated. Giving the vehicle authority on the
goals it accomplishes and the ways in which it accomplishes
those goals results in less certainty at planning time on what
exactly the vehicle will be doing. This is a significant shift in
how the operations team currently validates command prod-
ucts. We will explore ways to give operations personnel ex-
pectations on the behavior the vehicle will perform. We will
also look for ways in which the ground team can constrain
or guide the vehicle’s behavior when desired.

Simplifying the interface with vehicle will reduce the time
required to generate new plans. This will result in fewer
restricted sols as the team will not require as much time to
make uplink deadlines.

A major challenge in this work will be relaxing the re-
liance on up-to-date vehicle knowledge when developing
command products. The goal is to make it natural for the
team to not know the state the vehicle will be in when the
command products are received, but still be able to express
intent and guidance to the vehicle so that it can effectively
carry out the teams’ objectives.

Conclusions
We are in the early stages of a multi-year project to study
and address productivity challenges of future surface mis-
sions. We have identified campaigns from the MSL mission
for study which we believe will yield valuable information
about the nature of surface mission productivity challenges.
Based on preliminary analysis from the data collected we
anticipate that the lessons from these case studies will help
develop and mature our concepts for changes to flight and
ground systems to address these challenges.

While the focus of our work is on Mars rover missions, we
believe the concepts in the work will be applicable to a vari-
ety of in-situ explorers, including Venus, and Titan, as well
as orbital missions, such as the Europa orbiter. These mis-
sions will also benefit from the ability to adapt and respond
to the latest state of the spacecraft and its environment.
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Abstract

We present a motion planning algorithm to compute
collision-free and smooth trajectories for robots cooperating
with humans in a shared workspace. Our approach uses of-
fline learning of human actions and their temporal coherence
to predict the human actions at runtime. This data is used
by an intention-aware motion planning algorithm that is used
to compute a reliable trajectory based on these predicted ac-
tions. This representation is combined with an optimization-
based trajectory computation algorithm that can handle dy-
namic, point-cloud representations of human obstacles. We
highlight the performance of our planning algorithm in com-
plex simulated scenarios with a 7-DOF KUKA arm operat-
ing in a workspace with a human performing complex tasks.
We demonstrate the benefits of our intention-aware planner
in terms of computing safe trajectories.

1 Introduction
Motion planning algorithms are used to compute collision-
free paths for robots among obstacles. Most of the tech-
niques have been designed for static environments with
known obstacle positions. As robots are increasingly used in
workspaces with moving or unknown obstacles, it is impor-
tant to develop reliable planning algorithms that can handle
environmental uncertainty and the dynamic motions. In par-
ticular, we address the problem of planning safe and reliable
motions for a robot that is working in environments with hu-
mans. As the humans move, it is important for the robots to
predict the human actions and motions from sensor data and
to compute appropriate trajectories.

In order to compute reliable motion trajectories in such
shared environments, it is important to gather the state of
the humans as well as predict their motions. There is con-
siderable work on realtime tracking of human motion in
computer vision and related areas (Plagemann et al. 2010;
Shotton et al. 2013). However, the current state of the art
in collecting such motion data results in many challenges.
First of all, there are errors in the data due to the sen-
sors (e.g., point-cloud sensors) or poor sampling. Secondly,
human motion can be sudden or abrupt and this can re-
sult in various uncertainties in the environment represen-
tation. One way to overcome some of these problems is
to use predictive or estimation techniques for human mo-
tion or actions, such as using various filters like Kalman

(a) (b)

Figure 1: Evaluation scenario: (a) The human (blue
spheres) assembles an object by taking parts from eight po-
sitions (red cubes). The robot delivers the parts from the
blue position to the red positions. (b) The robot motion and
the trajectory of robot’s end-effector are illustrated for per-
forming human and robot actions simultaneously. In this
case, the human is taking a part from position 2, the robot
is delivering other part, while avoiding collisions with the
human.

filters or particle filters (Madhavan and Schlenoff 2003;
Vasquez, Fraichard, and Laugier 2009). Most of these pre-
diction algorithms use a motion model that can predict future
motion based on the prior positions of human body parts or
joints, and corrects the error between the estimates and ac-
tual measurements. In practice, these approaches work well
when there is sufficient information about prior motion that
can be accurately modelled by the underlying motion model.
However, these estimates can be inaccurate where there is
not sufficient data about human motions, or the prior mo-
tions of humans can’t be accurately captured by the under-
lying motion models.

In some scenarios, it is possible to infer high-level human
intent using additional information, and thereby to perform
a better prediction of future human motions (Bandyopad-
hyay et al. 2013; Turnwald et al. 2016). These techniques
are used to predict the pedestrian positions for autonomous
vehicles based on environmental information, such as the lo-
cation of crosswalks or traffic light signals. However, these
techniques are limited to the 2D trajectories of the pedestri-
ans on the ground.

In our case, it is important to develop intention-aware
techniques that can predict the actions of humans that corre-
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spond to high-DOF models. Furthermore, we need to incor-
porate these human intentions into a motion planning frame-
work that can avoid collisions with the humans and other
obstacles in the scene, and still generate smooth trajectories
that also satisfy other kinematic and dynamic constraints.
Main Results: In this paper, we present a novel motion
planning algorithm to compute safe and collision-free trajec-
tories for robots operating in workspaces involved in human-
robot cooperating scenarios, where the robot and a human
perform manipulation tasks simultaneously. We use offline
training in workspaces with humans. Our approach can used
in scenarios where the robot needs to treat each human as
a dynamic obstacle and avoid collisions with it. Or it can
be used in human-robot cooperating scenarios, where they
jointly perform some tasks. We use offline training tech-
niques to generate a database of human motions and actions.
These actions are represented using the positions of various
joint and our algorithm learns the temporal coherence be-
tween different actions for a given task. At runtime, our
approach uses the trained human actions and their tempo-
ral coherence to predict the future motion from the captured
point-cloud data. The robot repeatedly chooses a task that
is most demanded for the inferred human action. We use a
realtime algorithm to perform probabilistic collision detec-
tion between the point cloud representation of a human and
the robot, as the robot computes the trajectory for the high
level task. These predicted human actions and probabilistic
cost functions are integrated into a trajectory optimization
algorithm that tends to compute smooth paths as well as sat-
isfy other kinematics and dynamics constraints. We high-
light the performance of our planner in a simulator with a
7-DOF KUKA arm operating in a workspace with a mov-
ing human and performing cooperative tasks. We demon-
strate the benefits of our intention-aware planner in terms of
avoiding collisions with the humans.

2 Intention-Aware Motion Planning
Goals of our planner are: (1) planning high-level tasks for
a robot by anticipating the most likely next human action
and (2) computing a robot trajectory that reduces the colli-
sion probability between the robot and human by predicting
the human motions. In order to achieve an accurate pre-
diction for human intentions and motions, we use offline
learning from a database of actions and motions previously
performed to complete some tasks. For high-level task plan-
ning, sequences of human actions for completing the whole
task are learned based on temporal relations of different sub-
tasks, in order to choose the best action for the robot to take
during task planning in real-time.

In the high-level task planning step, we use Markov De-
cision Processes (MDP), which gives the best action poli-
cies for each state. The state of an MDP graph denotes the
progress of the whole task. The best action policies are de-
termined through reinforcement learning with Q-learning.
Then, the best action policies are updated within the same
state. The probability of choosing the action increases or de-
creases according to the reward function. Our reward com-
putation function is affected by the prediction of intention
and the delay caused by predictive collision avoidance.

We also estimate the short-term future motion from
learned information. From the joint position information,
motion features are extracted based on human poses and sur-
rounding objects related to human-robot interaction tasks,
such as joint positions of humans, relative positions from a
hand to other objects, etc. We use a Dynamic Time Warping
(DTW) (Müller 2007) kernel function for incorporating the
temporal information. Given the human motions database
of each action type, we train the future motion using a hi-
erarchical k-means clustering and Gaussian Process regres-
sion (Rasmussen 2006). The final future motion is computed
as the weighted sum over different action types weighed by
the probability of each action type that could be performed
next.

After deciding which robot task will be performed, the
robot motion trajectory is then computed that tends to avoid
collisions with humans. An optimization-based motion
planner (ITOMP) (Park, Pan, and Manocha 2012) is used
to compute a locally optimal solution that minimizes the ob-
jective function subject to many types of constraints such as
robot related constraints (e.g., kinematic constraint), human
motion related constraints(e.g., collision free constraint),
etc. Because future human motion is uncertain, we can
only estimate the probability distribution of the possible fu-
ture motions. Therefore, we perform probabilistic collision
checking to reduce the collision probability in future mo-
tions. We also continuously track the human pose and up-
date the predicted future motion to re-plan safe robot mo-
tions.

For more implementation details, please refer to (Park,
Park, and Manocha 2016).

3 Results
We highlight the performance of our algorithm in a situa-
tion where the robot is performing a collaborative task with
a human and computing safe trajectories. The benchmark
scenario is shown in Figure 1. The human is sitting in front
of a desk and assembling an object (e.g., Lego). In this case,
the robot arm helps the human by delivering the parts from
one position that is far away from the human to another po-
sition that is closer to the human. The human waits till the
robot delivers that part. As different tasks are performed in
terms of picking the parts and their delivery to the goal po-
sition, the temporal coherence is used to predict the actions.

We use a 7-DOF KUKA-IIWA robot arm model in our
simulated environment. The human motion is captured
by a Kinect sensor operating with a 15Hz frame rate, and
only upper body joints are tracked. The lower body joint
positions are ignored as they do not cause any collisions
with the robot arm. The action set for a human is Ah =
{Take0 ,Take1 , · · · }, where Takei represents an action of
taking part i from its current position to the new posi-
toin. The action set for the robot arm is defined as Ar =
{Fetch0 ,Fetch1 , · · · }. The robot action Fetchi should pre-
cede the human action Takei , so we set the reward function
to positive values in the MDP. Because of the collaborative
nature of the tasks, the order of human actions is different
from that of robot actions.
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Our algorithm has been implemented on a PC with 8-core
i7-4790 CPU. We used OpenMP to parallelize the compu-
tation of probabilistic collision checking, which is the main
bottleneck in the overall planner. Table 1 highlights the per-
formance of our algorithm in three different variations of this
scenario: arrangements of blocks, task order and confidence
level.

Arrangements of Blocks on the Desk

(a) (b) (c)

Figure 2: Different block arrangements: Different ar-
rangements in terms of the positions of the blocks, results
in different human motions and actions. Our planner com-
putes their intent for safe trajectory planning. The different
arrangements are: (a) 1× 4. (b) 2× 2. (c) 2× 4.

In the Block scenarios, the position and layout of the
blocks changes. Figure 2 shows three different arrangements
of the blocks: 1× 4, 2× 2 and 2× 4. In the other two cases,
where positions are arranged in two rows unlike 1 × 4 sce-
nario, the human arm blocks a movement from a front po-
sition to the back position. As a result, the robot needs to
compute its trajectory accordingly.

Temporal Coherence

(a) (b) (c) (d)

Figure 3: Temporal relationships exploited to complete
the tasks: (a) Sequential order; the object parts are selected
in a sequential order. (b) Random order; there is no tem-
poral coherence between the human actions. The human
randomly selects the next action. (c) (d) Personal order; al-
though there is no temporal coherence, the human selects
the object parts according to his or her habit.

Depending on the temporal coherence present in the hu-
man tasks, the human intention prediction may or may not
improve the performance o the task planner. In the sequen-
tial order coherence, the human intention is predicted accu-
rately with our approach with 100% certainty (Figure 3(a)).
In the random order, however, the human intention predic-
tion step is not accurate until the human hand reach to the
position (Figure 3(b)). The personal order varies for each
human, and reduces the possibility of predicting the next

human action. When the right arm moves forward a lit-
tle, Fetch0 is predicted as the human intention with a high
probability whereas Fetch1 is predicted with low probabil-
ity, even though position 1 is closer than position 0.

Confidence Level

(a) (b) (c)

Figure 4: Probabilistic collision checking with different
confidence levels: A robot trajectory is considered to be
collision free with respect to human obstacle if the collision
probability is less than or equal to (1 − δCD). The current
pose (i.e., blue spheres) and the predicted future pose (i.e.
red spheres) are shown. The robot’s trajectory avoids these
collisions before the human performs its action. (a) δCD =
0.90. (b) δCD = 0.95. (c) δCD = 0.99.

For a given confidence level δCL, we compute a trajec-
tory that its probability of collision is upper-bounded by
(1 − δCL). In the confidence level scenarios, we analyze
the effect of confidence level δCD on the trajectory com-
puted by the planner, the average task completion time, and
the average motion planning time. As the confidence level
becomes higher, the robot may not take the smoothest and
shortest path so as to compute a collision-free path that is
consistent with the confidence level.

4 Conclusions and Future Work

We present a novel intention-aware planning algorithm to
compute safe robot trajectories in dynamic environments
with human performing different actions. Our approach
uses offline learning of human motions, decomposes differ-
ent high-DOF human actions, and learns about their tem-
poral coherence in the given environment. At runtime, our
approach uses the learned human actions to predict and esti-
mate the future motions. Moreover, we perform probabilis-
tic collision checking to compute safe trajectories. We high-
light the performance of our planning algorithm in complex
benchmarks for human-robot cooperation in simulated sce-
narios with a 7-DOF robot.

Our approach has some limitations. Our probabilistic col-
lision checking formulation does not take into account robot
control errors, which also affect to the collision probability.
The performance of motion prediction algorithm depends on
the variety and size of the learned data. Currently, we use
supervised learning with labelled action types, but it will be
useful to explore unsupervised learning based on appropri-
ate action clustering algorithms.
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Scenarios Arrangement Task Order Confidence
Level

Average Task
Completion Time

Average
Planning Time

Block 1 1× 4 (0, 1)→ (2, 3) 0.95 46.2 s 52.0 ms
Block 2 2× 2 (1, 5)→ (2, 6) 0.95 47.8 s 72.4 ms
Block 3 2× 4 (0, 4)→ (1, 5)→ (2, 6)→ (3, 7) 0.95 109 s 169 ms

Temporal Coherence 1 1× 4 0→ 1→ 2→ 3 0.95 42.5 s 52.1 ms
Temporal Coherence 2 1× 4 Random 0.95 53.6 s 105 ms
Temporal Coherence 3 1× 4 Habitual (Figure 3 (d)) 0.95 46.5 s 51.7 ms

Confidence Level 1 1× 4 0→ (1, 2)→ 3 0.90 44.5 s 47.2 ms
Confidence Level 2 1× 4 0→ (1, 2)→ 3 0.95 45.1 s 50.7ms
Confidence Level 3 1× 4 0→ (1, 2)→ 3 0.99 63.7 s 155 ms

Table 1: Performance of our planner in different scenarios. We take into account different arrangement of blocks as well as the
confidence levels used for probabilistic collision checking.
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Abstract
Robots gain more capabilities every year, yet the use of plan-
ning methods to determine the overall behavior is still the
exception rather than the norm. A robotics planning compe-
tition (in 2017) could foster mutual and closer cooperation
between the planning and robotics communities. A first do-
main could be based on the RoboCup Logistics League in
simulation. We propose this as a challenge to the planning
and robotics community. We will organize a half-day tuto-
rial in 2016 to introduce the scenario, explain how to use the
simulation, and characterize the planning domain for poten-
tial participants. The purpose of this paper is to explain the
challenge, and serve as grounds for discussion.

Introduction
With robots gaining ever more capabilities, both in terms of
perception and manipulation, and with the desire to solve
tasks of increasing complexity and higher relevance, the de-
sign and composition of robot behavior becomes more com-
plex and tedious. The goal is to automate this process as
much as possible, which would improve longevity, extensi-
bility, and robustness of integrated robot systems.

Planning systems would be a natural component for de-
veloping complex robot behavior. However, such systems
are still the exception rather than the norm in robotics ap-
plications. This is, in part, due to the fact that robotic sys-
tems are often used to develop, demonstrate, and evaluate
specific capabilities like perception or manipulation. On the
other hand, the planning community often use robotics as a
motivation, rather than as a full evaluation testbed. System
integration and actual execution of plans and typical time
constraints encountered in robotic domains are not consid-
ered. An effort is required to ease the integration and make
the communities more accessible towards each other.

To foster closer cooperation among the communities, we
envision a new robotic planning competition in simulation.
Starting out with a specific scenario, we can pave the way for
the development of more integrated systems. The planning
community would benefit from a recent and readily prepared
evaluation robotics testbed to show the relevance and perfor-
mance of their work. For the robotics community, planning
systems would become more accessible building on or in-
trospecting existing integrated systems in a robotics context.

Figure 1: RoboCup Logistics League Simulation

As development and maintenance of actual robots is costly
and tedious, the competition will be held in simulation.

This competition builds on the industry-inspired scenario
of the RoboCup Logistics League (RCLL) (Niemueller,
Lakemeyer, and Ferrein 2015). Manufacturing industries are
on the brink of widely accepting a new paradigm for orga-
nizing production by introducing perceiving, active, context-
aware, and autonomous systems. This is often referred to
as Industry 4.0 (Kagermann, Wahlster, and Helbig 2013), a
move from static process chains towards more automation
and autonomy. The corner stones for this paradigm shift are
smart factories (Lucke, Constantinescu, and Westkämper
2008), which is a context-aware facility in which manu-
facturing steps are considered as services that can be com-
bined efficiently in (almost) arbitrary ways allowing for
the production of various product types and variants cost-
effectively even in small lot sizes, rather than the more tradi-
tional chains which produce only a small number of product
types at high volumes. Flexible and efficient logistics is cru-
cial in such a scenario. The RCLL models this very task at
a comprehensible and manageable scale. Methods and tech-
niques for planning and reasoning on a factory, robot fleet,
and individual robot levels are highly relevant in this con-
text. The chosen domain may therefore also allow for more
interest from industrial partners.

As a preparation for this competition to take place (in
2017), we will hold a half-day tutorial at ICAPS 2016 to
present the idea, introduce the integrated open-source base
system, and to kickstart interested teams. The purpose of
this paper is to briefly present the challenge and foster dis-
cussion about the best way to proceed with the challenge.
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RoboCup Logistics League (RCLL)
The RCLL (Niemueller, Lakemeyer, and Ferrein 2015) is an
industry-inspired league in RoboCup (Kitano et al. 1997),
an initiative to foster research in the field of robotics and
artificial intelligence. The goal is to organize an efficient
workflow in a simplified virtual factory environment.

The game starts with the exploration phase, lasting four
minutes, where the group of three robots must roam the envi-
ronment and identify the machines and their positions on the
field. To introduce uncertainty and foster the development of
robust and failure tolerant systems, two teams operate on a
common field at the same time. Each team has an exclusive
set of six machines of four different types of Modular Pro-
duction System (MPS) stations. They are assigned randomly
to 24 zones on the field (position and orientation within zone
is randomized). The playing field is symmetric along the
shorter middle axis to ensure fairness for both teams. In the
production phase the robots need to coordinate to efficiently
operate their machines to refine workpieces to deliverable
products according to randomized orders that are posted dy-
namically at run-time. A product consists of a cylindrical
base element, zero or up to three colored rings, and a gray
or black cap (order of colors is relevant). These elements
can be obtained at different machine types. For further de-
tails we refer to Niemueller, Lakemeyer, and Ferrein (2015)
and RCLL Technical Committee (2016). Figure 2 shows the
finals of the RoboCup 2015 competition in Hefei, China.

The game is controlled by the referee box (refbox), a soft-
ware component which provides agency to the environment.
The simulation (Figure 1) uses the exact same controller and
therefore provides reactions similar to the real world. Af-
ter the game is started, no manual interference is allowed,
robots receive goals only from the refbox and must act com-
pletely autonomously. The robots communicate among each
other and with the refbox through WiFi. Communication
delays and interruptions are common and must be handled
gracefully – they are also modeled in the simulation.

Task-Level Executive
For a robot to fulfill a certain task, a component is necessary
that composes basic skills or actions to form a coherent be-
havior – this is the task-level executive. Typical approaches
can be roughly divided in three categories (Niemueller,
Lakemeyer, and Ferrein 2015): state machine based con-
trollers like SMACH (Bohren and Cousins 2010), rea-
soning systems from Procedural Reasoning Systems (In-
grand et al. 1996) or rule-based agents (Niemueller, Lake-
meyer, and Ferrein 2013) to more formal approaches like
GOLOG (Levesque et al. 1997), and finally planning systems
with varying complexity and modeling requirements. Hy-
brid systems may integrate aspects of more categories, e.g.
PDDL-based planning and GOLOG (Hofmann et al. 2016).

The task-level executive is usually composed of a model-
ing framework to design the domain model, constraints, and
mission goals; a generative planner to perform mission plan-
ning or a reasoning system for action selection; a dispatcher
to send task commands to robots; an execution monitoring
system to overview progress and detect disturbance; and a

Figure 2: RoboCup Logistics League Finals 2015

state estimation system to identify the current state of the
world. The technology used in each of these elements varies
and the literature is vast. The integration of these compo-
nents in a robotics application is an interesting and real chal-
lenge in both planning and robotics communities.

Robotics Planning Competition (RPC)
To bring the robotics and planning communities closer and
to foster the integration of planning approaches in more
robotic systems, we propose to organize a Robotics Planning
Competition. Acquiring and maintaining one or more robots
is often prohibitively costly and particularly for many mem-
bers of the planning community undesirable. Therefore, this
robotics competition should take place in simulation. An
open source (base) system will ensure that participants can
re-create the used infrastructure with reasonable effort.

The idea for the competition was conceived during a dis-
cussion in the Workshop on Planning in Robotics at ICAPS
2015. It was observed that even in this focused work-
shop, papers used robotics mostly as a motivation, rather
than as an integration and evaluation testbed, therefore not
producing results necessary to attract more members of
the robotics community. Based on the presentation of the
RCLL (Niemueller, Lakemeyer, and Ferrein 2015) it was
deemed to be a suitable candidate. The authors do not claim
that this is and should be the one and only simulated robotics
domain for such a competition. However, it is readily avail-
able and a good match for a start. The topic is also relevant
for future industrial production, as demonstrated by Festo as
the industrial partner for the RCLL (Niemueller et al. 2013).

Challenges
The main challenges in the Logistics Robot Planning Com-
petition (LRPC) are short-term planning, multi-robot coor-
dination, run-time integration, and dynamic adaptation. As
outlined in (Niemueller, Lakemeyer, and Ferrein 2015) var-
ious options for planning exist. The domain can be modeled
towards local-scope (single robot) or global-scope (overall
fleet) planning, in a centralized or distributed fashion, e.g.,
allowing to employ something like plan merging (Alami et
al. 1998; Joyeux et al. 2009), and producing either incremen-
tal or complete plans. The most successful strategy in 2014
and 2015 was based on local-scope, distributed, incremen-
tal reasoning system (Niemueller, Lakemeyer, and Ferrein
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Figure 3: Simulation Architecture

2013). However, achieving cooperation among robots must
be encoded explicitly which may cause inefficient interac-
tions and resource usage. Therefore, globally optimizing
planning with intrinsic cooperation seems desirable.

Supply chains describe logistic networks which comprise
interlinked logistic actors, locally in a factory as in the
RCLL, or more generally on a larger scale among factories
and industries. Supply chain optimization (SCO), especially
as observed at the larger scale, is a hard problem (Radzi,
Fox, and Long 2007) showing that the competition will not
only serve as a testbed for integration and evaluation, but
may rather also pose new challenges. Also, the competi-
tion will evolve along the requirements. An alignment with
the RCLL is desirable, for one to encourage members of the
planning community to participate with real robots or col-
laborate with existing teams, for another to foster the accep-
tance of planning techniques in the robotics community. But
the planning competition may choose to alter the scenario,
for example to operate more robots in a larger environment
to scale the problem. This is highly relevant, for example to
look at scenario sizes expected in real industrial contexts.

System Architecture and Components
The competition requires the use of a modular system archi-
tecture that integrates key components for planning, moni-
toring, and adaptation. Figure 3 depicts the architecture that
will be used to operate the robots in the simulation environ-
ment to fulfill the given tasks. In what follows we describe
the main components.
Simulation Environment A complete simulation of the
RCLL environment, depicted in Figure 1, is readily avail-
able (Zwilling, Niemueller, and Lakemeyer 2014) as open
source software.1 The simulation is connected to the Ref-
eree Box (refbox) that provides fully autonomous agency.
Domain model We will provide at least one default domain
model based on PDDL. Models might have different require-
ments in terms of fidelity (e.g., temporal or non-temporal) or

1
https://www.fawkesrobotics.org/p/rcll-sim

language (depending on the planner). There is potential for
cooperation with the International Competition on Knowl-
edge Engineering for Planning and Scheduling (ICKEPS).2
Task Planner This is obviously a crucial part for the chal-
lenge and the center piece which we expect teams to modify
or replace. We will provide a reference implementation.
Execution Monitoring System This component is respon-
sible for executing a plan and handling action failure, unex-
pected events etc. We will provide a default executive based
on Enterprise Pike (Levine and Williams 2014).
Behaviors/Skills We will provide a set of standard behav-
iors — implemented using the Lua-based Behavior En-
gine (Niemueller, Ferrein, and Lakemeyer 2009) — required
to play the game, such as go to a certain place, pick-up a
workpiece, or operate a machine.
Robot Software Stack The base robot system is imple-
mented using the Fawkes Robot Software Framework based
on the publicly released software stack of the Carologistics
RoboCup team (Niemueller, Reuter, and Ferrein 2015). It is
available as open source software.3 Functional components
for navigation, self-localization, and perception will be pro-
vided. This includes a component path-planning (replace-
able in track 2 and 3, see below). Perception will mostly be
provided through ground-truth from the simulation.
Middleware The provided infrastructure is based on the
Fawkes Robot Software Framework. We will additionally
provide a full Robot Operating System (ROS) integration to
allow interfacing with all the components of the architecture,
having Fawkes then only working in the “engine room”.

Competition Tracks
The basic competition will consist of the RoboCup Logistics
League task (RCLL Technical Committee 2016) that has to
be solved with three robots. Games can be played with a
single or two teams at a time (the latter being the official
RCLL game increasing uncertainty). The competition will
provide great flexibility in terms of software and methods
used to perform the task and mission planning. Some ba-
sic tracks provide some rough separation to ensure a proper
comparison of solutions.

For the time being, we will focus on global centralized
planning, that is planning is performed on a single host
for the overall fleet of robots. We will focus on providing
state-of-the-art planners (e.g., PDDL and RMPL planners)
and existing planning architecture (e.g., Enterprise, ROS-
Plan (Cashmore et al. 2015)). A readily integrated base sys-
tem will be provided as an example. We envision a number
of different tracks, distinguished by the amount of influence
the team has on the overall software stack and what com-
ponents may be replaced. These tracks are explicitly up for
discussion with interested teams.
Track 1: Planner Teams may replace the domain model,
task planner, execution monitoring system, and/or the state
estimator.

If the default execution monitoring system is used an ap-
propriate translation of the planner output to the execution

2
https://ickeps2016.wordpress.com/

3
https://www.fawkesrobotics.org/p/rcll2015-release
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monitor input is required and must be provided by the teams.
The interface to the software stack are either Fawkes black-
board interfaces or ROS topics for information retrieval.
To execute actions (if the execution monitor is replaced), a
Fawkes interface or ROS action are provided that takes spe-
cific skill strings for execution.4

We are considering running both a classical and a tempo-
ral track, depending on participant interest.
Track 2: Behaviors and Motion Planning In addition to
the items of track 1, teams may extend or replace the exist-
ing skills (including a different execution engine), and the
motion planning component. If a different skill execution
engine is used, it must either implement the Behavior Engine
interface if the default executive is used, or it must provide
a custom executive as well.

The default motion planning component is based on a
global dynamically generated graph-based planner and a lo-
cal planner implementing collision avoidance (Jacobs et al.
2009). Either component may be replaced by the team in
this track. Note, that the positions of the machines are not
fixed and positions have to be explored during the game.
Track 3: Free Style The team may apply any modification
to the robot software, except anything related to the simu-
lation (this denies at least modifications to models, plugins,
configuration, or refereeing). We intend to provide a simpli-
fied Gazebo-based API that teams can use to integrate with
a software stack of their choice. This track is specifically
targeted towards interested parties from the robotics com-
munity that wants to participate in the challenge.

Conclusion
We have proposed a competition for logistics robots in sim-
ulation to bridge the gap between the planning and robotics
communities. We will hold a half-day tutorial at ICAPS
2016 to introduce the simulation scenario and outline its
planning challenges. The base software and further infor-
mation is provided on the project website.5 This paper and
the tutorial are meant to start the discussion with interested
parties to implement the competition in 2017.
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Abstract

In this paper we introduce a spatio-temporal planning
and scheduling approach for collaborative multi-robot
systems. In particular, we are targeting an application
to physically reconfigurable systems in order to take
advantage of morphological changes. The planning ap-
proach relies on an ontology to model the functional-
ities individual physical agents offer within the multi-
robot system, while an implicit domain representation is
given. An inference layer on top of a knowledge-based
system allows to account for superadditive effects from
physically combining two or more robots. We present
a formulation of the domain-specific planning prob-
lem and outline our spatio-temporal planning approach.
This approach combines the use of constraint-based sat-
isfaction techniques with linear optimization to solve a
multicommodity min-cost flow problem to deal with the
transportation of immobile robotic systems. The paper
describes the findings after implementing core features
and evaluates the approach based on a fictitious scien-
tific mission. We close with a discussion of the current
limitations of the illustrated approach.

1 Introduction
Robotic space missions rely on highly specialized robotic
systems to perform scientific missions. Despite the existing
capabilities of these systems, the communication delay in
a space-exploratory mission has a significant influence on
operations and is a major reason for an overall slow mis-
sion progress (NASA 2016). While automation and intro-
duction of techniques from artificial intelligence could miti-
gate some of these effects, there is a reluctance of increasing
autonomy in such systems. One of the reasons for this re-
luctance is keeping the operational and financial risk to a
minimum.

The application of reconfigurable multi-robot sys-
tems (Roehr, Cordes, and Kirchner 2014) offers an approach
to reduce these types of risk in multiple ways. Firstly, the
modularity of such system allows for an incremental mis-
sion design, which can include systems with different de-
grees of specialization. That means, that after an initial de-
ployment phase where a limited number of robotic systems
is used, subsequent system development and deployments
can take advantage of reconfigurability and extend the func-
tionality of the existing systems. Secondly, the additional

degree of freedom that arises from the flexibility of reor-
ganising resources (Evans 1991) within the multi-robot sys-
tem can be used at the time of mission planning as well
as at runtime. Thus, the inherent flexibility (DeLoach and
Kolesnikov 2006) of a physically reconfigurable multi-robot
system offers a benefit for operations regarding safety, effi-
ciency and efficacy. A reconfigurable multi-robot system en-
compasses all the benefits of a multi-robot system so that it
can mitigate the issue of single-point-of-failure. As an addi-
tional benefit, resources can be dynamically shifted within
a physically reconfigurable system, so that functionalities
and redundancies can be created where they are needed the
most. Meanwhile, efficiency can be increased by distributing
tasks according to the level of capability of individual robots
and while traditional multi-robot systems can increase effi-
cacy by applying general cooperation schemas, reconfigura-
tion adds the possibility of creating physical coalitions aside
from creating virtual ones. This not only results in a mor-
phological change, but allows to take advantage of any su-
peradditive effect, e.g., using abilities that are not available
within individual systems, but only when two or more join.

The motivation for developing a planner for reconfig-
urable multi-robot systems comes from the idea of taking
full advantage of the available flexibility in an automated
way. While will not present results of a fully completed im-
plementation that includes the anticipated multi-objective
optimization for redundancy and efficiency, but we illus-
trate an overall integrated planning approach that accounts
for the full flexibility of a reconfigurable multi-robot sys-
tem. Hence, our main contribution is the outline of an in-
tegrated multi-robot planning approach, which allows us to
limit the combinatorial explosion that comes with a cooper-
ative multi-robot system. In the following we therefore in-
troduce related work in this area in Section 2. Subsequently,
we outline our planning approach in Section 3 and provide
details on the implementation and validation in Section 4.
The final section 5 provides our conclusions and an outlook
of future work.

2 Background
Real reconfigurable multi-robot systems have been success-
fully developed in the past years, though the main focus
of these efforts has been swarm-like systems, i.e. modules
that can be almost arbitrarily combined, but are limited with
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Figure 1: The multi-robot system which represents the initial
motivation and target platform for the planning algorithm.

respect to their final applicability for complex tasks. The
work by Roehr et al. (Roehr, Cordes, and Kirchner 2014)
presents a recent achievement in this area by allowing more
complex and more capable robots to combine and dynami-
cally form coalitions. The project TransTerrA (Sonsalla et al.
2014) builds upon these experiences and develops a recon-
figurable multi-robot system that comprises of mobile and
immobile robotic agents such as the mobile rover SherpaTT,
the mobile shuttle Coyote III, payload-items and so-called
base camps; the robotic systems are depicted in Figure 1.

Leading to the progress of developing these kind of re-
configurable multi-robot systems has been the development
of interfaces that allow for a reliable electro-mechanical cou-
pling of two physical agents. While the development of such
hardware is progressing, the automated exploitation of this
additional degree of freedom has yet received little attention.

Theoretical work for organization modelling has been col-
lected by Dignum (Dignum 2009) and OperA and LOA
(logic for agent organizations) are two examples providing a
formal foundation. Dignum also stresses the importance of
dealing with reconfigurable systems as yet another dimen-
sion for organizations. Closer oriented towards the multi-
agent and multi-robot domain are MOISE+ (Hübner, Sich-
man, and Boissier 2002) and OMACS (Zhong and DeLoach
2011), which provide models to describe goal oriented or-
ganizations to consider restructuring (of task assignments)
of such multi-agent systems as error response and based on
a metric, which quantifies the ability to fulfil specific tasks.
In order to quantify the benefit of a specific configuration of
an organization the work of DeLoach et al. (DeLoach and
Kolesnikov 2006) is a rare example and relies on a static
analysis at design stage.

Looking at the safety property a reconfigurable multi-
robot system could be viewed as the so-called superaddi-
tive game (Weiss 2009) - a subclass of characteristic func-
tion games; the best coalition of agents is a monolith com-
posite agent, i.e. merging all available agents leads to a
maximum degree of redundancy. However, a reconfigurable
multi-robot system is restricted in the way composite agents
can be constructed, i.e. physical interfaces might be already

used or are incompatible with each other, thus possible com-
binations are limited. Rahwan et al. (Rahwan et al. 2011)
provide an approach to find the best possible combination
for this restricted case, however, the given approach already
requires knowledge about compatibility, which becomes im-
practical even for medium sized teams when agents can be
connected via multiple interfaces. Meanwhile, approaches
such as ModRED (Baca et al. 2014), and coalition struc-
ture generation (Rahwan et al. 2009),(Rahwan et al. 2011)
provide means to identify (near) optimal configurations for
unrestricted coalition building. Since the search space is the
space of all so-called coalition structures PA = 2|A|, where
A is the set of available agents; the cost for this computation
can be significant: Rahwan et al. show that it is (Rahwan et
al. 2009) O(2|A|) and limiting even for a small team size;
stronger assumptions allow to reduce this restriction, e.g.,
Baca et al. (Baca et al. 2014) show a reduction to O(log|A|)
but they also assume a constant utility of two linked agents
irrespective of the total size the coalition they are in.

Tenorth and Beetz (Tenorth and Beetz 2013) illustrate that
ontologies offer a scalable approach to model robotic sys-
tems and plan with this information, e.g., they rely on a set
of ontologies to describe actions, capabilities and interde-
pendencies. However, they use their ontological description
to parametrize so-called action-recipes and focus on single
robotic systems, whereas Cashmore et al.(Cashmore et al.
2015) embed ontologies into a full planning approach.

Planning for reconfigurable multi-robot systems is chal-
lenging due to their high degree of flexibility and marsupial-
like robotic teams (Murphy, Ausmus, and Bugajska 1999)
are only one of multiple possible expressions of such re-
configurable multi-robot systems. Wurm et al. (Wurm et
al. 2013) apply temporal planning in the context of a
multi-robot carrier service which enhances robotic explo-
ration. They use the PDDL-based temporal-planning sys-
tem TFD/M (Eyerich, Mattmüller, and Röger 2012) which
offers the use of so-called semantic attachments or rather
external evaluation functions for better context integration,
e.g., allowing to use a path-planning component to com-
pute action costs. Similarly, Eich et al. (Eich et al. 2014)
perform coordination of a multi-robot team using hierarchi-
cal task networks (HTNs), but without explicitly using tem-
poral planning. A combination of (meta-)constraint-based
solvers, temporal planning and HTN planning can be found
in CHIMP (Stock et al. 2015), which has also been suc-
cessfully applied to single and multi-robot problems. While
all mentioned planning systems are suitable to multi-robot
planning, none of these systems takes into account superad-
ditive effects of combining two or more robots.

Numerous timeline-based approaches have been gathered
for space-related applications by Chien et al. (Chien et al.
2012) and in our approach we also use a timeline-based rep-
resentation and Temporal Constraint Networks (Nau, Ghal-
lab, and Traverso 2004),(Dechter 2003) for qualitative tem-
poral reasoning. In addition, we adopt the PLASMA planner
approach (Maio et al. 2015) of resource driven planning.
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3 Planning with a reconfigurable multi-robot
system

The challenge of planning with reconfigurable multi-
robot system is directly related to characteristic function
games (Weiss 2009). A configuration of the multi-robot sys-
tem can be viewed as a so-called coalition structure CS ∈
PA, where PA represents the space of all coalitions struc-
tures that can be created from the set of actors A. Rahwan
et al. formalize in (Weiss 2009) a coalition structure over
A as CS = {C1, . . . , C|CS|} such that

⋃|CS|
i=1 Ci = A. By

definition coalitions within a coalition structure cannot over-
lap, i.e., Ci ∩ Cj = ∅, i, j = 1 . . . |CS|, i 6= j. That means,
that each agent of A is part of one and only one coalition in
a coalition structure.

Planning needs to consider possible transitions between
these coalition structures, while finding the optimal coalition
structure is alreadyO(2|A|) for a set of agentsA (Rahwan et
al. 2009).

The planning goal is to provide a feasible plan which out-
lines core actions to perform a robotic mission, i.e., the mis-
sion specification can be seen as the goal specification. The
initial intention, however, it not to produce a fully detailed
action plan, e.g., when and how manipulation takes place.
Instead, the goal lies in exploiting reconfigurability to form
composite agents while guaranteeing that resources for spe-
cific functionality (and thus actions) will be available at a
specific location and time. Thus, a solution will represent a
rather coarse grid for a robotic mission (but fulfilling nec-
essary preconditions for functionalities) which can be used
by more specialized planners, e.g., manipulation planner or
navigation planner, to provide a detailed plan.

In the following we introduce the basic notation, defini-
tions and our assumptions regarding reconfigurable multi-
robot systems such as implemented in Roehr et al. (Roehr,
Cordes, and Kirchner 2014):
Definition 3.1. An atomic agent a ∈ A represents a mono-
lithic physical robotic system, where A = {a0, . . . , an} is
the set of all atomic agents. An atomic agent cannot be sep-
arated into two or more physical agents.
Definition 3.2. A mechanically coupled system of two or
more atomic agents is denoted a composite agent CA =
{ai, . . . , aj}, where ai, . . . , aj ∈ A, |A| ≥ |CA| > 1.
Definition 3.3. The type of an atomic agent a is denoted
â and equivalently for a composite agent CA the type is
denoted ĈA. The set of all agent types is denoted Â =
{â1, . . . , ân}.
Definition 3.4. A (general) agent type ĜA is represented
as a tuple set of agent type and type cardinality: ĜA =
{(â0, c0), . . . , (ân, cn)}, where ai ∈ A and 0 ≤ ci ≤ |A|.
ĜA ⊃ ĜA′ ⇐⇒ ∀(ai, ci) ∈ ĜA, (âi, c′i) ∈ ĜA′ : ci >
c′i, where i = 1 . . . |A|. Such a tuple set will be denoted an
agent pool.
Definition 3.5. A reconfigurable multi-robot system
(RMRS) is a set of fully cooperative atomic agents. It can
temporarily form composite agents from two or more atomic
agents.

t0 t1 t2 t3 t4 . . .

l0

l1

l2

l3

[ ](F0,{(â0, 3)})

[ ](F1,∅)

Figure 2: A mission specification example consisting of
two spatio-temporal requirements (F1, ∅)@(l3, [t0, t1]) and
(F0, {(â0, 3)})@(l1, [t2, t4]), where l0, . . . , l3 are location
variables and t0, . . . , t4 are timepoint variables.

Assumption 3.1. Each agent can be mapped to a single
agent type only.

Assumption 3.2. Each atomic and composite agent com-
prises a central controller.

Assumption 3.3. A mechanical coupling between two
atomic agents can only be established through two compat-
ible coupling interfaces.

Formally, a robotic mission is a tuple M =
(Aa, STR,X ), whereAa = {a0, . . . , an} is the set of avail-
able atomic agents, STR is a set of spatio-temporally qual-
ified expressions (steqs) and X is a set of (temporal) con-
straints.

A spatio-temporally qualified expression in this context
is an expression of the form: (F ,Ar)@(l, [ts, te]), where F
is a set of functionality constants, Ar is a set of required
(general) agent types, l is a location variable, and ts, te are
temporal variables describing a temporal interval with the
implicit constraint ts < te. Currently, we use qualitative
timepoints and favour the notation of time slots by start
and end time over the specification of a duration, since this
(a) allows a future addition of quantitative timepoints (and
mix between quantitative and qualitative time), and (b) can
be directly translated to the problem solver for constraint-
satisfaction problems (CSPs). Figure 2 illustrates a mission
specification example. A mission specification can contain
partially or fully temporally ordered requirements, i.e., con-
straints between all qualitative timepoints can remain in-
complete in this specification.

Organization model
Reconfigurable multi-robot systems come with great flexi-
bility and as already mentioned come with the possibility
of increasing efficacy through cooperation. One of the chal-
lenges in planning with such a system lies in accounting
for superadditive effects of composite agents, e.g., in our
work we want to account for functionality that becomes only
available when two or more agents join together - an exam-
ple: a robot ’mobile’ that is mobile, can provide power to
external modules, but has no inbuilt camera, can pick up an
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(unpowered) camera module ’cam’. In contrast to the atomic
agents (’mobile’ and ’cam’) the newly formed composite
agent ’mobile cam’ can take images and take them from any
location the robot can reach. We will later refer to this ability
of this composite system as ’LocationImageProvider’.

Furthermore, in order to use planning to improve the
safety of operations, we have to provide holistic metrics, i.e.
we have to account for the state of the multi-robot system
as a whole. The introduction of holistic metrics will allow to
compare different states and characterise a multi-robot sys-
tem, e.g., using the overall redundancy level with respect to
the required functionality.

To model a multi-robot system, allow for inferring capa-
bilities of agent coalitions and eventually use the model for
planning we bring the ideas of Tenorth and Beetz (Tenorth
and Beetz 2013) and Cashmore et al. (Cashmore et al. 2015)
together. Both our requirements for planning with recon-
figurable multi-robot systems, i.e. reasoning for composite
agents and providing a holistic metric, are tackled by using
a knowledge-base which we denote organization model.

The organization model is an ontology that can be aug-
mented with domain-specific and system-specific informa-
tion; it allows to encode basic functionalities of agents as
well as the dependence of an agent’s functionality towards
the availability of other resources. We account for two re-
source concepts to describe functionality of an agent: capa-
bility and service. A functionality can have resource require-
ments which are defined using qualified cardinality con-
straints on the property has; this quantifies ownership of a
resource. Figure 3 is an excerpt of an organization model
and shows the basic modeling approach. Requirements are
defined using minimum cardinality constraints in order to al-
low accounting for redundancies. Meanwhile, resources as-
sociated with an agent are defined as maximum cardinalities;
this allows to encode resource outages for individual agents
in the organization model. The organization model can fur-
ther be augmented with more agent specific data, e.g., trans-
port capacities or power consumption 1.

To identify functional dependencies of agents and infer
the availability of a functionality f of a composite agent type
ĈA due to superadditive effects, the following problem def-
inition can be used: searching for the assignment matrix M
which maps available resources (described by a vector U
that is derived from the given composite agent type ĈA) to
required resources (represented by a vector L and derived
from the given functionality):

L−M · I = ~0

subject to

uj −
dim(L)∑

i=1

mi,j ≥ 0, j = 1 . . . dim(U)

mi,j =

{≥ 0 ⇐⇒ cU,j v cL,i

0 otherwise

1Example ontologies: https://github.com/2maz/
rmrs-pub

Capability v Functionality v Resource v >
Service v Functionality v Resource v >
MoveTo v Capability
ImgProvider v Service
MoveTo ≡ ≥ 1.has.Locomotion

u ≥ 1.has.Localization
u ≥ 1.has.Mapping
u ≥ 1.has.Power

ImgProvider ≡ ≥ 1.has.Camera
u ≥ 1.has.Power

LocImgProvider ≡ ≥ 1.has.ImgProvider
u ≥ 1.has.MoveTo

ARobot ≡ Agent
u ≤ 1.has.Locomotion
u ≤ 1.has.Localization
u ≤ 1.has.Mapping
u ≤ 4.has.Camera
u ≤ 1.has.Power

Figure 3: Organization model excerpt of a Description
Logic (DL) for an atomic agent concept ARobot. This
illustrates an example formulation for a service named
LocImgProvider which reflects the functionality to pro-
vide images from specific locations.

L = [l1, . . . , ln] represents a vector of minimum cardi-
nalities of required resources for the functionality f , U =
[u1, . . . , un] represents the vector of maximum available re-
sources (provided by the set of agents forming the com-
posite agent); n represents the number of different required
resource classes. I is the all-ones matrix dim(U) × 1, M
is the assignment matrix dim(L) × dim(U) with entries
mi,j , i = 1 . . . dim(L), j = 1 . . . dim(U) which are re-
stricted to 0 or positive integer values, and cV,k is the concept
(here: resource class) belonging to entry 1 ≤ k ≤ dim(V )
in a vector V . The value mi,j indicates how many instances
of a particular resource class j are available to satisfy the
request for resources of class i.

The following relationship between the existence of the
functionality f and the existence of a solution to the stated
problem exists:

ARobot ≡ 1.has.f ⇐⇒ ∃M L−M · I = ~0

Thus, if an assignment matrix M can be found for a func-
tion f and a given agent concept, then the functionality is
available for this concept.

Similarly, if the availability of a set of functionalities has
to be tested, then the combined resource requirements of in-
dividual functionalities have to be considered. We define the
required set of resources Lf for a functionality f as:

Lf = [lf,1, . . . , lf,n]

The required resources for the set of functionalities F =
{f1, . . . , f|F |} can then be represented as:

LF = [max(lf1,1, . . . , lf|F |,1), . . . ,max(lf1,n, . . . , lf|F |,n)]
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At present, the organization model does not directly ac-
count for negative effects that might come with forming a
composite agent; this is a limitation we intend to tackle in
future revisions.

To reduce the search space we apply a functional sat-
uration bound to a set of composite agent types CT =

{ĈA0, . . . , ĈAn} which provides a minimal set of coalition
types CTmin ⊆ CT that fulfil the functional requirements,
so that for any other coalition type ĈAv /∈ CTmin the fol-
lowing holds:

∃C ∈ CTmin : ĈAv ⊃ C
To give a more intuitive interpretation of this formula-

tion: we intend to remove any composite agent type from
the search space when a subset of its embodied agents is suf-
ficient to provide a requested functionality. We encode this
problem as integer-linear program and solve it with a stan-
dard solver (cf. Section 4) once for a given mission speci-
fication, i.e. initially when required functionalities and the
available agent pool are known.

Metrics and Heuristics
To estimate travel cost for an agent we take the same ap-
proach as Wurm et al. (Wurm et al. 2013) and estimate
the travel time between two locations; we define a nominal
speed as a default property for mobile agents, so that based
on this information the duration estimate can be computed,

A mapping from location symbols to actual coordinates
can be added to the mission specification and as long as
no better information is available, e.g., from a path plan-
ner (Wurm et al. 2013), the distance between locations will
be the basis for cost computations. Robotic systems con-
sume electrical energy and thus all agents come with a nom-
inal power consumption. Hence, duration of actions is not
selected directly as cost measure, but total energy consump-
tion. Although the power consumption can vary over time
with the type of activity, we assume a constant consumption
and leave this improvement as future enhancement. Further-
more, we assume (though not true in all cases) that reducing
energy consumption will be a primary goal for optimizing
multi-robot plans since it can be mapped to the efficiency of
the mission plan.

As mentioned in the introduction, safety is another crite-
ria that has to be taken into consideration. Reconfigurable
multi-robot systems can take advantage of their flexibility
to exchange resources (by forming new coalitions) in or-
der to adjust the level of redundancy in a composite agents.
This leaves the options to deliberately increase redundancy
for prioritized tasks or maintain a minimum level of redun-
dancy in general. Demanding a high level of redundancy in
a mission tends towards a monolithic system that performs
all tasks, while a low level of redundancy thrives for a max-
imum number of parallel tasks, i.e. maximising efficiency.
This means that in the optimization function of the planner
a (user-defined) balance has to be established to trade-off
redundancy and efficiency.

We will base our safety heuristic on the standard mod-
elling of parallel and serial component-based systems. Each

component will be associated with a probability of survival,
leading to an overall measure of probability of survival. This
information can only be extracted by measuring the perfor-
mance of the real systems, and the relation to individual
components. The reliability Rf of a functionality f can be
computed by accounting for parallel components, i.e., re-
sources that are not strictly required but which can serve as
replacement:

Rf (t) =

{
1−∏n

i=1(1− pi(t)) parallel system∏n
i=1 pi(t) serial system

where pi(t) is the time-dependant probability of survival
with 0 ≤ pi(t) ≤ 1, e.g. influenced by component degrad-
ing.

Overall, the metric can be seen as characteristic function
of a characteristic function game (Weiss 2009). However,
here it is a multi-objective optimization function to trade-off
safety and efficiency, and the problem does not fit into any
of the existing four major subclasses of monotone, superad-
ditive, convex or simple games.

The integration of metrics remains work in progress, how-
ever, computing the reliability of a plan will based on a crit-
ical path analysis and tracing the dependency of individual
functionalities on specific agents.

Planning algorithm
A dedicated domain definition is not provided to the planner,
yet a planning domain is implicitly given by using the orga-
nization model and accounting for recombination of agents.

A full domain definition can be provided, e.g., by trans-
lating the organization model and inference results into
Planning-Domain Definition Language (PDDL). Core ac-
tions considered for such an encoding are (cf. Figure 4):
(i) move, (ii) join, and (iii) split. The move action represents
a typical change of location and requires three parameters:
agent, start location and target location, while split and join
refer to a composite agent instance which is uniquely iden-
tifiable by the combination of agents.

The required set of predicates: (i) atomic(a): an agent a
is atomic, (ii) operative(a): a composite agent a is currently
assembled or an atomic agent a is operative (and thus not
part of any composite agent), (iii) at(a,l): an agent a is at
location l, (iv) embodies(c,a): a composite agent c embodies
an atomic agent a, (v) mobile(a): an agent a is mobile (can
move by itself), and (vi) provides(a,f): an agent a provides a
functionality f .

The action models in Figure 4 have been tested with and
transcoded from a PDDL-based representation and to facili-
tate the transcoding into PDDL, we initially prohibit mixing
of composite and atomic agents in a new composite agent.
However, this does not limit the modelling capabilities: in-
stead we assume a complete separation of a composite agent
into atomic agents when a reconfiguration takes place to
form a new composite agent. The corresponding transition
can be easily optimized before performing it with the real
robots. Furthermore, an atomic agent is either embodied by
a composite agent (and becomes a virtual instance which
cannot be directly associated with a location), or it is opera-
tive and physically present at a location.
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moveto(a, ls, lt) – move actor a from start ls to target lt

precond : mobile(a) ∧ operative(a) ∧ at(ls) ∧ ¬at(lt)
effects : at(lt)

join(c, l) – construct the composite actor c at location l

precond : ∀z ∈ A : ¬atomic(c) ∧ ¬operative(c)∧
((embodies(c, z) ∧ operative(z) ∧ at(z, l))
∨(¬embodies(c, z))

effect : ∀z ∈ A : at(c, l) ∧ operative(c)∧
(¬embodies(c, z) ∨ (¬at(z, l) ∧ ¬operative(z))

split(c, l) – split the composite actor c at location l

precond : operative(c) ∧ at(c, l)
effect : ∀z ∈ A : ¬operative(c) ∧ ¬at(c, l)∧

(¬embodies(c, z) ∨ (operative(z) ∧ at(z, l))

Figure 4: Operations as part of the domain definition, for a
set of atomic agent A and location variables l, ls,lt

While this approach offers the possibility to reuse exist-
ing PDDL-based planners in a similar as done by Wurm et
al. (Wurm et al. 2013) and Cashmore et. al (Cashmore et
al. 2015), we found the need for translating the organization
model into this intermediate representation restrictive and
counter-productive for our problem. Therefore, we employ a
planning and scheduling approach that uses the organization
model as an integral part. The algorithm consists of the fol-
lowing main steps: (1) generation of a fully specified qual-
itative temporal constraint network (2) typing for satisficing
assignment also referred to as model assignment (3) role as-
signment, (4) timeline construction, (5) time-expanded net-
work construction (6) flow optimization, (7) solution evalu-
ation, and eventually (8) generation of multi-robot plan(s).

The core structure of the planning algorithm is illustrated
in Algorithm 1, i.e. up to the flow optimization step. This
variant is a simple high-level search strategy and illustrates
the main ideas of this paper to tackle planning with a recon-
figurable multi-robot system.

Temporal constraint network The planning algorithm
starts by taking all temporal constraints of the mission and
generating a temporal constraint network. Based on this in-
put nextQualTCN in Algorithm 1 computes a qualitative
temporal constraint network which is consistent and has no
timeline gaps – such a temporal constraint network eventu-
ally contains one constraint out of >,<,= between any two
qualitative timepoints.

Model assigment A least-commitment principle is ap-
plied as part of the model assignment process in order to
reduce the search space of coalition structures PA; this is
done by limiting the search to composite agents that sat-
isfy the functional requirements for each spatio-temporal ex-
pression while ignoring supersets of such composite agents.
Time overlapping requirements with the same location will
be merged into one requirement.

The model assignment process requires the quantification

Algorithm 1: TemPl Version 0.1
Data:M: mission spec, minNumS: min number of

solutions
Result: timeline-based solutions

1 begin
2 S = ∅;

// model assignment conflict resolvers

3 MCR = ∅;
// role assignment conflict resolvers

4 RCR = ∅;
5 while tcn = nextQualTCN(M) do
6 while nextModelAssignment(M, tcn) do
7 while ra = nextRoleAssignment(M, ma) do
8 rt = computeRoleTimelines(M, ra) ;
9 ten = computeTempExpNetwork(M,

rt);
10 mcf = computeMinCostFlow(M, ten);
11 if conflictFree(mcf) then
12 s = renderSolution(M, mcf);
13 S = S ∪ s;
14 if |S| ≥ minNumS then
15 return S
16 else
17 RCR =getRAConflictResolvers(mcf);

MCR =getMAConflictResolvers(mcf);
if RCR 6= ∅ then

18 r = popResolver(RCR);
19 applyResolver(M, r);
20 goto 7;
21 if MCR 6= ∅ then

// no role assignment found

22 r = popResolver(MCR);
23 applyResolver(M, r);
24 goto 6;
25 return S

of support of a functionality for an atomic agent type âwith
respect to a resource class c:

support(â, c, f) =
cardmax(c, â)

cardmin(c, f)

The functions cardmin and cardmax return the minimum
and maximum required cardinality for an instance of a re-
source class, leading to the following definition of support
of a function f with respect to a resource class c:

support(â, c, f) =





0 no support
≥ 1 full support
> 0 and < 1 partial support

We define the functional saturation bound for an atomic
agent type â with respect to functionality f using the inverse
of support:

FSB(â, f) = max
c∈C

1

support(â, c, f)
,

where C is a set of resource classes and ∀c ∈ C :
cardmin(c, f) ≥ 1 to account only for relevant resource
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classes. Similarly, the bound for a set of functions F is de-
fined as:

FSB(â,F) = max
f∈F

FSB(â, f)

Two main interpretations of the functional saturation
bound exist. First, it is a lower bound on the number of re-
quired instances of an atomic agent type to achieve a func-
tionality (if these instances are the sole contributors). Sec-
ond, it is also an upper bound for the number of instances
of an atomic agent type which are actually contributing to
achieve this functionality; any excess availability of this
agent type is not strictly necessary, but will increase the
level of resource redundancy. Hence, the functional satura-
tion bound defines the boundary between supporting func-
tionality and introducing redundancy.

Applying the functional saturation bound allows to reduce
the number of agent types that needs to be considered for
a satisficing assignment, which is subsequently solved as
a CSP. Each variable in this CSP corresponds to a spatio-
temporal expression defined in a mission M; each spatio-
temporal expression represents a joint requirement of func-
tionality that needs to be fulfilled by an agent and agent
(type) availability. Hence, each CSP-variable has a finite do-
main D = {ĈAk, . . . , ĈAl} consisting of composite agent
types. The solution of this CSP contains the minimum as-
signments of agent types for each spatio-temporal expres-
sion.

Role assignment While the model assignment leaves un-
solved what agent (instance) has to be assigned to a require-
ment, this will be detailed by the subsequent role assign-
ment step. This allows to deal with concurrent activities. A
role role = (i, â), where 0 < i < N is a tuple that rep-
resents an identifiable instance of an agent type; N is the
maximum number of available agents of the type â. The
role assignment process takes into account the number of
available agents (per type) and introduces unification con-
straints to allow only feasible concurrent activities. Again,
this role assignment is solved as a CSP, where the domain
of a variable is the set of all available roles, although this
domain will be further limited for individual requirements
based on the required number and type of agents. Further-
more, all roles associated with concurrent requirements have
to be distinct; this is enforced by introducing inequality con-
straints between time overlapping requirements. A solution
to the role assignment is either empty or contains (correct-
by-construction) conflict-free assignments of agent roles for
each spatio-temporal expression, i.e. an agent role is associ-
ated with one location at a time only.

Having conflict free role assignments is a necessary pre-
requisite to produce timelines in a subsequent step, i.e. after
the role assignment or unification process a timeline is com-
puted for each role (cf. Figure 5).

Logistic network At this stage of the processing it has
not been considered, whether an agent is mobile and able
to change the location by its own means. Hence, for the
next planning step, the algorithm starts to distinguish be-
tween mobile and immobile agents. The sub-problem of
dealing with mobile and immobile systems resembles the

t0 t1 t2 t3 t4 . . .

role0

role1

role2

role3

[ ]l0 [ ]l1

[ ]l1

[ ]l0

[ ]l2

Figure 5: Timelines of multiple roles, representing the
spatio-temporal requirement for each role; a role can be
mapped to an instance of an agent type.

one in (Wurm et al. 2013), but can be interpreted as network
flow problem (Ahuja, Magnanti, and Orlin 1993) or more
specifically as a so-called transshipment problem.

Mobile agents can offer transport capacities, which can
be used to transfer immobile agents; to distinguish between
mobile and immobile systems the process relies on check-
ing the availability of two (domain) specific functionalities:
(a) ’MoveTo’ describes a systems ability to perform loca-
tion changes by its own means, and (b) ’TransportService’
describes a system’s ability to carry payload and this capa-
bility can be further detailed by specification of transport ca-
pacities. The information about available functionalities will
also be defined in the organization model for each robotic
agent type and clearly, this is a domain specific addition, but
we are dealing with a planning problem of physical agents.

Based on the information about mobile and immobile
agents, a logistic network can be modelled and solved us-
ing flow optimization techniques. We model the flow opti-
mization problem using a time-expanded network. The time-
expanded network is a directed graph G(V,E). Each vertex
v ∈ V represents a tuple (l, t), where l is a location vari-
able and t represents a (qualitative) timepoint. Each directed
edge e ∈ E, e = (v, v′) with v = (l, t) and v′ = (l′, t′)
has to fulfil the temporal constraint: t < t′, and each role’s
timeline corresponds to a path in this graph (under the men-
tioned assumption of an underlying strongly connected tem-
poral network). The multicommodity min-cost flow problem
has been formulated as integer programming problem based
on the most-general formulation with commodity depen-
dant upper and lower bounds on edges (Kennington 1978);
a commodity represents a resource type that can be trans-
ported across an edge in the graph. Each edge e has an up-
per bound for the overall capacity ube and a lower and upper
bound for each commodity k: 0 ≤ lbke ≤ ubke ≤ ube. We ex-
tend this formulation to provide some control on the flow
and allow to define a trans-flow constraint for a commodity
on a vertex, i.e. setting a minimum inflow for a vertex that
has no supply or demand for this commodity. Due to balanc-
ing constraints, i.e. inflow and outflow need to match supply
or demand a valid solution will contain a symmetric outflow
of the commodity from the given node.
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t0 t1 t2 t3

. . .

l0

l1

l2

l3

Figure 6: The initial time-expanded network with temporal
constraints: t0 < t1 < t2 < t3 and upper capacity bound of
≤ ∞. The dotted path represents the timeline-based path of
a mobile agent a, for which an upper capacity bound UBa

can be set - given the transport capacity of this mobile agent.

In order to perform flow optimization the mission speci-
fication has to contain information about the initial location
of all resources. The initial location can be interpreted as
supply node, whereas subsequently the final destination is
defined as demand node. There might be even unused re-
sources that remain at the initial location as part of the so-
lution. In order to consider the timeline for immobile sys-
tems the corresponding spatio-temporal requirements are
expressed by setting supply on the start vertex, the demand
on the final vertex, and the trans-flow constraint for the role,
i.e. commodity it maps to, on all intermediate vertices.

Flow violations Finding a valid minimum cost flow might
fail and the failed state of the min cost flow graph can be
analysed to identify flow violations. Two types of violation
are possible: (i) trans-flow violation: a commodity is not
routed through a location at a specific timepoint, or (ii) min-
flow violation: a commodity is not supplied to a location at
a specific timepoint.

Both violation types can be addressed by the following
resolution strategies: (a) role distinction: increasing the role
distinction (for the amount of the missing resources) be-
tween two spatio-temporal constraints where the violation
is found, or if the system is immobile (b) transport request:
requesting the presence of a mobile system with transport
capability

Plan rendering If a solution to the flow optimization
problem has been found, it can be translated into a plan for
the multi-robot system (or a plan per role). This solution can
be characterised regarding safety and efficiency, e.g., com-
puting the associated level of redundancy and the expected
energy required to execute this solution.

4 Implementation and validation
In the following, we detail the implementation of our plan-

ning and scheduling system and while we aim at a scalable
approach our application targets medium-sized reconfig-
urable robotic teams consisting of about 25 member agents.

We target an application on small board computers and
thus try to maintain a consistent C++-based code-basis, e.g.,
for the ontology based organization modelling we created
a C++-variant of owlapi (Horridge and Bechhofer 2011).
This allows us to take advantage of ontology modelling
capabilities including support for datatypes and qualified
cardinality constraints. Reasoning on ontologies is based
on the Description Logic (DL) reasoner FACT++ (Tsarkov
and Horrocks 2006). A custom reasoner is introduced for
the organization model (cf. Section 3) and relies on solv-
ing integer-linear programs. For dealing with constraint-
satisfaction problems we rely on Gecode (Schulte and Tack
2012). All our graph-related subproblems such as tempo-
ral constraint networks and min-cost flow optimization share
the same graph library implementation.

The specification of temporal constraints in a mission is
based on qualitative relations and despite its more limited
expressiveness point algebra (PA) has been selected as main
representation due to better computational characteristics.
Qualitative reasoning and generation of qualitative temporal
constraint networks without time gaps relies on GQR (Gant-
ner, Westphal, and Wölfl 2008) which is combined with a
custom implementation of qualitative reasoning to facilitate
the future combination of qualitative with quantitative tem-
poral reasoning (Meiri 1996).

The mission specification is given by a user in XML 2

and allows to associate location constants either with tuples
of latitude-longitude or Cartesian 3D coordinates; this al-
lows the computation of metric distances between two loca-
tions (an additional radius parameter allows to map latitude-
longitude coordinates to metric distances) to identify overall
plan cost.

Tests have been performed on an PC equipped with an
Intel CORE i7-4600U 2.1 GHz with 12 GB of memory.

A mission example
To illustrate the working of the core features of our ap-
proach we present here two example missions that are driven
by some scientific goals. The following section describes
one mission example using a more abstracted representation
since it allows a more compact illustration. Subsequently,
we will provide a more concrete and slightly more complex
example, including the corresponding solution graph.

Abstracted mission We assume an initially given set of
robots implicitly given by a composite actor type ÂI ; all
agents are available to perform a mission illustrated in Fig-
ure 7. Agents of types â, b̂, and ĉ are mobile, where â has
a transport capacity for eight immobile systems and the re-
maining for one immobile system; agents of type d̂ and ê
are immobile and as such require to join with any of the mo-
bile agents to change their location. All or a subset of these
robots can be used to produce a satisficing solution.

We assume a space-exploration mission, where all re-
sources are initially deployed at a landing site denoted l0.
Starting from this landing site a set of tasks has to be carried

2Mission scenarios: https://github.com/2maz/
rmrs-pub
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out at three further locations which are denoted l1, l2, and
l3. The mission specification comprises 9 locations sym-
bols and 14 qualitative timepoints in total. The function-
alities required to perform these tasks are F0 = {f0, f1}
and F1 = {f0, f1, f2}. Functionality f2 is only supported
by immobile agents of type ê. The organization model en-
codes the information on (superadditive) capabilities and the
functional saturation bound is applied once before the plan-
ning step, i.e. leading to a mapping between composite agent
types and available functionalities based on the existing set
of agents.

The first iteration of the planning algorithm will lead
to an incomplete solution, since the flow optimization step
cannot satisfy all constraints. The problem arises through
the use of a single agent of type ê; after the role distri-
bution step has taken place, a single timeline is generated
for an agent of type ê which supports the functionality
(F1,{(d̂, 5)}) and (∅,ÂI). Initially the role distribution only
takes temporal constraints into account, hence both require-
ments can be served by a single agent. Therefore, the flow
optimization suffers from a trans-flow constraint violation
on (F1,{(d̂, 5)}) after the first iteration, i.e. the required in-
flow and outflow for a commodity is not fulfilled. To re-
fine the partial plan a resolver introduces additional con-
straints for role assignment or model distribution, e.g., to
fix a role assignment the respective timeline is split, by in-
creasing the distinction of agents between the two affected
spatio-temporal requirements. If that repair action does not
lead to a feasible plan, resolution has to backtrack to the
level of model distribution and add a functional requirement
for a mobile system.

For this particular mission example the mincommodity
flow optimization requires to encode a linear problem of the
following size: 4643 rows, 4290 columns and 12870 nonze-
ros. Columns correspond to the number of edges times the
number of commodities. The problem instance is solved in
about 4 s including fixing one flaw in the plan. Applying the
linear optimization problem does not result in a primal feasi-
ble solution and checking the first solution for constraint vi-
olations on trans-flow constraints lead to the application of a
resolver. The second iteration still has no primal feasible so-
lution, though there will be no violations on trans-flow con-
straints. This is due to the fact, that the excess resources exist
at the starting point, i.e. a solution might leave resources un-
used, so that the total demand supply balance constraint will
be violated. The degree of this violation can also be quanti-
fied using the internal solver results, e.g. Figure 8 illustrates
output of the internally used linear program solver; the cost
for routing one commodity across an edge is uniformly set
to 1. Hence, the result shows that finally 28 commodities can
be moved between edges while 20 resources overall remain
at their initial position, i.e. are unused. The final assignment
is illustrated in Figure 9, where the nth instance of an agent
type â will be denoted iân.

Eventually, splitting and joining of agent groups can be
mapped to the implicit actions join and split (cf. Figure 4),
while transitions between different locations map to the
move action. These implicit action center around a set of

ÂI = {(â, 3), (̂b, 2), (ĉ, 3), (d̂, 25), (ê, 5)}

t0

t1

t2

t3

t4

t5

t6

t7

. . .

l0 l1 l2 l3

[ ](∅,ÂI )

[ ](F0,{(d̂, 3)}) [ ](F1,{(d̂, 5)})

[ ](∅,{(ê, 1)})

[ ](F0,{(d̂, 3)})

Figure 7: Mission example to describe a robotic mission:
ÂI is the set of initially available resources, and the first re-
quirement is making all resources available at location l0,
i.e. setting the starting point. F0 = {f0, f1} is a set of func-
tionalities that needs to be available for a limited time inter-
val.

GLPK Simplex Optimizer, v4.52
4643 rows, 4290 columns, 12870 non-zeros

0: obj = 0.0 infeas = 39.0 (4500)
500: obj = 26.0 infeas = 21.0 (4000)

1000: obj = 26.0 infeas = 21.0 (3500)
1356: obj = 26.0 infeas = 21.0 (3144)

LP HAS NO PRIMAL FEASIBLE SOLUTION

GLPK Simplex Optimizer, v4.52
4643 rows, 4290 columns, 12870 non-zeros

0: obj = 0.0 infeas = 40 (4500)
500: obj = 28.0 infeas = 20 (4000)

1000: obj = 28.0 infeas = 20 (3500)
1356: obj = 28.0 infeas = 20 (3144)

LP HAS NO PRIMAL FEASIBLE SOLUTION

Figure 8: Output of the GLPK simplex optimization (for for-
matting reasons we have manually shortened this output) for
two subsequent planning steps: the first optimization results
in an invalid solution where on 26 out of 39 commodities
can be moved and triggering repairing the initial flaw by re-
questing the addition of another mobile agent; in the follow-
ing iteration 28 out of 40 commodities be moved.
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A = {iâ0 , . . . , iâ2 , ib̂0, . . . ib̂1, iĉ0, . . . , iĉ2, id̂0, . . . , id̂24, iê0, . . . , iê4}

t0

t1

t2

t3

t4

t5

t6

t7

. . .

l0 l1 l2 l3

[ ]
A

[ ]
{iâ1 , id̂17, . . . , id̂19, iê4}

[ ]
{iâ2 , id̂20, . . . , id̂24, iê3}

[ ]
{iê4}

[ ]
{iâ2 , id̂22, . . . , id̂24}

Figure 9: Computed solution for the mission example. The
initial set of agents is split into three groups, one remain-
ing at the initial position l0, and two groups moving to
(l1, [t2, t3]) and (l2, [t2, t3]) respectively. An additional split
allows a subgroup to continue to l3.

atomic agents, which can be combined to form composite
agents.

Concrete mission For the concrete mission we assume
that all robotic systems are initially available at the loca-
tion ’lander’ and a mission designer outlines the requirement
based on activities that might have to be performed at certain
location and in some kind of general order. The set of robot
types available for this mission is based on the real systems
available in (Roehr, Cordes, and Kirchner 2014) and (Son-
salla et al. 2014): the exploration rover Sherpa, the legged
crater explorer CREX, the star-wheeled scout Coyote III,
25 Payloads, and 5 BaseCamps - which can be used as lo-
gistic hubs to store payloads. In this mission only a Sherpa
can carry payloads and up to 8 of them. Payloads and Base-
Camps are immobile units, while all other systems are mo-
bile. The following locations are defined: lander, b1, . . . , b7
and qualitative timepoints t1 < t2 < · · · < t14.

The following spatio-temporal qualified expressions de-
fine the requirements for the mission:
1. ({},{(Sherpa,3),(CREX,2),(CoyoteIII,3),(Payload,25),(BaseCamp,5)}

@(lander,[t0,t1])

2. ({},{(Payload,3})@(lander,[t4,t10])

3. ({LocationImageProvider, EmiPowerProvider},{(Payload,3)})@(b1,[t2,t3])

4. ({},{(Payload,1)})@(b1,[t3,t14])

5. ({},{(BaseCamp,1)})@(b1,[t4,t7])

6. ({LogisticHub, LocationImageProvider, EmiPowerProvider},{(Payload,3)})
@(b2,[t2,t3])

7. ({LocationImageProvider, EmiPowerProvider},{(Payload,6)}) @(b4,[t6,t7])

8. ({},{(Payload,3})@(b4,[t8,t9])

9. ({},{(BaseCamp,3)})@(b4,[t11,t14])

10. ({},{(Payload,1)})@(b6,[t10,t14])

The functionalities LocationImageProvider are available
on Sherpa, while EmiPowerProvider is available on all mo-
bile systems. On a single core a solution is computed in
57.56±9.8 s (averaged over 10 runs), a solution is illustrated
in Figure 10; the linear problem to solve the transshipment
problem has the following size: 9100 rows, 4320 columns
and 21536 nonzeros.

Limitations This paper illustrates first results of a proto-
type of the planning approach outlined in the previous sec-
tions. As such, it requires further improvement and assess-
ment to analyse computational properties and completeness.
The optimization for performance has so far focused on the
model-based planning approach and the use of the func-
tional saturation bound and performance is expected to be
improved further.

A detailed quantification of functionalities is not yet part
of the modelling, i.e. a transport capacity can be requested
in general, but not the transport capacity of a certain num-
ber of some agent type. Currently, this has to be solved by
introducing additional spatio-temporal requirements which
are nearby to the original one in time and space.

5 Conclusions and Future Work
This paper illustrates an approach towards automated plan-
ning and scheduling for reconfigurable multi-robot systems
that accounts for the embodiment of agents and reconfig-
urability. In this work we bring knowledge engineering and
temporal planning together to find a practical and scalable
solution of dealing with reconfigurable multi-robot systems.

The organization model is a key element to allow reason-
ing with capabilities of atomic and composite agents. Since
the organization model is encoded in Web Ontology Lan-
guage (OWL), which is a specification of the World Wide
Web Consortium (W3C), it offers a well defined interface
to users for modelling as well as for interoperation and ex-
change of information within the multi-robot system. By this
and similar to reconfigurable multi-robot systems it supports
incremental mission design since it can grow with the sys-
tem, e.g., by introducing new functionalities and agent de-
scriptions.

Our planning approach uses the newly introduced func-
tional saturation bound to limit the effects of combinato-
rial explosion. While the functional saturation bound cannot
prevent combinatorial explosion, it can reduce the planning
problem even when hundreds of agents are available for the
mission since handling of redundant coalitions of agents is
avoided. The core planning approach relies on temporal net-
works that have no timeline gaps, but we use a CSP-based
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Figure 10: A final mission outline computed by our plan-
ning system from which individual plans can be computed
from. The asterisk (*) marks roles that have reached their fi-
nal destination. Link capacities depend on the robotic agents
transferring from one location to another; link capacities to
transfer to, i.e. remain at, same location are infinite.

generation of temporal constraint networks to satisfy this re-
quirement. Furthermore, we adopt of a flaw-based plan re-
pair strategy similar to (Maio et al. 2015). The planning ap-
proach has been validated using a set of example mission
specifications.

This paper currently only mentions the use of metrics to
analyse and optimize multi-robot plans, but our main mo-
tivation of the planning approach aims at using the infor-
mation about the organizational, i.e. multi-robot system’s,
state to optimize resource usage and distribution. In general,
our future work will be focused on completion of the full
planning approach including the integration of the multi-
objective optimization and an application of the planning
system to the real reconfigurable multi-robot system (cf. Fig-
ure 1).

Since planning can only operate on an abstraction of the
real world, any resulting plan will leave potential for op-
timization. However, to augment the multi-robot planning
approach we suggest to strengthen the ability for local col-
laboration, e.g., in terms of annotating a solution plan with
potential for local optimization. While the multi-robot plan
identifies two or more agents that join at some location and
point in time, this information should be used by this sub-
set of agents to join at an even earlier stage, e.g., by sharing
knowledge about target positions, leading to an embedded,
online and local optimization.

6 Acknowledgments
This work was supported by the German Space Agency
(DLR) under grant agreement 50RA1301 and by the Federal
Ministry of Education and Research under grant agreement
01IW15001.

References
Ahuja, R. K.; Magnanti, T. L.; and Orlin, J. B. 1993. Net-
work Flows: Theory, Algorithms, and Applications. Michi-
gan, US: Prentice Hall.
Baca, J.; Hossain, S.; Dasgupta, P.; Nelson, C. a.; and Dutta,
A. 2014. ModRED: Hardware design and reconfiguration
planning for a high dexterity modular self-reconfigurable
robot for extra-terrestrial exploration. Robotics and Au-
tonomous Systems 62(7):1002–1015.
Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder,
B.; Carrera, A.; Palomeras, N.; Hurtos, N.; and Carreras, M.
2015. ROSPlan: Planning in the Robot Operating System.
In Proceedings of International Conference on AI Planning
and Scheduling (ICAPS), 333–341.
Chien, S. A.; Johnston, M.; Frank, J.; Giuliano, M.; Kave-
laars, A.; Lenzen, C.; and Policella, N. 2012. A generalized
timeline representation, services, and interface for automat-
ing space mission operations. In Proceedings of the 12th In-
ternational Conference on Space Operations, 1–17. Reston,
Virigina: American Institute of Aeronautics and Astronau-
tics.
Dechter, R. 2003. Temporal Constraint Networks. In
Dechter, R., ed., Constraint Processing, The Morgan Kauf-
mann Series in Artificial Intelligence. San Francisco: Mor-
gan Kaufmann. chapter 12, 333–362.

145



DeLoach, S. A., and Kolesnikov, V. A. 2006. Using Design
Metrics for Predicting System Flexibility. In Baresi, L., and
Heckel, R., eds., Fundamental Approaches to Software En-
gineering, volume 3922. Springer Berlin Heidelberg. 184–
198.
Dignum, V., ed. 2009. Handbook of Research on Multi-
Agent Systems: Semantics and Dynamics of Organizational
Models. IGI Global.
Eich, M.; Hartanto, R.; Kasperski, S.; Natarajan, S.; and
Wollenberg, J. 2014. Towards coordinated multirobot mis-
sions for lunar sample collection in an unknown environ-
ment. Journal of Field Robotics 31(1):35–74.
Evans, J. S. 1991. Strategic flexibility for high technology
manoeuvers: A conceptual framework. Journal of Manage-
ment Studies 28:69–89.
Eyerich, P.; Mattmüller, R.; and Röger, G. 2012. Us-
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Abstract

Significant fluid medium flows such as strong currents
may influence the maximum velocity and energy con-
sumption of an unmanned vehicle. Weather forecast re-
ports provide an estimate of the medium flow and can
be utilized to generate low-cost paths that exploit the
flow to aid the motion of the vehicle and conserve en-
ergy. Conserving energy has also an indirect benefit of
extending the range of operation. This paper presents
a discrete search based path planning approach that
can utilize an arbitrary cost function for computing en-
ergy efficient, collision-free paths in complex scenarios
with dynamic obstacles. Traditional admissible heuris-
tics that are based on shortest distance or time are not
suitable for this problem as exploiting the medium flow
to propel the vehicle forward often requires a longer
time or distance to reach the goal. We have developed
new admissible heuristics for estimating the cost-to-go
by taking into account flow characteristics. The pro-
posed method also selects the start time for commenc-
ing the mission by waiting for the favorable medium
flow conditions.

1 Introduction
Many unmanned vehicles (also called robotic vehicles) in-
teract with the underlying fluid medium in which they op-
erate. The medium may exhibit a significant fluid flow. For
example, an aerial vehicle may encounter significant winds
and an underwater vehicle may encounter strong water cur-
rents. The performance of the vehicle such as its maximum
velocity and also the energy consumption per unit distance
traveled is affected by the medium flow.

Usually, a global path planner is used for finding the short-
est collision-free path to a specified goal location. The way-
points generated by the global planner are often followed
using a feedback controller in order to compensate for en-
vironmental disturbances. The rejection of the disturbances
via feedback controlled actuators may consume significant
energy if the vehicle travels against a strong medium flow.
From the operational efficiency point of view, the vehicle
should exploit the fluid flow instead of attempting to over-
come it.

Weather forecast reports provide an estimate of the
medium flow as a function of time. This information can be
exploited to generate low-cost paths that utilize the flow to

aid the motion of the vehicle. Such paths can save energy and
hence be much lower in cost. Conserving energy has also an
indirect benefit of extending the range of operation. This is
especially important in missions where long term operation
is desired. In many cases, the vehicle has a window of oppor-
tunity for completing a given mission and thus the mission
manager can select the mission start time such that the vehi-
cle experiences the most favorable medium flow during the
operation.

Let us consider the following scenarios to understand the
implications of the fluid flow on the path:

• Scenario 1: The vehicle takes a straight line path to the
goal and does not account for the influence of the medium
flow. It encounters a strong medium flow during the travel
that impedes its motion. The vehicle then needs to use
a significant energy to traverse the path against the flow,
which increases the cost of the path.

• Scenario 2: The vehicle waits for the flow to become more
favorable. Once the flow is in a favorable direction, the ve-
hicle utilizes it to advance itself and thus uses less energy
as it does not need to generate thrust to propel forward.
The vehicle only dissipates energy when performing mi-
nor corrective actions to mitigate spatial disturbances. The
path of the vehicle exploiting the medium flow may be
curved and longer than a straight line path. The flow ve-
locity is small compared to the velocity of the vehicle that
uses its thrusters to propel forward, so the vehicle takes
much longer time to reach the goal compared to the first
scenario. Despite the longer path length and travel time,
the vehicle consumes significantly less energy as com-
pared to the first scenario. Therefore, the cost of travel
is much lower. The decrease in the energy consumption
means that the vehicle can do several more missions with-
out the need for refueling.

An unmanned surface vehicle on a long voyage (see Fig.
1) will need to employ the following three types of planners:

• A global path planner to compute a sequence of waypoints
from the start to the goal location which form a collision-
free path (Koenig and Likhachev 2002; Likhachev et
al. 2005; Lavalle and Kuffner Jr 2000; Shah and Gupta
2016). Often, only static obstacles are handled by this
planner.
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Figure 1: Surface currents in the Atlantic ocean.

• A trajectory planner to compute a risk-aware, dynamically
feasible trajectory (Shah et al. 2014; Švec et al. 2011) via
the waypoints generated by the global path planner.

• A reactive planner for locally avoiding highly dynamic
obstacles (Fiorini and Shiller 1998; Fox, Burgard, and
Thrun 1997; Martinez-Gomez and Fraichard 2009).

This paper deals with the global path planning under the
influence of medium flows. The main contribution of this
paper is the incorporation of the influence of the flow field
into the search for an optimal path.

Path planning for vehicles operating in the presence of
flow fields has been previously studied in (Reif and Sun
2004; Ceccarelli et al. 2007). Computing energy-efficient
paths for a vehicle operating in a large environment with
flow fields present several challenges such as:

• Utilizing a model of a time-varying flow field during path
planning to predict the impact of the flow on the motion
of the vehicle and hence compute paths that are energy-
efficient as well as compliant with the vehicle’s dynamics.

• Integrating the uncertainty in the prediction model of the
flow field and the vehicles’ spatio-temporal uncertainty
arising due to its interaction with obstacles.

• Navigating around complex obstacles in the environment
during the computation of an optimal collision-free path.

A majority of previous approaches attempted to ad-
dress the aforementioned challenges separately. For exam-
ple, graph search-based algorithms are efficient at com-
puting paths in complex obstacle fields. Model predictive
control-based techniques (Smith and Huynh 2014) are good
at computing paths in the presence of flow fields. Stochas-
tic mathematical programming-based techniques (Russell
and Norvig 1995; Likhachev, Thrun, and Gordon 2004;
Sanner et al. 2009) are good at computing paths in the pres-
ence of uncertainty.

We believe that an integrated approach that can address
all the aforementioned challenges consists of two steps.
First, a discrete graph search technique is needed to com-
pute a global path that not only avoids obstacles but also

exploits the medium flow. Second, a stochastic mathemat-
ical programming-based techniques (Fathpour et al. 2014)
or model predictive control-based techniques (Huynh, Dun-
babin, and Smith 2015) are needed to compute trajectories
between intermediate goals lying on the computed global
path.

In this paper, we present a heuristic-based search tech-
nique for computing an energy-efficient global path for a ve-
hicle moving in a flow field. The technique is relatively easy
to implement, can incorporate intention models (if available)
of dynamic obstacles, and enforce safety constraints (Švec et
al. 2013; Shah et al. 2014; Švec et al. 2014). The proposed
algorithm can also determine the cost optimal start time of
a given mission based on the model of the fluid flow. The
computed path can be further locally altered by the mathe-
matical programming or MPC-based techniques to account
for spatial uncertainties.

Traditional distance and time-based admissible heuristics,
used for estimating cost-to-go by discrete graph search algo-
rithms, are not suitable for this domain because curved paths
are needed to exploit available flows. Moreover, using the
medium flow to propel the vehicle forward often requires a
longer time to reach the goal. Hence, we have developed new
admissible heuristics for estimating cost-to-go while taking
into account the medium fluid flow.

2 Related Work
Several path planning approaches to realize energy-efficient,
autonomous operations of robotic systems in non-linear,
time-varying fields were developed in the past. In particular,
a purely local path optimization technique was developed by
Kruger et al. (Kruger et al. 2007) to allow autonomous guid-
ance of an autonomous underwater vehicle (AUV) in a fast
flowing tidal river. The technique employs a gradient based
approach to locally modify an initial straight path between
two given locations according to a predefined cost function.
Similarly, the technique developed in (Witt and Dunbabin
2009) is used for searching paths in a time-extended state
space that balances the path execution time and energy re-
quirements. The approach searches over a predefined set of
global static paths represented as splines and is combined
with a local random, simulated annealing-inspired search.
This choice of search techniques, however, does not allow a
systematic exploration of complex search spaces.

Thompson et al. (Thompson et al. 2010) developed a
wavefront based path planning algorithm for an UAV to fol-
low paths that ensure fastest arrival of the vehicle to given
locations through uncertain, time-varying current fields. The
algorithm, however, does not explicitly balance the energy
expenditure of the vehicle with the path execution time,
prune the search space, or account for the uncertain dynam-
ics of the field (contrary to the claims in the paper). Sim-
ilarly, the approach developed by Lolla et al. (Lolla et al.
2012) is also based on the forward evolution of a wave-
front from the initial to the goal vehicle states, determin-
ing a series of states along the evolving wavefronts that op-
timize a given objective (in this case, travel time). In con-
trast to this approach, the technique presented in this paper
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prioritizes states during the expansion, which increases its
computational performance. In addition, the use of the free-
flow action allows a variable resolution search. Soulignac
(Soulignac 2011) developed a sliding wavefront expansion
algorithm that computes physically controllable, globally
optimal and feasible paths for a vehicle operating in an envi-
ronment with strong currents (i.e., currents that may over-
come the physical capabilities of the vehicle). Although
theoretically sound, the algorithm is based on the classical
wavefront expansion and as such does not consider the evo-
lution of currents in time.

Garau et al. (Garau, Alvarez, and Oliver 2005) evaluated
several heuristic functions as candidate components of the
A* algorithm. The developed approach, however, is suitable
only for static fields. Similarly, Isern-Gonzalez et al. (Isern-
González et al. 2012) developed a method based on the A*
and Nearest Diagram (ND) algorithms. The method finds an
initial path that is further locally optimized. The A* algo-
rithm was also combined with the fast marching algorithm
into the FM* algorithm (Petres et al. 2007) that has the ca-
pability of computing smooth paths in continuous environ-
ments. However, the work does not explicitly address the
energy-efficiency as well as time-varying fields.

Al-Sabban et al. (Al-Sabban et al. 2013) developed an
energy-efficient path planning algorithm for an unmanned
aerial vehicle (UAV) operating in an uncertain wind field.
The problem was defined as a Markov Decision Process
(MDP) to consider the local, stochastic nature of the field
vectors. The algorithm, however, does not explicitly account
for a time-varying field. The work was further adapted for
path planning of AUVs (Al-Sabban, Gonzalez, and Smith
2012).

Sampling-based methods were also used for energy-
efficient, probabilistic-complete path planning. For exam-
ple, a path planner based on the Rapidly Exploring Random
Trees (RRT) (Rao and Williams 2009) is used for comput-
ing paths to realize a long-term, autonomous operation of
underwater gliders.

Long-term path planning in time-varying fields with ob-
stacles is computationally as well as spatially expensive due
to the large size and complexity of the search space. Most
recently, the approach developed by Fathpour et al. (Fath-
pour et al. 2014; Kuwata et al. 2009) computes paths or nav-
igation functions for autonomous guidance and reachability
analysis of a hot-air balloon in time-invariant, time-varying,
and stochastic wind fields. The approach allows spatially
and computationally efficient planning through decomposi-
tion of the planning problem into subproblems, and solving
each of them sequentially.

In this paper, we use a heuristics-based search technique
to enable users to easily incorporate their mission-specific
considerations into the path generation process. Our main
contributions are novel heuristic functions for prioritizing
processing of search nodes and thus decreasing computation
time for finding optimal paths in environments with com-
plex, time-varying medium flows and obstacles.

3 Problem Formulation
3.1 Terminology
The continuous state space X = Xη × Xν × T consists
of states x = [ηT , νT , t]T ∈ X , where η = [x, y, ψ]T ∈
Xη ⊂ R2 × S1 is the vehicle’s pose, ν = [u, v, r]T ∈ Xν ⊂
R3 is the vehicle’s velocity consisting of the surge speed u,
sway speed v, and angular speed r about the z axis, and t is
the time. The approximated lower dimensional, discrete 4D
version of the continuous state space X is represented by S,
where each state s = [x, y, u, t]T contains position, surge
speed, and time variables.

The continuous, state-dependent motion primitive space
of the vehicle is defined as U = {Ua,uf} ⊂ R2 × S1.
Here, Ua is the set of the vehicle’s thrust-producing actions
in which each action ua = [ud, ψd, δt]

T consists of the de-
sired surge speed ud, the desired heading ψd, and the execu-
tion time δt. The velocity vector of the vehicle at state x is
given by vr

x = [ud, ψd]
T . A special free-flow action is de-

fined as uf = [um, ψm, δt] allows the vehicle to travel freely
with the flowing medium along the current flow vector vm

x

for the time interval δt (see Section 3.2). The discrete set
of vehicle’s thrust-producing actions is given by Ua,d. Each
discrete thrust-producing action of the vehicle is given by
ua,d.

3.2 Medium Flow Model
In a real world scenario, it is difficult to have a continu-
ous forecast of natural phenomena (e.g., wind, ocean cur-
rents, etc.). The available forecast is usually discrete and it
is assumed to hold for a specific interval of time. On similar
lines, we have modeled the medium flow in the environment
to be discrete and is assumed to vary temporally but not spa-
tially. In other words, the flowing medium for any discrete
time t is constant for the time interval δt (see Figure 2). The
simulation time interval of motion primitives Ud is kept to
be the same as the discrete time interval δt of the medium
flow model.

The time-varying model mf of the flowing medium out-
puts a velocity vector vm

s = [um, ψm]T at every state
s ∈ S. Here, um is the magnitude and ψm is the direction of
the flowing medium.

3.3 Motion Model
The motion of the vehicle in an environment with a flowing
medium is dependent upon the direction and the magnitude
of the flow. The transition of the vehicle from the current
state s to the next state s′ is determined by the vehicle’s
thrust-producing action ua,d ∈ Ua,d and the velocity vec-
tor vm

s of the flowing medium at the current state s. We
assume that the low level controller of the vehicle is capa-
ble of maintaining its heading along the direction ψd of the
thrust-producing action ua,d.

Depending upon the medium flow, the forward velocity of
the vehicle may be boosted or hindered. The magnitude of
the forward velocity |vfs | is determined by the vector sum
of vms and vrs , with an assumption of the vehicle being a
point mass (see Figure 3). The velocity of the vehicle vrs
can be resolved into two components: the magnitude of the
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Figure 2: Model of the flowing medium.

Figure 3: Computation of vehicle’s forward velocity under
medium flow.

component in the direction orthogonal to the desired direc-
tion |vr,Os | = |vms |sin(ψe) and the magnitude of the compo-

nent along the desired direction |vr,Ds | =
√
|vrs |2 − |vr,Os |2,

where ψe = ψd − ψm, and ψm is the orientation of the
flowing medium. Thus, the resultant forward velocity of the
agent along the direction of the thrust-producing action ua,d
is given by |vfs | = |vr,Ds | + |vms |cos(ψe). The position
of the next state s′ generated by the thrust-producing ac-
tion ua,d is determined by [x′, y′]T = [x, y]T + |vfs | · δt ·
[cos(ψd), sin(ψd)]

T . Similarly, the position of the next state
s′ generated by the free-flow uf,d action is determined by
[x′, y′]T = [x, y]T + |vms | · δt · [cos(ψm), sin(ψm)]T .

3.4 Cost Model
Let the cost of executing a vehicle’s thrust-producing action
per unit time be given by Cta and the cost of the special free-
flow action per unit time be given by Ctm, where Ctm < Cta.
The values of Ctm and Cta are constant and provided by the
user. Let c(s, s′) denote the traversal cost from the state s to
state s′. The traversal cost c(s, s′) equals Ctaδt if the vehicle
arrives at state s′ by using the thrust-producing action ua,d ∈
Ua,d. Similarly, the traversal cost c(s, s′) equals Ctmδt if the

vehicle arrives at state s′ by using the free-flowing action
uf,d. Finally, let the optimal cost of the computed path τ
from the initial state sI to the goal state sG at start time
tstart be denoted by c∗start(sI, sG) (see Section 4.3). Here
tstart is the time when the vehicle starts the mission, i.e.,
leaves from the initial state sI and proceed towards the goal
state sG.

3.5 Problem Statement
We are interested in designing an energy-efficient path plan-
ning algorithm for computation of collision-free paths be-
tween the initial and the goal states of a vehicle operating
in an environment with a flowing medium. The developed
planner searches for a path that minimizes the energy cost
by exploiting the medium flow.

Given,

• the discrete state space S of the vehicle,

• the initial sI and the goal sG states of the vehicle,

• the discrete model of the medium flow mf ,

• the cost Cta of the vehicle’s thrust-producing action per
unit time and the cost Ctm of the free-flowing action per
unit time,

• the map of the environment with the geometric regions
occupied by static obstacles Os =

⋃K
k=1 os,k ⊂ R2, and

• the maximum time duration tmission in which the vehicle
should complete the current mission and reach the goal
sG.

Compute:

• The start time of the mission tstart < tmission that mini-
mizes the cost incurred by the vehicle to travel from sI to
sG.

• A collision-free, dynamically feasible trajectory τ :
[tstart, tfinish] → S such that τ(tstart) = sI,
τ(tfinish) = sG and its travel cost is minimized. The
value of tfinish should not exceed tmission and s(t) /∈ Os
Each state s(t) along τ belongs to the free state space.

In this paper we assume that the actuators of the vehicle
are able to overcome the medium flow and the velocity of
the agent vr

s is greater than the medium velocity vm
s.

4 Approach
4.1 Overview
The deliberative path planner described in Section 4.2
searches in a discrete 4D state space for a collision free,
lattice-based path τ : [0, tfinish] → S from a given ini-
tial state sI to a goal state sG. The path is optimized not
only with respect to its travel cost but also with respect to
the vehicle’s start time tstart (see Section 4.3).

The medium flow forecast may have uncertainty associ-
ated with it. The A* algorithm does not handle this uncer-
tainty. This uncertainty can be handled by refining the path
by using forward value iteration-based stochastic dynamic
programming in the vicinity of the computed path (LaValle
2006). This post-processing can refine the paths to reduce
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the probability of collision with obstacles due to the uncer-
tainty in the medium flow by optimizing the expected costs
of paths. This step is outside the scope of this paper and will
not be discussed further.

4.2 Path Planning
The global path planner is designed based on the lattice-
based A* heuristic search (Pivtoraiko, Knepper, and Kelly
2009). The search for a path τ with the minimum cost is
performed by expanding states in the least-cost fashion ac-
cording to the cost function f(s) = g(s)+ h(s), where g(s)
is the cost-to-come at state s from the initial state sI, and
h(s) is the cost-to-go from the state s to the goal state sG.
The cost-to-come g(s) is computed by summing a traversal
cost of each action (see Section 3.4) executed to reach the
current state s from the initial state sI. In Section 5, we com-
pute three different types of the cost-to-go (h-cost) to be used
in the cost function described above. During the search, the
neighboring state s is determined by the motion model de-
scribed in Section 3.3. We have defined a desired goal state
region SG in close proximity around the goal state sG. The
search is terminated when any of the expanded states s lies
in SG.

4.3 Start Time Optimization
The optimal cost c∗start(sI, sG) of the path τ :
[tstart, tfinish]→ S computed by the path planner is highly
dependent on the medium flow encountered by the vehicle
and the start time tstart. In some situations, it is beneficial
for the vehicle to wait at the initial location sI and start its
journey only when the medium flow becomes favorable. The
maximum time tmission the vehicle is allowed to wait and
complete its mission is predefined by the user.

We find the resolution-optimal start time tstart of the path
between sI to sG by adaptively sampling the time inter-
val {0, tmission}. We iteratively call the deliberative path
planner to compute the cost c∗start(sI, sG) of a path for dif-
ferent values of tstart. The bounding constraints for tstart
are given by 0 < tfinish ≤ tmission, where tfinish =
tstart + texecution and texecution is time taken by the ve-
hicle to execute the path. The sampling method begins with
large interval steps and adaptively reduces the time step in
the promising regions.

5 Design of Heuristics
5.1 Heuristic #1

Let s be the current state. We are interested in estimating the
cost to reach the goal state sG from the current state s. Let
c∗(s, sG) be the optimal cost of reaching sG from s. We will
refer to this cost as optimal cost-to-go. Let heuristic h(s) be
a function that provides an estimate of c∗(s, sG). h(s) will
be called admissible heuristic if, c∗(s, sG) ≥ h(s).

A simple way to compute h(s) would be to assume that
the flow will be most favorable during the the vehicle opera-
tion. This will enable us to achieve the smallest possible cost
per unit distance traveled. Hence estimate of cost-to-go h(s)
cannot exceed the actual optimal cost to goal state sG.

Let dist(s, sG) be the Euclidean distance between states
s and sG. If the flow is assumed to be at maximum velocity
vm

max and directly flowing towards the goal, then the total
cost of travel using free flow is given by Equation 1.

C1 =
dist(s, sG) · Ctm
|vm|max

(1)

If the vehicle uses its actuators and travels at maximum ve-
hicle velocity vr

max in addition to taking the advantage of
the flow, then the total cost of travel is given by Equation 2.

C2 =
dist(s, sG) · Cta
|vm|max + |vr|max

(2)

Minimum of the two estimatesC1 andC2 can be determined
to calculate h(s).

h(s) = min(C1, C2) (3)

5.2 Heuristic #2

Although admissible, the heuristic presented in Section 5.1
significantly underestimates the cost, so we have designed a
better heuristic that utilizes the medium flow information. In
order to utilize the flow information, we need to first deter-
mine the relevant time window. We do this by first estimating
the upper bound tbound on the time associated with the op-
timal path. Any medium flow available at time greater than
tbound will not be available during the execution of the path.

We compute the cost Cstraight incurred by the vehicle to
travel in a straight path to the goal state sG using its thrust-
producing action in the presence of medium flow. Cstraight
is the upper bound on the optimal cost. Let C ′ be the cost
of any arbitrary path to the goal state sG, and can be rep-
resented by C ′ = tf · Ctm + ta · Cta, where tf is the total
time consumed by the free flow action and ta is the total
time consumed by the vehicle’s thrust-producing action. We
are only interested in paths Cstraight ≥ tf · Ctm + ta · Cta.
We can compute tbound by maximizing the objective func-
tion tf + ta, where tf = (Cstraight − ta · Cta)/Ctm. We
assume that Ctm < Cta. Hence, we can maximize total time
by selecting ta = 0 and tf = Cstraight/C

t
m. Thus, the up-

per bound on time is given by tbound = Cstraight/C
t
m. The

value of Cstraight will change with the scenarios having dif-
ferent medium flows.

As mentioned in Section 3.2, the estimated flow condi-
tions are available as an ordered sequence. Each flow con-
dition holds for a time interval of δt. In each time interval
δt, we have the direction and the magnitude of the flowing
medium in terms of velocity vector vm

s.
We can view each flow condition as a performance alter-

ing condition that lasts for a duration of δt. We are interested
in exploiting these conditions that lower the cost of travel.
For each flow condition that we plan to utilize, we need to
make a decision to either execute the free-flow action or use
the thrust-producing action. In computation of the heuristic
cost h(s), we select the action that has the lower cost in-
curred per unit distance advancement towards the goal.

The cost incurred per unit projected distance traveled us-
ing the free-flowing action uf,d is calculated using Equa-
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Figure 4: Calculation of heuristic #2.

tion 4.

Clf =
Ctm

|vm
s · |cos(ψe)

(4)

The cost incurred per unit projected distance traveled using
the vehicle’s thrust-producing action ua,d ∈ Ua,d is calcu-
lated using Equation 5.

Cla =
Cta

|vr
s|+ |vm

s| · cos(ψe)
(5)

In Equations 4 and 5, the angle ψe is the angle between
the desired direction ψg to the goal state sG from the cur-
rent state s and the direction of the flowing medium ψm (see
Figure 4). We can choose the appropriate action for each
discrete time interval δt starting from the current time t to
tbound. The selected actions for each discrete time interval
δt ∈ {t, tbound} are sorted and stored into the priority queue
EO according to the cost incurred per unit distance advance-
ment towards the goal with the least cost action on the top.
The actions are sequentially popped out of the priority queue
EO and are integrated for time interval δt, until the summa-
tion of the projected distance traveled by all actions is equal
to the projected distance to the goal sG from the state s.

This heuristic uses actions that have the lowest per unit
length cost towards the goal from the available time window.
It selects actions without requiring them to be contiguous in
time. The optimal path will have either the same action as
used by the heuristic or will be forced to use actions that
have higher per unit length cost towards the goal. Therefore,
it is not possible for the optimal path to exceed the cost esti-
mated by this heuristic. Therefore, this heuristic is admissi-
ble.

5.3 Heuristic #3

In Heuristic #2 described above, each selected action is
assigned a cost-to-go based on the cost incurred per unit
projected distance traveled towards the goal. This is a tight
lower bound on cost for thrust producing actions. However,
when the free flow action is used, unless ψe = 0, the vehi-
cle does not go directly towards the goal (see Figure 5). If
free flow conditions do not exist within the time bound that
can provide ψe of opposite sign, a thrust-producing action
is needed to bring the vehicle towards the goal. If using the

Algorithm 1 COMPUTEHEURISTIC2(s, t, ψg, tbound,mf )

Input: The current node s, current time of arrival t, the desired
direction ψg from the current state s to the goal state sG,
the maximum bound on travel time tbound, and the model of
medium flow mf .

Output: An estimated cost-to-go h(s) from current state s to goal
state sG.

1: Let ti = t be the forward simulation time and δt be the simu-
lation time step.

2: Let vi be the velocity vector along the desired direction
achieved by executing action ui at time ti ∈ {t, tbound} .

3: Let EO be a priority queue containing selected actions ui at
each discrete time ti ∈ {t, tbound}

4: while ti ≤ tbound do
5: Let the current velocity vector of the medium flow at state

si be denoted by vm
si

6: Cost incurred by per unit length advanced towards the goal
while executing free-flow action uf,d and thrust-producing
action ua,d are given by Equation 4 and 5 and denoted as
Cl

f and Cl
a respectively.

7: if Cl
f < Cl

a then
8: vi = |vm

si |cos(ψe) and Cl
i = Cl

f

9: else
10: vi = |vr

si |+ |vm
si |cos(ψe) and Cl

i = Cl
a

11: end if
12: Insert vector [vi, C

l
i ]

T into/in EO

13: ti = ti + δt
14: end while
15: Let dG = dist(s, sG) be the distance of the state s from the

goal state sG.
16: dtravel = 0 and Cincur = 0
17: while EO not empty do
18: [vi, C

l
i ]← EO.F irst()

19: dtravel = dtravel + |vi| · δt
20: Cincur = Cincur + Cl

i · dtravel
21: if dtravel ≥ dG · cos(ψg) then
22: h(s)← Cincur

23: return h(s)
24: end if
25: end while
26: return h(s) = ∞ (not enough time to reach the goal state,

thus the node s′ does not lie on optimal path τ∗.
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Figure 5: Calculation of additional compensation cost-to-go
for free-flowing action uf,d(s).

thrust-producing action becomes necessary in conjunction
with the free flow action, then the lower bound computed
on the cost in heuristic #2 significantly underestimates the
cost and can lead to expansion of a large number of states.
We have devised an improvement over heuristic #2, by in-
creasing the per unit length cost associated with free flow
actions to account for use of the thrust producing actions.
Let us consider a free flow action shown in Figure 5. With-
out the loss of generality, let us assume that ψe is positive
and no free flow action is available with negative value of
ψe until time tbound. We will, therefore, have to use a thrust-
producing action to bring the vehicle towards the goal.

In the Figure 5, the free flowing action uf,d(s
′) along the

flowing medium with velocity vm makes an angle ψe with
the desired direction of motion . Now, the corrective dis-
tance the vehicle has to travel to get back to the desired path
is given by dc =

√
d2 + (|vm| · sin(ψe) · δt)2, where d is

the projected distance traveled along the desired direction
towards the goal.

To compute the lower bound on the cost, we want to use
the fastest possible velocity for the vehicle. Let us assume
that there will be flow available that will provide the maxi-
mum possible assistance to the vehicle. We will only apply
this correction if there is no flow available with negative ψe.
The best that we can hope for is that the flow is going along
ψg as shown in Figure 5. Let us assume that the magnitude of
the flow velocity is the maximum possible |vm|max within
the available time window. Under these conditions the vehi-
cle’s forward velocity while performing the corrective action
can be calculated as:

|vf
c| = |vr|+ |vm|max · cos(α),

where α = tan−1[(|vm|max · sin(ψe) · δt)/d]
(6)

The time taken to perform the corrective action can be cal-
culated as tc = dc/|vf

c|. Thus, the cost incurred per unit
distance advanced towards the goal by using a combination
of free-flow and thrust-producing action can be given by:

Cla =
tc · Cta + Ctm · δt

d+ |vm| · cos(ψe) · δt
. (7)

In order to compute the lower bound on the cost given in
Equation 7, we need to select d so that the Cl is minimized.

Solving the above function analytically is not possible and
requires application of numerical techniques. Please note
that this function depends on |vm|, |vm|max, and ψe. We
have optimized the above function for different combina-
tions of these values using off-line computation. A meta-
model (e.g., lookup table) has been developed that allows
us to quickly access the lower bound on the value of Cl for
free flow actions. Please note that these optimized values of
Cl are usually higher compared to the values provided by
Equation 4.

If there is no free flow available within the available time
window with the opposite sign of ψe that will take the vehi-
cle back towards the goal, then we use the modified value of
Cl in line 6 of Alg. 1. The use of this value is expected to
produce a much better estimate of the cost-to-go and hence
improve the computational performance.

6 Results and Discussion
6.1 Simulation Setup
We chose an action set comprising of seventeen actions, out
of which 16 actions are thrust-producing ua,d = [ud, ψd, δt]
having desired direction ψd equally spaced from 0 to 360 de-
grees and constant surge speed of 10 m/s with respect to the
medium. We assume that the maximum magnitude of the
medium flow is 6 m/s. We assigned the cost of executing
each thrust-producing action to be Cta = 6 per minute while
the cost of executing a free-flow action to be Ctm = 1.2 per
minute. We discretized the time with 10 min intervals, i.e.,
δt = 10 min, which means that a motion primitive is exe-
cuted for δt duration before another motion primitive can be
commanded. This is mainly because the weather predictions
available in practice are seldom more frequent than δt = 10
min. The medium flow model as described in Section 3.2
has a discrete magnitude and direction profile. The designed
scenarios used for performance evaluation of the developed
heuristics (see Section 5) have medium profiles that either
vary in magnitude, direction or both.

The first set of scenarios uses medium with a constant
magnitude profile. The magnitude of the medium flow is
held constant at 6 m/s. Specific test cases are:
• Constant flow directions along 30o and 90o.
• Rotating medium flow at the rate of 0.1o per minute with

initial direction of 330o and rotating medium flow of 0.2o
per minute with initial direction of 310o.
The second set of scenarios uses medium with a randomly

generated magnitude profile. The magnitudes are randomly
generated in a range of 0 to 6 m/s with the rate of change of
0.5 m/s between two consecutive discrete time steps. Spe-
cific test cases are:

• Constant flow direction of 30o and 90o

• Randomly generated direction profile changes by 5o in
each discrete time step. We use two scenarios having ini-
tial medium flow directions of 5o and 45o

• Rotating medium flow at the rate of 0.1o per minute with
initial direction of 330o and rotating medium flow of 0.2o
per minute with initial direction of 310o

153



Table 1: Comparison of the number of states expanded by
the path planner using the heuristic #2 and #3 with respect
to the heuristic #1 in scenario having medium flows with
(a) constant magnitude and (b) random magnitude.

6.2 Comparison of Heuristics
The results presented in Table 1(a) compares the perfor-
mance of all the three heuristics in test scenarios having
medium flow of constant magnitude. The reduction in num-
ber of states by heuristic #2 with respect to heuristic #1 is
lower for scenarios with constant and rotating medium flow
with lower values of ψe (i.e., favorable medium flows) be-
cause it does not account for the cost of thrust-producing
action to reach the goal after executing the free-flow action.
Heuristics #3 corrects for this problem.

The results presented in Table 1(b) shows the performance
of all the three heuristics in test scenarios having medium
flows of random magnitude. The performance of heuristic
#3 is lower in the scenario having random direction, be-
cause in this case it uses best case correction for the devia-
tions caused by the free flow actions.

Table 2 shows the ratio of the cost C1 to C2, where C1 is
the cost incurred by the vehicle while using the shortest dis-
tance path, and C2 is the cost incurred by the vehicle while
using the developed path planner and the vehicle starts its
mission at time tstart = 0. Higher the ratio of C1/C2, the
vehicle saves more energy by using the developed planner
as compared to the shortest distance-based path planner. The
results in Table 2 are computed by randomly generating 100
scenarios for each occupancy value ranging from 10-40%.
The results show that with the increase in occupancy of the
scenario, the performance of the developed path planner de-
grades. The primary reason for this decline is the lack of free
space for executing long free-flowing actions. Secondly, the
vehicle has to execute its thrust-producing action to over-
come large number of obstacles in the environment.

6.3 Results on Example Scenarios
The results presented in Figure 6 show the paths generated
by the deliberative path planner in the scenario A at differ-
ent start times of the mission. The scenario presented in the
figure has a medium flow of constant magnitude, rotating
clockwise at the rate of 0.2o/min. The initial direction of
the medium flow at tstart = 0 is pointing towards the west

Table 2: Performance of the developed energy-efficient plan-
ner in randomly generated scenarios with varying occu-
pancy. Cost C1 is the cost incurred while using the shortest
distance path planner and cost C2 is the cost incurred while
using the developed path planner at time tstart = 0.

(i.e., 270o). The blue actions are the free-flowing actions and
the black actions are the thrust-producing action. Also, the
green circle represents the initial location and the red circle
indicates the goal location of the vehicle.

Now, if the vehicle decides to start the mission early at
tstart = 20 min (see Figure 6(a.1)), the planner generates
the path by initially using the free-flow action along the
medium direction and moves the vehicle far west. In the lat-
ter half of the path, the vehicle has to use its thrust-producing
action to avoid the obstacle and to reach the goal. On the
other hand, if the vehicle prefers to start the mission late
(see Figure 6(b)), then it can just use the free-flow action in
the middle portion of the path. Finally, Figure 6(c) shows
the lowest-cost path produced by the path planner when the
vehicle decides to start the mission at the optimal start time.

The paths shown for scenarios B, C and D in Figure 7,
are computed at the optimal start time produced by the op-
timizer. Scenario B has medium flows similar to scenario A,
but rotating at the rate 0.4o/min. Scenario C and D have the
same medium flow with constant magnitude of 6 m/s, ro-
tating counterclockwise at the rate of 0.6o per minute. The
initial direction of the medium flow at start time tstart = 0
is pointing east (i.e., 90o).

Similar to the results shown in Table 2, Table 3 shows the
comparison between cost ratio C1/C2 and C1/C3 in exam-
ple scenarios (A-D). Here, the costs C1, C2 are the same
as described in Section 6.2, cost C3 is the cost incurred by
the vehicle while using the developed energy-efficient path
planner and the vehicle starts its mission at optimal time
time tstart = toptimal. The table compares the energy ef-
ficiency of the developed algorithm with and without start
time optimization.

7 Conclusion and Future Work
This paper presents a new approach for generating paths for
unmanned vehicles in time-varying flow fields. Generated
paths show significant improvement in terms of energy cost
compared to the shortest distance paths. This has been ac-
complished by selecting an optimal start time to exploit the
flow conditions and using free flow actions that propel the
vehicle forward instead of using thrust produced by the ac-
tuators. We have developed new admissible heuristics to es-
timate the cost-to-go in the A* algorithm. These heuristics
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(a)

(b)

(c)

Figure 6: Comparison of paths for the scenario A with dif-
ferent start times. The green circle represents the initial lo-
cation and the red circle represents the goal location of the
vehicle. Each blue segment is a free-flow action and each
black segment is a thrust-producing action.

(a)

(b)

(c)

Figure 7: Optimal path produced by the path planner for sce-
narios B, C, and D at optimal start times produced by the
optimizer.
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Table 3: Comparison between the energy-efficiency pro-
vided by the developed path planner without start time opti-
mization (i.e., ratio C1/C2) and with start time optimization
(i.e., ratio C1/C3). Cost C1 is the cost incurred while us-
ing the shortest distance path planner, cost C2 is the cost
incurred while using the developed path planner at time
tstart = 0, and cost C3 is the cost incurred while using the
developed path planner at time tstart = toptimal.

work effectively to reduce the number of expanded states in
a wide variety of flow conditions.

We plan to extend the work presented in this paper as
follows. First, we will extend the approach to account for
uncertainties in the medium flow forecast by refining paths
generated using the A* algorithm. Second, we will use an
adaptive control action space to increase angular resolution
when necessary to improve the path quality with minimal
effect on computational efficiency (in this paper, we use a
fixed control action space during the search for a path). Fi-
nally, we will incorporate spatial variation in the flow field
at a given time instance into the search. This capability will
become important when the vehicle needs to travel over very
large distances.
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Abstract

Recent advances in sampling-based motion planning
have exploited concepts similar to those used in the
heuristic graph search community, such as computing
heuristic cost-to-go estimates and using state-space ab-
stractions to derive them. Following this trend, we ex-
plore how the concept of search effort can be exploited
to find plans quickly. Previous work in motion plan-
ning attempts to find plans quickly by preferring states
with low cost-to-go. Recent work in graph search sug-
gests that following search-effort-to-go estimates can
yield faster planning. In this paper, we demonstrate how
this idea can be adapted to the context of motion plan-
ning. Our planner, BEAST, uses on-line Bayesian esti-
mates of effort to guide the expansion of a motion tree
toward states through which a plan is estimated to be
easy to find. We present results in five simulated do-
mains (Kinematic and Dynamic Car, Hovercraft, Blimp
and Quadrotor) indicating that BEAST is able to find
solutions more quickly and has a higher success rate
than previous methods. We see this work as further
strengthening the algorithmic connections between mo-
tion planning and heuristic graph search.

Introduction
We address the problem of single-query kinodynamic mo-
tion planning: given a start state, description of the obstacles
in the workspace, and a goal region, find a dynamically fea-
sible continuous trajectory (a sequence of piece-wise con-
stant controls) that takes the robot from the start state to
the goal region without intersecting obstacles (Choset et al.
2005; LaValle 2006). We work within the framework of mo-
tion trees, popularized by sampling-based motion planning,
in which the planner grows a tree of feasible motions from
the start state, attempting to reach the goal state. This ap-
proach is appealing because it applies to any vehicle that
can be forward simulated, allowing the planner to respect
realistic constraints such as acceleration limits. Examples of
algorithms taking this approach include RRT (LaValle and
Kuffner 2001), KPIECE (Şucan and Kavraki 2009), and P-
PRM (Le and Plaku 2014).

Although the figure of merit on which these algorithms
are usually compared is the time taken to find a (com-
plete and feasible) solution. Close examination of these al-
gorithms reveals that their search strategies are not explic-

itly designed to optimize that measure. RRT uses sampling
with a voronoi bias to encourage rapidly covering the entire
state space. KPIECE uses more sophisticated coverage esti-
mates to achieve the same end. Focusing on regions of the
state space with low motion tree coverage helps to grow the
tree outward, but is not focused on reaching the goal. Cover-
age promotes probabilistic completeness but not necessarily
finding a solution quickly.

In artificial intelligence, a central principle for exploring
large state spaces is to exploit heuristic information to fo-
cus problem-solving in promising regions. The A* heuris-
tic graph search algorithm serves as the central paradigm.
In motion planning, the P-PRM algorithm exploits heuristic
cost-to-go information to guide growth of its motion tree,
with the aim of finding solutions faster than unguided meth-
ods. While focusing on low cost regions directs sampling
toward the goal, it ignores the effort that can be required for
a motion planner to thread a trajectory through a cluttered
area. In this way, cost-to-go estimates can encourage the
search to focus on challenging portions of the state space,
slowing the search. Fundamentally, optimizing solution cost
is not the same as optimizing planning effort.

Recent work in heuristic graph search has recognized the
separate roles of cost and effort estimates in guiding search,
particularly when solutions are desired quickly (Thayer and
Ruml 2009; Thayer and Ruml 2011). In this paper, we show
how to exploit that idea in the context of motion planning.
We propose an algorithm, Bayesian Effort-Aided Search
Trees (BEAST), that biases tree growth through regions in
the state space believed to be easy to traverse. If motion
propagation does not go as anticipated, effort estimates are
updated online based on the planner’s experience, and used
to redirect planning effort to more fruitful parts of the state
space. We implement this method in the Open Motion Plan-
ning Library (OMPL) (Sucan, Moll, and Kavraki 2012) and
evaluate it in five different simulated domains (Kinematic
and Dynamic Car, Hovercraft, Blimp and Quadrotor). The
results suggest that BEAST successfully uses effort estimates
to efficiently allocate planning effort: it finds solutions faster
than RRT, KPIECE, and P-PRM and is the only method able
to solve all benchmark instances. We see this work as a fur-
ther demonstration of how ideas from heuristic graph search
can be useful in motion planning.
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Previous Work
There has been much previous work on biases for sampling-
based motion planners. The two most prominent types in the
recent literature have been to bias toward less explored por-
tions of the state space or to bias exploration toward regions
of the state space believed to contain low cost solutions.
Both of these biases have shown strong results in finding
solutions quickly. The two state of the art algorithms con-
sidered in this paper are KPIECE (Şucan and Kavraki 2009)
and P-PRM (Le and Plaku 2014).

KPIECE
Kinodynamic Planning by Interior-Exterior Cell Explo-
ration, or KPIECE (Şucan and Kavraki 2009), is an algo-
rithm that uses a multi-level projection of the state space to
estimate coverage in the state space. It then uses these cov-
erage estimates to reason about portions of the state space to
explore next. Expansive Space Trees (EST) (Hsu, Latombe,
and Motwani 1999) and Path-Directed Subdivision Tree
(PDST) (Ladd and Kavraki 2005) also focus on less ex-
plored portions of the state space but have been shown to
be outperformed by KPIECE. The general all-around good
performance of KPIECE has led to its selection as the de-
fault motion planner in OMPL.

KPIECE is focused on quickly covering as much of the
state space as possible. It always gives priority to less cov-
ered areas of the state space. When an area of low coverage
is discovered it attempts to extend the motion tree into that
area. It uses a coarse resolution initially to find out roughly
which area is less explored. Within this area, finer resolu-
tions can then be employed to more accurately detect less
explored areas.

While KPIECE targets exploring unvisited areas of the
state space, this may not always be the fastest approach to
finding the goal. Certainly targeting exploration toward the
goal could help improve performance.

P-PRM
P-PRM (Le and Plaku 2014) is based on ideas from an ear-
lier planner called Synergistic Combination of Layers of
Planning (SyCLOP) (Plaku, Kavraki, and Vardi 2010). It
shares the intuition that information from a discrete abstrac-
tion of the workspace can be used to identify low level paths
that may lead to the goal. While SyCLOP was shown to be
very successful, in recent work P-PRM has been shown to
outperform SyCLOP in a variety of planning problems.

P-PRM uses the geometric component of the state space
to construct a Probablistic Roadmap (PRM) (Kavraki et al.
1996). It generates random states in the geometric space,
then connects each state to its nearest neighbors via an
edge, forming a graph. The edges in the graph are collision
checked and removed from the graph if a collision along
them is found. The graph vertices represent regions of ge-
ometric space and the edges summarize the connectivity of
the regions.

P-PRM runs a Dijkstra search out from the abstract region
containing the concrete goal to compute h-values, or heuris-
tic estimates of cost to the goal. It then uses these heuristic

values, and the associated shortest paths from the goal to
each abstract node, to bias sampling.

It searches by maintaining a queue of abstract states in
the graph sorted by increasing scores (initially their h-value,
see the paper for details). At each search iteration the ab-
stract state with the lowest score is selected. An abstract state
along the cheapest precomputed path rooted at the currently
selected state is chosen. This state is then used to create a
random concrete state within some pre-specified state ra-
dius. This is now the ”target” state used similarly to when
plain RRT chooses a state uniformly at random. That means
that the nearest state in the existing motion tree is chosen
as the root for the new propagation which is steered (if
possible) toward the random state. Any new abstract states
touched by the propagation attempt are added to the queue
if not previously enqueued.

P-PRM tries to pursue the completion of low cost paths
by following its heuristic estimates in the abstract space. It
tries to avoid getting stuck during planning by penalizing the
score of abstract states when they are examined.

Speedy Search
While RRT and KPIECE are often the reliable workhorses
of motion planning, the success of heuristically-informed
graph search algorithms such as A* (Hart, Nilsson, and
Raphael 1968) in artificial intelligence would suggest that
brute-force expansion into all unexplored regions of the state
space (in a manner similar to Dijkstra’s algorithm) is not an
optimal strategy. P-PRM has been shown to provide state of
the art performance by exploiting heuristic cost-to-go guid-
ance. Yet recent results in the heuristic graph search commu-
nity show that exploring the state space based on cost often
does not give the best speedup.

In the context of discrete graphs, Greedy search, which
focuses on nodes with low heuristic cost-to-goal, is often
surpassed by ‘Speedy search’, which focuses on nodes with
a low estimated number of hops (or graphs edges) to the
goal (Thayer and Ruml 2009; Wilt and Ruml 2014). In this
paper, we present one attempt at adapting this idea to motion
planning, in which the state and action spaces are continuous
and there is no predefined graph structure.

Exploiting Effort Estimates
While there is not a direct translation of the ”number of
edges to the goal” concept, there is still a notion of search
effort. In heuristic search, the fewer expansions needed to
find the goal, typically the quicker a solution is found. In
sampling-based motion planning, the unit of measure would
be the number of samples, or propagation attempts in the
motion tree. Each forward propagation of the system state
requires collision checking, which is computationally ex-
pensive. The fewer propagation attempts made before find-
ing the goal, typically the faster a solution is found (assum-
ing reasonable iteration overhead).

Overview
Bayesian Effort-Aided Search Trees (BEAST) is a novel
method that tries to find solutions as quickly as possible by
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constructing solutions which it estimates require the least
effort to build. It maintains online Bayesian estimates of the
effort of connecting abstract regions of the state space and
allocates its search effort to the region of the state space that
is estimated to require the lowest effort to connect to the ab-
stract goal region.

BEAST exploits a discrete abstraction of the state space.
In the experiments reported below, we use a PRM workspace
abstraction very similar to the one used by P-PRM. We begin
by identifying the geometric component of the state space.
The abstraction will exist only in this subspace. We generate
uniformly random states in the abstract space (1000 in the
experiments below). As in P-PRM, these states induce a di-
vision of the state space into abstract regions (by associating
any concrete state with the nearest abstract state). Neighbor-
ing abstract states (the 5 nearest in the experiments below)
are connected by directed edges, forming a directed graph.
(If the abstract start and goal regions remain unconnected,
additional samples are taken until they are.)

As just discussed, for each edge e, BEAST maintains an
effort estimate, ee(e), of how many propagation attempts
would be required on average to take a concrete state con-
tained in the abstract region represented by the source ver-
tex of the edge to a concrete state contained in the abstract
region represented by the end vertex. These estimates are
initialized by a geometric collision check along the abstract
edge. However, BEAST explicitly acknowledges that this
quick check in geometric space is only a rough approxi-
mation of a robot’s ability to steer from one region to the
other. We represent our uncertain belief about each edge in
a Bayesian style: we regard a propagation attempt as sam-
pling a Bernoulli variable and we maintain a beta distribu-
tion (with parameters α, β) over its success probability. The
initial geometric collision check provides some evidence
about this probability, and then each propagation attempt
during planning provides additional evidence. In the exper-
iments reported below, an edge with a detected collision is
initialized to α = 1, β = 10, and all other edges are initial-
ized to α = 10, β = 1. Successful attempts increase α by
one and unsuccessful attempts increase β by one. Based on
our belief, we estimate the number of propagation attempts
that will be necessary in order to have a successful one as
(α+ β)/α.

BEAST uses the abstract graph as a metareasoning tool
to decide where it should spend its time growing the mo-
tion tree. We only consider abstract regions touched by the
motion tree and each edge from the corresponding vertex
in the abstract graph represents a possible propagation at-
tempt. We compute, for each directed edge e, the expected
total effort te(e) required to reach the abstract goal if we
start propagating a state from its start region through its end
region and onward to the goal. For ‘exterior’ edges, whose
start region has not yet had a successful propagation into its
end region, this is straightforward: the effort to cross that
edge plus the total effort-to-goal from the end vertex. More
formally: if, for every vertex in the abstract graph, we let
te(v) be the minimum over its outgoing edges e of te(e),
then te(e) = ee(e) + te(e.end). ‘Interior’ edges are more
complex. Unless the goal region has been reached, any inte-

BEAST(Abstraction, Start,Goal)
1. AbstractStart = Abstraction.Map(Start)
2. AbstractGoal = Abstraction.Map(Goal)
3. Abstraction.PropagateEffortEstimates()
4. Open.Push(AbstractStart.GetOutgoingEdges())
5. While NotFoundGoal
6. Edge = Open.Pop()
7. StartState = Edge.Start.Sample()
8. EndState = Edge.End.Sample()
9. ResultState = Steer(StartState, EndState)

// Or Propagate With Random Control
10. Success = Edge.End.Contains(ResultState)
11. If Success
12. Edge.UpdateWithSuccessfulPropagation()
13. If Edge.End == AbstractGoal
14. Open.Push(GoalEdge)

// Goal Region To Goal State
15. Else
16. Edge.UpdateWithFailedPropagation()
17. Abstraction.PropagateEffortEstimates()
18. Open.Push(Edge)
19. If Success
20. Open.Push(Edge.End.GetOutgoingEdges())

Figure 1: Pseudocode for the BEAST algorithm.

rior edge will lead to an exterior edge that has a lower total
effort estimate, so such edges may not appear to be useful for
propagation. However, recall that our state space abstraction
might be very rough, and not all concrete states falling in
the same abstract region are necessarily equivalent. We may
well want to propagate along an interior edge in order to add
additional states to the end region, in the hopes that this will
increase the probability of being able to propagate onward
from there. We model this by assuming that an additional
state in the destination region will raise its α by 1/n, where
n is the number of states already in the region. (We want this
bonus to depend inversely on the number of existing states,
to reflect the decreasing marginal utility of each additional
state.) So for an interior edge e with a destination vertex d
that contains n states in its abstract region,

te(e) = ee(e)+ min
e2∈e.out

e2.α+ 1/n+ e2.β

e2.α+ 1/n
+ te(e2.dest).

Details
Pseudocode for BEAST is presented in Figure 1. The algo-
rithm is passed an abstraction of the workspace, concrete
start state and a concrete goal state. BEAST first begins
by propagating effort estimates through the abstract graph
outward from the region containing the concrete goal state
(line 3). For efficiency, the collision checking and beta dis-
tribution initialization can be done lazily.

We use the pseudocode in Figure 2 to estimate the number
of propagation attempts needed if the planner were to start
by propagating along a specific edge. For exterior edges, this
effort value is straightforward (line 22).

On Line 25 for interior edges, we examine each of the
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GetEffort(Edge)
21. If Not Edge.interior
22. Return ee(Edge) + te(Edge.End)
23. Else
24. Child Edges = Edge.End.GetOutgoingEdges()
25. Return ee(Edge) +

minChild∈Child Edges OptimisticBenefit(Child) +
te(Child.End)

OptimisticBenefit(Edge)
26. PositiveEffect = 1. / Edge.Start.NumStates
27. Optα = Edge.α + PositiveEffect
28. Return (Optα + Edge.β) / Optα

Figure 2: Pseudocode for calculating an edge effort value.

children of the current edge to see which child edge would
require the least effort to arrive at the goal if it were pro-
vided another state in its start region. We take the minimum
effort over the children and add in the estimated effort of
propagating along the current edge.

If effort estimates were static, a single pass of Dijk-
stra’s algorithm would suffice to compute te values. In our
case, edge effort estimates change over time so we use an
incremental best-first search called D* Lite (Koenig and
Likhachev 2002) to avoid replanning from scratch. D* Lite
updates the heuristic estimates for cost to go to the goal at
each vertex in the graph, in our case we are using effort (te)
to go instead. While propagating effort at each vertex we
also store an effort estimate at each edge which is calculated
using GetEffort .

To reiterate, this value can be seen as an estimate of how
many samples will be required to reach the goal if you were
to choose to propagate along an edge and then choose the
minimum effort edges thereafter. A queue called Open is
then initialized with outgoing edges from the abstract region
containing the concrete start state(line 4). Open is sorted in
increasing order of edge effort. The search always considers
the least effort edge first.

The algorithm proceeds by popping the edge off Open
with the lowest estimated effort (line 6). This edge is then
sampled at its start abstract region and its end abstract region
in lines 7-8. In our implementation, the concrete state in the
edge’s start region that has been selected the fewest number
of times is chosen as the StartState . A concrete state is cho-
sen from the edge’s abstract end region uniformly at random
within some radius centered around the region’s centroid.

An attempt is made to grow the tree from StartState to
EndState using a steering function (line 9). In our imple-
mentation if no steering function was available in OMPL,
we instead generated 10 random controls, applied each to
StartState and the resulting motion that got closest to
EndState was chosen. 1

If the newly propagated motion at any point reached the

1This functionality was implemented at the control sampler
level in OMPL for each domain so any algorithm using ”sampleTo”
provided by the domain’s control sampler received equal benefit.

target abstract region (the selected edge’s end region), the
edge is updated with a successful trial (line 10-12). This sim-
ply adds one to the α value of the beta distribution associated
with this edge.

If the target region is not reached, the β bucket is incre-
mented (line 16). With each trial to propagate along an edge
we update our belief about the effort required to reach the
goal by using the edge. This effectively changes the edge
”cost” in the abstract graph and we use our incremental
search to update the effort estimates throughout the graph
based on this local update (line 17).

If the edge was successfully propagated along, we also
add its child edges (outgoing edges from the current edge’s
end region) to the Open list (line 20). We re-add the current
edge to the Open in all outcomes (line 18).

There is also a special case (line 13) added which enables
us to use sparse abstractions. With sparse abstractions we
can compute our effort values more efficiently during each
iteration. However, when the goal abstract region is reached,
with a sparse abstraction, it may cover a large portion of the
state space. Growing the tree into a possibly large goal re-
gion may not be focused enough to find a state close to the
goal state. To combat this we add a special GoalEdge to
Open (line 14). This is an edge that when expanded will
return a StartState from the goal abstract region and an
EndState focused around the actual concrete goal state.

Experiments

All experiments were run using control algorithms from the
OMPL framework where available (KPIECE and RRT). P-
PRM was implemented following closely along with the
description and pseudo code included in the paper. Exper-
iments also used OMPL’s implementation of a Kinematic
Car, Dynamic Car, Blimp and Quadrotor vehicle, as detailed
below. We implemented a Hovercraft in OMPL following
Lynch (1999).

Kinematic Car

The mesh used for the Kinematic Car vehicle is shown in
Figure 3 panel (a). The equations defining the Kinematic
Car’s motion and control inputs in OMPL are as follows:

ẋ = u0 · cos(θ),
ẏ = u0 · sin(θ),
θ̇ =

u0
L
· tan(u1)

where the control inputs (u0, u1) are the translational veloc-
ity and the steering angle, respectively, and L is the distance
between the front and rear axle of the car which is set to 1.

Dynamic Car

The mesh used for the Dynamic Car vehicle is shown in Fig-
ure 3 panel (a). The equations defining the Dynamic Car’s
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motion and control inputs in OMPL are as follows:

ẋ = v · cos(θ),
ẏ = v · sin(θ),
θ̇ =

v ·m
L
· tan(φ),

v̇ = u0,

φ̇ = u1

where v is the speed, φ the steering angle, the controls
(u0, u1) control their rate of change, m is the mass of the
car (set to 1), and L is the distance between the front and
rear axle of the car (also set to 1)

Hovercraft
The mesh used for the Hovercraft vehicle is shown in Fig-
ure 3 panel (a). The equations defining the Hovercrafts’s mo-
tion and control inputs from Lynch (1999) are as follows:

ẋ =
F

M
cos(θ)− Bt

M
x,

ẏ =
F

M
sin(θ)− Bt

M
y,

θ̇ =
τ

0.5 ·M ·R2
− Br
M
· θ

where F is the force exerted by the thrusters and τ is the
torque exerted by the thrusters. Bt and Br are the transla-
tional and rotational friction coefficients (both set to 0). M
is the mass of the robot andR is the radius of the robot (both
set to 1).

Blimp
The mesh used for the Blimp vehicle is shown in Figure 3
panel (b). The equations defining the Blimp’s motion and
control inputs in OMPL are as follows:

ẍ = uf · cos(θ),
ÿ = uf sin(θ),

z̈ = uz,

θ̈ = uθ

where (x, y, z) is the position, θ the heading, and the con-
trols (uf , uz, uθ) control their rate of change.

Quadrotor
The mesh used for the Quadrotor vehicle is shown in Fig-
ure 3 panel (c). The equations defining the Quadrotor’s mo-
tion and control inputs in OMPL are as follows:

mp̈ = −u0 · n− β · ṗ−m · g,
α = (u1, u2, u3)

T ,

where p is the position, n is the Z-axis of the body frame
in world coordinates, α is the angular acceleration, m is the
mass, and β is a damping coefficient. The system is con-
trolled through u = (u0, u1, u2, u3).

In the Kinematic and Dynamic Car domains the goal ra-
dius was set to 0.1, the remaining domains each used a goal

radius of 1. The goal distance of a state was based only on
the distance in the XY or XYZ dimensions. Other parame-
ters that were used included a propagation step value of 0.05,
min and max control durations of 1 and 100 respectively,
and intermediate states were included during planning. The
workspace was bounded by −30 ≤ x ≤ 30, −30 ≤ y ≤ 30
and −5 ≤ z ≤ 5.

KPIECE and RRT were run using their default parame-
ters. P-PRM was also run using its suggested parameters de-
scribed in the paper. The state radius size for sampling was
shared between P-PRM and BEAST. This value was set to
6, which gave good visible coverage over the abstract re-
gions and the best performance over those state radii tried:
{2,4,6}.

The obstacle mesh used for the experiments is presented
in Figure 3 panel (d). For each vehicle, 5 start and goal pairs
were used, and for each start and goal pair 50 different ran-
dom number generator seed values were used. This provided
250 runs for each of the domains. The start states were bi-
ased toward the center of the workspace while the goal was
biased toward the lower center of the workspace. This set-
up tends to generate problems in which the optimal solu-
tion threads its way carefully between the obstacles, but it is
much easier to take a more costly route around the obstacles.
This wide diversity of planning time/solution cost trade-offs
directly tests the ability of BEAST to estimate planning ef-
fort and adjust its behavior accordingly. A motion planning
that explicitly tries to find plans quickly ought to exhibit su-
perior performance. A planning timeout of 60 seconds was
used.

Results
The results of the experiments are presented in Figure 4.
Each box represents the middle 50% of the data, with a hor-
izontal line at the median. Whiskers extend to the furthest
point within 1.5 times the interquartile range. The remaining
outliers are plotted with circles. The 95% confidence inter-
val around the mean is depicted with a gray rectangle. The
plots in each panel are sorted according to their means. In
order to have enough data points to create plots, algorithm
runs that timed out without providing a valid solution are
still included in the plot. These runs are represented by the
time collected by OMPL after the timeout was issued. Sev-
eral of the plots have been clipped at the top so that the top
two performers remain legible.

In the Blimp domain, BEAST has the lowest mean plan-
ning time as well as the lowest variance in its performance.
In the Quadrotor domain, BEAST again has the lowest mean,
but P-PRM appears to have slightly lower variance.

A video of the sampling and tree growth of each of the al-
gorithms considered in this paper can be found at https:
//www.youtube.com/watch?v=Or8sQBOrVh4. It
is a top down visualization of a Quadrotor planning instance.
It illustrates RRT’s slow coverage of the entire state space,
KPIECE’s rapid coverage of the state space, P-PRM’s focus
on estimated low cost paths and BEAST’s focus on finding
low effort solutions.

The number of runs where each algorithm was unable to
solve an instance is provided in Figure 5. In the Blimp do-
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(a) (b) (c) (d)

Figure 3: The car, blimp and quadrotor vehicles used in the experiments, and the forest environment.
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Figure 4: Computation time for 5 start goal pairs and 50 random seeds (250 instances).
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RRT KPIECE P-PRM BEAST
Kinematic Car 0 99 0 0
Dynamic Car 108 189 0 0

Hovercraft 116 8 0 0
Blimp 221 238 11 0

Quadrotor 12 2 0 0

Figure 5: Number of unsolved instances for 5 start goal pairs
and 50 seeds (250 instances).

Figure 6: P-PRM sampling and tree growth example in the
Quadrotor domain (top down view).

main, BEAST is the only algorithm that is able to find a solu-
tion to all the instances within the timeout. In the Quadrotor
domain, BEAST and P-PRM are both able to find solutions to
all instances while KPIECE and RRT are not able to within
the timeout.

Discussion
One of the major benefits of BEAST is that it explicitly fo-
cuses on areas of the state space that it believes will be
easy to traverse while heading toward the goal. KPIECE will
eventually explore the same regions of the state space but
does so without focusing on paths toward the goal. P-PRM
does focus on paths leading to the goal, but focuses on paths
associated with low cost. These paths can be arbitrarily dif-
ficult to find given obstacle configurations.

This is shown in Figure 6 where many P-PRM generates
samples (green dots) along abstract paths to the goal, but it is
challenging to grow the motion tree (red lines) toward them.
Eventually from the uniform random sampling and increas-
ing cost estimates for the states it has selected many times,
search begins to spill around and through the obstacles (red
circles).

Another feature of BEAST that helps it construct its tree

more efficiently is that it focuses its tree growth either in-
ternal to the existing tree or directly along the fringe of the
existing tree. This focus on the boundary of the motion tree
is very similar to that of KPIECE, yet the two methods al-
locate their exploration effort very differently. P-PRM does
not focus its sampling near the existing tree and can gener-
ate samples arbitrarily far away, which are less helpful when
growing the tree through tight spaces.

There are other motion planners that leverage heuristic
cost-to-go, but in ways very different from BEAST. Informed
RRT* (Gammell, Srinivasa, and Barfoot 2014) uses ellip-
soidal pruning regions to ignore areas of the state space that
are guaranteed not to include a better solution. BIT* (Gam-
mell, Srinivasa, and Barfoot 2015) uses heuristic cost esti-
mates directly in its search strategy, but for kinodynamic
planning it requires a boundary value problem solver to
rewire trajectories between sampled states, making it inap-
plicable to many problems.

Finding solutions quickly is an important feature in many
applications, but convergence to an optimal solution is also
highly desirable. In future work, we plan to combine our
effort based planner BEAST with heuristic cost estimates,
yielding an anytime planner which quickly finds a solution
and then spends its remaining planning time improving its
incumbent solution cost.

Conclusion
We have presented a new algorithm called Bayesian Effort-
Aided Search Trees. BEAST exploits and updates Bayesian
estimates of propagation effort through the state space to
find solutions quickly. Results on a variety of domains
showed that BEAST on average found solutions the fastest
and was the only algorithm to find solutions to every in-
stance in the benchmark set. We see this work as reinforc-
ing the current trend toward exploiting ideas from AI graph
search in the context of robot motion planning, and provid-
ing further evidence that searching under time pressure is a
distinct activity from searching for low-cost solutions.
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Abstract

A premise of dual-arm robots is increased efficiency rel-
ative to single-arm counterparts in manipulation chal-
lenges. Nevertheless, moving two high-dimensional
arms simultaneously in the same space is challenging
and care must be taken so that collisions are avoided.
Given trajectories for two arms to pick two objects, ve-
locity tuning over a coordination diagram can resolve
collisions. When multiple objects need to be moved,
a scheduling challenge also arises. It involves finding
the order with which objects should be manipulated.
This paper considers two ways to approach this com-
bination of scheduling and coordination challenges: (i)
a “batch” approach, where an ordering of objects is
selected first; for the given ordering, velocity tuning is
performed over a matrix of coordination diagrams that
considers all pairs of pick-and-place trajectories; and
(ii) an incremental approach, where the ordering of ob-
jects is discovered on the fly given the subset of coordi-
nation diagrams that arise depending on which object
one of the arms is currently manipulating. Simulated
experiments for a Baxter robot show that both meth-
ods return significantly more efficient trajectories rel-
ative to the naive “round-robin” schedule, where only
one arm moves at a time. Furthermore, the incremental
approach is computationally faster, it implicitly pro-
vides a good schedule for picking objects and can be
used effectively when objects appear dynamically.

1 Introduction

One broad category of manipulation tasks, which ap-
pear frequently in manufacturing setups, correspond to
pick and place challenges. For instance, a robot may
need to grasp multiple products from a tabletop and
place them in bins so that they are packaged. An ex-
ample of such a scenario is shown in Figure 1. Alter-
natively, a robot could be tasked with stocking and re-
trieving items from shelves in a warehouse. It has been
argued that dual-arm humanoid manipulators can be
appropriate solutions for such tasks. The reasoning is
that they can be easily used in facilities that have been
constructed for human workers as they exhibit similar
reachability to people and bi-manual skills.

This work focuses on pick-and-place tasks where mul-
tiple objects need to be manipulated and those objects

Figure 1: A dual-arm Baxter robot tasked with picking
two types of objects from a tabletop and placing them
into two distinct storage bins.

are separated in two groups, where a different arm needs
to be used for each group. This can be useful in the case
of different end-effectors, appropriate for different types
of objects, and in general of separation tasks where two
types of objects need to be moved to different target ar-
eas. Such tasks introduce a scheduling subproblem to-
gether with the dual-arm coordination challenge, where
the ordering of the pick-and-place tasks affects the over-
all completion time and the conflicts arising between the
two arms. For instance, the trajectory for a particular
task could cause the arm to occupy the majority of the
shared workspace, e.g., one of the arms reaching across
the robot. Completing such a task could delay, or even
obstruct, the other arm from carrying out its task de-
pending on the placement of the objects. Consequently,
scheduling the tasks for the two arms becomes a new
aspect of dual-arm coordination in this context.

A näıve yet straightforward method for solving pick-
and-place tasks with a humanoid robot corresponds to
moving one arm at a time in a “round-robin” fashion,
guaranteeing that only one of the arms operates in the
workspace shared by both arms. This solution provides
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fairness when different objects need to be grasped by
different arms by alternating task completion. It is also
simple to implement, since the coordination is minimal.
The downside is that it doesn’t take full advantage of
the dual-arm capabilities of a humanoid robot relative
to simultaneous arm motion.

Nevertheless, simultaneous arm motion corresponds
to a high dimensional planning challenge, which for
many popular dual-arm systems, such as a Baxter robot
by Rethink Robotics, involves at least 14 DoFs. Given
the complexity of motion planning, operating in the
composite configuration space is computationally ex-
pensive, especially for high-quality paths. A practical
alternative is to follow a decoupled methodology. For
instance, paths for each arm can be computed indepen-
dently and then coordination can be achieved by finding
the velocity along the given paths that allows the arms
to execute their task without collisions and deadlocks.
This velocity tuning approach makes use of a repre-
sentation known as a coordination diagram (O’Donnell
and Lozano-Perez (1989); Siméon, Leroy, and Laumond
(2002)). Although the coordination diagram approach
is incomplete in the general case, it is computationally
efficient to search, and in practice produces good qual-
ity paths for most realistic setups.

This paper first considers a “batch” scheduling ap-
proach, which is a straightforward extension of velocity
tuning for multiple pick-and-place tasks. This involves
a two-step process, where an ordering of the tasks for
each arm is decided first. Given this ordering, the set
of all coordination diagrams is implicitly searched so as
to find the best coordination between the arms for that
order. An alternative approach proposed here is an
“incremental” scheduling method, which achieves on-
line coordination of the two arms effectively. Tasks are
assigned one at a time to each arm, and coordination
diagrams are used to produce solution trajectories for a
pairwise task assignment. The search method is defined
so that a solution trajectory prioritizes the completion
of a single task, thus “freeing” up one of the arms and
allowing for a new task to be assigned.

To evaluate the effectiveness of both the “batch” and
“incremental” methods, a series of simulated experi-
ments on a Baxter robot were conducted. First, an
experiment in a “tabletop” environment with a ran-
domized distribution of objects in the scene showed
that both methods produced solution trajectories that
were nearly twice as fast compared to the “round robin”
method, where only one arm moves at a time. This is
close to the best that can be achieved by a simultaneous
motion solution. The proposed “incremental” method,
however, utilized much less computing resources - both
processor time and memory - compared to the “batch”
approach. If the coordination diagrams can be precom-
puted, the online computation time for both methods
can be improved by a couple of orders of magnitude.

Another weakness of the “batch” scheduling ap-
proach beyond the high computational requirements is
that the robot must compute the full schedule for both

arms ahead of time. When a new task is added dynam-
ically to the scene, this can result in additional cost for
the “batch” approach. Simulations in a “shelf” environ-
ment, where objects appear dynamically in the scene,
indicate that the “incremental” method produces even
better results than the “batch” method in dynamic se-
tups giving its capability to adapt to the scene.

Both the “batch” and “incremental” algorithms make
a series of assumptions. First, the possible placements
of the target objects are known during the precompu-
tation step so as to allow the generation of grasping
configurations and manipulation plans offline. Further-
more, the target objects are all geometrically similar,
and are positioned in such a way so as to not prevent
other objects from being grasped. Finally, the manipu-
lator has access to perfect sensing, trajectory tracking,
and grasping capabilities since the focus of the paper is
on the combinatorial aspects of the problem.

2 Related Work
Manipulation Planning There are many ways
to achieve manipulation planning, including tree
sampling-based planners (Berenson, Srinivasa, and
Kuffner (2012)), heuristic search (Cohen, Chitta, and
Likhachev (2010)), constraint satisfaction (Lozano-
Pérez and Kaelbling (2014)), and optimization ap-
proaches (King et al. (2013)). The underlying method-
ology for this work corresponds to searching solutions
over a “manipulation graph” that contains “transit”
and “transfer” paths (Alami, Siméon, and Laumond
(1989); Siméon et al. (2004)). The graph itself can be
built using sampling-based roadmaps (Kavraki et al.
(1996)). One way to take advantage of multiple arms
is through the use of handoffs (otherwise known as re-
grasps) (Vahrenkamp et al. (2009); Cohen, Phillips, and
Likhachev (2014)), which involves passing an object
from one arm to another. Grasp planning for multi-
ple robots can be achieved with distributed constraint
satisfiers (Panescu and Pascal (2014)).

A prototypical application of manipulation planning
is in the area of bin-picking. Due to the structured
nature of this domain, it is possible to take advantage
of precomputed paths to speed up the online execu-
tion time. Such paths can be blended and further op-
timized (Ellekilde and Petersen (2013)) to account for
noisy actuation and state uncertainty. The focus of
such methodologies is on the optimality of trajectories
generated for a single-arm and not on the effects of task
ordering or dynamically appearing tasks. This work fo-
cuses on establishing a baseline framework which can
effectively utilize dual-arm manipulators, and provides
an adaptive online schedule which can be created in the
event of dynamically appearing tasks.

Multi-Robot Coordination Multi-robot motion
planning is a difficult problem due to the increased di-
mensionality. Coupled, complete approaches typically
do not scale well with additional robots, despite the
fact that there are methods which reduce the number
of effective DOFs (Aronov et al. (1999)). A decoupled
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Figure 2: (Left) Given a pair of pick-and-place tasks for the two arms, the collisions between the two corresponding
trajectories are computed. (Middle) The results of the pairwise collision checking define a coordination diagram.
(Right) Building coordination diagrams for all pairs of trajectories defines a coordination matrix. Precomputing
the entire matrix is useful in scheduling approaches as it is then possible to quickly query the relevant coordination
diagram given a specific pair of designated tasks for each arm.

approach, which aims to best coordinate the individual
paths of robots, can be used instead. Decoupling can be
accomplished in several ways: by discretizing the com-
mon workspace and adopting a master-slave prioritiza-
tion scheme (Zurawski and Phang (1992)), by using pre-
specified velocity profiles and varying the start times of
the robots (Akella and Hutchinson (2002)), or by pre-
computing the collision volumes between the arms to
form coordination diagrams (O’Donnell and Lozano-
Perez (1989); Siméon, Leroy, and Laumond (2002)).
This paper makes use of such coordination diagrams to
achieve simultaneous, collision and deadlock-free move-
ments of both arms.
Scheduling There is a very rich literature on

scheduling challenges. One way to schedule a set of
tasks is through the use of “batch” scheduling, which
computes schedules over a set of assigned tasks (Mah-
eswaran et al. (1999)). Genetic algorithms can be used
to find the time-optimal batch schedules in the context
of robotic manipulation (Xidias, Zacharia, and Aspra-
gathos (2010)).

In contrast to batch scheduling, online scheduling
methods are able to handle dynamic allocations of
new tasks. Some work on online schedulers makes
use of swarm optimization techniques (Xu, Hou, and
Sun (2003); Yan et al. (2005); Chang, Chang, and Lin
(2009)). While the proposed method here does not
use such algorithms, it is also an online, incremental
scheduling approach.

There has also been significant work towards address-
ing the issue of finding the optimal task assignment for
multiple robots (Gerkey and Matarić (2004); Tang and
Parker (2007); Zhang and Parker (2013)). This paper
does not focus on the task assignment component of
similar challenges. It instead focuses on the ordering of
the tasks, given that they have already been assigned
to a particular robot.

3 Problem Setup

Informally, a dual-arm manipulator is given a set of
objects that can appear in known locations in the
workspace to retrieve and place at specific goals. Each
arm is assigned its own set of objects to be grasped and
placed. The arms need to move the objects to their
assigned goals as fast as possible while conflicts (i.e.,
collisions and deadlocks) need to be avoided. Thus, the
problem involves finding both the order in which the
objects are retrieved and placed as well as achieving
collision-free and time efficient coordination. Consider
a 3D workspace that contains obstacles and:
• Two manipulators Mleft and Mright capable of
picking and placing objects in the workspace.
• A set of movable rigid-body objectsOleft, where
each object oileft ∈ Oleft can acquire a pose in SE(3)
and can be grasped by the left arm Mleft. Similarly
for Oright and the right arm Mright.
• Two goal regions, which are the destinations for
picked objects to be placed in. Each goal region cor-
responds to one of the two arms. Once an object
is moved in a goal region, it is removed from the
workspace.
An arm Marm (i.e., either the left or the right

one) is assigned an individual set of tasks Tarm =
{t1arm, . . . , tkarm}, where a task tiarm ∈ Tarm corresponds
to a single arm following a trajectory so as to pick a spe-
cific object oiarm ∈ Oarm from an initial pose and place
it in the corresponding goal region.

Given an assignment of tasks {Tright, Tleft} to the
two arms, a “manipulation coordination schedule”
{S(Tright), S(Tleft)} defines both the order of tasks
with which each arm will execute the pick-and-place
motions, as well as the corresponding velocity profile
along the corresponding trajectories that the assigned
arm will follow.
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Overall, the problem is to find the solution schedules
for both arms S(Tleft) and S(Tright), which minimize
completion time for all tasks, such that no conflicts
arise between the arms. A conflict occurs both from
collisions between the arms and deadlocks. A deadlock
here corresponds to either arm reaching a configuration
such that it is no longer possible for one of the arms
(or, potentially both arms) to make progress towards
completing assigned tasks.

This paper makes a few assumptions about the ob-
jects in the scene. The problem definition requires that
each arm retrieves a different set of objects Oleft ∩
Oright = ∅. An example task would involve each arm
equipped with a unique tool for manipulating objects.
This assumption allows the results to focus on the ef-
fects of the selected schedule, rather than being an ef-
fect of different task assignments. Furthermore, each
object’s initial pose belongs in a set of poses that are
known a priori to the robot. The rationale behind this
is that the robot will be manipulating objects whose
placements in the scene is predictable and in this way
precomputation can be used to speed up the online so-
lution times.

4 Method
Section 4.1 presents an overview of fundamental
methodologies used throughout the rest of the paper.
Then, Sections 4.2 and 4.3 describe the two differ-
ent types of coordination modes, “batch” and “incre-
mental” correspondingly, while Section 4.4 gives an
overview of the precomputation utilized in this work
so as to improve the running time of the proposed so-
lutions.

4.1 Fundamentals
Given a pair of paths for the two arms, processing the
collisions between all pairs of states along each trajec-
tory can produce a coordination diagram (O’Donnell
and Lozano-Perez (1989); Siméon, Leroy, and Laumond
(2002)) as shown in Figure 2 (middle). Each axis cor-
responds to a path for one of the two arms, i.e., the
range is [0,1], corresponding to where along each path
each arm is located. Given the maximum velocity of
each arm and the length of each path, each axis is dis-
cretized into intervals along which each arm is moving
an equal distance.

A vertex in the resulting coordination diagram cor-
responds to a placement of both arms at configura-
tions along the corresponding paths. The configura-
tions which result in collisions between the arms are in-
validated and marked as black in the diagrams. Search-
ing such a diagram involves finding a collision-free path
that starts from the bottom left vertex and reaches the
top right vertex and does not go through black regions.
Horizontal or vertical steps in the coordination diagram
correspond to a single arm moving with maximum ve-
locity, while a diagonal direction means that both arms
are moving simultaneously with their maximum veloc-
ity. Extracting a solution from this search will produce

a coupled trajectory that moves both arms to their re-
spective goals without collisions.

4.2 Batch Coordination

This work considers the set of all coordination dia-
grams, which form a coordination matrix as shown in
Figure 2 (right). The length of the trajectories does not
have to be the same, in contrast to what is shown in the
figure. This matrix can be constructed by computing
and storing the coordination diagrams for all pairs of
trajectories. Once this matrix is available, it allows for
the framework to quickly check different orderings of
tasks and find the corresponding solution trajectories
for a particular schedule.

The batch mode coordination approach considers the
orderings of tasks for both arms and then searches the
resulting coordination matrix. In particular, the ap-
proach can be broken down into two main steps:

• COMPUTE TASK ORDERING(Tleft, Tright)

• SOLVE FULL COORDINATION(S(Tleft, S(Tright))

The function COMPUTE TASK ORDERING takes as pa-
rameters the set of tasks for both arms. The tasks are
then ordered to create the sequence of objects that each
arm should aim to pickup. This step does not consider
interactions between the arms. Instead, this ordering
can be determined randomly, or could correspond to
optimizing certain heuristic functions, such as minimiz-
ing execution time ignoring interactions between the
arms. This ordering determines which pairs of coordi-
nation diagrams are tiled together and searched by the
A*.

Once the ordering of the tasks has been fixed, the
method calls SOLVE FULL COORDINATION to retrieve the
solution trajectory for both arms. Given the order with
which the tasks have been assigned, this method com-
bines the corresponding pairwise coordination diagrams
retrieved from the coordination matrix. Running an
A* in this composed diagram, which will have a similar
structure to the coordination matrix shown in Figure 2
(Right), will produce the coupled trajectory that moves
both arms towards their goals.

For the A* search on the coordination matrix, a ver-
tex in this space is valid as long as it does not occupy a
cell in the diagram that is marked as a collision region
(colored black in the figures). The cost of expanding a
vertex is expressed in terms of time and corresponds to
an additional “time step” for the arms to move. This
cost is therefore equivalent in all directions of expan-
sion. Since the tasks for both arms have already been
ordered, the goal of the A* is to have each arm reach the
end of their task schedule. Thus, the heuristic used in
the search corresponds to the summation of each arm’s
distance to its goal. When both arms have finished all of
their assigned tasks, the A* has successfully expanded
the goal vertex and the solution trajectory is returned.

The benefit of using the batch coordination is that the
A* returns the optimal path given the computed sched-
ule. At the same time, there is a caveat. In particular,
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Figure 3: Initially, an arm might be committed to car-
rying out a pick-and-place task from a previous assign-
ment. The non-committed arm, which has already fin-
ished its task, must be assigned a new task. This assign-
ment is found by searching over all possible available
tasks for the arm, and finding the assignment which
produces the fastest solution time.

the schedule itself may not correspond to the optimal
solution. Additionally, if any new tasks are introduced
after the solution trajectory has been produced, there
is no easy way to incorporate these tasks dynamically,
i.e., until the robot has finished executing a trajectory.
This would force an arm that has already completed its
tasks to wait until the other arm is also finished before
computing a new schedule.

4.3 Incremental Coordination

Rather than coordinating over the full coordination ma-
trix, the incremental scheduling algorithm assigns a sin-
gle task to each arm per iteration. An outline of an
iteration for the approach is given in Algorithm 1. This
method makes a distinction between a committed and
a non-committed arm. If an arm has only partially
completed its assigned task when a new iteration starts,
it is committed to completing its current task, and
is labeled as the master arm in the corresponding al-
gorithmic. The remaining arm is labeled as the slave
arm, which is the only arm that must be assigned a new
task. This process continues as long as there are tasks
remaining for either arm.

Line 1: The method CHECK PARTIAL EXECUTION de-
termines if one of the arms is still in the middle of pick-
ing and placing an assigned object. This arm is set to
be the master arm MMASTER.

Lines 2-4: If both arms have finished their previously
assigned tasks, a new master arm needs to be found.
The method ASSIGN NEW MASTER searches the remain-
ing tasks for both arms, and finds a suitable assign-
ment. This can either be done by randomly selecting
one of the arms to be the master, or it can be done
by optimizing certain criteria. For this paper, random
and minimum conflict assignments were tested. The
minimum conflict assignment finds the pairwise task
assignment which has the smallest amount of collision

Algorithm 1: Incremental Scheduling Algorithm

Data: Tleft, Tright: left/right tasks
τleft(t), τright(t): current left/right trajectories
Result: Assigns a single task to each arm,

returning the corresponding coupled
trajectory to pick and place the two
objects.

1 CHECK PARTIAL EXECUTION(τleft(t), τright(t),MMASTER)
2 if MMASTER = ∅ then
3 tMASTER := ASSIGN MASTER(Tleft, Tright,MMASTER)
4 REMOVE TASK(tMASTER, TMASTER)

5 MSLAVE := {Mleft,Mright} − {MMASTER}
6 if TSLAVE 6= ∅ then
7 tSLAVE := ASSIGN SLAVE(Tleft, Tright,MSLAVE)
8 REMOVE TASK(tSLAVE, TSLAVE)
9 SOLVE PARTIAL COORDINATION(tMASTER, tSLAVE)

Figure 4: The neighbor cost and heuristic used by the
A* in the incremental search is shown. Motions which
involve one or both arms moving backwards along their
trajectory are penalized during vertex expansion. The
heuristic used here guides the search to allow one of the
arms to finish as quickly possible.

area as determined by the coordination diagrams, and
uses this as a heuristic to select the master arm.

Lines 5-6: The arm which is not the master arm is
assigned to be the slave MSLAVE. If the slave arm MSLAVE

has any tasks remaining in its task set TSLAVE, then an
appropriate assignment must be made.

Lines 7-8: This assignment is computed by search-
ing the remaining set of tasks for the slave arm and
finding which pairwise task assignment for both arms
produces the fastest solution time. An illustration of
this is shown in Figure 3. The assigned task is then
removed from the remaining set of tasks.

Line 9: The method SOLVE PARTIAL COORDINATION
runs an A* on the coordination diagram corresponding
to the pairwise task assignment of the arms. Since the
incremental method does not make a complete order-
ing of the objects, and is therefore only operating on
a single coordination diagram, it is no longer possible
to guarantee that an optimal path will be returned by
the A*. To promote trajectories that allow both arms
to move simultaneously, the A* used in the incremental
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approach was altered as shown in Figure 4. The heuris-
tic used in the A* was the minimum distance for either
arm to finish, while the goal condition was that either
arm finished their currently assigned task.

The path returned by the A* is constructed such that
the solution trajectory promotes the movement of both
arms towards their goals, while penalizing any regres-
sive movements. Single arm movements where the other
arm is stationary is slightly penalized with a cost of 1+ε,
with ε << 1.

4.4 Precomputation

Computing pick and place motions for an individual
object can be accomplished by building and querying
a manipulation graph (Alami, Laumond, and Siméon
(1997)). The graph contains roadmaps for transfer and
transit paths, which are connected at grasping config-
urations. Querying the roadmap for a pick-and-place
task corresponding to an individual object and arm will
produce trajectories similar to the ones shown in Figure
2 (Left).

In many industrial settings, such as a factory or ware-
house, it is reasonable to assume that a) the robot has
knowledge of the static and immovable workspace, and
b) movable objects can appear in poses out of a set of
known ones.

To take advantage of such structured setups, the pro-
posed framework performed the majority of the com-
putationally expensive functions offline. This includes
building the manipulation roadmap ahead of time for
the known static scene and the known poses where ob-
jects can appear. In particular, the following data struc-
tures were precomputed and stored:

1. The manipulation roadmap corresponding to the
static workspace.

2. The trajectories for each arm to pick and place ob-
jects that can appear in the predetermined poses,
which are computed with the aid of the manipula-
tion roadmap.

3. The coordination diagrams storing the collision
checking information between pairs of trajectories for
the two arms, as shown Figure 2 (middle).

4. The coordination matrix storing each computed co-
ordination diagram, as shown Figure 2 (right).

5 Experimental Evaluation
Simulated experiments were performed, using a model
of the dual-arm Baxter robot, where the robot needs
to pick two sets of objects and place them into differ-
ent bins, one on each side of the robot. Two separate
problem scenarios, shown in Figure 5, were considered,
where the objects are placed either on a tabletop or in-
side a shelving unit. The following methods were eval-
uated:

• Round Robin (RR): This base case comparison
point corresponds to only a single arm operating in
the workspace at any given time. The other arm stays

Figure 5: The objects colored red must be deposited
in the red goal bin on the robot’s right side. Similarly,
the blue objects must be deposited in the blue bin on
the left side. (Left) Table scenario with an example
arrangement of objects. (Right) Shelf scenario with an
example arrangement of objects.

stationary at a pre-specified safe position. Each arm
then alternates taking turns completing their tasks,
until all tasks have been completed.

• Batch (BA): This method corresponds to the batch
approach described in Section 4.2. The ordering of
the tasks is determined randomly at the beginning of
each experiment.

• Incremental (IN): This method corresponds to the
incremental approach as described in Section 4.3.
The initial assigned task is determined randomly.

The methods are then evaluated in terms of:

1) efficiency: measured as average online computation
time and memory requirements, as well as

2) solution quality: measured as average duration of ex-
ecution for solution trajectories.

Each simulated experiment was run on a single com-
puter with an Intel Xeon E5-4650 2.8 gHz processor
and 8GB of RAM.

Tabletop Results: The “tabletop” scenario, as shown
in Figure 5 (Left), had 50 different randomized task as-
signments, i.e., potential object placements and corre-
sponding arm assignments. A comparison of the av-
erage solution and computation time for all methods
is shown in Figure 6. Since the schedule for the batch
method was randomized, and since the initial task se-
lection for the incremental method is also randomized,
the numbers presented are averaged over a total of 1000
runs. The round robin method indicates both an upper
and a lower limit for the performance of the methods
considered in this paper. In particular, the best possible
execution time that batch and incremental can return
corresponds to half the duration of the round robin so-
lution. And they cannot possibly exceed the time of
the round robin solution.

The results show that in terms of execution time,
both the batch and the incremental approach achieve
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4 objects 8 objects 12 objects
Batch Incremental Batch Incremental Batch Incremental

# collision checks 655,306 409,566 2,544,669 1,431,376 5,686,158 3,080,021
computation time (s)
without precomputation

114.2 71.2 443 261.65 1,000.6 532.2

computation time (s)
with precomputation

0.08 0.05 0.35 0.18 0.7 0.25

execution time (s) 21.5 20.9 40.5 39.75 59.4 59

Table 1: Cost of Online Collision Checking in the Table Scenario

Figure 6: Comparison of average execution and com-
putation times for 4, 8, and 12 tasks assignments per
arm in the Table environment. Each bar is averaged
over 50 different object placements, with the random-
ized approaches averaged over 1000 randomized orders
per object placement. The 95% confidence interval for
the randomized approaches is displayed.

times close to half of that of the round robin sched-
ule. In terms of computation time, the incremental
approach is faster than the batch one. In the results
of Figure 6, the coordination diagrams of pairs of arm
trajectories were not assumed precomputed. Thus, it
is necessary to spend online computation time to iden-
tify the collision-free solution in the coordination space.
Nevertheless, it is possible to achieve orders of magni-

tude faster solutions if the coordination diagrams are
precomputed ahead of time. This can be done when
the possible locations of objects which can appear are
known ahead of time.

Table 1 provides a more detailed comparison of the
computation cost of the two alternatives. An inter-
esting statistic is how often the batch and incremen-
tal approaches queried the coordination diagram. In
the case that a trajectory needs to be verified online,
these calls correspond to collision checks, which are
computationally expensive. The batch method makes
significantly more collision checks than the incremental
method. When the coordination diagrams are not pre-
computed, this is directly reflected in the online com-
putation time of the two approaches. With precompu-
tation, both methods can be computed orders of mag-
nitude faster. In this case, the incremental method re-
mains the faster out of the two.

Obviously preprocessing helps but at the cost of sig-
nificant memory requirements in the case of the batch
approach. In the above results, the number of objects
considered was up to 12. It is interesting to evaluate
what happens when a significantly higher number of ob-
jects is involved, which can happen in some industries
where many small objects (i.e., electronic components)
may need to be picked up by a robot. Figure 1 shows
an example placement of a larger number of objects,
while Table 2 shows the resulting RAM usage by all
three methods for increasing numbers of objects in this
scene. The batch method showed an enormous differ-
ence in the amount of memory used, and at 64 objects
it was no longer able to solve the problem given a maxi-
mum of 6 GB of RAM. The memory requirements of the
batch approach arise from the need to store the frontier
nodes of the A* search over a significantly larger space.

30 objects 50 objects 64 objects
RR 30.5 MB 41 MB 45 MB
BA 1.51 GB 4.21 GB 5.92+ GB
IN 43.7 MB 46 MB 47.1 MB

Table 2: RAM usage in the Table scenario for increasing
numbers of objects and the three methods (RR: round
robin, BA: batch, IN: incremental).

172



Shelf Results: The second setup, shown in Figure 5
(Right), considers an environment, which involves tight
spaces. Rather than randomizing the placement of ob-
jects in the scene, the objects were instead placed in
such a way so as to maximize the interactions between
the two arms. To accomplish this, two objects were
placed in the same bin side by side, and each was as-
signed to a different arm. A comparison of the average
solution and computation time for all methods is shown
in Figure 7. In this experiment, the online computation
time considers the case where precomputed coordina-
tion diagrams are available. Examining these results
shows that the incremental method provides improve-
ments in both solution and computation time relative
to the batch method and for precomputed coordination
diagrams it is possible to achieve very fast solutions.

Figure 7: Comparison of average execution and com-
putation times for 4, 8, and 12 tasks assignments per
arm in the Shelf environment. To promote interaction
between the arms, two objects are placed in the same
bin. The numbers are averaged over 1000 different or-
derings. The 95% confidence interval for the approaches
is displayed.

Dynamically Appearing Objects: Another impor-
tant aspect is the performance of the methods when
objects are allowed to appear dynamically during the
execution of a schedule. To analyze this, the Shelf sce-
nario was utilized so that once an object was placed at
its goal bin, another object assigned to the same arm

would appear in one of the empty shelves. The batch
method was altered in the following way so as to sup-
port dynamically appearing objects: every time a new
object appeared in the scene, both arms would finish
placing their currently assigned objects and the sched-
ule for the arms would be recomputed for the new set
of objects. The incremental method did not have to
be altered as it directly accommodates the presence of
new objects. The results shown in Figure 8 measure to-
tal time, which takes into account both execution time
and the amount of time each method takes to compute a
schedule once a new object appears. From these results,
the incremental method shows better performance in
total time compared to the batch method. This is due
to the fact that the incremental method computes a
schedule on the fly, and can directly accommodate the
dynamically appearing tasks.

Figure 8: Comparison of average execution times in the
Shelf scenario with increasing total number of dynamic
objects appearing in the scene. The 95% confidence
interval for each approach is displayed.

Precomputation Statistics: In the “tabletop” sce-
nario, a roadmap with 4,600 vertices and 103,466 edges
was generated. In the “shelf” scenario, a roadmap with
5,800 vertices and 104,138 edges was generated. The
amount of time spent computing the trajectories and
coordination diagrams is given in Table 3. Since the
round robin method did not utilize the coordination
graphs, this precomputation cost can be seen as the
trade-off for achieving two orders of magnitude faster
online computation times for batch and incremental
scheduling.

computation time
(seconds)

12 Shelf Trajectories 15.7
24 Table Trajectories 23.4
“shelf” coord. graphs 2,176.7
“table” coord. graphs 5,024.2

Table 3: Trajectory and Coordination Matrix Compu-
tation Time
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For picking tasks that appear infrequently, or only
once, precomputation is not warranted and instead the
summation of computation and execution time provides
the best measure of effort for solving the tasks. When
tasks appear repeatedly, whether in a static scene or in
a dynamically appearing scene, precomputation can be
taken advantage of to reduce the amount of time spent
online. Once precomputation is utilized, the online
computation time becomes significantly smaller than
the execution time, and has a smaller impact on the
overall time spent solving the task schedule. Neverthe-
less, in dynamic scenes, the batch method will need to
recompute the schedule, which significantly increases its
online execution time, whereas the incremental method
can directly incorporate the newly added task into its
existing search.

6 Discussion
This work examines the coordination and scheduling of
dual-arm manipulators in the context of pick-and-place
tasks. Three different methods for accomplishing this
were evaluated. First, a náıve round-robin approach
was examined that defines bounds for achieving coor-
dination between the arms by ensuring that only one
arm moves at any given time. Then, two approaches for
allowing simultaneous arm movements are considered.
A batch method, which searches over all pairs of coor-
dination diagrams given an ordering of pick-and-place
tasks. And an incremental approach, which dynami-
cally assigns tasks to each arm, producing solutions of
similar quality to the batch method for static scenes and
improved performance in the presence of dynamically
appearing objects. The incremental approach exhibits
significant benefits, in terms of memory requirements
as well as computation time, especially when precom-
putation cannot be taken advantage of.

In the current work none of the objects occludes any
other object in the scene. Thus, the task ordering can
be freely defined by the scheduler so as to improve per-
formance. An interesting direction is to extend the
method for solving problems where objects occlude one
another, where some form of object rearrangement will
also be required. This would define an implicit, poten-
tially partial, ordering of the tasks, such that certain
tasks must be completed before other tasks would even
be feasible. Similarly, it is interesting to consider chal-
lenges where the arms need to perform handoffs in order
to solve the problem (Cohen, Phillips, and Likhachev
(2014)), when objects and their target placements can-
not be reached by both arms.

Another interesting direction is scheduling in the
context of multiple humanoid robots with overlapping
tasks. In this case, an object might be graspable by
more than one robot. Solving such a challenge would
involve a task assignment sub-challenge for multiple
robots and reasoning over a generalized coordination di-
agram (Siméon, Leroy, and Laumond (2002)). It should
still be possible to apply the methodologies presented
here to obtain an incremental schedule in this context.

Accounting for uncertainty due to sensing and noisy
actuation are essential steps to consider when imple-
menting the method on real robots. In this context,
it is important to consider in terms of schedules that
provide robust solutions. One potential way to adopt
the coordination diagrams to account for noisy actua-
tion is to artificially expand the collision region, thereby
producing more conservative trajectories.
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Abstract
We present a novel framework for incorporating naviga-
tion uncertainty into exploration strategies, specifically
for autonomous ground robots operating in environ-
ments where there exists a nonzero probability of com-
plete failure. In real-world applications, autonomous
navigation is negatively influenced by uncontrollable
factors, such as terrain complexity and dynamic obsta-
cles, which require the robot to spend additional time
or energy during navigation that is not accounted for
in conventional path planners. Using a Monte-Carlo
simulation-based scheme, we preserve the stochastic-
ity of the environment and allow for any type of model
for navigation cost to be used. We show that the ex-
pected rate at which an unknown environment is dis-
covered can be increased in a series of simulations.

1 Introduction
A fundamental area of research in the realm of robotics is
autonomous exploration; that is, the iterative process of a
robot observing it’s surroundings using onboard sensors, se-
lecting from a set of candidate locations, planning a feasible
route, and autonomously navigating to the desired location.
In general, the objective of exploration is to discover some
specific information as efficiently as possible. This infor-
mation that a robot, or team of robots, searches for may be
mission-specific and require prioritization. For example, the
goal may be to determine topological structure in the mini-
mal amount of time (Burgard et al. 2000), to locate a radio-
frequency source (Twigg et al. 2012), or to search a disaster
site (Visser and Slamet 2008), (Gregory et al. 2015). The
exploration problem is inherently difficult, however, due to
the lack of a-priori information. Given a known map of
the environment, planning an optimal route under some con-
straints is a well-understood problem (LaValle 2006). With-
out knowledge of the operating environment, the principal
question for efficient exploration is: where should the robot
move to next?

One of the fundamental approaches to exploration is
frontier-based (Yamauchi 1997), (Yamauchi, Schultz, and
Adams 1998). In this approach, it is assumed a robot has
some mapping capability in order to build an occupancy
grid, which represents an environment by discretizing space

into cells that are assigned one of three values: free, occu-
pied, or unknown based on sensor readings, e.g., 2D or 3D
laser data. A frontier is defined as a region of free cells that
are adjacent to unknown cells. By navigating to a frontier,
the robot would expect to obtain measurements for the un-
known cells and gain some new information. At any given
instance during exploration, we have a collection of fron-
tiers to choose from and the efficiency of our exploration
solution depends on our ability to chose our next location
intelligently, as it relates to our specific exploration objec-
tive. A critical distinction to note is that both the number
and locations of frontiers are continuously changing as the
robot moves through the environment and receives new sen-
sor data. This presents a unique challenge for route plan-
ning in that the candidate locations are dynamically chang-
ing across each iteration of exploration.

A number of efforts have been made to improve the per-
formance of frontier detection (Keidar and Kaminka 2014)
as well as the selection of frontiers for maximizing effi-
ciency. This includes multi-agent exploration strategies,
which consider the allocation of frontiers to a team of robots.
The authors of (Burgard et al. 2000) evaluate a collaborative
strategy, in simulation and real-world experiments, for as-
signing target positions to a team of robots with the intention
of reducing the overall exploration time. Similarly, the work
in (Faigl, Simonin, and Charpillet 2014) characterizes the
performance of the greedy assignment, Traveling Salesman
Problem (TSP) assignment, Hungarian assignment, Iterative
assignment, and MinPos assignment for allocating frontiers
amongst a team of robots.

As we start to consider applications of autonomous explo-
ration in the natural world, we introduce stochastic events
that negatively impact the navigation of a planned path.
For example, imperfect sensor data, faulty sensor hardware,
complex terrain, and dynamic obstacles are all sources of
uncertainty that ultimately cause navigation to differ from
the output of a path planner. In other words, a path planner
can provide a lower bound on the traversal cost to a frontier
in the form of an optimal route, but this typically ignores fac-
tors that complicate, and in some cases prevent, real-world
navigation. To address these issues, research efforts focus
on incorporating map and localization uncertainty by de-
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termining salient positions and routes in the environment
as it relates to localization error. The system described
in (Stachniss, Hahnel, and Burgard 2004) performs active
loop closures, i.e., traversal of paths to previously visited
locations, in a frontier-based exploration strategy to reduce
pose estimation uncertainty. Other approaches use decision-
theoretic frameworks to consider the expected information
that could be gained for each frontier in addition to both
map and localization uncertainty (Stachniss, Grisetti, and
Burgard 2005), (Carrillo et al. 2015). Similarly, the work
presented in (Makarenko et al. 2002) offers an integrated ex-
ploration strategy based on a utility function that considers
information gain, localization quality, and navigation cost.
Our work differs from these methods in that we assume that
stochasticity plays a central role in the calculation of naviga-
tion cost and, therefore, should be considered in the decision
making process. We do not feel that this approach should
necessarily replace existing techniques that consider other
types of uncertainty, but rather could be integrated along side
methods in an effort to develop more robust systems. More
specifically, we present a general framework that accounts
for navigation-based uncertainty and then characterize prop-
erties of this approach in the specific use case of autonomous
exploration. We conjecture that deriving an accurate utility
function, and the associated assumptions, for a risk-based
decision making framework as it relates to navigation-based
uncertainty is difficult because of the mission-specific pref-
erences that may or may not be generalizable. We note,
however, that if the mapping between navigation uncertainty
costs and utility values were known, our framework could
be converted into an approach that follows classical deci-
sion theory principles (Sage 1992), (French 1986), (Raiffa
1974).

Previous work that is most relevant to this framework in-
clude (Murphy 2010), where the authors present a Gaussian-
process-based approach for generating probabilistic cost
maps using overhead imagery so that uncertainty in terrain
classification and spatial variations in terrain costs are con-
sidered by path planners. Their approach is evaluated on
aerial imagery of suburban- and rural-type environments and
assumes access to both labelled training data for predefined
terrain classes as well as cost data for navigating each terrain
class.

In this work, specifically, we apply our framework to the
problem of selecting navigable locations during exploration
as it relates to unmanned ground vehicles completing search
and reconnaissance missions in complex environments, e.g.,
Army-relevant or post-disaster settings, where the terrain is
more difficult to model than conventionally-studied scenar-
ios. Unique to this problem space, we note that there exists
a nonzero probability of terminal failure in some, or all, re-
gions of the operational environment - a factor that has not
been considered in previous works. The success of an ex-
ploratory mission is, therefore, correlated to the robot’s abil-
ity to take into consideration the uncertainty associated with
navigating paths due to the discerpancy between planned
and observed performance. Our framework can be applied
to any exploration strategy that generates and chooses from a
set of candidate locations; however, to present and evaluate

our approach we consider incorporating navigation uncer-
tainty into a frontier-based exploration strategy, as this type
of exploration has been well studied and extensively used in
literature.

Without loss of generality, we can consider exploration
as a graph search, where frontiers are represented by nodes
and the navigation cost between frontiers are edges. It fol-
lows, autonomous exploration is closely related to the Ori-
enteering Problem (OP) (Chao, Golden, and Wasil 1996),
(Vansteenwegen, Souffriau, and Oudheusden 2011) and Ve-
hicle Routing Problem (VRP) (Laporte and Martello 1992),
with the underlying difference that the complete problem in-
volving the entire environment is not known at any given in-
stance during exploration. The operations research commu-
nity has studied the OP and VRP extensively, both with and
without stochasticity (Gendreau, Laporte, and Séguin 1996),
(Li, Tian, and Leung 2010), (Tang and Miller-Hooks 2005);
however, the findings for these types of problems have not
yet been applied to frontier-based exploration in the context
of navigation uncertainty.

(a)

(b)

Figure 1: A satellite image of a hypothetical environment
where the yellow star represents the robot’s location and the
red and green disks represent two waypoint options for ex-
ploration (a). The actual environment that is observed during
mission execution if the robot navigated to the red disk (b).

To motivate this work, we begin with a canonical example
that illustrates the importance of incorporating uncertainty
with respect to navigation costs. In Figure 1(a), an overhead
satellite image of a hypotehtical disaster site is shown, which
could potentially be used as a-priori information. Here, the
yellow star represents the starting location of a robot and the
red and green disks are two potential waypoints to choose
from. The distance, Euclidean or planned path length, from
the robot’s location to the red disk is shorter than from the
robot’s location to the green disk so it would be selected in
the traditional greedy-based exploration strategy. However,
Figure 1(b) shows the potential environment that the robot
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might encounter if it successfully navigated to the waypoint
indicated by the red disk. As in the real-world, there exists
obstacles that are not captured in a satellite image, which
pose considerable challenges for autonomous navigation. In
this case, both the task of navigating to this waypoint, and
any additional exploration thereafter, may be complicated
or impossible because this navigation uncertainty was not
taken into consideration. While the robot would be required
to navigate to both locations in an exploration mission, we
desire a strategy that collects information quickly and safely,
so that a greater understanding of the environment can be
acquired before a potential navigation failure occurs.

Although this level of a-priori information is not always
known, having some awareness of navigation uncertainty
through out the environment could directly impact the plan-
ning process. If, for example, the robot has performed ex-
ploration in a similar environment previously, it can use
this initial model for navigation uncertainty in the new en-
vironment. Furthermore, the robot may be able to learn
an improved navigation model for the environment in an
online fashion by comparing it’s planned paths with it’s
observed navigation performance (Papadakis 2013), (Sil-
ver, Bagnell, and Stentz 2010),(Martin, Murphy, and Peter
2013), (Howard et al. 2007). For this work, we are less con-
cerned with determining what precipitates navigation uncer-
tainty or how to detect it, but rather how to effectively incor-
porate this uncertainty into existing exploration strategies as
well as characterizing its effect on the performance of col-
lecting information about the environment.

The contribution of this work is a general framework for
incorporating navigation uncertainty to a novel application,
namely autonomous exploration in extreme, real-world en-
vironments. Additionally, we show that incorporating nav-
igation uncertainty leads to an increased, expected rate of
information acquired over the course of exploration due to
an improved decision-making process that actively avoids
operation-ending navigation failures.

2 Methodology
We present a framework by which navigation uncertainty is
considered when choosing locations to explore. The specific
objective for autonomous exploration that we are interested
in is maximizing the amount of the environment discovered
while minimizing operating time.

Incident Modeling
While navigating in a real-world environment, a robot can
encounter any number of internal or external factors that
cause it to spend additional time or energy to traverse a
planned path. We refer to these factors as incidents and the
associated cost incurred when handling this type of event as
the incident cost.

In general, the existence of incidents is environment de-
pendent, e.g., terrain complexity, and the magnitude of inci-
dent costs vary through out an environment. To model this,
we assume there exists a set, Ξ, of incident polygons, each
of which represents a bounded region with a specific distri-
bution of incident costs per meter. This formulation is il-
lustrated in Figure 2 where five polygons are used to denote

four regions that cover an environment and have different
incident costs. Note, our framework does not limit the num-
ber of incident polygons over the environment; in fact, one
could define an incident polygon for every grid cell in the
occupancy grid, if desired.

(a) (b)

Figure 2: An arbitrary environment that a robot could be
tasked to explore (a) and that same environment with five
regions, contained within the colored polygons, that have
distinct incident cost distributions (b).

For each polygon ξi ∈ Ξ, there exists some random vari-
able, Di, that represents the incident cost incurred per me-
ter driven, where i = 1...N and N is the number of poly-
gons defined for the environment. Our framework makes
no assumption on the type of probability distribution used
for each random variable, and allows for distribution func-
tions to differ across the set of polygons. It is important
to note that any of distribution functions could have a point
mass at infinite cost, which corresponds to the possibility of
catastrophical failure while navigating through an incident
polygon.

Updating Navigation Costs
Given a well-defined distribution, or set of distributions, it
may be possible to generate statistics on the required navi-
gation costs and use traditional methods for accounting for
uncertainty, such as relying on the mean and variance of the
distribution. However, modeling natural phenomena in the
field of robotics often times requires less-structured distribu-
tions, or distributions where there exists no expected value,
e.g., a model with a nonzero probability of infinite cost.
To overcome this issue and allow for any experimentally-
derived distribution to be used, we propose a method by
which we sample the distributions multiple times to preserve
the stochastic nature of incidents.

Our process for updating navigation costs begins by com-
puting initial plans to each candidate location, gi in the set
of all of the candidates, Φ, generated by the desired explo-
ration strategy. In the case of the greedy, frontier-based ex-
ploration strategy, for example, we require plans from the
robot’s current pose to every frontier’s pose. Next, we per-
form a Monte-Carlo simulation where each trial is a new
instantiation of the problem generated using different inci-
dent costs. In other words, we update the initial navigation
cost by sampling the probability distributions that represent
the potentially-incurred incident costs, for each path in each
simulation iteration. Mathematiically, let ωa and ωb be the
poses of a segment of the planned path such that the segment
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is completely contained within an incident polygon, then we
update the navigation cost using

C(ωa, ωb) = Co(ωa, ωb) + Di ∗ lp (1)

where C(ωa, ωb) is the updated cost between poses ωa and
ωb, Co(ωa, ωb) is the initially-computed cost, Di is the ran-
dom value representing the incidence cost generated using
the probability distribution from the corresponding incident
polygon, and lp is the length of the path between ωa and ωb.
To update the navigation cost for the entire planned path, Γ,
we require each segement generate a finite cost, i.e., a suc-
cessfully traversed path, at which point we accumulate the
sampled navigation costs. In other words,

Ω(ωr, ωf ) =
∑

γ∈Γ

C(γa, γb) (2)

where Ω(ωr, ωf ) is the final, updated navigation cost for the
planned path, Γ, from pose ωr to pose ωf , and γa and γb are
the poses of the two endpoints of the path segment γ, which
is completely contained within an incident polygon. Note,
if the random variable for any of these path segments takes
the value ∞, then the entire path is deemed a failure. An
example of this calculation is illustrated in Figure 3.

Figure 3: A planned path, Γ, from pose ωr to pose ωf has
four segments, contained within four incident polygons. The
updated navigation cost for the entire path is Ω(ωr, ωf ) =
C(ωr, ωx)+C(ωx, ωy)+C(ωy, ωz)+C(ωz, ωf ), assuming
navigation for each path segment is successful.

All of the updated navigation costs for each candidate lo-
cation are stored in a single trial of the Monte-Carlo simula-
tion and the entire process repeats for M = |Φ|3 iterations
so that we probabilistically estimate the cost of navigating
to each candidate.

Incorporating Stochasticity Into Exploration
Strategies
After the Monte-Carlo simulation has been executed, we
have a distribution of navigation costs for each candidate
and we are required to choose a single solution, π, to exe-
cute. We seek the solution that has a high probability of suc-
cessful navigation, in an effort to manage the threat of fatal
operations, and is easier to traverse, i.e., minimal incurred
incidence costs, relative to the other solutions. To achieve
this, we approximate a probability density function for each
candidate location, gi, by normalizing the histogram of nav-
igation costs computed in the associated Monte-Carlo trials
by the total number of iterations. Then, using these density
functions, we solve

P (Ω(ωr, ωf ) ≤ cτ ) ≥ α (3)

for cτ , where α ∈ [0, 1] is the user-defined confidence level
and P (Ω(ωr, ωf ) ≤ cτ ) is equivalently the approximated
cumulative distribution function representing the path costs
between poses ωr and ωf . Analytically, we are atleast α-%
confident that navigation to solution gi will cost less than or
equal to cτ . We note that a candidate location is infeasible
if the sampled probability of infinite cost is greater than 1−
α. In the event that two candidates have equal cost, i.e.,
cτi = cτj for i 6= j, we select the candidate that has the
lower probability of infinite cost to minimize the likelihood
of failure. It follows that if α = 0.5, we would solve for the
median cost for each candidate. Our final solution chosen
for execution is then

π = arg min
gi∈Φ

cτ (4)

By defining our framework in this way, we effectively com-
pare the risk of failure and incurred incidence costs for every
candidate location.

3 Experiments Using the Greedy Approach
and Accounting for Uncertainty

In general, the greedy approach consists of selecting the
frontier with the maximum utility cost in hopes of an im-
mediate payoff. This has historically been the most com-
mon strategy for frontier-based exploration due to it’s sim-
plistic implementation and minimal computational require-
ment. For a navigation-based greedy approach this equates
to selecting the frontier that has the shortest distance to the
robot’s current location. As a proof of concept, we evaluate
the greedy approach using our framework to represent the
anticipated effect of uncertainty.

To incorporate navigation uncertainty into the greedy ap-
proach we seek the frontier that has the lowest cost that
includes stochasticity using some model for incident costs.
That is,

arg min
gi∈Φ

Ω(ωr, ωgi) (5)

where ωr is the robot’s pose and ωgi is the pose of a single
frontier in the set of all frontiers, Φ.

We performed a series of simulations using the 59m ×
40m environment shown in Figure 2 to characterize the
greedy approach, both with and without incorporating nav-
igation uncertainty. We choose to define each random vari-
able representing incidence cost using a lognormal distribu-
tion, i.e., Di ∼ lnN (µ, σ2) where µ ∈ R and σ > 0. The
selection of this distribution is based on the existing work
in the field of transportation engineering that suggests this
is an accurate model for traffic delays, which we assert are
analogous to stochastic-events that negatively effect planned
navigation for autonomous robots (Garib, Radwan, and Al-
Deek 1997), (Sullivan 1997). Additionally, to account for
the possibility of navigation having infinite cost, our imple-
mentation also assigns a Bernoulli random variable, Bi, to
each incident polygon, ξi; in doing so, we effectively add
a delta function at ∞ such that there exists probability, p,
that navigation is successful, and probability, q = 1−p, that
navigation fails. It follows, we only sample from the random

179



variable Di, if our sample of Bi corresponds to successful
navigation.

We take a minimal approach to effectively simulate the
phenomena affecting the application of route-planning algo-
rithms to real-world robotics scenarios, namely the evolu-
tion of the observed map and uncertainty in control, which
affects the time to perform autonomous navigation. We as-
sume a two-dimensional environment and simulate a LiDAR
sensor with a 240◦ field of view, 0.5◦ angular resolution, and
maximum range of 40m. The robot is restricted to a maxi-
mum velocity of 1.0 m/s and the differential-drive kinemat-
ics are given by


ẋ
ẏ

θ̇


 =

[
cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

] [
v
ω

]
+

[
0
0

N (0, σω(x, y)

]

(6)
where the noise-parameter σω(x, y) is known a-priori and
approximately induces a log-normal distortion when per-
forming closed-loop path-following control. Table 1 shows
the specific parameters for all of the random variables, Bi

and Di, as well as the noise parameters, for each incident
polygon used in our simulations.

Bi Di

Polygon Color p µ σ2 σω(x, y)
Blue 0.98 -0.60 0.25 0.00

Green 0.95 0.00 0.10 0.00
Cyan 0.90 0.70 0.05 0.96
Red 0.80 1.10 0.03 1.44

Table 1: The simulation parameters for each incident poly-
gon that were used in our simulations.

For each iteration of exploration, we analyze the occu-
pancy grid to form a set of frontiers. To ensure frontiers
are navigable, the cells within the robot’s inscribed radius
around the centroid of the convex hull for every polygon are
verified to contain only free cells. We use ARA* to plan
kinematically feasible paths to every frontier and the cost
for a planned path is equal to the path length. We force our
planner to heavily favor planning through known space by
assigning near-lethal costs to unknown space so that costs
to frontiers are more accurately estimated. After a frontier
is selected, the robot assigns a waypoint and autonomously
navigates to the desired location. In an effort to improve
efficiency, we use the immediate replanning method (Faigl,
Simonin, and Charpillet 2014). That is, if during navigation,
the selected frontier vanishes, i.e., there no longer exists any
unknown cells contained within the polygon that defines the
frontier, the robot initiates the next iteration of exploration.
Regardless of achieving a frontier or determining that the
frontier has vanished, the robot always halts navigation and
plans from a stationary position so that the occupancy grid
does not change during the planning process. Finally, in the
event our framework determines that all frontiers are infeasi-
ble due to the probability of failure, we choose to terminate
exploration as a safety mechanism.

As a baseline, we executed 15 trials using the greedy strat-

egy without considering uncertainty, referred to as naı̈ve
greedy, which is representative of the current method by
which many existing systems use. We then performed 15
trials using our framework to evaluate the performance of
an exploration strategy where navigation uncertainty is con-
sidered, referred to as cautiously greedy. We performed sim-
ulations using α = 0.5 and α = 0.8 to capture the effect of
accepting more or less risk when selecting frontiers in the
presence of uncertainty. In all cases, tests were limited to 10
minutes to emphasize the desire for obtaining information as
quickly as possible.

To evaluate the rate at which information about the en-
vironment is acquired during exploration, we evaluate each
method based on the amount of uncertainty, i.e., entropy,
that exists in the robot’s map of the environment. Given an
occupancy grid, G, entropy is computed using

E(G) = −
∑

c∈G
P (c) logP (c) + (1− P (c)) log (1− P (c))

(7)
where P (c) represents the probability of occupancy of grid
cell c. This measure of entropy represents the amount of the
environment that the robot has knowledge of at a particular
instance in time.

4 Results
To illustrate each strategy’s rate of acquiring new informa-
tion, we normalize the measure of entropy by the maximum
amount of entropy, i.e., the size of the environment if all
cells were unknown, shown in Figure 4 as the proportion of
the environment still unexplored.

For each trial we compute the area under the normalized
entropy curve, referred to as the exploration burden, to quan-
tify the overall performance of exploration. To do this, we
fit polynomials to the entropy curves, in 10 second segments
to minimize fitting error, and numerically integrate over the
interval. The final exploration burden is the accumulation of
all integrated segments for the duration of the entire mission,
and measured in natural unit of information (nat)-seconds.
Intuitively, one would desire an exploration strategy with
a lower exploration burden as this indicates that unknown
space is discovered quicker. The 25%-quantile, median,
and 75%-quantile exploration burdens for each strategy are
shown in Figure 5.

We note that the median exploration burden for the naı̈ve
greedy strategy is 441.19 nat-seconds while the exploration
burden for the cauitiously greedy strategy for α = 0.5 and
α = 0.8 are 384.73 and 392.54 nat-seconds, respectively -
a decrease in exploration burden by 14.68% and 12.39%.
From this we conclude that, by incorporating uncertainty
into the frontier selection process, we effectively improve
exploration by increasing the expected rate of information
gain. Using the statistics of the exploration burdens, we per-
formed unpaired T-tests to vaidate the statistical significance
of our trials, which are presented in Table 2. Each p-value is
within the acceptable limit of 5.0×10−2 and rejects the null
hypothesis that states the sample of exploration burdens are
drawn from the same population and have equal distribution
shapes.
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(a)

(b)

(c)

Figure 4: The normalized entropy over the duration of simu-
lated exploration for the naı̈ve greedy approach (a), the cau-
tiously greedy approach using a confidence level of α = 0.5
(b), and with α = 0.8 (c). Thin lines indicate individual tri-
als, thick lines are time-varying averages over the trials, and
the shaded regions represent the standard deviation.

Figure 5: Analysis of exploration burden as a measure for
performance.

Greedy Strategy 1 Greedy Strategy 2 p-value
Naı̈ve Cautiously 2.27× 10−12

α = 0.5
Naı̈ve Cautiously 6.63× 10−10

α = 0.8
Cautiously Cautiously 3.23× 10−2

α = 0.5 α = 0.8

Table 2: The unpaired T-test p-values as an evaluation of
statistical significance.

5 Discussion and Future Work
We present and evaluate a general framework for incorpo-
rating navigation uncertainty in the goal location selection of
autonomous exploration, specifically for real-world environ-
ments where there exists a possibility of operation-ending
failure. Through a series of simulations, presented in Fig-
ure 4, we show that the average rate of obtaining new knowl-
edge of the environment during the exploration process can
be improved by including information regarding navigation
uncertainty and failure.

In the simulations of the naı̈ve greedy exploration strat-
egy, specifically for our constructed environment, the robot
consistently enters the regions with the highest noise and
probability of failure because these regions are the closest
to the initial location. As a result, the robot’s ability to plan
and navigate through the environment is negatively impacted
because uncontrollable navigation noise forces the robot to
accidentally drive into, or unnecessarily close to, obsta-
cles. Additionally, the robot accumulates non-negligible
map degradation, which in some cases prohibits progress be-
cause the robot perceives it’s location, or the goal location,
to be in occupied space. Ultimately, these factors cause the
naı̈ve greedy approach to produce the worst mean rate of en-
tropy reduction. A screenshot of a selected trial is shown in
Figure 6(a) to collectively represent the map generated using
the naı̈ve greedy approach.

The evaluation of the cautiously greedy approach with a
confidence threshold of α = 0.5 reveals that the robot in-
telligently selects goal locations in areas of less noise and
prolongs entering regions of dangerous navigation so that
it is able to continue making progress. This, in turn, re-
sults in the highest expected rate of entropy reduction and
lowest average exploration burden of the tested strategies.
Furthermore, when the confidence threshold is increased to
α = 0.8, we notice the robot effectively chooses to navigate
through even fewer areas of risky navigation and improves
map quality. It is important to note, however, that because
the confidence threshold is relatively high, the robot some-
times terminates exploration prematurely because no candi-
date locations are deemed safe enough for navigation, re-
sulting in zero entropy reduction. This is represented by the
lesser mean entropy reduction rate, larger entropy reduction
standard deviation, and larger average exploration burden,
with respect to α = 0.5, as shown in Figures 4 and 5. An
example illustrating the effect of the confidence threshold
on the exploration and mapping properties of the cautiously
greedy approach can be seen in Figures 6(b) and 6(c).
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Figure 6: Selected screenshots of the final maps for the
naı̈ve greedy approach (a), cautiously greedy approach us-
ing a confidence level of α = 0.5 (b), and with α = 0.8
(c). Here, the robot started exploring from the location indi-
cated by a yellow star and stopped exploring at the location
represented by a red star.

In our simulations, we found that the primary factors that
directly effected the rate of exploration are the structure of
the environment and the associated navigation noise because
these determine the level of difficulty for autonomous nav-
igation. It should be noted that we constructed a testing
environment such that the regions with the most difficult
structure and highest navigation noise are located closest to
the robot’s initial location. This was chosen to capture a
known drawback of the naı̈ve greedy approach, which is that
it chooses goals based on distance calculations and could re-
alistically encounter scenarios where this has a long-term,
detrimental effect on exploration. We do not feel that this
environment necessarily represents the large majority of op-
erational environments; however, it still provides valuable
insight to the characterization of navigation uncertainty as
it relates to autonomous exploration. It is our belief that
because the cautiously greedy approach accounts for navi-
gation uncertainty, it will always choose a goal location that
is considered at least as “safe” or “safer”, in terms of nav-
igation uncertainty and failure, than the location chosen by
the naı̈ve greedy strategy - which, in turn, could improve the
long-term performance of autonomous exploration.

In the future, we would like to more thoroughly charac-
terize the effect of navigation uncertainty, and the associ-
ated confidence threshold α, in both the greedy approach as
well as other existing exploration strategies. This includes
executing more simulations with randomized initial loca-
tions and randomly-generated environments. Also, mathe-
matically proving the number of samples required for the
Monte-Carlo simulation to probabilistically estimate navi-
gation costs could help optimize the computational require-
ments of our framework. A more detailed analysis of the dis-
tribution of solutions produced from the Monte-Carlo sim-
ulation might offer some valuable information in terms of
contingency planning. Finally, an integrated system that
1) learns the incident cost distribution models during au-
tonomous navigation and/or 2) incorporates empirically-
derived distributions for probabilistic path planning could
improve the performance of our framework when applied to
single or multi-robot exploration.
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Abstract

Goal reasoning is maturing as a field, but lacks a unified model
and common implementation that researchers can build from.
This paper presents three contributions. First, it formalizes
goal reasoning with crisp semantics by extending a recent
formalism that blends goal-network and task-network plan-
ning. Second, it describes an open source package, called the
Actor Simulator (A C T O R S I M), that has been used in activity
planning for robotics and partially implements the semantics
of the formal model. Third, it presents a new study applying
A C T O R S I M and goal reasoning to the game of Minecraft.
The study examines the role of learning from experience to
improve goal selection and reveals that simple mechanisms for
capturing experience are adequate for the problem we study.

1 Introduction1

Goals are a unifying structure for designing and studying
intelligent systems, including robotic systems, which may
perform goal reasoning to manage long-term behavior, an-
ticipate the future, select among priorities, commit to action,
generate expectations, assess tradeoffs, resolve the impact of
notable events, or learn from experience. If a goal is an objec-
tive a robot wishes to achieve or maintain, then planning is
deliberating on what action(s) best accomplish the objective,
acting is deliberating on how to perform each action of a plan,
and goal reasoning is deciding what goal(s) to pursue given
trade-offs in dynamic, possibly adversarial, environments.
Thus, goal reasoning is a critical component for enabling
more responsive and capable autonomy.

Researchers have examined a variety of goal reasoning top-
ics (Vattam et al., 2013), including studies on Goal-Driven
Autonomy (Klenk et al., 2013; Munoz-Avila et al., 2010;
Dannenhauer et al., 2015), goal formulation (Wilson, Molin-
eaux, and Aha 2013), goal motivators (Munoz-Avila, Wilson,
and Aha 2015), goal recognition (Vattam and Aha 2015),
goal prioritization (Young and Hawes 2012), explanation
generation (Molineaux and Aha 2014), and agent-oriented
programming (Thangarajah et al., 2010; Harland et al., 2014;
De Giacomo et al., 2016). Some studies have proposed mod-
els for specific aspects of goal reasoning, namely planning

1A more recent version of this paper will appear in the Pro-
ceedings of the 4th Annual Conference on Advances in Cognitive
Systems; see Roberts et al. (to appear) for details.

and acting (Thangarajah et al., 2010, Harland et al., 2014,
Cox et al. 2016), while one study by Roberts et al. (2015b)
adds goal formulation and goal selection to complete the
entire lifecycle but lacks semantics . Four workshops2 pro-
vide a more complete survey of the area. As this area of
research matures, it can be enriched by more comprehensive
studies using publicly available systems that implement a
clear semantics.

We describe the Actor Simulator, A C T O R S I M, which is
a general platform for conducting studies of goal reasoning in
simulated environments. Although goal reasoning has strong
ties to planning, acting, and robotics, it is an understudied
area of research partly because there exists no publicly avail-
able language, definition, and generic implementation. We
draw inspiration from the literature in planning, where 15
years of international competitions has blossomed into a re-
search ecosystem of nearly 100 open source planning systems
and hundreds of planning benchmarks in a standardized lan-
guage. Despite this progress, many planning systems focus
on a single actor operating within a static environment and
with static objectives. A C T O R S I M can facilitate studies in
which these constraints are relaxed.

A C T O R S I M implements the goal reasoning model of
Roberts et al. (Roberts et al. 2015a). We view goal reasoning
as leveraging the work of Ghallab, Nau, and Traverso (Ghal-
lab, Nau, and Traverso 2014; Nau, Ghallab, and Traverso
2015), wherein deliberation takes place on (1) descriptive
models of what to accomplish (e.g., a goal to be in rooma

might be decomposed into the subgoals to be near a door
for rooma, achieve open(doorto−A) if applicable, and then
perform the task enter(rooma)), and (2) operational models
of how to perform a task (e.g., opening the door is a sequence
of subtasks such as: determine the type of door handle, grasp
the handle, and push (or pull) the door). Thus, the deliber-
ation in such systems resembles a task network with goals
interspersed. Similarly, we argue that goal reasoning is a kind
of hybrid task-goal planning that supports the larger cycle of
Planning and Acting by allowing an actor to determine and
prioritize its goals dynamically.

Contributions. Our objective in this paper is to foster
studies of goal reasoning by presenting:

2The latest workshop is described at http://makro.ink/

ijcai2016grw/
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A formal model of goal reasoning and its semantics. This
model extends previous work by Roberts et al. (2015) and
builds on a hybrid model of planning called Goal-Task Net-
work (G T N) planning (Anonymous, under review), which
blends Hierarchical Task Network (H T N) planning with Hier-
archical Goal Network (H G N) planning. This hybrid model
allows us to seamlessly intermix task and goal networks with
state-based planning concerns, which is critical in a system
that performs goal reasoning and deliberation (Ghallab, Nau,
and Traverso 2014).

An open source platform, called A C T O R S I M3, that im-
plements this formal model. A C T O R S I M’s initial design
spurred from work on robotic applications to Foreign Disaster
Relief operations (Roberts et al. 2015b) and has since been
extended to several other domains. We briefly summarize
how A C T O R S I M has supported these studies and our future
plans for integration with more sophisticated simulators such
as ROS or Gazebo.

The application of A C T O R S I M to Minecraft, with pre-
liminary results showing that (1) learning from structured
experience to select subgoals improves behavior for a sim-
ple navigation task, (2) gathering evidence showing expert
knowledge is useful but not essential for effective decision
making in this task, and (3) costly random knowledge gath-
ering, as typically performed in unsupervised learning, is
best used only to broaden structured knowledge. Our results
complement existing studies on how to gather and learn from
experience and demonstrate that goal networks can overcome
some limitations of action selection approaches.

The paper proceeds in two parts. The first part establishes
a model of goal reasoning. We briefly describe our nota-
tion (Section 2) and a formalism called Goal-Task Network
(G T N) planning (Section 2.1) that we will apply to define the
semantics of goal reasoning. Section 3 formalizes the model
and semantics that A C T O R S I M implements.

The second part provides a snapshot of A C T O R S I M (Sec-
tion 4) and then describes an implementation of A C T O R S I M
for the game of Minecraft (Section 5). We present a pilot
study that highlights the benefits of applying learning to goal
selection in a simple maze problem (Section 6). Finally, we
describe other A C T O R S I M connectors we have developed
(Section 7), related work (Section 8), and conclude with
future work objectives.

2 Preliminaries
Ghallab et al. (2014) and Nau et al. (2015) point out that
planning and acting systems must often deliberate about both
descriptive and operational models. Descriptive models detail
what actions would accomplish a goal (e.g., ”plans”), while
operational models detail how to accomplish it; (e.g., ”tasks”
or ”procedures”). Thus, a hybrid model that combines state-
based planning and hierarchical planning is needed.

Let L be a propositional language. We partition L into
external state s ⊂ Lexternal relating to an agent’s belief
about the world, where the set of all external states is S =
2Lexternal , and internal state z ⊂ Linternal relating to inter-
nal decisions and processes of the agent, where the set of all

3Available at http://makro.ink/actorsim

internal states is Z = 2Linternal . L = Lexternal ∪ Linternal,
where Lexternal ∩ Linternal = ∅.

Let T be a set of task names represented as propositional
symbols not appearing in L (i.e., L ∩ T = ∅), and let O and
C be a partition of T (O ∪ C = T , O ∩ C = ∅). O denotes
the set of primitive tasks that can be executed directly, while
C represents compound or non-primitive tasks that need to
be recursively decomposed into primitive tasks before they
can be executed.

We augment the model of online planning and execu-
tion by Nau (2007) with a goal reasoning loop (cf. Fig-
ure 1). The world is modeled as a state transition system
Σ = (S,A,E, δ) where S is a set of states that represent
facts in the world as above, A = (a1, a2, ...) are the al-
lowed actions of the Controller, E = (e1, e2, ..) is a set
of exogenous events, and δ : S × (A ∪ E) → S is a
state transition function. Let sinit denote the initial state
and Sg denote the set of allowed goal states. The classi-
cal planning problem is stated: Given Σ = (S,A, δ), sinit
and Sg, find a sequence of actions 〈a1, a2, .., ak〉 such that
s1 ∈ δ(sinit, a1), s2 ∈ δ(s1, a2), .., sk ∈ δ(sk−1, ak) and
sk ∈ Sg . Thus, the actor seeks a set of transitions from sinit
to one of a set of goal states Sg ⊂ S.

We call the goal reasoner in Figure 1 the G R P R O C E S S
and assume the Controller only executes one action xj at
a time, returning PROGRESSj to update progress, SUCCESSj
for completion, and FAILj for failure. A goal memory stores
goals that transition through the goal lifecycle, which we
will define more fully in §3.2. We simplify the discussion by
considering only achievement goals even though the model
and A C T O R S I M can represent maintenance goals.

Figure 1: Relating goal reasoning with online planning,
where the G R P R O C E S S works with a goal memory to mon-
itor and modify the goals or planning model of the system.
The goal memory stores goal nodes that transition according
to the goal lifecycle described later.
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2.1 Goal-Task Network (G T N) Planning
Alford et al (2016) model both hierarchical task and goal
planning in a single framework called Goal-Task Network
(G T N) planning, which was partly inspired by conversations
with Ghallab, Nau, & Traverso following their position paper
on Planning and Acting (Ghallab, Nau, and Traverso 2014).
G T N planning augments the notation of (Geier and Bercher
2011) with goal decomposition from H G N planning (Shiv-
ashankar et al., 2012) and SHOP2-style method preconditions
(Nau et al., 2003). While H T N planning is over partially-
ordered multisets of task names from T and H G N planning
is over totally-ordered subgoals in L, G T N elegantly models
both. The rest of this section summarizes Alford et al. (2016)
as it relates to the goal reasoning model we introduce.

A goal-task network is a tuple (I,≺, α) where I is a set
of instance symbols that are placeholders for task names and
goals, ≺⊂ I × I is a partial order on I , and α : I → L∪ T
maps each instance symbol to a goal or task name. An
instance symbol i is unconstrained if no symbols are con-
strained to be before it (∀i′∈I i′ ⊀ i) and last if no symbols
are constrained to be after it (∀i′∈I i′ ≺ i). A symbol i is a
task if α(i) ∈ T and is a goal if α(i) ∈ L; recall that L and
T are disjoint.

Methods We distinguish the methods of a G T N by the kind
of symbol they decompose. A task method mt is a tuple
(n, χ, gtn) where n ∈ C is a non-primitive task name, χ ∈ L
is the precondition of mt, and gtn is a goal-task network
over L and T . mt is relevant to a task i in (I,≺, α) if
n = α (i). mt is a specific decomposition of a task n into a
partially-ordered set of subtasks and subgoals, and there may
be many such methods. A goal method mg, similarly, is a
tuple (g, χ, gtn) where g, χ ∈ L are the goal and precondi-
tion of mg and gtn is a goal-task network. mg is relevant to
a subgoal i in (I,≺, α) if at least one literal in the negation-
normal form (NNF) of g matches a literal in the NNF of α (i)
(i.e., accomplishing g ensures that part of α (i) is true). By
convention, gtn = (I,≺, α) has a last instance symbol i ∈ I
with α(i) = g to ensure that mg accomplishes its own goal.

Operators An operator o is a tuple (n, χ, e) where n ∈ O
is a primitive task name (assumed unique to o), χ is a propo-
sitional formula in L called o’s precondition (or prec(o)),
and e is a set of literals from L called o’s effects. We refer
to the set of positive literals in e as add(o) and the negated
literals as del(o). An operator is relevant to primitive task it
if n = α(it) and to a subgoal ig if the effects of o contain a
matching literal from the NNF of α(ig). A set of operators
O forms a transition (partial) function γ : 2L ×O → 2L as
follows: γ (s, o) is defined iff s |= prec(o) (the precondition
of o holds in s), and γ (s, o) = (s \ del(o)) ∪ add(o).

GTN Nodes and Progression Operations Let N =
(s, gtn) be a gtn-node where s is a state and gtn is a goal-task
network. A progression transitions a node N by applying
one of four progression operations: operator application (A),
task decomposition (Dt) goal decomposition (Dg), or release
(G). Let P = {A,Dt, Dg, G} represent any of these four
operations (when the context is clear we write D for either
Dt or Dg). Then N −→P N ′ denotes a single progression

operation fromN toN ‘, whileN −→∗P N ′′ denotes a progres-
sion sequence from N to N ′′. Here we only summarize these
operations, although their semantics are defined by Alford
et al. (2016).

Operator application, (s, gtn)
i,o−→A (s′, gtn′), applies

an operator o to a node (s, gtn), with gtn = (I,≺, α)
and is defined if s |= prec(o) and o is relevant to an
unconstrained instance symbol i in gtn. If i is a primitive
task with task name n, then this corresponds to primitive
task application in H T Ns. If i is instead a relevant goal task,
this corresponds to primitive task application in H G Ns; in
this case, gtn′ = gtn, and the subgoal remains while the
state changes.

Goal decomposition, (s, gtn)
i,m−−→D (s, gtn′), for an un-

constrained subgoal i by a relevant goal method m =
(gm, χ, gtnm) is defined whenever s |= χ. It prepends i
with gtnm.

Task decomposition, (s, gtn)
i,m−−→D (s, gtn′), for an

unconstrained task i by a relevant task method m =
(c, χ, gtnm) is defined whenever s |= χ. It expands i
in gtn, replacing i with the network gtnm.

Goal release, (s, gtn)
i−→G (s, gtn′), for an unconstrained

subgoal i is defined whenever s |= α(ig). It can remove a
subgoal whenever it is satisfied by s.

GTN Planning Problems and Solutions A gtn-problem is
a tuple P = (L,O,M, N0), where L is propositional lan-
guage defining the operators (O) and methods (M),N0 is the
initial node consisting of the initial state s0, and gtn0 is the
initial goal-task network. O and C are implicitly defined by
O andM. A problem P is solvable under G T N semantics iff
there is a progression N0 −→∗P Nk, where Nk = (sk, gtn∅),
sk is any state, and gtn∅ is the empty network.

Solutions are distinguished by two kinds of plans that
depend on whether the world state is changed via operator
application. The subsequence of operator applications of
a progression sequence is a plan for P , since such opera-
tions modify world state. A gtn-plan for P is consists of
all progression operators, since this sequence captures the
entire set of progressions that must occur for a valid solution.
The G R P R O C E S S produces gtn-plans as explained in the
following section.

3 A Goal Reasoning Model

To arrive at a goal reasoning model, we blend G T N semantics
with the goal lifecycle in Figure 2 to define a semantics
for the G R P R O C E S S we have partially implemented in
A C T O R S I M . We begin by extending the online planning
model of §2 to model the GR actor as a state transition system
Σgr = (M,R, δGR), where M is the goal memory, R is a
set of refinement strategies, and δgr : M × R → M ′ is
the goal-reasoning transition function. We next define these
components.
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3.1 Nodes, Progression, and the Goal Memory
The goal memory stores goal nodes. A goal node is a tuple
N = (gi, N,C, o,X, x, q) where: gi ⊂ L is the goal to be
achieved; N = (s, gtn) is a gtn-node for gi; Con is the set of
constraints on gi and gtn; o is the current mode of gi, defined
below; X is the set of expansions that could achieve gi,
defined below; x ∈ X is the committed expansion along with
any applicable execution status; and q is a vector of quality
metrics. Metrics could be domain-dependent (e.g., priority,
cost, value, risk, reward) and are associated with achieving
gi. An important domain-independent metric, inertia, stores
the number of refinements applied to N . Dotted notation
indicates access to N ’s components, e.g., N .N := (s, gtn′)
indicates that the gtn-node gtn of N has been updated to
gtn′.

Similar to G T N planning, progressions modify compo-
nents of N ; we call these the refinement strategies R. Let
χ be a set of preconditions and r ∈ R denote a progres-
sion operator for N . Then a refinement r = (N , χ) tran-
sitions one or more components of N to N ′ and is written

N N,C,o,X,q−−−−−−→R N ′. Refinement sequences from N to N ′′
are written N −→∗R N ′′. Preconditions χ come from either
the goal lifecycle discussed below or domain-specific require-
ments for a specific world state or specific events before a
refinement can transition.

The goal memory M = {N1,N2, ..,Nm} for m ≥ 0
holds the active goal nodes for the G R P R O C E S S . Most
refinements modify the goal memory by modifying a node
within memory, in which case we write M −→R M ′ for a
single strategy application resulting in M ′ and M −→∗R M ′′

for a sequence of applied strategies resulting in M ′′.

3.2 Operations and Semantics: Refinement
Strategies (R)

Figure 2 displays the possible refinement strategies, where an
actor’s decisions consist of applying one or more refinements
from R (the arcs) to transition N between modes (rounded
boxes). Strategies are denoted using small caps (e.g., FORMU-
LATE) with the modes in monospace (e.g., FORMULATED).
For the remainder of this section, we detail semantics for
many of these strategies. We shorten the discussion by omit-
ting quality metricsN .q but leave the q above the progression
to indicate that at least inertia is modified. For example, ev-
ery refinement N q−→R N ′ results in N ′.q.inertia += 1
indicating increased refinement effort on N . G R P R O C E S S
may favor nodes with higher inertia by pushing them toward
completion or limiting further processing on them.

For the remainder of this section, we detail the forward se-
quence of a single goal node through the lifecycle of Figure 2,
which consists of goal formulation (via FORMULATE), goal
selection (SELECT), planning (EXPAND and COMMIT), plan
execution (DISPATCH, MONITOR, EVALUATE), and resolving
execution events (FINISH and the suite of RESOLVE-BY strate-
gies, which are displayed as annotations to dashed lines).
Finally, we explain two strategies that can be applied at any
time: DROP and PROCESS (not shown in this figure).

Goal formulation and Goal Selection Two important deci-

Figure 2: The goal lifecycle. Refinement strategies (arcs)
denote possible decision points of an actor, while modes
(rounded boxes) denote the status of a goal (set) in the goal
memory.

sions for G R P R O C E S S concern determining which goals to
create (i.e., FORMULATE) and which to pursue (i.e., SELECT).

FORMULATE adds a new goal to the goal memory, writ-

ten M
g,N−−→FORM M ′ for a new goal g, its corresponding

node N , the goal memory M before the application, and M ′
the revised memory. The result of applying FORMULATE is:
N .g = g; N .N = (scurrent, gtng); N .Con = ∅; N .o =
FORMULATED; N .X = ∅; N .x = nil; N .q.inertia = 1;
and M ′ = M ∪N .

SELECT transitions N .o from FORMULATED to
SELECTED, written N o,q−−→SEL N ′. It allows G R -
P R O C E S S to determine which goal nodes move forward
and which remain FORMULATED. In a G R P R O C E S S
where |M | ≤ k is bound to no more than k goals, SELECT
can limit extensive processing on nodes. Many nodes
trivially transition: N ′o := SELECTED.

Planning Classical planning systems often make strong as-
sumptions about the kind of plan required (i.e., the optimal
plan), the number (i.e., usually one), and the nature of execu-
tion (i.e., actions are deterministic and atomic). In contrast,
a G R P R O C E S S may explore alternative plans and commit
to one after further deliberation. We define an expansion to
mean any kind of plan to achieve a goal. While we focus on
state transitions in Σ or Σgr, expansions more generally in-
clude motion planning, trajectory planning, reactive planning,
etc., as often used in robotics applications.
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EXPAND, written N o,X,q−−−→EXP N ′, generates expansions
(i.e., gtn-plans) via operator application, task decomposi-
tion, and goal decomposition from §2.1. Consider a progres-
sion π = N0 −→∗P Nk, where Nk = (sk, gtn∅), sk is any
state, and gtn∅ is the empty network. Recall from §2.1 that
such a progression is a solution to a G T N problem and was
called a gtn-plan. EXPAND generates k expansions such that
x1, x2, .., xk ∈ X , |X| > 0, and x1 = π1, .., xk = πk are
the available expansions. The result is: N ′.o := EXPANDED

and N ′.X := {x1, .., xk}.
COMMIT chooses one expansion from N .X for Controller

execution and is written N o,q,x−−−→COM N ′. The result is:
N ′.o := COMMITTED and N ′.x := xc for some 1 ≤ c ≤ k.

Plan Execution The Controller executes the steps inN .x un-
til no more steps remain or a step fails; N is DISPATCHED

during this progression. Some expansions (e.g., goal or task
decomposition) are internal to the goal memory and do not
result in external actions of the actor. In the case of decompo-
sition, a node remains DISPATCHED until its subgoals or
subtasks are completed. Other expansions (e.g., operator ap-
plication) result in external actions by the Controller during
execution. Plan execution consists of DISPATCH, MONITOR,
and EVALUATE.

DISPATCH, written N o,N,q−−−→DISP N ′, applies the steps of
the progression within N .x. First, the goal node transitions:
N ′.o := DISPATCHED. Then, the G R P R O C E S S steps
through the expansion N .x. Suppose that N .x points to
the expansion x = N0 −→∗P Nk and that an index 0 < j ≤ k
indicates the step of the progression such that Nj−1 −→j

P Nj .
For k steps in x and each step xj for 0 < j ≤ k, the result
is: N .Nj−1 −→j

P N ′.Nj . How the G R P R O C E S S applies
xj depends on specified operation (cf. §2.1): Operator Ap-
plication applies operator o to the instance symbol i. This
application results the Controller executing i. Task Decom-
position applies method m to a compound task i, written
i,m−−→D, such that N .N.gtn is progressed. Goal Decompo-

sition applies method m to a goal i, written
i,m−−→D, such

that N .N.gtn is progressed, resulting in new subgoals being
added to the goal memory M . Let there be t new subgoals
resulting from applying m to i, labeled (gi1, gi2, .., git). For
goal gij where 0 < j ≤ t, then FORMULATE(gij) is called,

resulting in M
gij ,N−−−→FORM M

′.
MONITOR, if enabled, proactively checks on the status of

N .xj . If the status is FAIL or is not meeting expectations,
then EVALUATE is called. Nominal status only modifies the
inertia.

EVALUATE, written N o,q−−→EVAL N ′, processes events that
impact N during execution, which might include execution
updates or unanticipated anomalies. This strategy allows
a goal node to signal track that its execution is impacted:
N ′.o := EVALUATED.

Resolving Notable Events A notable event is one that im-
pacts N . A number of possible strategies relate to such
events and some are relevant from particular modes. Often
the goal determines for itself whether an event is notewor-

thy, which simplifies the encoding of strategies for a domain.
However, in more complex cases another deciding process
may arbitrate this determination. Resolution strategies can
roughly be divided into those that occur during execution
(shown as dashed lines in Figure 1), those that are related to
error conditions, and those that occur outside of executions
or errors.

PROCESS may be called in any node. It is the means by
which external processes or the G R P R O C E S S notify a goal
about an event and allow the goal to determine whether the
event is significant. In many cases, an event can be disre-
garded and the only the inertia is incremented. If the node is
DISPATCHED then the event may impact the execution of a
step xj . The impact of the event may be positive (e.g., com-
pletion of xj), neutral (e.g., xj is progressing as expected) or
negative (e.g., the imminent or detected failure of xj). In this
case, N transitions to EVALUATED and there are several
possible resolutions from this mode, as shown by the dashed
RESOLVE-BY strategies of Figure 1.

RESOLVE-BY can only be called from EVALUATED and
consists of a suite of strategies, which we only briefly de-
scribe. These strategies are distinct because the Controller
may need to be notified. CONTINUE allowsN to proceed with-
out significant change to its members. ADJUST corrects the
state models Σ or ΣGR that would modify future planning.
REPAIR modifies the current expansion x to x′. REEXPAND
creates new expansions {x′1, .., x′k} for the G R P R O C E S S
to consider. DEFER returnsN in a SELECTED mode and RE-
FORMULATE returns N in a FORMULATED mode. FAIL-TO
is a failure mode that allows the G R P R O C E S S to return
a goal to any previous mode for further processing. This
strategy applies when a transition is attempted but fails. For
example, if a plan cannot be generated then EXPAND may
trigger FAIL-TO(SELECTED).

RESOLVE-TO is used when a notable event impacts a
node but the impact is not deemed a failure. For exam-
ple, if a plan has already been generated but the goal for
a node is preempted, then the G R P R O C E S S may call
RESOLVE-TO(FORMULATED) to unselect the goal. In con-
trast to RESOLVE-BY, these methods simply “park” N in the
appropriate mode and will not otherwise modify the goal
node. Such progressions may be useful for quickly pausing a
goal.

DROP removes N from M such that M ′ = M \ {N}. It
is analogous to goal release (cf. §2.1).

FINISH, written N o,q−−→FIN N ′, indicates that execution
is complete for this expansion. FINISH cannot complete if
subgoals in gtn exist in the memoryM . If x involved decom-
position, then all subgoals or subtasks have been DROPed. If
x involved operator application, then the Controller returned
SUCCESS. This strategy does not remove N from M , which
is performed by DROP.

3.3 Goal Reasoning Problems and Solutions
Let Pgr = (L,O,M, Rd, Rp,M0) be a goal-reasoning prob-
lem where L = Lexternal ∪ Linternal is the propositional
language,M and O are defined as in Section 2.1, Rd is the
default set of refinement strategies detailed in Section 3.2,
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Figure 3: The Component Architecture of A C T O R S I M

Rp is a set of refinement strategies provided by the domain
designer, and M0 is the initial goal memory.

We say that Pgr is solvable iff there is a progression
M0 −→∗R Mk, where Mk = ∅.

4 The Actor Simulator
The Actor Simulator, A C T O R S I M (Figure 3), is a partial
implementation of the goal lifecycle of Roberts et al. (2015),
which is described in Section 3.2. A C T O R S I M comple-
ments existing open source planning systems with a standard-
ized implementation of goal reasoning. It also provides links
to simulators that can simulate multiple agents interacting
within a dynamic environment.

A C T O R S I M Core provides the interfaces and minimal
implementations of the platform. It contains the essential
abstractions that apply across any simulator. This compo-
nent contains information about Areas, Locations, Actors,
Vehicles, Symbols, Maps, Sensors, and configuration details.

A C T O R S I M Planner contains the interfaces and min-
imal implementations for linking to existing open source
planning systems. This component unifies Mission Planning,
Task Planning, Path Planning, and Motion Planning. It cur-
rently includes simple, hand-coded implementations of these
planners, although we envision linking this component to
many open source planning systems.

A C T O R S I M Connector links to existing simulators di-
rectly or through a network protocol. Currently supported
simulators include George Mason University’s MASON4 and
two computer game simulators: StarCraft and Minecraft. We
envision links to common robotics simulators (e.g., Gazebo,
ROS, OpenAMASE), additional game engines (e.g., Mario
Bros., Atari arcade, Angry Birds), and existing competition
simulators (e.g., RDDLSim). We may eventually link A C -
T O R S I M to physical hardware.

A C T O R S I M Coordinator (not shown in the figure)
houses the interfaces that unify all the other components.
This component contains abstractions for Tasks, Events, Hu-

4
http://cs.gmu.edu/˜eclab/projects/mason/

man interface Interaction, Executives (i.e., Controllers), and
Event Notifications. It uses Google’s protocol buffers5 for
messaging between distributed components.

The Goal Refinement Library is a standalone library that
is integral to A C T O R S I M , but could be used on its own. It
provides goal management and the data structures for tran-
sitioning goals throughout the system. This library contains
the default implementations for goals, goal types, goal re-
finement strategies, the goal memory, domain loading, and
domain design.

5 Overcoming Obstacles in Minecraft
We study goal reasoning in Minecraft, a popular game where
a human player moves a character, named Steve, to explore
a 3D virtual world while gathering resources and surviving
dangers. Managing the complete game is challenging. The
character holds a limited inventory to be used for survival.
Resource blocks such as sand, dirt, wood, and stone can be
crafted into new items, which in turn can be used to construct
tools (e.g., a pickaxe for mining or shovel for digging) or
structures (e.g., a shelter, house, or castle). Some blocks are
dangerous to the character (e.g., lava or water). Hostile non-
playing characters like a creeper or skeleton, generally called
mobs, can damage the characters health. Steve can only fall
two blocks without taking damage. We focus on the problem
of navigating a much simpler subset of the world. The set of
possible choices available to achieve even this simple goal is
staggering; for navigating a 15x15 maze in Minecraft, Abel
et al. (2014) estimate the state space to be nearly one million
states.

Researchers have recently begun using the Minecraft game
for the study of intelligent agents (Aluru et al. 2015). In
previous work, researchers developed a learning architec-
ture called the Brown-UMBC Reinforcement Learning and
Planning (BURLAP) library, which they implemented in
their variant of Minecraft, BURLAPCraft (Abel et al. 2015)
BURLAPCraft allows a virtual player to disregard certain

5
https://developers.google.com/protocol-buffers/
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Figure 4: The gtn for the G R P R O C E S Sin our study.

actions that are not necessary for achieving goals such as
navigating a maze.

Similar to that research, we task the G R P R O C E S S , act-
ing as a virtual player, with controlling Steve to achieve the
goal of navigating to a gold block through an obstacle course.
However, our technical approach differs from prior research.
Our aim is to develop a G R P R O C E S S that can incorporate
increasingly sophisticated goal-task networks and learned
experience about when to apply them. At a minimum, this
requires thinking about how to compose action primitives
into tasks that the G R P R O C E S S can apply and linking these
tasks into a gtn. Thus, we construct these tasks and build a
gtn that uses them.

Figure 4 shows the gtn consisting of a top goal of moving
to the gold block and the five descriptive subgoals that help
the character lead to that objective. These subgoals do not
contain operational knowledge. For example, preconditions
on actions ensure that Steve will not violate safety by falling
too far or walking into a pool of lava or water. For moving
toward the goal, the block at eye level must be air, the block
stepped on cannot be lava or water, and Steve cannot fall
more than a height of two blocks. A staircase requires a wall
with a height of two blocks and the ability to move backwards
in order to place a block. Mining is only applicable if the
obstacle has a height of three blocks.

The order of subgoal choice impacts performance. For
example, suppose the subgoal to step forward is selected
when lava is directly in front of Steve. Steve’s Controller
disallows this step because it violates safety and the subgoal
will fail, which will require additional goal reasoning to
resolve the failure.

Two features of our goal representation complement prior
research in action selection (e.g., reinforcement learning or
automated planning). First, we model the subgoal choice
at descriptive level, assuming that committing to a subgoal
results in an effective operational sequence (i.e., a plan) to
achieve the goal. We rely on feedback of the Controller
running the plan to resolve the subgoal. Second, the entire
state space from start to finish is inaccessible to the G R -
P R O C E S Sso it cannot simply perform offline planning or
interleave full planning with online execution. Each obstacle
course is distinct and there must be an interleaving of percep-
tion, goal reasoning, acting. Third, the operational semantics
of committing to a subgoal are left to the Controller. Thus,
the G R P R O C E S S must learn to rank the subgoals based on
the current state using prior experience. Although random
exploration is possible, we will present evidence that that
such an approach is untenable, corroborating the findings of

Figure 5: The section types (top) and a short obstacle course
(bottom) where the G R P R O C E S S must traverse from the
emerald block on the right to the gold block on the left while
through a lava pit and two ponds.

Abel et al. (2015) that the state/action space is too large to
explore without a bias.

The question, then, is how to bias the exploration in such
a way as to speed up learning. Our research hypothesis is
that making effective choices at the G T N level can be done
by learning from traces (i.e., examples) that lead to more
efficient behavior, where improved efficiency is measured as
getting to the goal in fewer steps or failing less frequently.
Our research focus in this paper is examining what kind of
experience is most valuable. To this end, we demonstrate
a pilot study that leverages three kinds of prior experience
(completely random, ordered, and expert) to learning an ef-
fective subgoal selection policy.

We next describe how A C T O R S I M connects to Minecraft
and how we collect experience.

5.1 The Minecraft Connector in A C T O R S I M

The Minecraft Connector integrates A C T O R S I M abstrac-
tions with a reverse-engineered game plugin called the
Minecraft Forge API (Forge), which provides methods for
manipulating Minecraft. We implemented basic motion prim-
itives such as looking, moving, jumping, and placing or de-
stroying blocks. These motion primitives compose the opera-
tional plans for the five sub-goals: step forward, move closer,
step up, mine, and bridge. Although some of this function-
ality was present in BURLAPCraft (Abel et al. 2015), our
implementation better matches with the abstractions provided
by A C T O R S I M Core and A C T O R S I M Coordinator.

We have simplified Steve’s motions to be axis aligned.
Steve always faces North and the maze is constructed such
that the gold block is North of Steve in a straight line. Steve
is 1.8 meters high; voxels in Minecraft are 1 meter square.
So, Steve occupies roughly a 1x2 meter space. Steve interacts
with a limited set of world objects: cobblestone, emerald, air,
lava, water, and gold.

The Minecraft connector constructs the obstacle courses
for our study. Figure 5 (top) shows the five sections the
G R P R O C E S S may encounter: lava, pond, short wall (2
blocks high), tall wall (3 blocks high), and pillar (3 blocks
high). Figure 5 (bottom) shows a maze composed of three
sections. Steve begins at an emerald block on the right with
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Figure 6: Observable blocks around Steve from the top view
(top), where the player is facing “up” and the side view
(bottom), where the player is facing to the right.

a goal of being at the gold block.
Each obstacle has an appropriate subgoal choice. For

lava or pond, the best choice is a bridge; alternatively the
G R P R O C E S S may also move closer and go around the pond.
For the short wall, the best subgoal is to create a single stair
and step up. For the tall wall or pillar, which are both three
blocks high, the best subgoal is to mine through the wall;
alternatively, the G R P R O C E S S may also move closer and
go around the pillar.

Observations Figure 6 shows the set of states around Steve
that the G R P R O C E S S can observe. These include the eight
blocks directly around Steve’s feet, the two blocks directly
behind and in front of Steve, one block behind and below
Steve, the block just above Steve’s head to the front, and the
block three down and in front of Steve. A state is labeled
with a unique string using the relative position left/right (l),
front/back (f), and height (h) with either a positive (p) or
negative (n) offset, where zero is denoted as a positive number.
Each state is assigned a unique string (shown in each box) to
denote the world object in that position.

Collecting Traces of Experience We collect three kinds of
traces for choosing these five subgoals that vary in how much
state they consider. The random training procedure is worst-
case baseline; it ignores state and selects a subgoal with

uniform probability. The ordered training procedure selects
the subgoals in the same order of Figure 4: step forward,
move closer, bridge, mine, and step up; it also ignores state. If
a subgoal is allowed by the Controller, the subgoal is applied.
If not, it continues to the next subgoal in the ordering; on
success selection restarts from the beginning of the order.
The expert training procedure ensures most runs reach the
gold as a best-case bound; it is hand-coded (by an author
of this paper) and examines detailed state to select the best
subgoal.

We collect traces from the random, ordered, and expert
procedures, capturing the state, distance to the goal, sub-goal
chosen, and whether the chosen subgoal succeeded. Both
the random and ordered training procedures can fail to reach
the gold. The expert procedure never fails to reach the gold
but also represents extremely biased knowledge about which
subgoal is appropriate.

6 Learning from Experience in Minecraft
We apply two learning procedures to the traces of one or
more of the training procedures. The frequentist procedure
applies simple statistical sampling from random, ordered,
or expert traces to select the best choice. The frequentist
procedure leverages all state knowledge even though some
state may be irrelevant to decision making. To apply these
traces, we then collated the results into tables that counted
the subgoal chosen for a particular state where, if the sub-
goal was successful, we add 3 to the frequency, otherwise
we subtract 1. The frequentist procedure then chooses the
subgoal with the highest frequency based on the current state.
If the G R P R O C E S S encounters a state that was not observed
in any of its training traces, it fails to reach the goal location.

The decision tree (d-tree) procedure learns a decision tree
over past experience to select the best subgoal. We used
the J48 algorithm implemented in WEKA6. Figure 7 shows
the tree learned from expert traces. The world object at
that position is indicated by a single letter: cobblestone (C),
emerald (E), air (A), lava (L), water (W), and gold (G). Thus
the first state listed in the tree is the block immediately in
front of Steve’s head: left/right of 0, front/back of 1, and
height of 1.

Evaluation We measured the number of subgoal choices to
complete each variant using each of the three training pro-
cedures. We also counted the number of failed attempts the
G R P R O C E S S tried before reaching the goal location or fail-
ing. We ran 10 trials for each procedure in each variant on
random course lengths of 5, 10, 15, and 20 sections. The ex-
periment times out if time exceeds 240 steps or when, during
the frequentist procedure, an unknown state is encountered.

The expert and learned approaches never fail, so we focus
our discussion on the runtime, which is a proxy for the num-
ber of steps taken. We measured the run time taken for the
G R P R O C E S S to complete the obstacle course using each
of the three procedures. We expected the expert procedure to
have the lowest elapsed time, the random procedure to have
the highest elapsed time, and ordered to be between random

6
http://www.cs.waikato.ac.nz/˜ml/weka/
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lp0fp1hp1 = C

| lp0fp1hp2 = C: RemoveObstacle (43.0)

| lp0fp1hp2 = A: CreateStairs (19.0)

| lp0fp1hp2 = E: RemoveObstacle (0.0)

| lp0fp1hp2 = L: RemoveObstacle (0.0)

| lp0fp1hp2 = W: RemoveObstacle (0.0)

| lp0fp1hp2 = G: RemoveObstacle (0.0)

lp0fp1hp1 = A

| lp0fp1hn1 = C: WalkTo (731.0)

| lp0fp1hn1 = A: WalkTo (53.0)

| lp0fp1hn1 = E: WalkTo (0.0)

| lp0fp1hn1 = L: CreateBridge (42.0)

| lp0fp1hn1 = W: CreateBridge (36.0)

| lp0fp1hn1 = G: WalkTo (17.0)

lp0fp1hp1 = E: WalkTo (0.0)

lp0fp1hp1 = L: WalkTo (0.0)

lp0fp1hp1 = W: WalkTo (0.0)

lp0fp1hp1 = G: WalkTo (0.0)

Figure 7: The decision tree learned from the expert traces.

and expert. This is because the expert procedure checks the
state of the environment before choosing a sub-goal, and
therefore makes an informed decision. In the random and
ordered procedures, the G R P R O C E S S relies on a random
or pre-set order of sub-goals to choose from, which could
lead to inefficiencies if a sub-goal is not appropriate, but still
achieved. When applying learning, we expected the frequen-
tist procedure to have an elapsed time between ordered and
expert and we expected to see an effect of using different
traces.

Results Table 1 shows the elapsed time as the number of
sections in the obstacle course increase from 5 to 20. The
left-most column indicates one or more training traces used
by the learning mechanism: random (R), ordered (O), or
expert (E). The number of samples is too low for statistical
testing, but we plan to run a full experiment and report such
testing in future revisions.

The top subtable, Training, shows the average runtime
during trace collection; a dash indicates a time out and failure
to reach the gold block for all runs. On average, expert
performs best, random worst, and ordered in the middle.
However, in looking more closely at the runs, we noted that
the expert procedure does not always outperform ordered.
This finding does not meet our expectation that the expert
will dominate, but the results are strongly suggestive that it
generally performs best. We note that the ordered procedure
does not perform that much worse than the expert, which is a
theme we return to several times.

We counted the number of failed subgoal attempts, which
indicates how often a procedure selects an inappropriate sub-
goal that the Controller disallowed. We only discuss these
results and do not show the data. The expert procedure never
fails a subgoal. The random procedure had the most number
of failed goal attempts, and the ordered procedure was in the
middle of the other two. These trends were expected as the
random and ordered procedures do not check the environ-
ment state before making an informed decision, and show
that the expert procedure is better in terms of choosing the

5 10 15 20
Train x̄ σ x̄ σ x̄ σ x̄ σ

Training
R - - - - - - - -
O 21.5 1.7 41.8 3.3 56.8 3.3 79.8 2.1
E 16.3 1.3 23.8 1.3 46.0 4.1 64.8 5.0

Frequentist
R - - - - - - - -
O 17.5 1.7 33.3 2.1 48.8 5.1 63.5 3.5

RO 17.5 1.7 33.3 2.1 48.8 5.1 63.5 3.5
E 16.3 1.3 32.8 1.3 47.3 5.1 65.0 4.6

RE 16.3 1.3 32.8 1.3 46.7 6.1 65.0 4.6
OE 17.5 1.7 33.3 2.1 48.8 5.1 63.5 3.5

ROE 17.5 1.7 33.3 2.1 49.3 5.4 63.5 3.5

Decision Tree
R - - - - - - - -
O 6.7 0.6 12.0 0.8 18.3 2.1 23.5 2.1

RO 6.7 0.6 12.0 0.8 18.0 2.8 23.0 0.0
E 5.8 1.0 13.3 0.5 18.3 2.4 27.0 1.2

RE 5.8 1.0 13.3 0.5 18.3 2.4 27.0 1.2
OE 6.7 0.6 12.0 0.8 18.3 2.1 23.0 1.7

ROE 6.7 0.6 12.0 0.8 18.3 2.1 23.3 1.5

Table 1: Mean runtime and standard deviation for the study.

right sub-goals.
Table 1 (middle) shows the results obtained from the fre-

quentist procedure learning using various combinations of
the training traces. Using either expert traces (E row) or
ordered traces (O row) only resulted in substantially similar
runtimes to the original expert traces, suggesting that either
kind of trace is suitable for biasing learning. Combining the
two traces (OE) did not appear to change the behavior.

Using only random traces (R) did not produce an effective
policy. But it also does not appear that adding the random
trace to expert (RE), ordered (RO), or their both (ROE) cause
a significant degradation of the results.

Table 1 (bottom) shows the results obtained from decision
tree learning. We can observe a dramatic improvement in the
runtime with this procedure. Moreover, the ordered tree (O)
sometimes has better average performance than the expert
tree (E). Adding random traces (RO, RE, ROE) did not appear
to diminish the results substantially. As seen in Figure 6, we
use 15 states per observation. The ordered tree (O) makes
effective decisions using between 3 and 5 states, while the
expert tree (E) makes effective decisions examining at most
2 states. Clearly, there is great benefit to learning which
observations matter for effective decision making.

7 Other A C T O R S I M Connectors
Other projects apply, extend, or propose A C T O R S I M to
work with additional simulators. We present a snapshot of
each project to highlight how A C T O R S I M assists in study-
ing goal reasoning.

Foreign Disaster Relief The longest-running project for A C -
T O R S I M is Foreign Disaster Relief, where we have studied
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how to perform goal reasoning to coordinate teams of robotic
vehicles (Roberts et al. 2015a), estimating high-fidelity sim-
ulations using a faster, but lower-fidelity estimates, and its
application to play-calling (Apker et al., 2015). The most
recent extension of this work has extended Goal Reasoning
with Information Metrics (GRIM) by Johnson et al. (2016).
The A C T O R S I M codebase, in particular the Goal Reason-
ing Library, had its genesis in abstractions developed during
this project. Similar to the studies presented, A C T O R S I M
uses the MASON simulator for the scenarios of this project.
However, the set of motion and path planning primitives is
simplified in that it does not leverage the LTL templates or
vehicle controllers mentioned in Roberts et al. (2015a).

StarCraft StarCraft:Brood War is a Real Time Strategy
(RTS) game developed by Blizzard Entertainment. At an ab-
stract level, it is an economic and military simulation. Players
build an economy to gather resources, use these resources to
train an army, then use this army to attempt to defeat their
opponent, either in direct engagements or through disrupting
their economy. It has a number of desirable properties as
an artificial intelligence testbed, and has seen a good deal of
research in recent years (Ontanon et al. 2013).

A C T O R S I M integrates with an existing game agent de-
veloped by Churchill et al., UAlbertaBot (UAB)7. UAB inter-
faces directly with the game of Brood War using the Brood
War API (BWAPI)8, through which it can issue commands
to units and monitor the observable state of the game. It is a
modular agent on which researchers can build their systems.

The A C T O R S I M Connector controls a subset of the be-
havior of the agent, letting UAB control the remainder. For
example, if A C T O R S I M creates a goal to attack a specific re-
gion of the map, UAB will decide the formation and specific
unit commands necessary to achieve that goal. The behavior
controlled by A C T O R S I M is currently region-level position-
ing, soon to include economic growth decisions.

We have used A C T O R S I M to emulate the original hand-
coded behaviors of UAB, and are in the process of imple-
menting more complex goals to demonstrate the additional
expressivity of the agent using our system. In addition, we
are working on automatically learning the EVALUATEfunction
based on replays of professional human players, which are
available online in large quantities.

8 Related Work
Researchers have applied goal reasoning to other domains,
such as the Tactical Action Officer (TAO) Sandbox (Molin-
eaux et. al., 2010). Using the Autonomous Response to
Unexpected Events (ARTUE) agent, they implemented goal-
driven autonomy; ARTUE can reason about what goals to
achieve based on the changing environment, in this case a
strategy simulation for TAOs to train in anti-submarine war-
fare. Goal reasoning has been used in other gaming domains
such as Battle of Survival, a real-time strategy game (Klenk
et al., 2013).

Goal refinement builds on the work in plan refinement

7http://www.github.com/davechurchill/ualbertabot
8http://www.github.com/bwapi/bwapi

(Kambhampati, Knoblock, & Yang 1995), which equates
different kinds of planning algorithms in plan-space and
state-space planning. Extensions incorporated other forms
of planning and clarify issues in the Modal Truth Criterion
(Kambhampati and Nau 1994). More recent formalisms such
as Angelic Hierarchical Plans (Marthi et al. 2008) and Hi-
erarchical Goal Networks (Shivashankar et al. 2013) can
also be viewed as leveraging plan refinement. The focus on
constraints in plan refinement allows a natural extension to
the many integrated planning and scheduling systems that
use constraints for temporal and resource reasoning.

The goal lifecycle bears close resemblance to that of Har-
land et al (2014) and earlier work (Thangarajah et al. 2010).
They present a goal lifecycle for BDI agents, provide op-
erational semantics for their lifecycle, and demonstrate the
lifecycle on a Mars rover scenario. Recently, Cox et al. (2016)
proposed a model for goal reasoning based on planning. We
hope to characterize the distinction between these models in
future work.

9 Summary and Future Work
In this paper, we formalized a semantics for goal reasoning
and applied our implementation, called A C T O R S I M , to a
pilot study in Minecraft. For the task that we examined, we
developed three methods to selection sub-goals: random, or-
dered, and expert. Using the results of these methods, we
examined two learning methods. We showed that the expert
selection is the most efficient based on the elapsed time and
the number of failed goal attempts, and that the random selec-
tion was the least efficient followed by the ordered selection.
For the frequentist approach, we showed that the expert and
ordered traces yielded the best performance, and that adding
random traces did not seem to cause too much harm.

In the future, we plan to incorporate more complex tasks
such as having an agent protect itself against creepers and
mobs. A first step in this direction will be to encode our goal
network using the goal lifecycle provided in A C T O R S I M ,
since our current implementation applies goal reasoning with-
out using much of its functionality. This will allow us to build
(or learn) more sophisticated goal networks and to take ad-
vantage of existing planning and scheduling techniques in
A C T O R S I M . Finally, we plan to include non-playing char-
acters in Minecraft with our resulting goal networks.

Broader dissemination of A C T O R S I M will foster deeper
study and enriched collaboration between researchers inter-
ested in goal reasoning, planning, and acting. A C T O R S I M
complements existing open source planning systems with a
standardized implementation of goal reasoning so researchers
can focus on (1) designing goals and goal transitions for their
system (2) linking A C T O R S I M to their particular simulator,
and (3) studying goals and behavior in the dynamic environ-
ment provided by the simulator. By releasing it as an open
source package, we lay a foundation for advanced studies
in goal reasoning that include integration with additional
simulators and planning systems, formal models, and em-
pirical studies that examine decision making in challenging,
dynamic environments.

Our upcoming projects include extending A C T O R S I M
to actual robotic systems that include the Roomba system
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and a set of Hubo’s. The architecture of A C T O R S I M is
now developed enough that we can also start to consider
integrating it with more sophisticated robot simulators such
as Gazebo or the the robocup simulators. We believe this
area presents a great deal of promise for the formal model
of goal reasoning we present in this paper as well as for
A C T O R S I M.
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Sequential Quadratic Programming for Task Plan Optimization

Christopher Lin1∗, Dylan Hadfield-Menell2∗, Rohan Chitnis1, Stuart Russell2, and Pieter Abbeel2∗†‡

Abstract

We consider the problem of refining an abstract task plan
into a motion trajectory. Task and motion planning is a hard
problem that is essential to long-horizon mobile manipula-
tion. Many approaches divide the problem into two steps: a
search for a task plan and task plan refinement to find a fea-
sible trajectory. We apply sequential quadratic programming
to jointly optimize over the parameters in a task plan (e.g.,
grasps, put down locations). We provide two modifications
that make our formulation more suitable to task and motion
planning. We show how to use movement primitives to reuse
previous solutions (and so save optimization effort) without
trapping the algorithm in a poor basin of attraction. We also
derive an early convergence criterion that lets us quickly de-
tect unsatisfiable constraints so we can re-initialize their vari-
ables. We present experiments in a navigation amongst mov-
able objects domain and show substantial improvement in
cost over a backtracking refinement algorithm.

1 INTRODUCTION
Long-horizon mobile manipulation planning is a fundamen-
tal problem in robotics. Viewed as trajectory optimization,
these problems are wildly non-convex and direct motion
planning is usually infeasible. Viewed as a classical planning
problem, there is no good way to represent the geometry of
the problem efficiently in a STRIPS or PDDL representa-
tions.

The robotics and planning communities have studied the
problem of task and motion planning (TAMP) as a way to
overcome these challenges. These approaches seek to inte-
grate classical task planning methods, that can handle long
horizons, with motion planning approaches, that can handle
complex geometry. In recent years, there has been substan-
tial progress on the problem of finding feasible task and mo-
tion plans (Chitnis et al. 2016), (Garrett, Lozano-Perez, and
Kaelbling 2015), (Toussaint 2015).

The approach to TAMP in (Chitnis et al. 2016) relies on
three components: a black box classical planner that ignores
geometry to find an abstract task plan, a black box motion
planner that can determine motion plans for a given abstract
action, and an interface that shares information between the
∗∗denotes equal contribution
†1{c.l, ronuchit}@berkeley.edu
‡2{dhm, russell, pabbeel}@cs.berkeley.edu

(a) Straight line initialization. (b) Backtracking solution.

(c) Intermediate Solution. (d) Final Solution.

Figure 1: The robot, shown in red, moves a green can to the goal
location. The backtracking solution samples and fixes a trajectory
waypoint. This leads to an unnecessarily long path. (c) and (d)
show an intermediate and final trajectory computed by running se-
quential quadratic programming on the task plan.

two different planners. Task plans consists of bound object
references (e.g., can1) and unbound pose references (e.g.,
pose1). Pose references are continuous parameters that are
characterized by a set of constraints. For example, a task
plan may require that pose1 be a grasping pose for can1.

The process of motion planning for an abstract plan is
called plan refinement. If plan refinement for a given task
plan fails, then the interface updates the task planner with
information that lets it plan around the failure. In this work,
we contribute a novel method for the task plan refinement
component of this system. Our approach has applications to
systems that use a similar decomposition and as a trajectory
smoother for general TAMP algorithms.
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Current approaches to task plan refinement typically on
a backtracking search over the parameters of the plan and
solve a sequence of independent motion planning problems.
We propose an approach that jointly optimizes over all of
the parameters and trajectories to implement a given ab-
stract plan. This leads to final solutions with substantially
lower cost, when compared with approaches that compute
motion plans for each high level action independently. Fig-
ure 1 shows an example that compares the result from joint
optimization with the result from a backtracking search.

The optimization problems we consider are highly non-
convex. We rely on randomized restarts to find solutions: if
we fail to converge, we determine plan parameters associ-
ated with infeasible constraints and sample new initial val-
ues for the optimization. After a fixed budget of restarts, we
return to the task planning layer and generate a new task
plan. We contribute two modifications to the basic algorithm
to facilitate efficient randomized restarts.

The first modification uses a minimum velocity projec-
tion (Dragan et al. 2015) of the previous solution to re-
initialize trajectories. This preserves the overall global struc-
ture of the trajectories without trapping new solutions in the
same basin of attraction. The second modification is an early
convergence criterion that checks to see if a constraint is
likely to be unsatisfiable. This allows us to restart more fre-
quently and reduces overall solution times.

Our contributions are as follows: 1) we give a formula-
tion of task and motion planning that unambiguously spec-
ifies the associated trajectory optimization; 2) we apply se-
quential convex programming to jointly optimize over the
trajectories and parameters in a plan refinement; 3) we show
how to reuse previous solutions without trapping the opti-
mization in a bad basin of attraction; and 4) we show how
to do early convergence detection to avoid wasted effort on
infeasible plans. We present experiments that compare our
approach to a backtracking refinement. Our approach leads
a 2-4x reduction in the total path cost of solutions at the cost
of a 1.5-3x increase in running time. We verify that our pro-
posed modifications led to reductions in refinement time.

2 TRAJECTORY OPTIMIZATION WITH
SEQUENTIAL QUADRATIC

PROGRAMMING
Our approach uses sequential quadratic programming to do
task plan refinement. In this section, we describe the motion
planning algorithm from (Schulman et al. 2013), which ap-
plies sequential quadratic programming to motion planning.

Motion Planning as Constrained Trajectory
Optimization
A core problem in robotics is motion planning: finding a
collision-free path between fixed start and goal poses. A mo-
tion planning problem is defined by:
• a configuration space of robot poses
• a set of obstacles O
• an initial and goal configuration.

We will define configuration spaces by a set of feasible robot
posesX and a dynamics constraint. The dynamics constraint

is a Boolean function f : X×X → {0, 1}. It takes as input a
pair of poses p1, p2 and is 1 iff p2 is directly reachable from
p1.

Figure 1 shows a 2D motion planning problem that will
serve as the starting point for a running example. The pose
of the robot is represented by a pair (x,y). We let X be a
bounding box so x ∈ [0, 7] and y ∈ [−2, 7]. The dynam-
ics function ensures that the distance between subsequent
states of the trajectory is always less than a fixed constant:
f(p1, p2) = (p1 − p2 < dmax).

There are three main approaches to motion planning
that are used in practice: discretized configuration space
search (Cohen, Chitta, and Likhachev 2010), randomized
motion planners (Kavraki et al. 1994), (Lavalle 1998), and
trajectory optimization (Schulman et al. 2013), (Ratliff et
al. 2009). In this work, we build on trajectory optimization
approaches.

The downside of trajectory optimization approaches is
that they are usually locally optimal and incomplete, while
the other approaches have completeness or global optimal-
ity guarantees. The upside of trajectory optimization is that
it scales well to high dimensions and converges quickly. The
second property is especially useful in a task and motion
planning context because it lets us quickly rule out infeasi-
ble task plans.

Trajectory optimization generates a motion plan by solv-
ing the following constrained optimization problem.

min
τt∈X

||τ ||2 (1)

subject to f(τt, τt+1) = 1

SD(τt, o) ≥ dsafe ∀o ∈ O
τ0 = p0, τT = pT

We optimize over a fixed number of waypoints τt, with
t = 0, . . . , T . The objective ||τ ||2 is a regularizer that pro-
duces smooth trajectories. A standard choice is the minimum
velocity regularizer

||τ ||2 =
∑

t

||τt − τt+1||2.

The first constraint is the dynamics constraint that ensures
that the pose at time t+1 is reachable from the pose at time
t. The second constraint is a collision avoidance constraint.
It requires that the distance1 from any robot pose to an ob-
ject be larger than a fixed safety margin. The final constraint
ensures that the trajectory begins (resp. ends) at the initial
(resp. final) pose.

Sequential Quadratic Programming
(Schulman et al. 2013) uses sequential quadratic program-
ing (SQP) to solve the optimization problem in Equation 1.
SQP is an iterative non-linear optimization algorithm that
can be seen as a generalization of Newton’s method. An im-
portant attribute of SQP is that it can typically solve prob-
lems with very few function evaluations. This is useful in

1This is actually the signed-distance, which is negative is the
robot and object overlap.
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trajectory optimization because collision checking is typi-
cally a computational bottleneck.

SQP minimizes a non-linear f subject to equality con-
straints hi and inequality constraints gi.

min
x

f(x) (2)

subject to hi(x) = 0 i = 1, . . . , neq

gi(x) ≤ 0 i = 1, . . . , nineq
The first step is to move the constraints into the objective

as an `1 penalty term:

min
x
f(x) + µ

(
neq∑

1

|hi(x)|+
nineq∑

1

|gi(x)|+
)
. (3)

As µ → ∞, this is equivalent to the original constrained
problem. We repeatedly minimize this function in an outer
loop that increases µ.

In the inner loop, we use an iterative algorithm. Let x(i)
be the current solution. First, we compute a local convex ap-
proximation to Equation 3 at x(i). In (Schulman et al. 2013)
they use a quadratic approximation to f and linear approxi-
mations to the hi and gi. We adopt the same approach in this
work.

Once we have obtained a convex local approximation we
can minimize it to get the next solution x(i+1). We need to
ensure that the approximation is accurate so we impose a
trust-region constraint. This enforces a hard constraint on

the distance between x(i) and x(i+1). Let
∼
f ,
∼
hi,
∼
gi be convex

approximations to f, hi, gi. The optimization we solve is

min
x

∼
f + µ

(
neq∑

1

|
∼
hi(x)|+

nineq∑

1

|∼gi(x)|+
)

(4)

subject to |x− x(i)| < δ (5)
where δ is the trust-region size. The `1-norm to penalize

constraint violations results in a non-smooth optimization,
but can still be efficiently minimized by standard quadratic
programming solvers. Algorithm 1 shows pseudocode for
this optimization method.

As an example, consider the behavior of SQP on the mo-
tion planning problem from Figure 2. The initial pose is in
the top right at location (0, 2) and the target pose is around
a corner at location (3.5, 5.5). We initialize with an infea-
sible straight line trajectory. We use 20 time-steps for our
trajectory. We let the x coordinate for the robot take values
in [0, 7] and the y coordinate take values in the range [−2, 7].
The corresponds to the following trajectory optimization:

min
τt∈[0,7]×[−2,7]

20∑

t=0

||τt − τt+1||2

subject to |τt − τt+1| ≤ dmax
SD(τt,Wall) ≥ dsafe

τ0 = (7, 3)

τ20 = (3, 7)

Algorithm 1 `1 Penalty Sequential Quadratic Program-
ming (Nocedal and Wright 2006).

Define: SQP(x(0), f, {hi}, {gi})
Input: initial point x(0), the function being minimized f ,
a set of non-linear equality constraints {hi}, a set of non-
linear inequality constraints {gi}.
/* increase the penalty for violated nonlinear constraints
in each iteration */
for µ = 100, 101, 102 . . . , µmax do

for i = 1, . . . , ITER LIMIT do
/* compute a quadratic approximation for f*/
f̃ , {h̃i}, {g̃i} = ConvexifyProblem(f, {hi}, {gi})
for j = 1, 2, . . . do
x = argmin (4) subject to (5) and linear con-
straints
if TrueImprove / ModelImprove > c then

/* expand trust region */
δ ← improve ratio · δ
break

end if
/* shrink trust region */
δ ← decrease ratio · δ
if converged() then

/* converge if trust region too small
or current solution is a local optimum */
return locally optimal solution x∗

end if
end for

end for
end for

The first step of the algorithm makes a linear approxima-
tion to the signed distance constraint. The details of the ap-
proximation can be found in (Schulman et al. 2013). The
first image shows this initialization and superimposes the lo-
cal approximation to the signed distance constraint on top of
it. It pushes each pose towards the outside of the walls.

The next step of the algorithm minimizes the approxima-
tion to this constraint subject to a trust region constraint.
This makes progress on the objective, so we accept the move
and increase the size of the trust region. After several itera-
tions, we obtain the trajectory in the middle of the image.
At termination we arrive at the motion plan in the left most
image: a collision-free, locally-optimal trajectory.

3 TASK AND MOTION PLANNING
In this section, we formulate task and motion planning
(TAMP). We present an example formulation of the naviga-
tion amongst moveable objects (NAMO) as a TAMP problem.
We give an overview of the complete TAMP algorithm pre-
sented in (Chitnis et al. 2016).

Problem Formulation
Definition 1 We define a task and motion planning (TAMP)
problem as a tuple 〈T,O, FP , FD, I, G, U〉:

T a set of object types (e.g., movable objects, trajec-
tories, poses, locations).
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(a) Initialization (b) Optimization (c) Final trajectory

Figure 2: Trajectory optimization for a 2D robot. The gradient
from the collision information pushes the robot out of collisions
despite the infeasible initialization.

O a set of objects (e.g., can2, grasping pose6,
location3).

FP a set of primitive fluents that collectively define
the world state (e.g., robot poses, object geometry).
The set of primitive fluents, together withO, defines
the configuration space of the problem.

FD a set of derived fluents, higher-order relationship
between objects defined as boolean functions that
depend on primitive fluents.

I a conjunction of primtive fluents that define the ini-
tial state.

G a conjunction of (primitive or derived) fluents that
define the goal state.

U a set of high-level actions (e.g., grasp, move, put-
down). Each high-level action a ∈ U is parameter-
ized by a list of objects and defined by: 1) a.pre,
a set of pre-conditions, fluents that describe when
an action can be taken; 2) a.post, a set of post-
conditions, fluents that hold true after the action is
performed; and 3) a.mid a set of mid-conditions,
fluents that must be true while the action is being
executed.

A state in a TAMP problem is defined by a set of primitive
fluents. Note that this defines the truth value of all derived
fluents. The solution to a TAMP problem is a plan

π = {s0, (a0, τ0), s1, (a1, τ1), . . . , (aN−1, τN−1), sN}.
The si are states, defined as a set of primitive predicates that
are true. The ai are the actions in the plan. τ i is the trajectory
for action i and is defined as a sequence of states. A valid
solution satisfies the following constraints.
• The first state is the initial state: s0 ∈ I .
• Pre-conditions are satisfied: ai.pre ∈ si.
• Mid-conditions are satisfied: ai.mid ∈ τ it ∀t.
• Post-conditions are satisfied: ai.post ∈ si+1.
• Trajectories start in the states that precede

them and end in the states that follow them:
τ i0 = si, τ iT = si+1.

• The final state is a goal state: G ∈ sN .
Our formulation differs from the standard formulation of

TAMP in two ways. The first is that we explicitly differenti-
ate between primitive fluents and derived fluents. We use the

difference between the two types of fluents to distinguish be-
tween variables and constraints for the optimization in Sec-
tion 4.

The second difference is the introduction of mid-
conditions. These are invariants: constraints that must be sat-
isfied on every step on of a trajectory that implements a high-
level actions. Mid-conditions define the space of trajectories
than can implement a given high-level action. An example
mid-condition is a collision avoidance constraint.

Example Domain: Navigation Amongst Movable
Objects
Here, we formulate a 2D version of the navigation amongst
moveable objects (NAMO) problem (Stilman and Kuffner
2008). In our domain, a circular robot navigates a room full
of obstructions. If the robot is next to an object, it can at-
tach to it rigidly via a suction cup. In the top middle of our
domain is a closet. The robot’s goal is to store objects in,
or retrieve objects from, the closet. Thus, we call the prob-
lem the 2D closet domain (CL-2D-NAMO). This domain is
characterized as follows.

Object types T . There are six object types: 1) robot, a cir-
cular robot that can move, pick, and place objects; 2) cans,
cylinders throughout the domain that the robot can grasp and
manipulate; 3) walls, rectangular obstructions in the domain
that the robot can not manipulate; 4) poses, vectors in R2

that represent robot poses; 5) locs, vectors in R2 that repre-
sent object poses; and 6) grasps, vectors in R2 that repre-
sent grasps as the relative position of the grasped object and
robot.

Objects O. There is a single robot, R. There are N mov-
able objects: can1, . . . ,canN . There are 8 walls that make
up the unmovable objects in the domain: wall1, . . . ,wall8.
Robot poses, object locs, and grasps make up the remaining
objects in the domain. The are continuous values so there are
infinitely many of these objects. Robot poses and object locs
are contained in a bounding box around the room B. Grasps
are restricted to the be in the interval [−1, 1]2.

Primitive Fluents FP . The primitive fluents in this domain
define the state of the world. We define the robot’s posi-
tion with a fluent whose sole parameter is a robot pose:
robotAt(?rp-pose). We define an object’s loc with a similar
fluent that is parametrized by an object and a loc: objAt(?o-
can ?ol-loc).

Derived Fluents FD. There are three derived fluents in
this domain. The first is a collision avoidance constraint
that is parametrized by an object, a loc, and a robot pose:
obstructs(?obj-can ?loc-loc ?rp-pose). This is true when ?obj
and the robot overlap at their respective locations and poses.
It is defined as a constraint on the signed distance: SD(?obj,
R) ≥ dsafe.

We determine if the robot can pick up a can with
isGraspPose(?obj-can ?rp-pose ?loc-loc). This is true if a
robot at ?rp touches the can at location ?loc. This is imple-
mented as an equality constraint on signed distance: SD(R,
can) = ε. We use this to determine when the robot can pick
up the object, and when it can put it down.
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Once the robot has picked up an object, we need to ensure
that the grasp is maintained during the trajectory. We do this
with inManip(?obj-can ?g-grasp), which is parametrized by
a can and a grasp. It is defined by an equality constraint on
the respective positions of the object and the robot: (robo-
tAt(?rp) ∧ objAt(?obj ?loc) ⇒ ?rp-?loc = ?g). If the robot
is holding an object (i.e., inManip is true for some object
and grasp) then it is treated as part of the robot in all signed
distance checks.

Dynamics. The dynamics of this problem are simple. The
robot has a maximum distance it can move during any
timestep. The objects remain at their previous location, oth-
erwise they are unconstrained. The inManip fluent ensures
that such objects are always in the same relative position to
the robot.

High-level actions U . We have four high-level actions in
our domain: MOVE, MOVEWITHOBJ, PICK, and PLACE.

The MOVE action moves the robot from one location to
another, assuming it holds no object. We use ?rpt to repre-
sent the robot pose at time t within the move action’s trajec-
tory.
MOVE(?rp1-pose ?rp2-pose)

pre robotAt(?rp1)
∧ (∀ ?obj-can, ?g-grasp ¬ inManip(?obj ?g)

mid (∀ ?c-can, ?l-loc ¬ obstructs(?c, ?l ?rpt))
post robotAt(?rp2)

The MOVEWITHOBJ action is similar to the move action.
The primary difference is that the preconditions require that
the robot be holding an object and that said object remain
rigidly attached to the robot.
MOVEWITHOBJ(?rp1-pose ?rp2-pose ?obj-can ?g-grasp)

pre robotAt(?rp1) ∧ inManip(?obj ?g)
mid (∀ ?c-can, ?l-loc ¬ obstructs(?c, ?l ?rpt))
∧ inManip(?obj ?g)

post robotAt(?rp2)
The final two actions pickup objects from locations and

put them down. They only consist of a single timestep, so
they have no mid-conditions. In order to pick up an object,
the robot must be holding nothing and be next to the object.
To put an object down it must be currently held and the robot
has to be in the appropriate relative location.
PICK(?obj-can ?l-loc ?rp-pose ?g-grasp)

pre robotAt(?rp) ∧ objAt(?obj ?l)
∧ (∀ ?c-can, ?g-grasp ¬ inManip(?c ?g)
∧ isGraspPose(?obj ?rp ?l)

mid ∅
post inManip(?obj ?g)

PLACE(?obj-can ?l-loc ?rp-pose ?g-grasp)
pre robotAt(?rp) ∧ inManip(?obj ?g)
∧ isGraspPose(?obj ?rp ?l)

mid ∅
post ¬ inMaip(?obj ?g) ∧ objAt(?obj ?l)

4 TASK PLAN OPTIMIZATION
A common operation in task and motion planning is plan
refinement. This is the process of converted a partially spec-
ified abstract plan into a fully specified trajectory. We focus

on a special case of plan refinement where all discrete vari-
ables are fixed by the task plan. This is a common type of
abstract plan that is used in, e.g., (Toussaint 2015),(Lozano-
Pérez and Kaelbling 2014), (Chitnis et al. 2016), (Lagriffoul
et al. 2014).

First, we describe how our formulation of task and mo-
tion planning encodes a joint trajectory optimization over
intermediate states and plan parameters. Then, we discuss
our trajectory initialization and reuse schemes. These are
important in light of the size and non-convexity of the tra-
jectory optimization problems we consider. We show how
the movement primitives of (Dragan et al. 2015) can be used
to leverage previous solutions to guide initialization. Finally,
we give an algorithm for early detection of infeasibility. This
is crucial for task and motion planning, because it is impor-
tant to fail fast if no motion planning solution exists.

Abstract Plans Encode Trajectory Optimizations

Abstract plans in our formulation encode trajectory opti-
mizations. While we are not the first to apply this idea, our
approach has a precise and explicit connection between a
task plan and its corresponding trajectory optimization.

Before describing the optimization formulation in gen-
eral, we go through an example from the CL-2D-NAMO do-
main.

Example: Trajectory Optimization for a Pick-Place
Consider an abstract task plan for the CL-2D-NAMO do-
main.

• MOVE(rpinit gp1)
• PICK(can1 c1init gp1 g1)
• MOVEWITHOBJ(gp1 pdp1 can1 g1)
• PLACE(can1 c1goal pdp1 g1)

This plan moves to a grasping pose for can1, picks up can1,
moves to a goal location, and then places the object at the
goal. The parameters plan refinement determines are the
continuous action parameters: the grasping pose, gp1; the
grasp to use, g1; and the putdown pose, pdp1.

Setting the values for these parameters defines the inter-
mediate states in the plan, so these variables are directly con-
strained by the pre-conditions and post-conditions of actions
in the plan.

Next, we need to find trajectories through the state space
that connect these intermediate states. The variables in the
trajectory optimization will be a sequence of world states.
We fully determine the world state by setting a value for
each primitive predicate, so we optimize over the continuous
parameters for a sequence of primitive predicates, subject to
the mid-conditions from the high-level action and dynamics
constraints. This results in the following trajectory optimiza-
tion:
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min
gp1,g1,pdp1,τ0,τ2

∑
||τ0t − τ0t+1||2 +

∑
||τ2t − τ2t+1||2.

subject to τ00 = rpinit, τ
0
T = gp1

τ20 = gp1, τ
2
T = pdp1

|τ0t − τ0t+1| ≤ δ
|τ2t − τ2t+1| ≤ δ

∀o ∈ O SD(τ0t , o) ≥ dsafe
∀o ∈ O SD(τ2t , o) ≥ dsafe

isGraspPose(can1, c1init, gp1)

isGraspPose(can1, c1goal, pdp1)

inManip(can1, g1)

The constraints on the start and end of the trajectories
come from the robotAt preconditions. The final inManip
constraint holds for every state in τ2. Each constraint de-
fined above is either linear or a signed distance constraint.
This means that the problem is suitable for the sequential
quadratic programming approach described in Section 2.

Converting a General Abstract Plan to a Trajectory Op-
timization To translate a general high-level action A(p1,
p2, . . . ) we apply the following sequence of steps. First, de-
termine the parameters in the high-level action that are not
set. Second, determine the variables for a trajectory for this
action. In our formulation, these are defined by the set of
primitive predicates. In the CL-2D-NAMO domain, this adds
variables for robot poses and object locations.

Now that we have a set of variables, we can add in con-
straints. We iterate through A’s pre-conditions. We add them
as constraints on the parameters of the action and the first
state in the trajectory. We repeat that process with the post-
conditions and the last state in the trajectory. Finally, we add
A’s mid-conditions as constraints on each intermediate step
of the trajectory. Algorithm 2 shows pseudocode to set up
and refine this trajectory optimization.

The sequential quadratic programming approach that we
use is a local improvement algorithm, so good initialization
leads to faster convergence. In trajectory optimization bad
initializations often fail to converge, even when a solution
exists. This is a difficult challenge in regular trajectory op-
timization and trajectories considered here are substantially
longer than those considered in typical motion planning.

To deal with this challenge, we use the structure of our
formulation to help guide search. We define a distribution
over continuous values for each parameter type, called a
generator (Kaelbling and Lozano-Pérez 2011). Our first step
in initialization uses these generators to obtain initial values
for each parameter. After, we need to initialize trajectories
and make sure the the parameters are self-consistent. We do
this with an optimization that considers the trajectory costs
but only includes constraints at end states. Finally, we add in
all constraints and optimize the full problem.

Trajectory Reuse
Often, the first attempt at refinement fails to converge. Fig-
ure 3 (a) shows an example of one such trajectory. The initial

Algorithm 2 Refining an Abstract Task Plan

Define: PLANOPT(π)
Input: partially specified abstract plan π.
/* iterate through high-level actions in the plan */
for a ∈ π.ops do

params = GetVariables(a)
for p ∈ a.preconditions do
p.AddConstraint(params, τa1 )

end for
for p ∈ a.postconditions do
p.AddConstraint(params, τaT )

end for
for p ∈ a.midconditions do

for t = 2, . . . , T − 1 do
p.AddConstraint(params, τat )

end for
end for

end for
/* call SQP to optimize all the τa */

grasp pose was sampled on the wrong side of the object, so
it is unreachable. At this point, we want to use a randomized
restart to try to find a solution. However, completely starting
over from scratch as in Figure 3 (b) is undesirable because
we through away a lot of information. In particular, the pre-
vious trajectory has figured out that it should go around the
corner, not through it. The optimization can figure this out
again, but it will require a lot of collision checks and will
increase the total time. This problem gets much worse with
very long plans (e.g., 20 different move actions). If a single
action has no feasible trajectory, we shouldn’t restart motion
planning all of them from scratch.

What we would prefer to do is only re-initialize the vari-
ables in violated constraints. This often fails because the rest
of the plan has too much ‘inertia:’ it has already settled into
a local optimum and so the first step of the optimization sim-
ple moves the re-initialized variables back to their previous
(infeasible) values.

A solution to this fixes the parameters to their new sam-
pled initializations and then minimizes the norm of the dif-
ference between the new trajectory and the previous trajec-
tory. This projects the previous trajectory into the set of tra-
jectories consistent with the newly sampled parameters and
propagates these changes to the rest of the plan.

This is on the right track, but it is important to choose the
projection correctly. Figure 3 (c) shows what happens if this
projection is performed under an `2-norm. Although some
of the trajectory moves to account for the new parameters,
enough of it is stuck behind the object that the optimization
is still stuck in the same basin of attraction.

(Dragan et al. 2015) formulate movement primitives as
projections under different norms in a Hilbert space of tra-
jectories. We adopt their approach and use a minimum veloc-
ity norm to project old trajectories onto new initializations.
This is shown in Figure 3 (d). We can see that the new tra-
jectory maintains the qualitative structure of the previous so-
lution (and so avoids collisions) and naturally moves to the
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new pick pose.

Early Detection of Unsatisfiability
With long task plans, it is important that the optimization
fail fast. Very often an optimization quickly determines that
a constraint is infeasible and converges for that constraint.
However, the rest of the plan may still be very far from a
local optimum. Thus, a vanilla implementation of the con-
vergence check may spend a large number of extra QP min-
imizations and collision checks optimizing a plan that we
know to already be infeasible!

In SQP, one convergence test checks that approximate im-
provement in the objective value is above a threshold. This is
the improvement we make during a QP solve, but measured
with respect to the convex approximation. If the approximate
improvement is small we know that there is very little room
to improve on our current solution with respect to the real
objective.

Our approach is to check this convergence constraint in-
dependently for each constraint. We terminate the optimiza-
tion early if the following conditions are met: 1) there is
a constraint that is currently unsatisfied; 2) the approxi-
mate improvement on the constraint’s infeasibility is below
a threshold; 3) any constraints that share variables with this
constraint are satisfied or have a low approximate improve-
ment. The first two conditions extend the standard conver-
gence criterion to a per-constraint criterion. The final condi-
tion is there because sometimes we fail to make progress on
a constraint, not because it is infeasible, but because the op-
timization chose to allocate its effort to a different (coupled)
constraint.

5 EXPERIMENTS
Methodology
We evaluate our approach in the NAMO domain with two
distinct experimental setups: the swap task and the putaway
task. In the swap task, there are two objects inside the closet.
The robot must reverse the positions of both objects. This
requires reasoning about obstructions and proper plan or-
dering. In the putaway task, two target objects are located
among several obstructions in the room. The robot must re-
trieve the two objects and place them both anywhere inside
the closet. An important aspect of this task is that once one
object is placed inside the closet, the robot cannot navigate
behind it to the place the other. We run experiments for this
task with 0, 3, and 5 obstructing objects.

We compare performance with the backtracking baseline
established in (Chitnis et al. 2016), which performs exhaus-
tive backtracking search over plan parameters. We imple-
ment the motion planning for this method by applying SQP
to each action independently.
Manipulated Variables. We perform two experiments. Ex-
periment 1 compares the performance of four systems: the
backtracking baseline (B), standard SQP (S), SQP with our
early convergence criteria (E), and standard SQP initialized
using the solution found by backtracking (T). There are two
manipulated variables in this experiment: which of these

(a) Previous trajectory. (b) Straight line.

(c) `2-norm. (d) Minimum velocity.

Figure 3: The plotted robot trajectory starts blue and transitions to
red. Since the trajectory (a) has collisions, the robot end pose is re-
sampled. (b) initializes with a straight line trajectory, and needs to
rediscover the path around the wall. (c) initializes with a trajectory
that minimizes `2-norm to the previous trajectory. This preserves
the previous solution but doesn’t change the trajectory enough to
get to a new basin of attraction. The minimum-velocity trajectory
(d) adapts to the new endpoint but reuses information from the pre-
vious trajectory.

systems is run, and which experimental scenario we test on
(swap or putaway with 0, 3, or 5 obstructions).

Experiment 2 considers the effects of different types of
trajectory reuse on each of our novel systems, S and E. There
are two manipulated variables in this experiment: which
system is run (S or E), and which trajectory reuse strat-
egy we use. We consider three such strategies: 1) straight-
line initialization (i.e., ignore previous trajectories), 2) `2-
norm minimization (i.e., stay as close as possible to previ-
ous trajectories), and 3) minimum-velocity `2-norm mini-
mization (i.e., stay close to a linear transformation of the
trajectory). Our experiments reveal that minimum-velocity
`2-norm minimization worked best, so Experiment 1 uses
this technique.
Dependent Measures. We measure success rate, the sum
of squared velocities on the trajectories, planning time, and
number of new task plans generated.
Problem Distributions. Experiment 1 is evaluated on fixed
test sets of 50 randomly generated environments. Envi-
ronments for the putaway task are generated by randomly
spawning N objects within the room and designating two as
the targets. Experiment 2 is evaluated on a smaller test set of
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Condition % Solved Traj Cost Time (s) # Replans

Swap, B 100 42.4 37.7 5.0

Swap, S 100 10.2 267.2 6.0

Swap, E 100 10.4 217.8 14.4

Swap, T 100 10.9 115.1 5.0

P(0), B 100 12.2 16.8 3.2

P(0), S 100 7.7 21.1 1.8

P(0), E 100 7.7 23.9 2.3

P(0), T 100 7.8 20.7 3.2

P(3), B 98 16.9 58.8 4.9

P(3), S 96 8.9 109.4 3.9

P(3), E 98 9.1 101.1 4.3

P(3), T 98 9.1 76.5 5.1

P(5), B 86 21.3 91.4 8.4

P(5), S 83 9.7 154.4 5.4

P(5), E 88 9.7 160.3 6.8

P(5), T 94 11.0 135.0 7.3

Table 1: Success rate, average trajectory cost, average total time,
and average number of calls to task planner for each system in each
experimental scenario. P indicates a putaway task. The number in
parentheses is the number of obstructions. B: backtracking base-
line. S: standard SQP. E: SQP with early convergence criteria. T:
SQP with initialization from B. Results are obtained based on per-
formance on fixed test sets of 50 randomly generated environments.
All failures were due to timeout: we gave 1200 seconds for each
swap task problem and 600 seconds for each putaway task prob-
lem.

30 environments for the swap task.
Our experiments are conducted in Python 2.7 using the

OpenRave simulator (Diankov and Kuffner 2008). Our task
planner is Fast-Forward (Hoffmann 2001). Experiments
were carried out in series on an Intel Core i7-4770K machine
with 16GB RAM. The time limit was set to 1200 seconds for
the swap task and 600 seconds for the putaway task. Table
1 summarizes results for Experiment 1, and Table 2 summa-
rizes results for Experiment 2.

Discussion
As our intuition suggests, Experiment 2 shows that trajec-
tory reuse with minimum-velocity projection outperforms
standard `2 projection and straight-line initialization. `2 pro-
jection performs quite poorly because it gets trapped in bad
local optima frequently.

Experiment 1 shows that full joint optimization (systems
S and E) over plan parameters leads to significant improve-
ments in overall trajectory cost versus backtracking. Al-
though this comes at the expense of increased running time.
System T, which first performs backtracking, then initializes

Condition % Solved Traj Cost Time (s) # Replans

SL, S 100 10.7 338.6 9.4

SL, E 100 10.8 217.6 9.4

`2-norm, S 63 10.4 336.1 9.5

`2-norm, E 67 11.0 181.0 13.6

Min-V, S 100 10.0 247.3 5.7

Min-V, E 100 10.4 200.7 13.1

Table 2: Success rate, average trajectory cost, average total time,
and average number of calls to task planner for several systems.
SL indicates straight-line initialization; `2-norm and Min-V use an
`2 or minimum velocity projection to initialize; S denotes standard
SQ; E denotes SQP with early convergence criteria. Results are ob-
tained based on performance on fixed test sets of 30 environments.
All failures were due to timing out the 1200 second limit.

SQP using the solution, shows that the running time can be
cut down significantly by combining these approaches.

6 RELATED WORK
Related work for this paper largely comes from plan-
skeleton approaches to task and motion planning. These are
approaches that search over a purely discrete representation
of the problem and then attempt to refine the task plans they
obtain.

Toussaint (Toussaint 2015) also considers joint trajectory
optimization to refine an abstract plan. In his formulation,
the symbolic state from a task plan defines constraints on
a trajectory optimization. The system optimizes jointly over
parameters and use an initialization scheme similar to ours.
However, the problems he considers are difficult because the
intermediate states are complicated structures. In our experi-
ments, difficulty largely stems instead from motion planning
infeasibility. This leads us to focus on trajectory re-use with
movement primitives and early convergence detection.

Lozano-Pérez and Kaelbling (Lozano-Pérez and Kael-
bling 2014) consider a similar approach. They enumerate
plans that could possibly achieve a goal. For each such ab-
stract plan, they discretize the parameters in the plan and
formulate a discrete constraint satisfaction problem. They
use an off-the-shelf CSP solver to find a trajectory consis-
tent with the constraints imposed by the abstract plan. Our
approach to refinement draws on this perspective, but we do
not discretize the plan parameters; instead, we use continu-
ous optimization to set them.

Lagriffoul and Andres (Lagriffoul et al. 2014) define the
fluents in their task planning formulation in a similar way
to ours. They use these constraint definitions to solve a lin-
ear program over the plan parameters. They then use this LP
to reduce the effort of a backtracking search for plan refine-
ment. This is similar to the first initialization step that we
and (Toussaint 2015) use, in that it only considers the inter-
mediate states.
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Abstract

This paper presents an architecture that integrates declara-
tive programming and relational reinforcement learning to
support incremental and interactive discovery of previously
unknown axioms governing domain dynamics. Specifi-
cally, Answer Set Prolog (ASP), a declarative programming
paradigm, is used to represent and reason with incomplete
commonsense domain knowledge. For any given goal, any
unexplained failure of plans created by inference in the ASP
program is taken to indicate the existence of unknown do-
main axioms. The task of discovering these axioms is for-
mulated as a Reinforcement Learning problem, and decision-
tree regression with a relational representation is used to in-
crementally generalize from specific axioms identified over
time. These new axioms are added to the ASP program for
subsequent inference. We demonstrate and evaluate the capa-
bilities of our architecture in two simulated domains: Blocks
World and Simple Mario.

1 Introduction
Robots1 assisting humans in complex domains such as
health care and disaster rescue, frequently find it difficult
to operate without considerable domain knowledge. At the
same time, humans interacting with the robots may not have
the expertise or time to provide elaborate and accurate do-
main knowledge. Robots are likely to receive some com-
monsense domain knowledge, including default knowledge
that holds in all but a few exceptional situations, e.g., “books
are typically in the library, but cookbooks are in the kitchen”.
Robots also receive information by processing sensor in-
puts, and the reliability of this information may be expressed
probabilistically, e.g., “I am 90% sure the robotics book is in
the library”. Furthermore, not all the axioms governing do-
main dynamics may be known, and the known axioms may
need to be revised over time. For instance, if the floor of
a room has just been polished, and the robot does not have
an accurate model of the effects of executing movement ac-
tions on this surface, plan execution may not produce the
desired outcome. To truly assist humans in such domains,
robots thus need to represent, reason with, and learn from,
different descriptions of knowledge and uncertainty at both
the cognitive level and the sensorimotor level.

1We use terms “robot”, “agent” and “learner” interchangeably.

Our prior work designed architectures that combined the
non-monotonic logical reasoning capabilities of declarative
programming with the uncertainty modeling capabilities of
probabilistic graphical models, to address the planning and
diagnostics challenges summarized above (Colaco and Srid-
haran 2015; Zhang et al. 2014; Zhang, Sridharan, and Wy-
att 2015). The architecture described in this paper builds
on prior work (Sridharan and Rainge 2014) to support in-
cremental and interactive discovery of previously unknown
domain axioms (Sridharan, Devarakonda, and Gupta 2016).
Similar to our prior work, an action language is used to
describe the known causal laws, state constraints and exe-
cutability conditions. This description and initial state de-
faults are translated to an Answer Set Prolog (ASP) program
that is solved for planning and diagnostics. Focusing on the
ability to discover axioms, we abstract away the uncertainty
in perception, and make the following contributions:
• For any given goal, unexplained plan failures are taken to

indicate the existence of unknown domain axioms. Incre-
mental and interactive discovery of these axioms is for-
mulated as a reinforcement learning problem.

• A relational representation is used to improve computa-
tional efficiency, and to generalize from axioms identified
through reinforcement learning. These newly discovered
axioms are used for subsequent ASP-based reasoning.

These capabilities are evaluated experimentally in two do-
mains, Blocks World and Simple Mario, to demonstrate reli-
able and efficient discovery of domain axioms. Section 2
discusses prior work and some background material, fol-
lowed by a description of the problem and the architecture
in Section 3. The experimental results are discussed in Sec-
tion 4, followed by conclusions in Section 5.

2 Related Work
In this section, we motivate the proposed approach by re-
viewing some related work. We also provide some back-
ground information about ASP, reinforcement learning and
relational representations, and their use on robots.

Probabilistic graphical models are used widely to for-
mulate planning, sensing, navigation, and interaction, on
robots (Bai, Hsu, and Lee 2014; Hoey et al. 2010), but
these formulations, by themselves, make it difficult to rea-
son with commonsense knowledge. Research in plan-
ning has provided many algorithms for knowledge repre-
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sentation and reasoning on robots (Galindo et al. 2008;
Varadarajan and Vincze 2011), but these algorithms require
a lot of prior knowledge about the domain. Many of these
algorithms are based on first-order logic, and do not support
non-monotonic logical reasoning, default reasoning, and the
ability to merge new, unreliable information with the current
beliefs. Other logic-based formalisms address some of these
limitations, e.g., Answer Set Prolog (ASP), a declarative lan-
guage designed for representing and reasoning with com-
monsense knowledge (Gelfond and Kahl 2014), has been
used by an international research community for cognitive
robotics applications (Balduccini, Regli, and Nguyen 2014;
Erdem and Patoglu 2012). However, ASP does not inher-
ently support probabilistic models of uncertainty, or incre-
mental and interactive learning of domain knowledge.

Combining logical and probabilistic reasoning capabili-
ties is a fundamental problem in robotics and AI. Archi-
tectures have been developed to support hierarchical rep-
resentation of knowledge in first-order logic, and proba-
bilistic processing of perceptual information (Laird 2008;
Talamadupula et al. 2010). Existing approaches have com-
bined deterministic and probabilistic algorithms for task
and motion planning (Kaelbling and Lozano-Perez 2013;
Saribatur, Erdem, and Patoglu 2014), switched between
probabilistic reasoning and first-order logic based on de-
grees of belief to use semantic maps and commonsense
knowledge in a probabilistic relational representation (Han-
heide et al. 2011), and used a three-layered organization
of knowledge with first-order logic and probabilistic rea-
soning for open world planning (Hanheide et al. 2015).
Other approaches for combining logical and probabilistic
reasoning include Markov logic networks (Richardson and
Domingos 2006), Bayesian Logic (Milch et al. 2006), prob-
abilistic first-order logic (Halpern 2003), first-order rela-
tional POMDPs (Sanner and Kersting 2010), and probabilis-
tic extensions to ASP (Baral, Gelfond, and Rushton 2009;
Lee and Wang 2015). Many of these algorithms are based
on first-order logic, and have the corresponding limitations,
e.g., it is not always possible to express degrees of belief and
uncertainty quantitatively. Other algorithms based on logic
programming do not support all desired capabilities such as
reasoning with large probabilistic components; dynamic ad-
dition of variables with different ranges to represent open
worlds; and incremental and interactive learning of previ-
ously unknown domain knowledge.

Many tasks that require the agent to learn from repeated
interactions with the environment have been posed as Rein-
forcement Learning (RL) problems (Sutton and Barto 1998)
and modeled as Markov Decision Processes (MDPs). It is
challenging to design algorithms that scale to large, com-
plex domains, and allow a transfer of learned knowledge
between related domains. Relational reinforcement Learn-
ing (RRL) combines relational representations of states
and actions with relational regression for Q-function gen-
eralization (Dzeroski, Raedt, and Driessens 2001). The
RRL formulation enables the use of structural similarities,
and the reuse of experience in a subset of the state-action
space when operating in related regions of the state-action
space (Tadepalli, Givan, and Driessens 2004). These exist-
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Figure 1: Architecture integrates the complementary
strengths of declarative programming, probabilistic graph-
ical models, and reinforcement learning, for knowledge rep-
resentation, reasoning, and learning.

ing approaches, however, use RRL for planning, and gen-
eralization, e.g., using function approximation (Driessens
and Ramon 2003; Gartner, Driessens, and Ramon 2003) or
explanation-based RL (Boutilier, Reiter, and Price 2001), is
limited to a single MDP corresponding to a specific planning
task. Furthermore, these approaches do not fully support the
desired commonsense reasoning capabilities for robots.

We have designed architectures that combine the com-
plementary strengths of declarative programming and prob-
abilistic graphical models for planning and diagnosis in
robotics (Colaco and Sridharan 2015; Zhang et al. 2014;
Zhang, Sridharan, and Wyatt 2015). In this paper, we ab-
stract away the unreliability of perception, and combine
declarative programming with RRL for incrementally and
interactively discovering axioms, and generalizing across
individual axiom instances. Unlike prior work that used
inductive logic and ASP to monotonically learn causal
rules (Otero 2003), or integrated ASP with RL for discov-
ering domain axioms (Sridharan and Rainge 2014), we use
relational representation for generalization. Unlike existing
work in RRL, our approach uses the relational representa-
tion for discovering previously unknown domain axioms,
and generalizes across different MDPs, i.e., different deci-
sion making tasks in the domain.

3 Proposed Architecture
The overall architecture is shown in Figure 1. In this paper,
we abstract away the uncertainty in perception for simplic-
ity, and do not discuss probabilistic planning. The focus is
on ASP-based reasoning with commonsense knowledge for
planning and diagnostics (Section 3.1), and RRL-based in-
teractive discovery of domain axioms (Section 3.2)2.

We illustrate the capabilities of this architecture using two
simulated domains:

2Although our overall architecture shown in Figure 1 represents
the domain at two different resolutions, in this paper we consider
the domain representation at a single resolution for simplicity.
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Figure 2: Blocks world scenario with four blocks.

(a) Actions

(b) Monster collision

Figure 3: Figure demonstrating safe and unsafe actions in
the Simple Mario domain.

1. Blocks World (BW): a tabletop domain where the ob-
jective is to stack blocks of different colors, shapes, and
sizes, in specific configurations. Figure 2 illustrates a sce-
nario with four blocks, which corresponds to ≈ 70 states
under a standard RL/MDP formulation (Dzeroski, Raedt,
and Driessens 2001). The robot may not know, for in-
stance, that a block should not be placed on a prism-
shaped block, and thus the corresponding action should
not be attempted.

2. Simple Mario (SM): a simplified version of the Mario
game, where the agent (mario) has to navigate between
locations while avoiding obstacles and hazards. The do-
main has≈ 80 states and 4 actions in a standard MDP for-
mulation. Safe actions are moving or jumping left or right
(Figure 3(a)), while unsafe actions include collision with
a monster (Figure 3(b)), landing on spikes (Figure 4(a)),
and landing on empty space (Figure 4(b)).

3.1 Knowledge Representation
The transition diagram of our illustrative domain is de-
scribed in an action language AL (Gelfond and Kahl 2014).
Action languages are formal models of parts of natural lan-
guage used for describing transition diagrams. AL has a
sorted signature containing three sorts: statics, fluents and
actions. Statics are domain properties whose truth values
cannot be changed by actions, while fluents are properties
whose truth values are changed by actions. Actions are de-
fined as a set of elementary actions that can be executed in
parallel. A domain property p or its negation ¬p is a domain
literal. AL allows three types of statements:

a causes lin if p0, . . . , pm (Causal law)
l if p0, . . . , pm (State constraint)
impossible a0, . . . ,ak if p0, . . . , pm (Executability condition)

where a is an action, l is a literal, lin is an inertial fluent
literal, and p0, . . . , pm are domain literals. A collection of
statements of AL forms a system description.

The domain representation consists of a system descrip-
tion D and history H . D has a sorted signature and axioms
used to describe the transition diagram τ . The sorted signa-
ture is a tuple that defines the names of objects, functions,
and predicates available for use in the domain. The sorts
of the BW domain include elements such as block, place,
color, shape, size, and robot, whereas the sorts of the SM
domain include elements such as location, block, material,
size, direction and thing—when some sorts are subsorts of
other sorts, e.g., agent (i.e., mario) and monster may be sub-
sorts of thing, they can be arranged hierarchically.

We describe the fluents and actions of the domain in
terms of the sorts of their arguments. The BW do-
main’s fluent on(block, place) describes the place loca-
tion of each block—this is an inertial fluent that obeys
the laws of inertia. There are some statics for block
attributes has color(block,color), has shape(block,shape)
and has size(block,size). The action move(block, place)
moves a block to a specific place (table or another block).
In the SM domain, the fluents are the location of mario
and the monster (assuming there is only one monster)—
we reason about the former and assume the latter is a
defined fluent known at all times, i.e., the inertial flu-
ent is loc(agent,block). Mario can move to the left or
the right by one position, or jump to the left or right
by up to three positions, which are represented as actions
move(mario,dir) and jump(mario,dir,numpos) with direc-
tion (le f t, right) and number of positions (1,2,3) as argu-
ments. We also introduce relations for block attributes, e.g.,
has material(block,material), and location attributes, e.g.,
right o f (block,block).

For the BW domain, the dynamics are defined in terms of
causal laws such as:

move(b1, loc1) causes on(b1, loc1)

state constraints such as:

¬on(b1, loc1) if on(b1, loc2), loc1 6= loc2
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(a) Spike block (b) Air block

Figure 4: Snapshot of basic causes of death (i.e., episode termination) in the Simple Mario domain.

and executability conditions such as:

impossible move(b1, loc1) if on(b2, loc1), b2 6= b1

The SM domain’s dynamics are defined using causal laws
such as:

move(mario,right) causes loc(mario,b2),

right o f (b2,b1),

loc(mario,b1)

state constraints such as:

¬loc(mario,b2) if loc(mario,b1), b1 6= b2

and executability conditions such as:

impossible move(mario,right) if loc(mario,b1),

right o f (b2,b1),

has material(b2,spike)

The recorded history of a dynamic domain is usually a
record of (a) fluents observed to be true at a time step
obs( f luent,boolean,step), and (b) the occurrence of an ac-
tion at a time step hpd(action,step). Our architecture ex-
panded on this view by allowing histories to contain (prior-
itized) defaults describing the values of fluents in their ini-
tial states (Zhang et al. 2014; Sridharan et al. 2015). For
instance, we can represent a default statement of the form
“blocks are usually on the table or on another block that is
on the table” and elegantly encode exceptions to such default
statements.

The domain representation is translated into a CR-Prolog3

program Π(D ,H ), i.e., a collection of statements de-
scribing domain objects and relations between them. This
program incorporates consistency restoring (CR) rules in
ASP (Gelfond and Kahl 2014). ASP is based on stable
model semantics and non-monotonic logics, and includes
default negation and epistemic disjunction, e.g., unlike ¬a
that states a is believed to be false, not a only implies a is
not believed to be true, and unlike “p ∨ ¬p” in proposi-
tional logic, “p or ¬p” is not a tautology. ASP can rep-
resent recursive definitions, defaults, causal relations, and
constructs that are difficult to express in classical logic for-
malisms. The ground literals in an answer set obtained by

3We use the terms “ASP” and “CR-Prolog” interchangeably.

solving Π represent beliefs of an agent associated with Π.
Algorithms for computing the entailment, and for planning
and diagnostics, reduce these tasks to computing answer sets
of CR-Prolog programs. Π consists of causal laws of D , in-
ertia axioms, closed world assumption for defined fluents,
reality checks, and records of observations, actions, and de-
faults, from H . Every default is turned into an ASP rule
and a CR rule that allows the robot to assume, under excep-
tional circumstances, that the default’s conclusion is false, so
as to restore program consistency—see (Zhang et al. 2014;
Sridharan et al. 2015) for details. Although not discussed
here, the program representing the current beliefs of the
robot also supports capabilities such as explaining unex-
pected action outcomes and partial descriptions extracted
from sensor inputs—see (Colaco and Sridharan 2015; Zhang
et al. 2014).

It is difficult to provide complete knowledge about any
complex domain. This is especially true of domain axioms
that may be unknown or may change over time. The plans
created using this incomplete knowledge may result in un-
intended consequences. Consider a scenario in the BW do-
main in which the goal is to stack three of four blocks placed
on the table. Figure 5(a) shows a possible goal configura-
tion that could be generated based on the available domain
knowledge. The corresponding plan (starting with all four
blocks on the table) has two steps: move(b1,b0) followed
by move(b2,b1). The robot expects to be able to use this
plan to stack the blocks as desired. However, unknown to
the robot, no block can be stacked on top of a prism-shaped
block in this domain. As a result, execution of this plan re-
sults in failure that cannot be explained—specifically, action
move(b1,b0) does not result in the expected configuration
shown in Figure 5(b). In this paper, we focus on discover-
ing previously unknown executability conditions, which can
prevent such actions from being included in a plan for any
given goal.

3.2 Relational RL for Discovering Axioms
Our approach for incremental and interactive discovery of
previously unknown domain axioms differs from previous
work by us and other researchers. The proposed approach:
• Explores the existence of previously unknown axioms

only when unexpected action outcomes cannot be ex-
plained by reasoning about exogenous actions.
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(a) Planned goal state (b) Failure in plan execution

Figure 5: Illustrative example of (a) a planned goal state; and (b) failure during a specific step in plan execution.

• Uses RRL and decision tree regression for improving
computational efficiency of identifying candidate axioms,
and for generalizing from specific axioms.

• Focuses on discovery of unknown axioms by generalizing
across multiple MDPs, instead of using RRL for planning,
which limits generalization to a specific MDP,

Generalization and computational efficiency are key consid-
erations for incremental and interactive learning. For in-
stance, in the BW domain, discovery of the axiom “a red
cube may not be placed on a blue prism”, does not help with
a red prism and blue cube, unless the agent realizes, over
time, that this axiom is a specific instance of the general ax-
iom “no object should be placed on a prism”.

A sequence of steps is used to identify and generalize
from candidate axioms. First, when a specific plan step fails,
the corresponding state is considered the goal state in an RL
problem, with the objective of finding all state-action pairs
that lead to this error state. The RL problem uses an MDP
formulation and the tuple 〈S,A,T,R〉, where:

• S: set of states.

• A: set of actions.

• T : S×A×S′→ [0,1] is the state transition function.

• R : S×A×S′→ℜ is the reward function

where T and R are not known in a RL problem. Each state,
i.e., each element of S, is the assignment of specific (ground)
values to the domain fluents. For instance, if we were to
consider two blocks with known color and shape in the BW
domain, each state would consider a possible configuration
of the blocks—there would be three different states in this
example. Similarly, each element of A is a valid action for
the domain under consideration. Next, the known axioms in
the ASP-based domain description are used to eliminate in-
valid combinations of states and actions in the domain. For
instance, no two objects can be in the same location in either
the BW domain or the SM domain. Also, it is not possible to
move a block that is under another block in the BW domain,
and it is not possible for mario to move forward if it is right
next to a wall. Inconsistent state transitions are identified by
constructing and computing answer sets of ASP programs
with the specific state-action combinations and the axioms
in D . This “filtering” can significantly reduce the size of the
problem because only valid state-action combinations are in-
cluded as elements of T and R. Furthermore, the MDP is

constructed automatically from the ASP system description,
for any given goal state.

Popular RL algorithms such as Q-learning or SARSA,
which estimate the Q-values of state-action pairs Q(s,a),
become computationally intractable as the state space in-
creases in size and do not generalize to relationally equiv-
alent states. The second step uses a relational representa-
tion to support generalization. After an episode (i.e., iter-
ation) of Q-learning (with eligibility traces) for a specific
goal state, all state-action pairs that have been visited, along
with their Q-values, are used to construct a binary (i.e., log-
ical) decision tree (BDT). The path from the root node to
any leaf node corresponds to one state-action pair, and indi-
vidual nodes correspond to specific fluents—the value at the
leaf node is the average of the values of all training samples
that are grouped under that node. The BDT created after one
iteration is used to compute the policy (based on a soft-max
function (Sutton and Barto 1998)) in the subsequent episode.
When the learning is terminated after convergence of the Q-
values or after a specific number of episodes, the BDT re-
lationally represents the experiences of the robot. Figure 6
illustrates a subset of a BDT constructed for the BW domain.

The method described above only considers generaliza-
tion within a specific MDP. To identify general domain ax-
ioms, the third step of our approach simulates similar errors
(to the one actually encountered due to plan step execution
failure) and considers the corresponding MDPs as well. The
Q-value of a state-action pair is now the the weighted aver-
age of the values across different MDPs. The weight used
is inversely proportional to the shortest distance between the
state-action pair and the goal state based on the optimal pol-

icy for that MDP, i.e., wi = (1/di)/{
N
∑
j=0

1/d j}, where wi is

the weight of the state-action pair of MDPi, di is the distance
from the state-action pair to the goal state of MDPi, and N is
the number of MDPs considered. These similar MDPs are
currently chosen randomly—future work will use the infor-
mation encoded in the ASP program to direct attention to
objects and attributes more relevant to the observed failure.

The fourth step identifies candidate executability con-
straints. The head of such an axiom has a specific action,
and the body contains attributes that influence (or are influ-
enced by) the action. We construct training samples by con-
sidering each such action and the corresponding attributes
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Figure 6: Subset of the binary decision tree for a specific
scenario in the blocks world domain.

based on the BDT constructed above. These training sam-
ples are used to construct a decision tree whose root node
corresponds to non-occurrence of the action, intermediate
nodes correspond to attributes of object involved in the ac-
tion, and the leaf nodes average the values of the training
samples grouped under that node. Each path from the root
node to a leaf is a candidate axiom with a corresponding
value. Figure 7 illustrates a subset of such a tree for a spe-
cific action.

The final step considers all candidate axioms for different
actions, and uses K-means algorithm to cluster these can-
didates based on their value. The axioms that fall within
the cluster with the largest mean are considered to represent
generalized axioms, and are added to the ASP program to be
used in the subsequent steps.

4 Experimental Setup and Results
The proposed architecture and algorithms were grounded
and experimentally evaluated in the Blocks World and Sim-
ple Mario domains. We describe the performance in illus-
trative execution scenarios drawn from these domains. We
compare the rate of convergence of the proposed algorithm
for discovering rules, henceforth referred to as “Q-RRL”,
with traditional Q-learning, using the average Q-value as the
performance measure.

4.1 Blocks World
As stated in Section 3, the robot’s objective in the BW do-
main was to stack the blocks in a specified configuration.
Consider the experimental trials in which the robot did not
know that it was impossible to move any block on top of a
prism-shaped block. We considered different scenarios with

Figure 7: Decision tree representing candidate axioms re-
lated to an action in the blocks world domain.

Figure 8: Comparing the rate of convergence of Q-RRL with
that of Q-learning in a specific scenario in the BW domain—
Q-RRL converges much faster.

blocks of different shapes and colors (but the same size). For
instance, in one scenario, the robot was given four blocks:
b0 (Red Prism); b1 (Red Cube); b2 (Blue Cuboid); and b3
(Blue Prism). All blocks were initially on the table, i.e., the
initial state was:

on(b0, table), on(b1, table)
on(b2, table), on(b3, table)

We provided the goal state description as:

on(b0, table), on(b1,b0)
on(b2,b1), on(b3, table)

The plan obtained by solving the ASP program had actions
move(b1,b0) and move(b2,b1). The action move(b1,b0)
fails. During Q-RRL and Q-Learning, the agent receives a
reward of +100 when it reaches the goal state and a negative
reward of −1.5 otherwise (i.e., for all other actions).

As stated earlier, RRL is triggered when executing the
computed plan (to stack the blocks) results in an unexpected
outcome than cannot be explained using the existing domain
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knowledge. When such an error occurs, different related
scenarios are simulated (e.g., different combinations of at-
tributes of the blocks) to generate the training samples for
generalization. Figure 8 shows the rate of convergence of the
average Q-value obtained using Q-RRL and Q-learning. The
Q-RRL algorithm has a much better rate of convergence,
i.e., the optimal policy is computed in a much fewer num-
ber of iterations. Note we are primarily concerned about the
rate of convergence in these experiment trials—it does not
matter whether the actual average Q-values of Q-Learning
are higher or lower than those of Q-RRL. The following are
some axioms identified during the various iterations:

−occurs(move(A,D), I) :−has shape(D, prism),

has shape(A,cuboid),
has color(D,blue)

−occurs(move(A,D), I) :−has shape(D, prism),

has shape(A,cube),
has color(D,red)

−occurs(move(A,D), I) :−has shape(D, prism),

has shape(A, prism),

has color(A,red),
has color(D,blue)

−occurs(move(A,D), I) :−has shape(D, prism),

has shape(A,cube),
has color(D,blue),
has color(A,red)

As the robot explores different scenarios, there are fewer
and fewer errors because actions that are impossible are no
longer included in the plans that are generated. Furthermore,
the robot is able to incrementally generalize from the differ-
ent specific axioms to finally add the following axiom to the
CR-Prolog program:

% Action language description
impossible move(A,D) if has shape(D, prism)

% CR-Prolog statement
−occurs(move(A,D), I) :−has shape(D, prism)

The proposed architecture resulted in a similar performance
in other experimental trials in the BW domain, successfully
discovering the corresponding (unknown) domain axioms.

4.2 Simple Mario
In the SM domain, the agent “mario” has to travel to a spe-
cific destination, from a starting position. As described at
the beginning of Section 3, move actions move mario one
position away from the current position, while jump actions
attempt to jump between one to three positions from the cur-
rent position. If an obstacle is present that prevents mario
from moving to a certain position, then it lands on the closest
(open) position available. Collision with any angry monster
in the domain terminates the episode. Furthermore, blocks
in the domain are made of different materials—brick blocks
are harmless, whereas materials such as spike or air will re-
sult in episode termination. The objective is to pick actions

Figure 9: Comparing the rate of convergence of Q-RRL with
Q-learning in a specific scenario in the SM domain—Q-RRL
converges much faster.

that will not result in episode termination—any such unex-
pected termination triggers RRL for discovering axioms.

To evaluate the ability to efficiently discover generic do-
main axioms in the SM domain, we use an approach sim-
ilar to that used in the BW domain. ASP-based inference
is used to compute plan(s) to achieve the desired goal state.
If any plan step results in an unexpected failure that cannot
be explained using the existing knowledge, scenarios simi-
lar to the one causing the failure, e.g., with different block
attributes and different locations for mario and monsters,
are simulated automatically (also see Section 3.2). These
simulated scenarios provide the training samples necessary
for generalizing from the specific axioms discovered. For
instance, in one scenario, three positions that would result
in episode termination were used to trigger RRL. The first
and second positions involve movement to blocks with spike
material, while the third position involves collision with an
angry monster. Figure 9 compares the rate of convergence
of Q-RRL and Q-learning as a function of the number of
episodes. Similar to the results obtained in the BW domain,
Q-RRL converges a lot faster than Q-learning. Over some
episodes, the following are some generalized axioms dis-
covered:

−occurs(move(mario, le f t), I) :−loc(mario,b1),

le f t o f (b2,b1),

has material(b2,spike)
−occurs(move(mario,right), I) :−loc(mario,b1),

right o f (b2,b1),

has material(b2,spike)
−occurs( jump(mario, le f t,1), I) :−loc(mario,b1),

le f t neighbor(b2,b1),

has material(b2,spike)
−occurs( jump(mario,right,1), I) :−loc(mario,b1),

right neighbor(b2,b1),

has material(b2,spike)

The rules generated specify that mario cannot execute a
move or jump action if this action will lead it to a block
with spike material. Similar performance was observed in
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other scenarios that resulted in the failure of the correspond-
ing plans, with the successful discovery of the corresponding
(previously unknown) domain axioms.

5 Conclusion
Robots assisting humans in complex domains frequently
need to represent, reason with, and learn from, different
descriptions of incomplete domain knowledge and uncer-
tainty. The architecture described in this paper combines
the complementary strengths of declarative programming
and relational reinforcement learning to discover previously
unknown axioms governing domain dynamics. We illus-
trated the architecture’s capabilities in the context of dis-
covering previously unknown executability conditions in
two simulated domains (Blocks World and Simple Mario),
with promising results. Future work will explore the abil-
ity to discover other kinds of axioms in more complex do-
mains. In addition, we will investigate the introduction of
probabilistic models of the uncertainty in robot perception,
which will transform the underlying decision-making prob-
lem from an MDP to a partially observable Markov decision
process (POMDP)—this will also enable us to fully utilize
the probabilistic planning component of the existing archi-
tecture. Furthermore, we will conduct experimental trials on
a mobile robot assisting humans in indoor domains.

Acknowledgments
This work was supported in part by the US Office of Naval
Research Science of Autonomy award N00014-13-1-0766.
All opinions and conclusions expressed in this paper are
those of the authors.

References
Bai, H.; Hsu, D.; and Lee, W. S. 2014. Integrated Percep-
tion and Planning in the Continuous Space: A POMDP Ap-
proach. International Journal of Robotics Research 33(8).
Balduccini, M.; Regli, W. C.; and Nguyen, D. N. 2014. An
ASP-Based Architecture for Autonomous UAVs in Dynamic
Environments: Progress Report. In International Workshop
on Non-Monotonic Reasoning (NMR).
Baral, C.; Gelfond, M.; and Rushton, N. 2009. Probabilistic
Reasoning with Answer Sets. Theory and Practice of Logic
Programming 9(1):57–144.
Boutilier, C.; Reiter, R.; and Price, B. 2001. Symbolic
Dynamic Programming for First-Order MDPs. In Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
690–700.
Colaco, Z., and Sridharan, M. 2015. What Happened and
Why? A Mixed Architecture for Planning and Explana-
tion Generation in Robotics. In Australasian Conference on
Robotics and Automation (ACRA).
Driessens, K., and Ramon, J. 2003. Relational Instance-
Based Regression for Relational Reinforcement Learning.
In International Conference on Machine Learning (ICML),
123–130. AAAI Press.
Dzeroski, S.; Raedt, L. D.; and Driessens, K. 2001. Rela-
tional Reinforcement Learning. Machine Learning 43:7–52.

Erdem, E., and Patoglu, V. 2012. Applications of Action
Languages to Cognitive Robotics. In Correct Reasoning.
Springer-Verlag.
Galindo, C.; Fernandez-Madrigal, J.-A.; Gonzalez, J.; and
Saffioti, A. 2008. Robot Task Planning using Semantic
Maps. Robotics and Autonomous Systems 56(11):955–966.
Gartner, T.; Driessens, K.; and Ramon, J. 2003. Graph Ker-
nels and Gaussian Processes for Relational Reinforcement
Learning. In International Conference on Inductive Logic
Programming (ILP), 140–163. Springer.
Gelfond, M., and Kahl, Y. 2014. Knowledge Representation,
Reasoning and the Design of Intelligent Agents. Cambridge
University Press.
Halpern, J. Y. 2003. Reasoning about Uncertainty. MIT
Press.
Hanheide, M.; Gretton, C.; Dearden, R.; Hawes, N.; Wyatt,
J.; Pronobis, A.; Aydemir, A.; Gobelbecker, M.; and Zender,
H. 2011. Exploiting Probabilistic Knowledge under Uncer-
tain Sensing for Efficient Robot Behaviour. In International
Joint Conference on Artificial Intelligence (IJCAI).
Hanheide, M.; Gobelbecker, M.; Horn, G.; Pronobis, A.;
Sjoo, K.; Jensfelt, P.; Gretton, C.; Dearden, R.; Janicek, M.;
Zender, H.; Kruijff, G.-J.; Hawes, N.; and Wyatt, J. 2015.
Robot Task Planning and Explanation in Open and Uncer-
tain Worlds. Artificial Intelligence.
Hoey, J.; Poupart, P.; Bertoldi, A.; Craig, T.; Boutilier, C.;
and Mihailidis, A. 2010. Automated Handwashing Assis-
tance For Persons With Dementia Using Video and a Par-
tially Observable Markov Decision Process. Computer Vi-
sion and Image Understanding 114(5):503–519.
Kaelbling, L., and Lozano-Perez, T. 2013. Integrated Task
and Motion Planning in Belief Space. International Journal
of Robotics Research 32(9-10):1194–1227.
Laird, J. E. 2008. Extending the Soar Cognitive Archi-
tecture. In International Conference on Artificial General
Intelligence.
Lee, J., and Wang, Y. 2015. A Probabilistic Extension of
the Stable Model Semantics. In AAAI Spring Symposium on
Logical Formalizations of Commonsense Reasoning.
Milch, B.; Marthi, B.; Russell, S.; Sontag, D.; Ong, D. L.;
and Kolobov, A. 2006. BLOG: Probabilistic Models with
Unknown Objects. In Statistical Relational Learning. MIT
Press.
Otero, R. P. 2003. Induction of the Effects of Actions by
Monotonic Methods. In International Conference on Induc-
tive Logic Programming, 299–310.
Richardson, M., and Domingos, P. 2006. Markov Logic
Networks. Machine Learning 62(1-2):107–136.
Sanner, S., and Kersting, K. 2010. Symbolic Dynamic Pro-
gramming for First-order POMDPs. In AAAI Conference on
Artificial Intelligence, 1140–1146.
Saribatur, Z.; Erdem, E.; and Patoglu, V. 2014. Cognitive
Factories with Multiple Teams of Heterogeneous Robots:
Hybrid Reasoning for Optimal Feasible Global Plans. In In-
ternational Conference on Intelligent Robots and Systems,
2923–2930.

211



Sridharan, M., and Rainge, S. 2014. Integrating Rein-
forcement Learning and Declarative Programming to Learn
Causal Laws in Dynamic Domains. In International Con-
ference on Social Robotics (ICSR).
Sridharan, M.; Gelfond, M.; Zhang, S.; and Wyatt, J. 2015.
A Refinement-Based Architecture for Knowledge Represen-
tation and Reasoning in Robotics. Technical report, Un-
refereed CoRR abstract: http://arxiv.org/abs/1508.
03891.
Sridharan, M.; Devarakonda, P.; and Gupta, R. 2016. Can
I Do That? Discovering Domain Axioms Using Declarative
Programming and Relational Reinforcement Learning. In
AAMAS Workshop on Autonomous Robots and Multiagent
Systems (ARMS).
Sutton, R. L., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction. MIT Press, Cambridge, MA, USA.
Tadepalli, P.; Givan, R.; and Driessens, K. 2004. Relational
Reinforcement Learning: An Overview. In Relational Rein-
forcement Learning Workshop at the International Confer-
ence on Machine Learning.
Talamadupula, K.; Benton, J.; Kambhampati, S.; Schermer-
horn, P.; and Scheutz, M. 2010. Planning for Human-Robot
Teaming in Open Worlds. ACM Transactions on Intelligent
Systems and Technology 1(2):14:1–14:24.
Varadarajan, K. M., and Vincze, M. 2011. Ontological
Knowledge Management Framework for Grasping and Ma-
nipulation. In IROS-2011 Workshop on Knowledge Repre-
sentation for Autonomous Robots.
Zhang, S.; Sridharan, M.; Gelfond, M.; and Wyatt, J. 2014.
Towards An Architecture for Knowledge Representation and
Reasoning in Robotics. In International Conference on So-
cial Robotics (ICSR), 400–410.
Zhang, S.; Sridharan, M.; and Wyatt, J. 2015. Mixed Log-
ical Inference and Probabilistic Planning for Robots in Un-
reliable Worlds. IEEE Transactions on Robotics 31(3):699–
713.

212



Preliminary Deployment of a Risk-aware Goal-directed Executive on Autonomous
Underwater Glider

Eric Timmons1,3 and Tiago Vaquero1,2 and Brian Williams1 and Richard Camilli3
1 Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology, Cambridge, MA 02139
2 Department of Control and Dynamical Systems

California Institute of Technology, Pasadena, CA 91125
3 Deep Submergence Laboratory

Woods Hole Oceanographic Institution, Woods Hole, MA 02543
{etimmons,tvaquero,williams}@mit.edu, rcamilli@whoi.edu

Abstract

In this paper we describe a three-layered architecture
for resilient control of autonomous systems and present
the risk-aware goal-directed executive residing in the
top layer of the architecture. The executive combines
(1) a hierarchical activity planner that performs goal
selection; (2) a generative planner for activities with
probabilistic durations; (3) a kino-dynamic path plan-
ner that allows a vehicle to traverse an environment with
bounded risk of obstacle collision; and (4) an execution
monitor. A preliminary, simplified version of the exec-
utive has been used to plan for an autonomous under-
water glider in the Timor Sea. In the process, the ex-
ecutive managed temporal constraints, the AUV’s dy-
namics, and the lagoon’s topology. We conclude with
lessons learned that will be of interest to the PlanRob
community and a plan forward for the deployment of
the full exeuctive.

Introduction
The future of space missions is to visit ever more distant, ex-
otic, and dangerous locations. For example, the recent plan-
etary science decadal survey (Space Studies Board 2012)
calls for missions such as a Trojan Asteroid Tour and Ren-
dezvous and the Venus In Situ Explorer. Due to the time crit-
icality of these missions (the high speed involved in orbital
maneuvering and Venus’ extremely corrosive atmosphere)
and the light delay in communicating with Earth, the space-
craft that support these missions will need to be “resilient,”
capable of reasoning about their own state and the state of
the environment in order to predict and avoid hazardous con-
ditions, to recover from internal failures, and to ultimately
meet critical science objectives in the presence of substan-
tial uncertainties.

While there have been efforts to achieve resilience using
state of the art planning techniques on real-world space mis-
sions, the deployed techniques either controlled the space-
craft for a short, well controlled experiment (Remote Agent
on Deep Space One (Muscettola et al. 1998)), or have been
focused on providing resilience to a single aspect of the mis-
sion (e.g., Cassini’s fault-tolerant orbit insertion burn (Gray
and Brown 1998)). Additionally, no deployed system has at-
tempted to explicitly reason about risk in the course of its
automated planning. Instead, most deployed systems rely on

preprogrammed “reflexes,” large technical margins, and fail-
ing safe if something unexpected happens.

In order to support these ambitious future missions,
a team of researchers from Massachusetts Institute of
Technology (MIT), California Institute of Technology, Jet
Propulsion Laboratory (JPL), and Woods Hole Oceano-
graphic Institution (WHOI) are collaborating on the “Re-
silient Spacecraft Executive” project (RSE). A goal of this
team is to develop a resilient, risk-aware software architec-
ture for the next generation of space missions and demon-
strate it on Earth analogue missions. The proposed ar-
chitecture utilizes goal-directed and risk-aware execution
and decision making, correct-by-construction control pol-
icy synthesis, and model-based systems engineering pro-
cesses for developing the underlying models. The RSE team
has demonstrated the architecture on underwater gliders and
planetary exploration rovers.

This paper focuses on the efforts of the MIT and WHOI
contingent of the RSE team, and the work on developing
and deploying a risk-aware execution and decision making
executive on an autonomous underwater vehicle (AUV), an
Earth-bound analogue to potential missions such as explor-
ing Europa’s or Titan’s seas. The AUV domain has several
features that make it interesting from a planning perspective.
First, there are typically few chances for communicating
with the vehicle and those opportunities tend to have limited
bandwidth. Second, there is high uncertainty in vehicle po-
sition. Third, there are meaningful science objectives. Last,
the science objectives are typically oversubscribed, mean-
ing the planning system has to make tradeoffs in selecting a
subset of the objectives to meet.

The Resilient Spacecraft Executive
The RSE architecture consists of three primary layers: de-
liberative, habitual, and reflexive. The deliberative layer is
responsible for managing the overall achievement of the
mission-level goals, by elaborating and scheduling these
goals into sequences of control goals that nominally achieve
the specified mission goals, dispatching these goals to the
habitual layer, and adjusting the sequence of control goals in
response to an onboard assessment of risk. The set of com-
ponents and algorithms that compose the deliberative layer
is being developed by the MIT team.

The habitual layer is being developed by the Caltech
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team. This layer is responsible for achievement of the con-
trol goals, by executing actions determined by a set of pre-
compiled robust control policies that are computed online
and loaded onboard the spacecraft. The reflexive layer is
based on existing technology used for missions by JPL. It
is responsible for the low-level control of hardware.

This three tiered architecture is similar to other systems,
such as the Remote Agent, Earth Observing One’s Au-
tonomous Spacecraft Experiment (Chien et al. 2005), and
the Goal-Oriented Autonomous Controller (Ceballos et al.
2011). A key distinguishing feature of RSE is its focus on
reasoning about risk. For a more detailed description of the
RSE architecture in its entirety, see (McGhan et al. 2015).
The remainder of this paper focuses on the deliberative layer.

Figure 1: RSE deliberative layer interacting with Slocum
glider.

The deliberative layer can be seen as another three-tiered
architecture in Figure 1. In the grander scheme of the
RSE, the deliberative layer operates on a high-level, abstract
model of the system and produces control goals in the form
of a plan of high-level actions to execute. The lower levels
are responsible for confirming that actions are possible (us-
ing more detailed models), selecting between different im-
plementations of actions within the risk and temporal con-
straints placed upon them by the deliberative layer, and ac-
tually executing the low-level actions.

The first component of the deliberative layer is a hierar-
chical planner called Kirk (Kim, Williams, and Abramson
2001) that is responsible for selecting a subset of goals to
achieve, based on a reward function.

The goals are then provided to an activity planning com-
ponent called ptBurton (a work-in-progress extension of
the tBurton generative planner (Wang and Williams 2015)).
Given a model of the actions available to it (with probabilis-

tic durations), ptBurton generates temporal plans that satisfy
the chosen goals and temporal constraints subject to a user
specified chance-constraint. The temporal reasoning compo-
nent is based on (Fang, Yu, and Williams 2014). If ptBurton
is unable to find a plan, it communicates the set of incom-
patible goals to Kirk so that it can choose another subset of
the goals.

Like tBurton, ptBurton interacts with a standard PDDL
planner to solve subproblems of the larger planning prob-
lem. It can also interact with more domain specific planners,
such as the pSulu path planner (Ono, Williams, and Black-
more 2013). pSulu consists of a global path planner and a
kino-dynamic path planner. It computes a path and risk al-
location between the waypoints such that a vehicle has a
bounded risk of obstacle collision. ptBurton uses pSulu to
compute both the path and duration of a transiting action.

Once ptBurton has found and elaborated a plan, it is
passed to an execution monitor named Pike (Levine and
Williams 2014). Pike is responsible for both dispatching the
plan to next layer in the architecture and monitoring the es-
timate of the state of the world to ensure the plan is being
executed correctly. If an issue or off-nominal situation is
detected at run time, Pike alerts ptBurton of the issue and
requests a new plan with the same goal subset. If the goal
subset is no longer feasible, ptBurton elevates the request to
Kirk and a new goal subset is chosen.

While the responsibilities of each layer in the delibera-
tive layer are again similar to the standard three-tier archi-
tectures, we can start to expand on the distinguishing feature
of explicitly reasoning about risk. The described version of
the deliberative layer is capable of reasoning about tempo-
ral and positional uncertainty, two types of uncertainty com-
monly faced by exploration missions. While these uncertain-
ties are specified by the model of the system, the mission
goals provided to the deliberative layer contain chance con-
straints specifying how much risk the operator is willing to
accept for violating constraints (e.g. missing a time-window
or colliding with an object).

This ability to reason about uncertainty and chance con-
straints is in contrast to similar execution frameworks cur-
rently in use. This includes PDDL and generative planning-
based frameworks such as ROSPlan (Cashmore et al. 2015a;
2015b) and constraint-based frameworks, such as T-REX
(McGann et al. 2008).

Glider
In order to demonstrate the risk-aware executive, we are per-
forming demonstrations on a Slocum glider, an autonomous
underwater vehicle manufactured by Teledyne Webb Re-
search. The Slocum glider is designed for long endurance
missions so as to give a synoptic overview of some large
area or phenomenon of interest.

The glider is propelled by a combination of a buoyancy
engine, a movable weight, and wings. When at the surface
a dive is initiated by moving the weight such that the glider
sits angled downward in the water and decreasing the vehi-
cle’s buoyancy. As the glider falls, the angle of the glider
in the water is maintained such that lift is produced by the
wings that propel the glider horizontally forward. Once the
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glider reaches its programmed maximum depth, the weight
is shifted so the glider sits angled upward in the water and
the buoyancy is increased. Again, lift produced by the wings
propels the glider horizontally forward. The process repeats
once the glider raises to its programmed minimum depth.
In normal operations, each of these inflections is where the
majority of the glider’s energy is spent, meaning that if the
glider can stay in deeper water it can move more efficiently.

The stock control system of the glider being used is script
based. Before the start of a mission, a script must be up-
loaded to the glider that contains a list of waypoints to reach,
the minimum and maximum depths to use, and how often to
surface in order to obtain a GPS fix or communicate with the
operators. These parameters can be updated during the mis-
sion, but only when the glider is surfaced and able to use its
short-range radio or satellite phone. The stock control sys-
tem has its own control policies to achieve goals and control
hardware at the low-level. As such, the stock control sys-
tem represents the habitual and reflexive layers of the RSE
architecture.

Deployment
In order to obtain hands-on experience with the glider in
a real-world scenario, a preliminary implementation of the
risk-aware goal-directed executive was used during a tech-
nology validation cruise on board the R/V Falkor at the Scott
Reef lagoon in the Timor Sea from March 24 to April 6,
2015. This expedition included AUVs of multiple types from
multiple research institutions and had an overarching goal
of understanding the issues involved with having multiple
AUVs operating in close proximity.

In this deployment, a simplified version of the risk-aware
goal-directed executive was used as a decision support sys-
tem for a Slocum glider with an attached scanning sector
sonar. The operators used the executive to plan a series of ob-
servations of target regions between surfacings for data com-
munication. The executive then generated mission scripts
that were directly executable by the glider. The simplified
executive did not use a generative planner, instead the goals
chosen by Kirk were already expanded into complete action
sequences, and the pSulu path planner used a fixed, uniform
risk allocation, provided by the glider operators.

Figure 3 illustrates the mission goals for the glider de-
ployed during the expedition. Operators discretized a spe-
cific area of the lagoon in fifteen regions of interest, cells,
to be visited by the glider. Each cell was assigned a priority
and a path (dashed red line) for the glider to traverse. All
AUVs on the deployment (five others) shared the cells, but
each had unique goals in each cell. In order to avoid colli-
sions, a constraint was placed on the AUVs that no more than
one AUV could occupy a cell at a time. These constraints
were presented to the executive as temporal constraints on
when regions were available (in this case the other vehi-
cles continued to use manually programmed scripts and their
plans were available while planning the glider’s mission).
The glider’s goals in each region were chosen based on the
location of interesting features of the ocean floor that would
be visible to the glider’s sonar.

The executive received as input the missions goals de-
picted in Figure 3, along with temporal constraints, the
glider’s dynamics, and the lagoon’s bathymetry. Kirk’s task
was to select and schedule a sequence of cell visitations
around the schedule of the other AUVs while avoiding colli-
sion and maximizing science return. When planning paths
in each cell there were two primary concerns. First, the
planned paths should avoid obstacles, using user-specified
buffers around the obstacles. Second, the paths should be
minimum energy. While shortest paths in the reef were easy
to find (there was a straight line path between most points),
the shortest paths typically required the glider to pass over
obstacles at a shallow depth. Due to the glider’s method of
propulsion, these shortest distance paths would require more
inflections than taking a longer, yet deeper path. Figure 2
provides an example of an efficient path computed by the
path planner.

Figure 2: Example of an efficient glider trajectory generated
by the path planner. A top view (left) and a perspective view
(view) of the path taken from start point to end point in the
lagoon.

At the beginning of the deployment, the pSulu path plan-
ner was used to plan transits for nine days in initial testings.
The activity and path planner prototypes were then used in
conjunction to successfully plan for two days of eight hour
operations for the glider. The activity planner efficiently 1)
selected subset of science goals with highest return based
on science preference, and 2) ordered and scheduled visi-
tation to respect the aforementioned constraints. Ocean cur-
rents in Scott Reef changed frequently and posed a challenge
for the AUVs deployed during the expedition. The path plan-
ning component successfully planned safe routes around the
reef. Moreover, we demonstrated the executive’s capability
to support re-planning after each glider surface activity. To
the best of our knowledge, a Slocum glider has never before
been used inside a reef before, due to the challenges present
in that environment.

Lessons Learned
During this deployment, a number of lessons were learned
that we will incorporate into the models used by the exec-
utive during the next deployment. Additionally, we feel the
lessons learned may be of interest to the PlanRob commu-
nity by providing real-world examples and motivations.

First, the uncertainty introduced by the currents was more
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Figure 3: Mission specification provided during cruise expedition and used as input to the activity planner.

complex than anticipated. The currents at depth were mostly
driven by the tides and varied both temporally and, due to
the complex features of the reef, spatially. Meanwhile, the
surface currents were largely wind driven and more constant
spatially. Initially, we believed that changing glider parame-
ters could be done easily and planned paths over short hori-
zons, however an update often required the glider sit at the
surface in excess of two minutes while it reinitialized the
mission. On days with strong surface currents, this caused
the glider to lose all forward progress made since the last
surfacing. Additionally, there is not always a good estimate
of the currents for a given location. This motivates the need
for routines to adaptively estimate currents in the current
location when transit durations start diverging significantly
from modeled durations.

Second, we also learned that instrument configuration was
a non-trivial matter, especially for future missions outside
the reef. In order to increase maximum deployment time, in-
struments should be placed into a standby state when not in
use. However, the uncertainty associated with transit times
means it is non-obvious to a human operator when instru-
ments should be programmed to turn on in order to observe
regions of interest. The inclusion of the ptBurton generative
planner should handle this in the future.

Third, we learned that there are scenarios where it is not
sufficient to simply pass through a point or along a line while
collecting data. For instance, on an upcoming deployment
the glider will need to pass through points (preferably within
10-20 meters) while rising toward the surface. This is so that
the glider can rinse off surface contaminants in deeper wa-
ter and not have them contaminate the readings taken by the
mass spectrometer that will be included on this deployment.
This poses enormous challenges to pSulu as it must account
for the uncertain currents, while minimizing surfacing to ob-
tain GPS locks (so as to drift less and meet temporal con-
straints). It is highly doubtful that all but the most skilled

human operators would be unable to plan such a path with
the desired accuracy.

Last, we learned that there is much opportunity for the
planning community to affect multi-AUV operations in the
future. On the Scott Reef deployment, we learned that there
is currently no effective solution used by AUV operators for
planning day-long operations for multiple AUVs of vary-
ing capabilities in close proximity. This become obvious
when four near collisions and one collision/entanglement
happened during the two week long cruise. Luckily, the ve-
hicles involved in the most serious near-misses had acoustic
modems and were given override commands to avoid the
collision, but it would be preferable to plan such that the
possibility of collisions is vastly reduced.

Conclusions and Future Work
We have described the Resilient Spacecraft Executive ini-
tiative and described the authors’ work-in-progress contri-
bution of a risk-aware goal-directed executive for the delib-
erative layer. Additionally, we have described the deploy-
ment of a simplified version of the executive on a vehicle
and lessons learned from that experience.

In the year since the Scott Reef deployment, work
has continued on the design and integration of the non-
simplified executive. Another deployment of the glider with
the full executive is planned for July 2016 off the coast of
Santa Barbara, CA. This deployment will use a similar input
to the planner (areas of interest along with preferences and
temporal constraints), but will additionally feature the risk
allocation features of pSulu and use ptBurton as a genera-
tive planner.
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