
The 26th International Conference on Automated
Planning and Scheduling

June 12-17, 2016. London, UK

Doctoral ConsortiumDissertation Abstracts

TheDoctoral Consortium brings together junior and experienced researchers in planning, scheduling and
related areas from across the globe, in particular those studying for a Doctoral degree. It provides a forum for
networking with the ICAPS community in an informal, social setting. The Doctoral Consortiumwill be held as a

full day workshop on June 12th, 2016.
The program includes an invited talk on research skills and career development, the opportunity for participant

to give a short presentation, and a poster session during themain conference.

DCChairs:

• Peter Gregory (University of Teeside, UK)
• LeeMcCluskey (University of Huddersfield, UK)
• FabioMercorio (University ofMilan-Bicocca, Italy)

Abstracts

1 Heuristic Search and Applications . 3

Automated Planning and Scheduling E0 Constellations’ Operations using Ant ColonyOptimization . . . 4
Evridiki Ntagiou

Solver Paramter Tuning and Runtime Predictions of Flexible HybridMathematical models 10
Michael Barry

Constructing Heuristics for PDDL+ Planning Domains . 15
Wiktor Piotrowski

Risk-Sensitive Planningwith Dynamic Uncertainty . 21
LianaMarinescu

2 Multi Agent Planning & Plan Execution . 27

ADistributedOnlineMulti-Agent Planning System . 28
Rafael Cardoso

Integrating Planning and Recognition to Close the Interaction Loop . 34
Rick Freedman

Distributed Privacy-preservingMulti-agent Planning . 39
Andrea Bonisoli

Planningwith Concurrent Execution . 44
Bence Cserna

3 Temporal Planning . 47

MixedDiscrete-Continuous Planningwith Complex Behaviors . 48
Enrique Fernandez Golzalez

Planningwith Flexible Timelines in the RealWorld . 54
Alessandro Umbrico

POPCorn: Planningwith Constrained Real Numerics . 60
Emre Savas

Planningwith PDDL3.0 Preferences by Compilation into STRIPSwith Action Costs 66
Francesco Percassi

Planning Under Uncertainty with Temporally Extended Goals . 71
Alberto Camacho

Temporal Inference In Forward Search Temporal Planning . 73
Atif Talukdar

4 Planning and Scheduling . 79

1

Task Scheduling and Trajectory Generation ofMultiple Intelligent Vehicles 80
Jennifer David

Decoupled State Space Search . 83
Daniel Gnad

Hierarchical TaskModel with Alternatives for Predictive-reactive Scheduling 89
Marek Vlk

Numeric Planning . 94
Johannes Aldinger

Exploiting Search Space Structure in Classical Planning: Analyses and Algorithms 97
Matasaru Asai

SAT/SMT techniques for planning problems . 102
Joan Espasa Arxer

5 Planning under Uncertainty and Applications . 106
Robotic control throughmodel-free reinforcement learning . 107

Ludovic Hofer

Exploiting Symmetries in Sequential DecisionMaking under Uncertainty 109
Ankit Anand

Recommending and Planning Trip Itineraries for Individual Travellers and Groups of Tourists 115
Kwan Hui LIM

Constructing Plan Trees for Simulated Penetration Testing . 121
Dorin Shmaryahu

Optimization Approaches toMulti-robot Planning and Scheduling . 128
Kyle Booth

6 Knowledge Engineering and Applications . 131
Learning Static Constraints for DomainModeling from Training Plans . 132

Rabia Jilani

Using GOREmethod for Requirement Engineering of Planning & Scheduling 137
Javier Martinez

Critical Constrained Planning and an Application to Network Penetration Testing 141
Marcel Steinmetz

Human-Robot Communication in Automated Planning . 145
AleckMacNally

Session 1

Heuristic Search and Applications

3

Automated Planning and Scheduling ΕΟ Constellations’

Operations with Ant Colony Optimization

Evridiki Vasileia Ntagiou

Surrey Space Centre, University of Surrey

Abstract

In this work we are interested in Automating the

process of Planning and Scheduling the operations

of an Earth Observation constellation. To this

respect, we represent the problem with a directed

graph and use Ant Colony Optimization technique

to find the optimal solution. In order to verify the

quality of the solution, we employ a dynamical

system. We check the scalability of the software

system performing simulations. We discuss the next

steps of this work which involve the coordination of

multiple spacecraft by means of stigmergy and the

consideration of more than one objectives that need

to be optimized.

Motivation and Scope

The increasing interest in the design and

development of space missions consisting of

multiple coordinated spacecraft cannot be missed, in

recent years. Ranging from low cost due to less

system reliability requirements, to giving man the

ability to perform concurrent scientific observations,

the advantages of using constellations of spacecraft

have attracted the complete attention of the Space

community [T. A. Wagner et al.]. The Earth

Observation market, in specific, is expected to grow

at a rate of 16% per year over the next decade [N.

Muscettola et al.]. The current trend is towards

constellations consisting of many small satellites,

with an increasing number of start-up companies

aiming at launching such constellations of 20

hundreds or more mini-satellites. [G. Richardson et

al.][E. Buchen]

The reduction of the satellites’ size and

corresponding shrinking of their cost has allowed

many end users to benefit from data coming from

satellites. Since we are dealing with the cooperation

of numerous miniaturized satellites of simple

capabilities, which altogether form a very complex

system, the need to automate its management arises.

Traditional techniques have failed to cope with such

a level of complexity. Planning and scheduling

(P&S) the operations of an EO satellite is the process

of determining the time when the satellite performs

specific arranged tasks, as the available resources,

images’ collection goals, weather condition and user

requirements evolve. More specifically, the P& S

system is responsible for coordinating a

constellation’s satellites’ activities in order for the

total value of the downlinked data to be maximized.

The Earth observing satellites (EOSs) picture the

Earth’s surface, in order to satisfy an assigned goal,

which in our case will be the imaging of the Area of

Interest (AoI). EOSs can acquire images, while

moving on their usually low altitude orbits. The

acquired data will then need to be transmitted to the

ground station. Until that is possible, the data are

stored in the limited on-board memory of the

satellites, limiting the images that can be acquired

before the downlink.

There is a wide interest for automating the

P&S process in the EO field, emanating not only

from research organizations and universities [C.

Iacopino et al], but also from commercial operators

and agencies [S. A. Chien et al.]. The main benefit of

autonomy in the planning & scheduling field is in

being able to gain maximum value from the

spacecraft by maximizing the use of on board

resources and providing a greater level of

responsiveness to sudden changes of priority, such

as when natural disasters strike. Automating the

P&S process of an Earth Observation mission

involves optimization and coordination. It is a

combinatorial optimization problem that takes place

in an uncertain dynamic environment. The

development of an automated P & S system also

follows the needs of the upcoming missions. These

employ dozens of agile satellites, where a change of

attitude translates to a tilt of the imager. We consider

agile EOSs that can be steered up to 45° off-nadir in

the roll axis.

An EO mission may have a single goal e.g.

maximize the imaged area, and many constraints,

e.g. resource or weather constraints. It could also

have multiple goals which are conflicting e.g.

maximize the imaged area, while minimizing the

resource used, and again numerous constraints. In

fact, the nature of the problem is such that it includes

many constraints, when realistic scenarios are

studied. In most of the studies, a single-objective

optimization problem with numerous constraints is

considered. This alone, means that our solution will

be valid under several assumptions. In order to lift

those assumptions we try to decrease the number of

constraints and increase the number of goals. In this

case, the P&S problem is a multi-objective

optimization problem. In order for a mission to be

successful, the trade-off among the several

objectives needs to be studied and a solution

depending on the user requirements needs to be

produced.

4

The main challenges that arise when

developing a software system that is meant to be

autonomous can be grouped in three main

categories: Reliability, Scalability and Adaptability.

When dealing with a continuously changing

environment like space, a system must be able to

quickly adapt to new circumstances and adjust its

output correspondingly, not allowing the changes to

interfere with the quality of the solution. The case is

the same, when the users’ preferences or the

platform’s characteristics change, e.g. increase in

the dimensions of the Area of Interest for an EO

satellite, or increase in the number of satellites

available for a task in a constellation. In order to

address these challenges we propose a self-

organising architecture for the software system and

a dynamical system, by which we can analytically

study the optimization method and guarantee the

convergence to a solution. Furthermore, the method

we employ can easily be extended to a study of the

multi-objective nature of the problem.

Novelty

This Ph.D. seeks to make contributions in three

areas:

1. Development of a Self – organizing

software tool as an Automated Mission

Planning System. In our novel approach,

we will employ a multi-agent system to

manage the coordination among the

constellation’s spacecraft.

2. Modelling of a Probabilistic optimization

technique with a nonlinear dynamical

system. We formally verify the reliability

of our algorithm employing a non-linear

dynamical system to model its behaviour.

3. Multi objective Optimization techniques

using Swarm Intelligence methods. Ant

Colony Optimization technique has not

been widely employed for multiple

objectives optimization purposes.

Problem definition

We consider a large area of polygon shape in the

surface of the Earth that we are interested in

imaging, within a specific time window. What is the

best way to cover the Area of Interest (AoI) with the

satellites’ swaths? This is a coverage planning

problem. Optimally planning the images’

acquisitions and assigning them to the satellites of a

constellation is a combinatorial optimization

problem. In order to quantify the level of optimality,

we need to introduce an objective function.

This problem is of highly dynamic nature. This is

due to the constant changes regarding the user

requests, the weather conditions, e.t.c. Hence, the

challenge is to solve this problem in a way that these

continuous environment changes do not interfere

with the quality of the solution. In other words, we

want a Planning and Scheduling system that is

adaptable to the changes of the environment, while

preserving its efficiency.

Problem Representation

In our research we assume that the satellites are

agile. In other words, when passing over an area that

we desire to image, a satellite has many options to

choose from, regarding the angle in which the

imager will tilt to capture an image. We represent the

problem with a directed graph, which will form the

common environment the ants will traverse and

update to find a solution. In the graph:

 Each Node represents an pass over the AoI

 Each Edge represents a roll angle the

imager can be tilt.

Figure 1.1. Problem representation using a directed

graph.

The nodes are put in a chronological order, as the

orbit of the satellite dictates. Each node is now

connected to the next one with an arbitrary number

of edges, each one representing an option of angle

the imager will be tilt, and one representing the

option of not taking a picture in this pass. Hence,

each path starting from the first node, until the last

one represents a sequence of choices of angles in

which the imager should be tilt for each pass or a

schedule that the satellite follows to complete the

task of imaging the AoI. In order to quantify the

differences among the strips available to be imaged,

quality values (qij) are assigned to the edges, as

functions of the area that they cover and the

distortion of the image. Each strip is assumed to

have a different quality and consume a certain

amount of memory (mij). We assume to have a

limited total on-board memory, M, that is only

renewed when passing over a Ground Station.

Formulating the problem, we assume the directed

graph G = (V,E), where

 V = set of Nodes

 E = {E1,E2,..,EN} and Ei = set of incoming

edges in Node i.

5

Our goal is to find the path that visits all the Nodes

and maximizes the objective function:

𝑓 = ∑ 𝑞𝑖𝑗

𝑁

𝑖=1

,

 𝑗 = {𝑒𝑑𝑔𝑒𝑠 𝑡ℎ𝑎𝑡 𝑏𝑒𝑙𝑜𝑛𝑔 𝑖𝑛 𝑎 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑃𝑎𝑡ℎ}

Under the memory constraints:

∑ 𝑚𝑖𝑗 ≤ 𝑀,

𝑁

𝑖=1

𝑀 = 𝑡𝑜𝑡𝑎𝑙 𝑜𝑛 𝑏𝑜𝑎𝑟𝑑 𝑚𝑒𝑚𝑜𝑟𝑦

Ant Colony Optimization

Ant Colony Optimization (ACO) meta-

heuristic is a probabilistic algorithm used to find the

solution in Computer Science and Operations fields’

problems that can be reduced to finding optimal

paths in graphs [M. Dorigo et al.] The method is

summarized below:

When the ants are searching for food, in the

natural world, they first wander randomly. After

finding a source of food, they return to their colony

but lay down pheromone trails in the path that they

follow. If other ants while also looking for food find

such a trail, they will probably not continue their

wandering, but follow the trail instead. In case it

leads them to food, they will also reinforce it when

they return to their colony. The pheromone trails,

however, start to evaporate over time. Hence, the

longer it takes for an ant to travel back to the colony

through the path it chose, the more the pheromones

will evaporate. Hence, with this mechanism the

amount of pheromone will become higher on the

shorter paths than the longer ones, since a short path

will get marched over more frequently.

The pheromone deposition helps the

colony converge to an optimal solution. On the other

hand, the pheromone evaporation is a means of

helping the colony avoid convergence to a locally

optimal solution. Were there no evaporation rate of

the pheromone, the following ants would be more

likely to choose the paths chosen by the first ones.

This fact shows the importance of exploring for a

sufficiently long time period and then converge to a

solution. This way, the technique has higher chances

of being successful.

In our case, we model the problem as a

graph, and search for the path that optimizes a

specific objective function. Artificial ants will run

through the graph and find the desired path. Since

this behaviour is inspired by nature and real ants, the

artificial ants will they lay pheromone on the edges

of the graph and they choose their next step with

respect to a probabilistic function of the previously

laid pheromone, by ants that have already traversed

the graph.

𝑃(𝑒𝑖) =
𝑔(𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒 𝑖𝑛 𝑒𝑖)

𝑔(𝑡𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒)

where P(ei) is the probability of choosing edge i, (ei),

and g is a function of the pheromone amount.

This is an indirect way of communication

that aims at enhancing the environment (graph) with

information about the quality of path components.

This mechanism will lead following ants to the

shortest path. The amount of pheromone an ant

deposits depends on the quality of the path, which is

evaluated by the objective function. This is a way to

give feedback of the quality of the path an ant

constructed.

ACO verification using a dynamical

system

The ACO behaviour has been modelled

using Ordinary Differential Equations previously,

by Gutjahr [W. J. Gutjahr]. He studied the

convergence speed of a number of problem

representations using ODE. However, analyses are

usually directed to specific algorithms, including no

stability analysis. In our case, we aim at identifying

the conditions of convergence. In order to apply the

ACO technique to our problem, we need to

understand and describe the dynamics of the long-

term behaviours of the ACO algorithm. This

translates to the study of under which conditions the

ACO technique has the property of convergence in

a solution. Hence, we are interested in understanding

which is the long-term behaviour that characterises

the system. We can expect numerous possible

pheromone distributions, but we have a solution to

our optimization problem when the system

converges to one path. In this section we will present

the analytical model, for the basic problem size of 1

node and M incoming edges. This translates to a

choice among M roll angles in a single pass. In this

way, we can easily show the basic structure of the

system’s dynamics by looking into its phase portrait,

and thus have a deeper understanding of how the

system will behave when more nodes are added. The

Μ−dimensional dynamical system is:

6

𝜏1̇ = −𝜌𝜏1 + 𝑘𝛲1

𝜏2̇ = −𝜌𝜏2 + 𝑘𝛲2

⋮
𝜏�̇� = −𝜌𝜏𝛭 + 𝑘𝛲𝛭

Where:

 τi = amount of pheromone in edge i

 ρ = pheromone evaporation rate

 k = amount of pheromone deposited

 Pi =
𝜏𝑖

𝛼

∑ 𝜏𝑗
𝛼 , probabilistic rule based on

which an edge will be chosen by an ant

We study the stability of the system using Nonlinear

Dynamical Systems Theory. First, we calculate the

number of equilibrium points it has, their analytical

form and then define the stability of each. The

results are summarized in the following Table.

By the study of this system, we concluded that there

is a critical parameter that controls the stability of

the system, which is α. In the table we identify three

main system’s behaviors and highlight that none of

them is perfect in terms of optimization. Thanks to

these insight, a novel algorithm was developed in [C.

Iacopino] that combines these behaviors to exploit

their benefits. This algorithm is capable of

regulating the trade-off of exploration vs

convergence by oscillating alpha between the two

areas.

Self – organising software system

In order to test the algorithm, a self

contained component of software was designed,

which wraps the entire system. It is written in Java

and incorporates a fully open-source discrete-event

agent-based modelling framework called MASON.

The system’s parameters and the objective function

are configurable. The planning problems are passed

in input as lists of imaging opportunities with their

quality values and consumed memory while the

output is a list of solutions containing the set of

planned tasks. Each entity of the problem is assumed

to be one agent. They are divided in three main

categories: Environment agents representing the

graph, Ant agents representing the computational

units that update the graph and check the memory

constraints and a Master agent that checks the

convergence of the colony and the evaluation of

each path produced.

We are considering the case of a single

spacecraft. The planning problem is represented in a

graph in each test, and the ant agents find the best

sequence of actions.

Simulations results

We test the efficiency and the scalability of the

system. The metrics to quantify the performance of

the system in these two fields will be:

 Quality value. We compare the system’s

solution to the one given by a deterministic

algorithm, performing an exhaustive

search, and compute the error.

 Convergence Time. We measure the

number of ants it takes to converge to a

solution for different graph topologies.

 Computation Time. We check the change

of the computation time, when increasing

the dimensions of the problem.

We perform two types of tests. First we assume a

single Node and increase the number of incoming

Edges. This corresponds to increasing the number of

roll angle choices in one pass. Next, we fix the

number of incoming Edges to 3 and increase the

number of Nodes. This corresponds to having 3 roll

angles to choose from in each pass, but increasing

the number of passes. We note that in this type of

test, each time we add a Node, we triple the search

space.

Efficiency tests

Increasing the Edges

15,4
16,4
17,4
18,4
19,4
20,4

1
x3

1
x5

1
x7

1
x9

1
x1

1

1
x1

3

1
x1

5

1
x1

7

1
x1

9

1
x2

1

1
x2

3

1
x2

5

1
x2

7

1
x2

9

Chain Topology

Mean Quality value

Average

Best

0

10

20

Chain Topology

Quality error (%)

 α : [0, 1) α= 1 α : (1, ∞]

Exploration High Medium Low

Convergence Low Medium High

7

The above results show that the system is highly

efficient to the increase of Edges in the graph. The

error between the system’s output and the best

solution is up to 1.75% with respect to the best, when

having 30 Edges, or 30 roll angle choices.

Increasing the Nodes

When increasing the number of Nodes, the system

becomes less efficient, with the error being up to

15.8%. That is due to the fact that each Node

addition results in a triple search space.

Scalability tests

Increasing the Edges

Increasing the Nodes

The Scalability tests, for both types of tests are very

encouraging. The system’s convergence time

increases either linearly, or logarithmically. Also,

the computation time is increasing linearly, making

the system very scalable.

Future work

SSTL Case Study

The first case study we will consider in this

research is the Disaster Monitor Constellation

(DMC3) produced by Surrey Satellite Technology

Ltd. It is an Earth Observation mission which was

launched in July 2015 and is currently in

commissioning phase. The platform consists of 3

agile Earth Observation satellites at 1 m resolution.

0
50

100
150
200
250
300

2
x3

4
x3

6
x3

8
x3

1
0

x3

1
2

x3

1
4

x3

1
6

x3

1
8

x3

2
0

x3

2
2

x3

2
4

x3

2
6

x3

2
8

x3

3
0

x3

Chain Topology

Mean Quality

Average

Best

0

5

10

15

20

Chain Topology

Quality error(%)

y ≈ 3x

0

50

100

150

200

1
x3

1
x5

1
x7

1
x9

1
x1

1

1
x1

3

1
x1

5

1
x1

7

1
x1

9

1
x2

1

1
x2

3

1
x2

5

1
x2

7

1
x2

9

t
(n

u
m

b
er

 o
f

an
ts

)

Chain Topology

Mean Convergence time

y = 1,7641x + 7,9284

0

20

40

60

80

1
x3

1
x5

1
x7

1
x9

1
x1

1

1
x1

3

1
x1

5

1
x1

7

1
x1

9

1
x2

1

1
x2

3

1
x2

5

1
x2

7

1
x2

9

t
(s

ec
)

Chain Topology

Mean Computation time

0
50

100
150
200
250
300

2
x3

4
x3

6
x3

8
x3

1
0

x3

1
2

x3

1
4

x3

1
6

x3

1
8

x3

2
0

x3

2
2

x3

2
4

x3

2
6

x3

2
8

x3

3
0

x3

t
(a

n
ts

)

Chain Topology

Mean Convergence time

y = 12,714x - 5,3572

0

100

200

300

400

500

2
x3

4
x3

6
x3

8
x3

1
0

x3

1
2

x3

1
4

x3

1
6

x3

1
8

x3

2
0

x3

2
2

x3

2
4

x3

2
6

x3

2
8

x3

3
0

x3

t
(s

ec
)

Chain Topology

Mean Computation time

8

They can change their attitude up to 45° off-nadir

pointing in pitch and roll axes. This platform is the

first Earth Observation constellation of low cost

small satellites. It provides daily images for a wide

range of applications, commercial or of public

interest including disaster monitoring. This

constellation offers multispectral imagery, wide

swath (600km), 32m ground sample distance (GSD)

and 4m panchromatic (PAN) resolution. Currently

SSTL are given requests to image certain areas of

the globe, and their operators manually determine

how best to achieve this. We aim at using realistic

data from this mission in order to test the tool that

we designed. Furthermore, our goal is to integrate

our method as one of SSTL’s Mission Planning

Systems.

ESA Case Study

During the current Ph.D. we aim at

integrating the single and multiple objectives

methods, in ESA’s missions that employ agile

constellations. A great Case Study would be the

European Data Relay System (EDRS). It is a

planned European constellation of state of the art

GEO satellites that will relay information and data

between satellites, spacecraft, UAVs, and ground

stations. Given the complexity of the system, the

scheduling of these activities would certainly be

better performed if more than one objectives were

able to be modelled and optimized. The trade-off

among such objectives would definitely give an

insight on the management of a system with such

high level of complexity.

Multi Objective Optimization

In the Motivation and Scope section we

stated the need for employing Multi-Objective

optimization techniques to design MPS that are

more adaptable and applied to a wider range of

missions. We now need to understand the system’s

characteristics that make one method more efficient

than another, in order to decide which one we are

going to include in our research. The visualization of

the Pareto front seems like a more desirable way to

solve the problem. It allows for the trade-off

between each of the objectives to appear. The

problem representation that we have employed

allows for many additions to the algorithm. For

example, having two values of quality per edge, one

for each of the two objectives we have, can be very

easily integrated and will result in the Pareto front

visualization, with the use of just a little more system

memory. Nevertheless, this is a decision we still

have to make, comparing all the advantages and

disadvantages that each method carries.

Coordination Mechanism

When it comes to having multiple spacecraft

collaborating to achieve a task, without

communicating with each other, or having an

external central controller, the coordination needs to

take place by means of stigmergy. The spacecraft

will share a common environment, the graph. All the

possible strips now need to be represented in the

graph, in order for the ants to find the path that

optimizes the shared objective function. The

cooperation needs to take place using the pheromone

trails in the environment that all the satellites will

share.

Acknowledgments

This work is co-funded by the Surrey Space

Centre (SSC) of the University of Surrey, the Surrey

Satellite Technology Ltd (SSTL) and the Operations

Centre of the European Space Agency

(ESA/ESOC).

References

N. Muscettola, P. Nayak, B. Pell, B. C. Williams, 1998.

Remote Agent: to boldly go where no AI system has gone

before, Artificial Intelligence v103, # 1-2, pp. 5–47.

T. A. Wagner et al., 2004. An Application Science for

Multi – Agent systems.

G. Richardson, Dr K. Schmitt, M. Covert, C. Rogers,

2015. Small Satellite Trends 2009-2013, 29th Annual

AIAA/USU Conference in Small Satellites.

E. Buchen, 2015. Small Satellite Market Observations,

29th Annual AIAA/USU Conference in Small Satellites.

S. A. Chien, M. Johnston, J. Frank, M. Giuliano, A.

Kavelaars, C. Lenzen and N. Policella, 2012. A

generalized timeline representation, services, and

interface for automating space mission operations. In

Proceedings of the 12th International Conference on

Space Operations, SpaceOps.

C. Iacopino, P. Palmer, N. Policella, and A. Donati, 2014.

Planning the GENSO Ground Station Network via an Ant

Colony-based approach, In The 13th International

Conference on Space Operations,
SpaceOps 2014. Pasadena, California.

M. Dorigo, T. Stuzle, 2004. Ant Colony Optimization,

MIT Press.

W. J. Gutjahr, 2008. First steps to the runtime complexity

analysis of ant colony optimization. Computers &

Operations Research, 35(9): 2711–2727.

C. Iacopino, 2013. Automated Planning & Scheduling for

Earth Observation Constellations: an Ant Colony

Approach, PhD Thesis, University of Surrey.

9

Solver Paramter Tuning and Runtime Predictions of Flexible
Hybrid Mathematical models.

Michael Barry
University of Basel / HES-SO

m.barry@unibas.ch / michael.barry@hevs.ch
Universitt Basel Petersplatz 1, 4001 Basel / Techno-Ple 1, 3960 Sierre

Switzerland

Abstract

In this research we consider the problems faced when
using hybrid mathematical models to solve optimisa-
tion models. Such models can be configured to have
different structures and can exert different behaviour
and therefore can have a volatile search space, mak-
ing runtime predictions and solver tuning a more com-
plex problem. We propose an optimization configu-
ration method that exploits the hybrid mathematical
model structure for solver parameter tuning and runtime
prediction.

Optimisation problems is active field of research and has
been approached from several research communities, in-
cluding the Artificial intelligence community as well as op-
erations research community, each developing their own
methods. All communities have had a steady contribution,
yet most commonly compete rather than collaborate. Partly
due to this rift and partially due to a difference on a concep-
tual level, many methods used in operation research have
a distinct lack of influence from the Artificial intelligence
or the wider computer science field of research despite be-
ing used heavily in industry. As a result, issues with main-
tenance and deployability are all to common and could be
addressed by lessons learnt in the history of computer sci-
ence.

Furthermore, these problems lead to highly inflexible
models. As an example from industry, mathematical mod-
els of Hydro power stations are the dominant tool for plan-
ning their operation, optimising the return in profit based
on the market prices (1) (5). This problem is well under-
stood and any company operating such power stations use
a mathematical model. Yet it has been noted that modifying
these highly specialised models to new market environments
have become difficult and many even choose to redevelop
the model instead.

The inherent problem is the design of the models. Figure
1 dissects the common methods in operations research for
solving an optimisation problem such as the Hydro power
problem mentioned above into its separate components. The
solvers are now considered to be separate from the mod-
elling language, allowing a single model to be easily tested

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

by different solvers. Software such as the general algebraic
modelling system (GAMS) allows a user to develop a model
in a single language and let it be solved by several different
solvers. Similarly the input to the model is interchangeable,
allowing a user to use data from, for example, a different
year.

However, the model structure itself is considered to be
static and never changing. More modern Hybrid models may
incorporate a more flexible design and may have the poten-
tial to alter the actual behaviour of a model. For example,
a more flexible Hydro power plant model could not be spe-
cific to just one existing plant, but could be flexible allow-
ing a user to tailor it to any existing plant. This would re-
quire the model to simulate different types of turbines, each
with different functions to define its behaviour. However, a
model with changing behaviour presents a new problem for
any methods for configuring the solver or for predicting the
runtime of the solver.

Current methods in configuration focus on optimizing a
solvers parameters for a specific problem. In such a case, the
parameters are expected to improve the solvers efficiency in
average over a selection of different input scenarios. How-
ever, if more flexible models are being developed that also
change the behaviour of the model, solvers would show a
more drastic change in performance for different scenarios.
Therefore the configuration of the solvers parameters should
take into consideration the design of the model itself, al-
lowing the system to adjust the solvers parameters based on
how the models behaviour has been configured. Similarly,
the prediction of the solvers runtime becomes more com-
plex. Changing the behaviour of the model also changes the
complexity of the problem greatly, increasing both the need
and the difficulty of an accurate prediction.

Therefore, the following three research questions arise.

• How can a mathematical model be implemented to allow
a large degree of flexibility in it’s behaviour?

• How can the parameters best be configured for a flexible
and dynamic mathematical model?

• How can the runtime of a solver be accurately predicted
for a flexible mathematical model?

10

Figure 1: Graphical representation of how a problem is
solved using a mathematical language and solver. Data and
a model structure is input using a model language, creating a
model instance. This instance can then be solved by a solver
and the results are returned.

Proposed Method
Implementing software in a way that allows continues de-
velopment and maintenance is well understood in computer
science. One tool used to prevent it is Object Orientated de-
sign, which splits the system into several classes (module)
and allows each module address another aspect of the soft-
ware. Modular approaches to mathematical modelling has
been used before and many new modelling languages be-
ing developed use this concept. However, this is a strong
contradiction to the standard in industry, where the more
classical modelling languages dominate the field. For a suc-
cessful adaptation of a modular design, the concept must be
usable with classical modelling languages such as GAMS.
Only once a modular approach is more widely accepted will
new modelling language that assists in a modular approach
be more widely accepted. It also eases the integration of new
models with currently used models.

A modular approach allows each aspect to be easily re-
placed by reimplementing the specific class. This concept
can also be used in mathematical models, by separating each
component into separate modules. As an example for the
Hydro power plant model, it can be separated into modules
each presenting an aspect of the model, such as the intra-
day market, a type of turbine or an environmental constraint.
How this is achieved in a mathematical language is demon-
strated in Figure 1 and Listing 2.

Listing 1 shows the implementation of a module con-
taining a function describing the storage level in a Hydro
power station. A further constraint on the storage variable
is contained in a separate module, described in the Stor-
ageMax.gms file shown in Listing 2. By simply importing

the file storageMax.gms, the module and its constraint is in-
cluded in the model. A main file containing these import
statements can then be used to easily modify the structure of
the model by simply including or excluding modules.

Listing 1: Storage.gms

E q u a t i o n
s t o r a g e (i)
;

s t o r a g e (i) . .

s t o r a g e (i) =e=
s t o r a g e (i −1)

+ i n f l o w (i)
− r e l e a s e (i) ;

$ i m p o r t s to rageMax . gms

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Listing 2: Storage.gms

E q u a t i o n
s t o r a g e (i)
;

s t o r a g e (i) . .

s t o r a g e (i) = l = m a x s t o r a g e ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
The same principle can be used for aggregate functions as

shown in Listing 3 to 5 and for several versions of the same
constraint as shown in Listing 6.

Listing 3: Income.gms
E q u a t i o n
i n c o m e t o t a l (i)
;

i n c o m e t o t a l (i) . .

i n c o m e t o t a l (i) =e=
sum (m, income (i ,m))

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Listing 4: Market1.gms
E q u a t i o n
income (i)
;

income (i) . .

11

income (i) =e=
p r i c e (i , 1) ∗ p r o d u c t i o n (i , 1)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Listing 5: Market2.gms

E q u a t i o n
income (i)
;

income (i) . .

income (i) =e=
p r i c e (i , 2) ∗ p r o d u c t i o n (i , 2)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

As shown in Listing 3, the total income is calculated by
summing the income from each market. The income for each
market is calculated in separate modules. By including or
excluding the module market1 and market2, the market can
be added or removed.

Listing 6: storageLoss.gms
E q u a t i o n
s t o r a g e (i)
;

s t o r a g e (i) . .

s t o r a g e (i) =e=
s t o r a g e (i −1)
+ i n f l o w (i)
− sum (m, r e l e a s e (i ,m))
− l o s s (i)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Listing 6 shows an alternative implementation of the stor-
age module described in Listing 1 and can be used to replace
the previous implementation. Altogether, these methods can
be used to create a model, which allows its behaviour to be
modified by simple import statements.

Instances off each module can be used to model multi-
ple occurrences of physical objects. For example, there may
be different modules for different type of turbines, such as a
Pelton turbine or a Francis turbine. However, a Hydro power
station may contain several turbines of the same type. There-
fore several instances of a turbine may exist. The concept of
instantiation is fairly simple though and can be implemented
in a functional language through a set of functions and a ta-
ble containing the parameters for each instance. In a similar
manor, it is possible for a mathematical language.

Modules depend on others and some common sense re-
strictions must be respected. For example, the Hydro power
model must contain a type of turbine to allow power pro-
duction and a market must be available to sell the energy

produced. However, it is also possible to operate on sev-
eral markets at the same time. Similarly, modules that im-
plement the same aspect and therefore the same constraint
but in a different may can only be selected once within a
model, effectively creating an exclusive or relationship. In-
stances themselves are subject to restrictions, as a reservoir
must be connected to a turbine or river to allow water to exit
again to avoid flooding. The relationship between different
modules and different instances can be captured in predicate
logic and used as a validation method to determine a models
validity before passing it to the solver.

As this approach combines a top down model, consisting
of the mathematical model, and a bottom up model model,
consisting of the validity logic, it would be considered a Hy-
brid model within the Operations Research community (4).
Within the computer science community, this method is con-
ceptually different and would be recognised as dependency
injection or inversion of control, as the module with the de-
sired behaviour is selected at runtime. Despite different ways
of looking at it, such a design is understood and accepted by
both communities.

The benefit of such an implementation is similar to those
of Object orientated design, including reusability and main-
tainability. In addition, a new developer does not require
knowledge of the entire system to update one aspect of the
system. Furthermore, a model can then be configured by se-
lecting which modules to use in a simulation (3) (2). This
can allow a model to behave differently in each configura-
tion as shown in Figure 2.

Figure 2: Graphical representation of how modules can be
combined to create different configurations with different
behaviours. The functions defining the model are separated
into modules, which are then combined to create a model
configuration.

The ability to configure the behaviour of a model sets
it apart from most other model designs. Such functionality
is sometime implemented to some extent utilising simple if
statements throughout the model, such as shown in

Listing 7.

Listing 7: storageLoss.gms
E q u a t i o n
s t o r a g e (i)
;

s t o r a g e (i) . .

12

s t o r a g e (i) =e=

s t o r a g e (i −1)
+ i n f l o w (i)
− sum (m, r e l e a s e (i ,m))
− l o s s (i) $ (i n c l u d e eq 1)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

However, it is limited. Extensive use of such statements
result in the model being riddled with if statements making
it unreadable. In addition, each flexible aspect must be im-
plemented manually rather than being inherently flexible by
design. By using a modular approach instead it separates this
logic from the functions, adding a layer of abstraction.

The resulting model would result in a large degree of flex-
ibility, but will also result in varying complexity. Based on
which and how many modules are selected at runtime, the
runtime of the solver can vary greatly. Predicting the run-
time of the solver can be done using machine learning meth-
ods (6). However, predicting the runtime of the solver be-
comes more difficult when using a model with changing be-
haviour. In a standard model, the search space is relatively
stable compared to the proposed model. Different inputs will
only modify the search space to some degree, while chang-
ing the the number of constraints and the constraints them-
selves changes the search space drastically.

However, there is some knowledge that can be extracted
from the model structure itself and can then be used to more
accurately predict the runtime. Simply using the number of
modules can already help in estimating the complexity of
the model as shown in Figure 3 and further information on
how each module depends on the other and the validity logic
contains useful knowledge of the models structure. Overall,
there are many candidate features which may prove to be a
good indication of the models runtime.

Using methods from machine learning such as a correla-
tion matrix and a neural network, the best features could be
selected and their relationship to the models runtime could
be learned. Depending on which features are the most vi-
able, this method could potentially also be viable for more
modules or even entire models that the neural network has
not been trained on. This could possibly be used as a global
tool rather than being limited to a specific model. The fea-
tures to be selected and their relationship to the runtime must
be examined in a set of experiments. Additionally, how well
the relationship can be learned and the extent to which this
method can be used for unknown modules must also be in-
vestigated.

Most solvers such as the IBM CPLEX solver have several
parameters that can be fine tuned by the user to boost the
solvers performance for a specific problem. Parameters can
modify the heuristics, probing, cutting and much more (7).
Automatic configuration of these parameters has been stud-
ied to a great extent (7) and is even included in some solvers
functionality. However, they do not considered a flexible
model structure.

Therefore, a tuning process would have to be applied each
time the structure changes. Again, knowledge from the mod-

els structure could be used to help tune the parameters for
a specific structure. How much the optimal parameters for
each structure vary, the performance increase and which pa-
rameters to modify must be tested in a set of experiments.
Additionally, the correlation between models structure and
the parameters as well as how well this relationship can be
learned will have to be investigated.

The resulting system would allow a model to be config-
ured for many different scenarios and can generate an ideal
parameter configuration and runtime prediction for that sce-
nario before being executed.

Experiments
A fully functioning prototype demonstrating the feasibility
and the benefits of a model developed though a modular de-
sign will be developed. As a case study, a model of a Hydro
power station is developed that has the flexibility to simulate
several market and investment scenarios. Due to its flexibil-
ity, it will not be tied to a specific power plant but rather be
general and can be configured for any hydro power plant.
It is hoped that such a model can be used as a example for
modular design and can be continuously updated and inte-
grated with other models.

The results of the previously mentioned experiments will
demonstrate how such a design can assist in predicting the
runtime of a flexible model. In addition, they will determine
which features of the model structure is best suited for an
accurate prediction for the solvers runtime. Knowledge can
be extracted from the modules themselves, such as in the
most simple case the number of functions within the model,
as well as their relationship with other modules, such as how
many variables are shared between the modules. It is hoped
that a set of features can be selected that are easily extracted
from a model to allow this method be applied to modules or
entire models that are not contained in the training set.

Figure 3: Initial results of running different model configu-
rations. It shows how a simple parameter such as the number
of modules has a correlation to the runtime of the model.

Therefore, it would allow this method be used on any
model that follows the same design pattern. The success of
this experiment relies on if general features for each mod-
ule can be used, or whether the system has to learn the im-
pact that each module has on the complexity of the model.
If the latter is the case, the system would have to train on

13

each new module that was added before making a predic-
tion. Although still useful, it would limit its reusability for
other models.

The experiments concerning the parameter tuning of the
solver will determine which parameters should be tuned for
different structures to produce a performance boost. As a
first step, the experiments must determine whether different
configurations of the model require different parameter con-
figurations. If this is the case, a performance boost is viable.
In this case, experiments will determine which parameters
are best suited for configuration and to what extent the re-
lationship between structure configuration and optimal pa-
rameter configuration can be learned.

Evaluation
The evaluation of these methods are important in demon-
strating their viability. It allows comparison to existing
methods and is important for determining whether it is not
only novel, but also useful to the research community.

The success of the model design will be evaluated in two
case studies involving a hydro power station model. It will
be compared to the current state of the art in industry and
will also be evaluated on the bases of what further function-
ality is achieved through a modular design. The extent of its
flexibility, such as whether it can simulate different type of
Hydro power plants, whether it can be used to investigate
investment opportunities and how well it can compete with
other models in terms of accuracy in real scenarios will be
tested.

The runtime prediction can be tested for accuracy by com-
paring the predicted runtime with actual runtime prediction.
In addition, a comparison can be made with prediction meth-
ods that work with a static model structure. Although an un-
fair comparison, it can show the feasibility of predicting the
runtime for flexible models.

The methods used for tuning the solvers parameters for
different structures can be evaluated by comparing it to a
base case parameter configuration. This base case can be
created by choosing a configuration that is optimal in aver-
age over different model structures. Through a comparison
of the solvers runtime to such a base case, the benefit of us-
ing methods based on the models structure can be measured.

Contributions
Successful investigation of the previously stated research
questions would result in a fully functional system, that is
adaptable, automatically configurable and predictable. How-
ever, apart from the system itself, it is expected that several
scientific insights are gained. It will extend our model de-
velopment methods, our knowledge of automatic parameter
tuning and our understanding of what elements in a model
affects its complexity.

The model design will help the efforts to transition form
classical modelling methods to more agile methods similar
to what is commonly used now in computer science as well
as reduce the gap between the computer science and oper-
ations research communities. The model itself will be use-
ful as an experiment base allowing the study of how small

changes to a module affects its complexity. This understand-
ing can then be used to better understand the runtime of our
solvers and how best to tune the solver to minimise these
effects.

Conclusions
In conclusion, a change in design of mathematical model
both requires and assists in developing methods for auto-
matic solver tuning and runtime predictions. Current meth-
ods are limited by the assumption that the structure remains
static and the search space only shifts due to different in-
puts, rather than different model behaviours. Changing be-
haviours makes the tuning of the solver and the prediction of
its performance more difficult, but may also deepen our un-
derstanding of this relationship, further improving the state
of the art.

Acknowledgements
This work has been done in the context of the SNSF funded
project Hydro Power Operation and Economic Performance
in a Changing Market Environment. The project is part
of the National Research Programme Energy Transition
(NRP70).

References
[1] Alfieri, L.; Perona, P.; and Burlando, P. 2006. Op-

timal water allocation for an alpine hydropower system
under changing scenarios. Water resources management
20(5):761–778.

[2] Barry, M., and Schumann, R. 2015. Dynamic and con-
figurable mathematical modelling of a hydropower plant
research in progress paper. In Presented at the 29. Work-
shop ”Planen, Scheduling und Konfigurieren, Entwer-
fen” (PuK 2015).

[3] Barry, M.; Schillinger, M.; Weigt, H.; and Schumann, R.
2015. Configuration of hydro power plant mathematical
models. In Energy Informatics: Proceedings of the En-
ergieinformatik 2015, volume 9424 of Lecture Notes in
Computer Sciences. Springer.

[4] Böhringer, C. 1998. The synthesis of bottom-up and
top-down in energy policy modeling. Energy economics
20(3):233–248.

[5] Guo, S.; Chen, J.; Li, Y.; Liu, P.; and Li, T. 2011.
Joint operation of the multi-reservoir system of the three
gorges and the qingjiang cascade reservoirs. Energies
4(7):1036–1050.

[6] Hutter, F.; Xu, L.; Hoos, H. H.; and Leyton-Brown, K.
2014. Algorithm runtime prediction: Methods & evalua-
tion. Artificial Intelligence 206:79–111.

[7] Klotz, E., and Newman, A. M. 2013. Practical guide-
lines for solving difficult mixed integer linear programs.
Surveys in Operations Research and Management Sci-
ence 18(1):18–32.

14

Thesis Abstract: Constructing Heuristics for PDDL+ Planning Domains

Wiktor Piotrowski
Supervised by: Daniele Magazzeni and Maria Fox

Department of Informatics
King’s College London

United Kingdom

Abstract

Planning with hybrid domains modelled in PDDL+ has
been gaining research interest in the Automated Plan-
ning community in recent years. Hybrid domain mod-
els capture a more accurate representation of real world
problems, that involve continuous processes, than is
possible using discrete systems. However, solving prob-
lems represented as PDDL+ domains is very challeng-
ing due to the construction of complex system dynam-
ics, including non-linear processes and events, and vast
search spaces.
The main focus of my PhD is to mitigate these chal-
lenges by developing domain-independent heuristics for
planning in hybrid domains modelled in PDDL+. This
is a very real issue as only a handful of planners can
cope with hybrid domains and, fewer still with the full
set of PDDL+ features and non-linear behaviour.

1 Introduction
Over the years, Automated Planning research has been con-
tinuously attempting to solve the most advanced and com-
plex planning problems. The standard modelling language,
PDDL (McDermott et al. 1998), has been evolving to ac-
commodate new concepts and operations, enabling research
to tackle problems more accurately representing real-world
scenarios. Recent versions of the language, PDDL2.1 and
PDDL+ (Fox and Long 2003; 2006), enabled the most ac-
curate standardised way yet, of defining hybrid problems as
planning domains.

Planning with PDDL+ has been gaining research interest
in the Automated Planning community in recent years. Hy-
brid domains are models of systems which exhibit both con-
tinuous and discrete behaviour. They are amongst the most
advanced models of systems and the resulting problems are
notoriously difficult for planners to cope with due to non-
linear behaviour and immense search spaces.

My research aims mitigate these issues by developing
domain-independent heuristics able to reason with nonlin-
ear system dynamics and PDDL+ features such as processes
and events. These heuristics are being implemented in UP-
Murphi as a proof of concept.

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We begin by outlining the related work done in the area of
hybrid domains and PDDL+ planning in section 2. We dis-
cuss the relevance of the research problem and motivation
for tackling it in section 3. Section 4 describes our method-
ology for dealing with hybrid domains. We then outline the
contribution made and ongoing research in section 5. Sec-
tion 6 describes the future research. Section 7 concludes the
thesis summary.

2 Related Work
Various techniques and tools have been proposed to deal
with hybrid domains (Penberthy and Weld 1994; McDer-
mott 2003; Li and Williams 2008; Coles et al. 2012; Shin
and Davis 2005). Nevertheless, none of these approaches
are able to handle the full set of PDDL+ features, namely
non-linear domains with processes and events. More recent
approaches in this direction have been proposed by (Bogo-
molov et al. 2014), where the close relationship between
hybrid planning domains and hybrid automata is explored.
(Bryce et al. 2015) use dReach with a SMT solver to handle
hybrid domains. However, dReach does not use PDDL+,
and cannot handle exogenous events.

On the other hand, many works have been proposed in
the model checking and control communities to handle hy-
brid systems. Some examples include (Cimatti et al. 2015;
Cavada et al. 2014; Tabuada, Pappas, and Lima 2002; Maly
et al. 2013), sampling-based planners (Karaman et al. 2011;
Lahijanian, Kavraki, and Vardi 2014). Another related
direction is falsification of hybrid systems (i.e., guiding
the search towards the error states, that can be easily cast
as a planning problem) (Plaku, Kavraki, and Vardi 2013;
Cimatti et al. 1997). However, while all these works aim
to address a similar problem, they cannot be used to han-
dle PDDL+ models. Some recent works (Bogomolov et al.
2014; 2015) are trying to define a formal translation between
PDDL+ and standard hybrid automata, but so far only an
over-approximation has been defined, that allows the use of
those tools only for proving plan non-existence.

To date, the only viable approach in this direction is
PDDL+ planning via discretisation. UPMurphi (Della
Penna, Magazzeni, and Mercorio 2012), which implements
the discretise and validate approach, is able to deal with the
full range of PDDL+ features. The main drawback of UP-
Murphi is the lack of heuristics, and this strongly limits its

15

scalability. However, UPMurphi was successfully used in
the multiple-battery management domain (Fox, Long, and
Magazzeni 2012), and more recently for urban traffic con-
trol (Vallati et al. 2016). In both cases, a domain-specific
heuristic was used.

3 Problem Statement & Motivation
Automated Planning is a crucial part of a multitude of sys-
tems in almost every domain of science and technology.
However, in certain cases the complexity or scale of the
systems has outgrown the capabilities of the modelling lan-
guage rendering the planning domain either too inaccurate
or too cumbersome to express.

When first introduced, PDDL+ allowed new, more com-
plex problems, closely resembling real-world scenarios, to
be modelled. Though planning is now able to express com-
plex hybrid domains, solving these problems is very chal-
lenging due to nonlinear behaviour, state explosion and con-
tinuous variables rendering the reachability problem un-
decidable. As described in Section 2, various planning
tools using different approaches have been developed over
the past years to tackle problems set in hybrid domains.
However, the vast majority cannot deal with the full set
of PDDL+ features and/or nonlinear behaviour. This sig-
nificantly limits the relevance of Automated Planning for
a wide range of applications since only restricted and/or
downscaled hybrid models can be handled. As a result, some
classes of planning problems, relevant to today’s science and
technology, are being solved using domain-specific heuris-
tics or approaches from outside planning altogether (Mixed-
Integer Programming, Genetic Algorithms, etc.).

In addition to the inability to reason with some PDDL+
features and/or non-linearity, current planning tools scale
poorly when presented with larger problem instances. This
is due to the absence or poor performance of heuristics in
the presence of vast search space, exogenous processes and
events, and non-linearity. Currently, heuristics applied to hy-
brid systems have either been developed for a different sub-
class of problems (e.g. PDDL2.1), or to reason with only a
subset of the features expressible in PDDL+.

The main motivation of this research is to advance
PDDL+ planning to tackle larger and more complex prob-
lems by addressing the apparent lack of efficient domain-
independent heuristics devised specifically for hybrid do-
mains. To significantly increase the performance of planners
in hybrid domains, heuristics should be designed to directly
reason with the complex system dynamics, and PDDL+ fea-
tures, i.e. processes and events.

4 Methodology
Reasoning with PDDL+ features and complex, often non-
linear, system dynamics is a challenging objective for Au-
tomated Planning tools. As shown in Section 2, all current
approaches have drawbacks significantly limiting their per-
formance and capabilities, often rendering them inadequate
for the complex problems at hand.

Our approach of coping with PDDL+ domains combines
two successful paradigms, planning as model checking and

(a) Model Checking (b) Planning

Figure 1: Similarity of Model Checking and Automated
Planning

Discretise & Validate.

Planning as model checking (Cimatti et al. 1997; Bogo-
molov et al. 2014) is an approach applying model check-
ing methods to finding the goal state in Automated Plan-
ning. Model checking and planning have striking similari-
ties meaning that methods from one field can be exploited
to improve performance in the other field. Searching for a
goal in planning (Fig.1a) can be seen as searching for an
error state in model checking(Fig.1b). Analogously, the er-
ror trace in model checking corresponds to a trajectory to
the goal state in planning. Planning as model checking has
been successfully used in various scenarios, and is gaining
more research interest (multiple publications and workshops
at top conferences).

Figure 2: The Discretise & Validate process

As mentioned before, planning via discretisation is, to
date, the only viable approach to PDDL+ planning. Our
approach is based on the Discretise & Validate approach
(Della Penna, Magazzeni, and Mercorio 2012; Della Penna
et al. 2009). It approximates the continuous dynamics of
systems in a discretised model with uniform time steps and
step functions. Using a discretised model and a finite-time
horizon ensures a finite number of states in the search for a
solution. Solutions to the discretised problem are validated
against the original continuous model using VAL (Howey,
Long, and Fox 2004). If the plan at a certain discretisation
is not valid, the discretisation can be refined and the process
iterates. Discretise & Validate technique has been the basis
of UPMurphi’s success in the planning domain. An outline
of the Discretise & Validate process is shown in Fig. 2.

16

5 Contributions
This section describes my contribution to date. Our devel-
opment resulted in DiNo, a new heuristic planner designed
for PDDL+ domains equipped with informed search algo-
rithms and Staged Relaxed Planning Graph+ (SRPG+), a
new domain-independent heuristic based on the Temporal
Relaxed Planning Graph. Our publication describing DiNo
is currently under review for IJCAI 2016.

5.1 DiNo
We introduced DiNo, a new planner for PDDL+ problems
with mixed discrete-continuous non-linear dynamics. DiNo
is built on UPMurphi, and uses the planning-as-model-
checking paradigm and relies on the Discretise & Validate
approach to handle continuous change and non-linearity.
Though UPMurphi has been successful, it scales poorly due
to exhaustive uninformed search algorithm, DiNo compen-
sates for the lack of heuristics and shows significant im-
provement over its predecessor.

DiNo uses a novel relaxation-based domain-independent
heuristic for PDDL+, Staged Relaxed Planning Graph+
(SRPG+). The heuristic guides the Enforced Hill-Climbing
algorithm (Hoffmann and Nebel 2001). In DiNo we also ex-
ploit the deferred heuristic evaluation (Richter and Westphal
2010) for completeness (in a discretised search space with
a finite horizon). States generated through non-helpful ac-
tions are considered (inserted into the queue) but they are not
heuristically evaluated, instead they are assigned the heuris-
tic value of their parent state (i.e. the are deemed no better
than their parent state).

DiNo is currently the only heuristic planner capable of
handling non-linear system dynamics combined with the full
PDDL+ feature set.

5.2 SRPG+
This section describes the Staged Relaxed Planning
Graph+ (SRPG+) domain-independent heuristic designed
for PDDL+ domains and implemented in DiNo.

The SRPG+ heuristic follows from Propositional (Hoff-
mann and Nebel 2001), Numeric (Hoffmann 2003; 2002)
and Temporal RPGs (Coles et al. 2012; 2008; Coles and
Coles 2013). The original problem is relaxed and does not
account for the delete effects of actions on propositional
facts. Numeric variables are represented as upper and lower
bounds which are the theoretical highest and lowest values
each variable can take at the given fact layer. Each layer is
time-stamped to keep track of the time at which it occurs.

The Staged Relaxed Planning Graph+, however, extends
the capability of its RPG predecessors by tracking processes
and events to more accurately capture the continuous and
discrete evolution of the system.

Apart from the inclusion of processes and events, the
Staged RPG significantly differs from the Temporal RPG
in time-handling. The SRPG explicitly represents every fact
layer with the corresponding time clock, and in this sense the
RPG is ”staged”, as the finite set of fact layers are separated
by the discretised time step (∆t). In contrast, the TRPG
takes time constraints into account by time-stamping each

(a) UPMurphi (b) DiNo

Figure 3: Branching of search trees (Blue states are explored, or-
ange are visited. Red edges correspond to helpful actions)

fact layer at the earliest possible occurrence of a happening.
Only fact layers where values are directly affected by actions
are contained in the TRPG.

Time Passing The time-passing action plays an important
role as it propagates the search in the discretised timeline.
During the normal expansion of the Staged Relaxed Plan-
ning Graph, the time-passing is one of the ∆-actions and is
applied at each fact layer. Time-passing can be recognised as
a helpful action (Hoffmann and Nebel 2001) when its effects
achieve some goal conditions (or intermediate goal facts).
However, if at a time t there are no helpful actions available
to the planner, time-passing is assigned highest priority and
used as a helpful action. This allows the search to quickly
manage states at time t where no happenings of interest are
likely to occur.

This is the key innovation with respect to the standard
search in the discretised timeline performed, e.g., by UP-
Murphi. Indeed, the main drawback of UPMurphi is in that
it needs to expand the states at each time step, even during
the idle periods, i.e., when no interesting interactions or ef-
fects can happen. Conversely, SRPG+ allows DiNo to iden-
tify time-passing as a helpful action during idle periods and
thus advance time, mitigating the state explosions.

An illustrative example is shown in Figure 3, that com-
pares the branching of the search in UPMurphi (Fig. 3a)
and DiNo (Fig. 3b) when planning with a Solar Rover do-
main. The domain is described in detail in Section 5. Here
we highlight that the planner can decide to use two batter-
ies, but the goal can only be achieved thanks to a Timed
Initial Literal ((Edelkamp and Hoffmann 2004)) that is trig-
gered only late in the plan. UPMurphi has no information
about the future TIL, therefore it tries to use the batteries at
each time step. On the contrary, DiNo recognises the time-
passing as a helpful action, and this prunes the state space
dramatically.

Processes and Events The SPRG+ heuristic improves on
the Temporal Relaxed Planning Graph and extends its func-
tionality to reason with information gained from PDDL+
features, namely the processes and events.

As the SRPG+ heuristic is tailored for PDDL+ domains,
it takes into account processes and events. In the SRPG,

17

the continuous effects of processes are handled in the same
manner as durative action effects, i.e. at each action layer,
the numeric variables upper and lower bounds are updated
based on the time-step functions used in the discretisation to
approximate the continuous dynamics of the domain.

Events are checked immediately after processes and their
effects are relaxed as for the instantaneous actions. The
events can be divided into “good” and “bad” categories.
“Good” events aid in finding the goal whereas “bad” events
either hinder or completely disallow reaching the goal. Cur-
rently, DiNo is agnostic about this distinction. However, as a
direct consequence of the SRPG+ behaviour, DiNo exploits
good events and ignores the bad ones. Future work will
explore the possibility of inferring more information about
good and bad events from the domain.

5.3 Evaluation of DiNo
In this section the performance of DiNo is evaluated on
PDDL+ benchmark domains. Note that the only planner
able to deal with the same class of problems is UPMurphi,
which is also the most interesting competitor as it can high-
light the benefits of the proposed heuristic. For sake of com-
pleteness, where possible, a comparison with other planners
able to handle (sub-class of) PDDL+ features is presented,
namely POPF (Coles et al. 2010; Coles and Coles 2013) and
dReach (Bryce et al. 2015).

For the experimental evaluation, two benchmark domains
were considered: generator and car. We also developed two
further domains for the evaluation to highlight specific as-
pects of DiNo: Solar Rover shows how DiNo handles TILs,
and Powered Descent further tests its non-linear capabilities.

Generator The domain models a diesel-powered generator
which has to be refueled to run for a given duration with-
out overflowing or running dry. We evaluate DiNo on both
the linear and non-linear versions of the problem. The non-
linear generator models fuel flow rate using Torricelli’s Law
which has been previously encoded in PDDL by (Howey
and Long 2003). In both variants, we increase the number
of tanks available to the planner while decreasing the initial
generator fuel level for each subsequent problem.
Solar Rover We developed the Solar Rover domain to test
the limits and potentially overwhelm discretisation-based
planners, as finding a solution to this problem relies on a
TIL that is triggered only late in the plan. The task revolves
around a planetary rover transmitting data which requires a
certain amount of energy. To generate enough energy the
rover can choose to use its batteries or gain energy through
its solar panels. The goal can only be reached through a
sunshine event which is triggered by a TIL at a certain time.
The set of problem instances for this domain has the trigger
fact become true at an increasingly further time point (50 to
1000 time units). In the non-linear variant of the domain,
the TIL triggers a process charging the rover’s battery at an
exponential rate.
Powered Descent We developed a new domain which mod-
els a powered spacecraft landing on a given celestial body.
The vehicle gains velocity due to the force of gravity. The
available action is to fire thrusters to decrease its velocity.

The thrust action duration is flexible and depends on the
available propellant mass. The force of thrust is calculated
via Tsiolkovsky rocket equation (Turner 2008). The goal is
to make a controlled landing from the initial altitude within
a given time-frame. The spacecraft has been modelled after
the Lunar Descent Module used in NASA’s Apollo missions.
Car The Car domain (Fox and Long 2006) shows that DiNo
does not perform well on all types of problems, the heuristic
cannot extract enough information from the domain and as
a result loses out to UPMurphi by approximately one order
of magnitude. This variant of the Car domain has its overall
duration and acceleration limited, and the problems are set
with increasing bounds on the acceleration (corresponding
to the problem number).

Due to lack of heuristic information extracted from the
domain, DiNo reverts to a blind Breadth-First search and, in
the end, explores the same number of states as UPMurphi.
The results for the Car domain in Table 1 show the overhead
generated by the SRPG+ heuristic in DiNo.

Overall, the results show that DiNo holds a significant ad-
vantage in performance over UPMurphi and other competi-
tors in most test domains.

6 Future Research
This section describes the ongoing research and future plans
for my PhD. The focus is on defining and developing new
heuristics as well as promoting the PDDL+ planning in the
AI community.

6.1 Temporal Pattern Database
After developing the Staged relaxed Planning Graph+, we
decided to examine another successful class of heuristics -
Pattern Databases (PDB). The pattern database is a look-up
table indexed by a subset of the state and containing a pre-
computed heuristic value that reflects the cost of solving the
corresponding subproblem. Each state explored during con-
crete search is assigned the abstract cost of its corresponding
abstract state in the PDB, as the heuristic value.

The key element to a high-performing PDB is the ab-
straction selection. In planning, PDBs have been applied
to propositional domains where the abstraction would ob-
scure part of each state’s variable set ((Edelkamp 2002;
Haslum et al. 2007; Edelkamp 2014)). On the other hand,
research in PDBs in model checking has concentrated on
abstracting continuous variables ((Bogomolov et al. 2013)).

We build on research conducted in both fields to de-
velop Temporal Pattern Database (TPDB), a new heuristic
method with novel features enabling tackling complex prob-
lems with non-linear dynamics and full PDDL+ feature set.
Our heuristic simultaneously handles full PDDL+ domains
and prunes a substantial part of the search space. Processes
and events are accounted for by default, their effects are au-
tomatically applied when building the TPDB.

The abstraction we devised is two fold: time abstraction
and state abstraction. Combining the two abstractions man-
ages to keep the TPDB efficient and reasonable in size.

Time abstraction is a function which increases the discre-
tised time step (∆t) for use in the abstract state space in the

18

LINEAR GENERATOR NON-LINEAR GENERATOR LINEAR SOLAR ROVER NON-LINEAR SOLAR ROVER POWERED DESCENT CAR
PROBLEM DiNo POPF dReach UPMurphi DiNo UPMurphi DiNo UPMurphi DiNo UPMurphi DiNo UPMurphi DiNo UPMurphi

1 0.34 0.01 2.87 140.50 3.62 X 0.70 203.26 1.10 288.94 0.68 0.18 1.74 0.22
2 0.40 0.01 X X 0.78 X 0.92 X 2.58 X 1.04 0.74 4.56 0.30
3 0.50 0.05 X X 2.86 X 1.26 X 4.74 X 1.88 2.98 8.26 0.42
4 0.60 0.41 X X 59.62 X 1.52 X 7.10 X 3.52 7.18 10.28 0.54
5 0.74 6.25 X X 1051.84 X 1.80 X 9.58 X 2.88 30.08 14.16 0.66
6 0.88 120.49 X X X X 2.04 X 12.86 X 3.14 126.08 15.78 0.68
7 1.00 X X X X X 2.28 X 16.48 X 5.26 322.16 17.08 0.72
8 1.16 X X X X X 2.64 X 21.38 X 3.82 879.52 18.90 0.72
9 1.38 X X X X X 2.98 X 26.74 X 1.58 974.60 19.30 0.76
10 2.00 X X X X X 3.30 X 29.90 X 2.26 X 19.50 0.78
11 1.84 X X X N/A N/A 3.50 X 35.96 X 11.24 X N/A N/A
12 2.06 X X X N/A N/A 3.74 X 42.54 X 42.24 X N/A N/A
13 2.32 X X X N/A N/A 4.00 X 48.06 X 14.90 X N/A N/A
14 2.46 X X X N/A N/A 4.38 X 55.46 X 61.94 X N/A N/A
15 2.88 X X X N/A N/A 5.20 X 62.84 X 19.86 X N/A N/A
16 2.94 X X X N/A N/A 5.40 X 74.50 X 80.28 X N/A N/A
17 3.42 X X X N/A N/A 5.08 X 86.96 X 2.94 X N/A N/A
18 3.54 X X X N/A N/A 5.64 X 95.66 X 2234.88 X N/A N/A
19 3.76 X X X N/A N/A 6.12 X 102.86 X X X N/A N/A
20 4.26 X X X N/A N/A 6.02 X 117.48 X X X N/A N/A

Table 1: Run time to find a valid solution (in seconds) (”X” - planner ran out of memory, ”N/A” - problem not tested)

TPDB. This allows the TPDB to store fewer states and keep
its size manageable. However, choosing the correct time ab-
straction has to be a compromise between the size of the
TPDB and the precision. Too coarse abstraction can miss
the adverse events occurring between the abstract state time
points and cause significant back-tracking.

State abstraction is a function which reduces the preci-
sion of states’ continuous variables. This method compen-
sates for the discrepancies between the values of continuous
variables in concrete and abstract states. Due to the varied
discretisation, real variables in abstract states in the TPDB
(generated using the abstracted time step) can differ from
their corresponding variables in concrete states (achieved
using the concrete time step ∆t). Choosing the precision
for the state abstraction is crucial for the Temporal Pattern
Database. On the one hand, choosing a coarser precision for
real variables will shrink the size of the TPDB (each abstract
state will correspond to a larger number of concrete states).
On the other hand, choosing finer precision will make the
heuristic estimates more accurate. When choosing the pre-
cision value, one should aim to balance the two aspects.

The Temporal Pattern Database is a structure which maps
abstract state-action pairs to the length of the shortest trajec-
tory to an abstract goal state. A TPDB is built by executing
the applicable actions under time abstraction to generate the
subsequent abstract states until a the abstract goal state is
found, or the finite temporal horizon T is reached (meaning
the bounded abstract problem is unsolvable and the horizon
should be increased, or the discretisation refined). The ab-
stract distances stored in the TPDB are used in the concrete
search as the heuristic estimate for each considered state.

We are currently in the process of implementing the Tem-
poral Pattern Database into UPMurphi to evaluate our con-
cept. PDBs have proven to be a high performing approach
for both model checking and propositional planning. We be-
lieve that transforming this approach to reason with PDDL+
domains can generate a very efficient and powerful heuristic.

6.2 PDDL+ Benchmarks
Conducting novel research is obviously crucial to a PhD but
helping in identifying and mitigating the shortcomings of
one’s field of study is just as important.

One of the most pertinent inconsistencies in PDDL+ plan-
ning was the use of domains for evaluation. Using inconsis-

tent domains for empirical evaluation makes comparison of
planner performances difficult or impossible. To date, no
standardised set of benchmark domains exists. Despite the
Generator and Car domains being thought of as benchmark
domains, multiple variants of them exist and are being used
by different planning research groups around the world. We
concluded that a set of benchmark PDDL+ domains needs
to be readily available for the community to provide a fair,
unbiased comparison with competing planners, and began
compiling the test suite.

First, we collected the standard hybrid domains used in
planning and model checking literature. Examples of these
include Generator, Car,and Battery Management. To fur-
ther expand the suite, we began developing our own PDDL+
models. The top priority for our research is to diversify the
domains to account for various classes of problems that can
be encoded in PDDL+.

7 Conclusion
Efficient, high-performing heuristics are an integral and
essential part of Automated Planning. With the PDDL+
planning area increasingly gaining research interest, it is
very important to continue developing advanced heuristics
to match the requirements of emerging hybrid domains.
Heuristics need to mitigate vast search spaces but also rea-
son with complex system dynamics to estimate the evolution
of the system to a satisfactory extent. On the other hand, it is
crucial to continue inventing novel PDDL+ domains to fur-
ther test planning tools and set up a benchmark suite to allow
fair comparison between competitor planners.

We have presented the Staged Relaxed Planning Graph+,
a domain-independent heuristic developed entirely for
PDDL+ planning domains implemented in DiNo, the first
heuristic planner capable of handling the full PDDL+ fea-
ture set and non-linear system dynamics. We have shown
that reasoning directly with processes and events can pro-
duce advantages in performance of a planner.

Pattern Database heuristics proved successful in model
checking and classical planning. Our current research on the
Temporal Pattern Database is built upon these approaches
and shows promise for complex PDDL+ domains. The im-
mediate future will be dominated by our efforts to imple-
ment the TPDB heuristic into UPMurphi and empirically
evaluate its performance on PDDL+ domains.

19

References
Bogomolov, S.; Donzé, A.; Frehse, G.; Grosu, R.; Johnson, T. T.;
Ladan, H.; Podelski, A.; and Wehrle, M. 2013. Abstraction-based
guided search for hybrid systems. In Model Checking Software.
Springer. 117–134.
Bogomolov, S.; Magazzeni, D.; Podelski, A.; and Wehrle, M.
2014. Planning as Model Checking in Hybrid Domains. In AAAI.
AAAI Press.
Bogomolov, S.; Magazzeni, D.; Minopoli, S.; and Wehrle, M.
2015. PDDL+ planning with hybrid automata: Foundations of
translating must behavior. In ICAPS, 42–46.
Bryce, D.; Gao, S.; Musliner, D. J.; and Goldman, R. P. 2015.
SMT-Based Nonlinear PDDL+ Planning. In AAAI, 3247–3253.
Cavada, R.; Cimatti, A.; Dorigatti, M.; Griggio, A.; Mariotti, A.;
Micheli, A.; Mover, S.; Roveri, M.; and Tonetta, S. 2014. The
nuXmv symbolic model checker. In CAV, 334–342.
Cimatti, A.; Giunchiglia, E.; Giunchiglia, F.; and Traverso, P. 1997.
Planning via model checking: A decision procedure for ar. In Re-
cent Advances in AI planning. Springer. 130–142.
Cimatti, A.; Griggio, A.; Mover, S.; and Tonetta, S. 2015. Hy-
Comp: An SMT-based model checker for hybrid systems. In
ETAPS, 52–67.
Coles, A., and Coles, A. 2013. PDDL+ Planning with Events and
Linear Processes. PCD 2013 35.
Coles, A.; Fox, M.; Long, D.; and Smith, A. 2008. Planning with
Problems Requiring Temporal Coordination. In AAAI, 892–897.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2010. Forward-
Chaining Partial-Order Planning. In ICAPS, 42–49.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2012. COLIN:
Planning with Continuous Linear Numeric Change. J. Artif. Intell.
Res. 44:1–96.
Della Penna, G.; Magazzeni, D.; Mercorio, F.; and Intrigila, B.
2009. UPMurphi: A Tool for Universal Planning on PDDL+ Prob-
lems. In ICAPS. AAAI.
Della Penna, G.; Magazzeni, D.; and Mercorio, F. 2012. A Univer-
sal Planning System for Hybrid Domains. Appl. Intell. 36(4):932–
959.
Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: The language
for the classical part of the 4th international planning competition.
IPC at ICAPS.
Edelkamp, S. 2002. Symbolic pattern databases in heuristic search
planning. In AIPS, 274–283.
Edelkamp, S. 2014. Planning with pattern databases. In Sixth
European Conference on Planning.
Fox, M., and Long, D. 2003. PDDL2.1: An Extension to PDDL
for Expressing Temporal Planning Domains. J. Artif. Intell. Res.
20:61–124.
Fox, M., and Long, D. 2006. Modelling Mixed Discrete-
Continuous Domains for Planning. J. Artif. Intell. Res. 27:235–
297.
Fox, M.; Long, D.; and Magazzeni, D. 2012. Plan-based Policies
for Efficient Multiple Battery Load Management. J. Artif. Intell.
Res. 44:335–382.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern database
heuristics for cost-optimal planning. In AAAI, volume 7, 1007–
1012.
Hoffmann, J., and Nebel, B. 2001. The FF Planning System: Fast
Plan Generation Through Heuristic Search. J. Artif. Intell. Res.
14:253–302.

Hoffmann, J. 2002. Extending FF to Numerical State Variables. In
ECAI, 571–575. Citeseer.
Hoffmann, J. 2003. The Metric-FF Planning System: Translat-
ing“Ignoring Delete Lists”to Numeric State Variables. J. Artif. In-
tell. Res. 20:291–341.
Howey, R., and Long, D. 2003. VAL’s progress: The automatic
validation tool for PDDL2. 1 used in the international planning
competition. In IPC at ICAPS.
Howey, R.; Long, D.; and Fox, M. 2004. VAL: Automatic Plan
Validation, Continuous Effects and Mixed Initiative Planning Us-
ing PDDL. In ICTAI, 294–301. IEEE.
Karaman, S.; Walter, M. R.; Perez, A.; Frazzoli, E.; and Teller, S. J.
2011. Anytime motion planning using the RRT. In IEEE-ICRA.
Lahijanian, M.; Kavraki, L. E.; and Vardi, M. Y. 2014. A sampling-
based strategy planner for nondeterministic hybrid systems. In
2014 IEEE International Conference on Robotics and Automation,
ICRA 2014, Hong Kong, China, May 31 - June 7, 2014, 3005–
3012.
Li, H. X., and Williams, B. C. 2008. Generative Planning for
Hybrid Systems Based on Flow Tubes. In ICAPS, 206–213.
Maly, M. R.; Lahijanian, M.; Kavraki, L. E.; Kress-Gazit, H.; and
Vardi, M. Y. 2013. Iterative temporal motion planning for hybrid
systems in partially unknown environments. In HSCC, 353–362.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram, A.;
Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL - The Planning
Domain Definition Language.
McDermott, D. V. 2003. Reasoning about Autonomous Processes
in an Estimated-Regression Planner. In ICAPS, 143–152.
Penberthy, J. S., and Weld, D. S. 1994. Temporal Planning with
Continuous Change. In AAAI, 1010–1015.
Plaku, E.; Kavraki, L. E.; and Vardi, M. Y. 2013. Falsification of
LTL safety properties in hybrid systems. STTT 15(4):305–320.
Richter, S., and Westphal, M. 2010. The LAMA Planner: Guiding
Cost-Based Anytime Planning with Landmarks. J. Artif. Intell. Res.
39(1):127–177.
Shin, J.-A., and Davis, E. 2005. Processes and Continuous Change
in a SAT-based Planner. Artif. Intell. 166(1-2):194–253.
Tabuada, P.; Pappas, G. J.; and Lima, P. U. 2002. Composing
abstractions of hybrid systems. In HSCC, 436–450.
Turner, M. J. 2008. Rocket and spacecraft propulsion: principles,
practice and new developments. Springer Science & Business Me-
dia.
Vallati, M.; Magazzeni, D.; Schutter, B. D.; Chrpa, L.; and Mc-
cluskey, T. L. 2016. Efficient Macroscopic Urban Traffic Models
for Reducing Congestion: A PDDL+ Planning Approach. In AAAI.
AAAI Press.

20

Extended Abstract:
Risk-Sensitive Planning with Dynamic Uncertainty

Liana Marinescu
Department of Informatics, King’s College London

liana.marinescu@kcl.ac.uk

Publications produced
To cite the heuristic described in this paper, please refer to:

Heuristic Guidance for Forward-Chaining Planning with
Numeric Uncertainty (Marinescu and Coles 2016).

1 Introduction
Many compelling applications of planning arise from sce-
narios that are inherently uncertain. In some cases it is possi-
ble to adequately capture the dynamics of the world without
modeling uncertainty, and thus to employ classical planning
techniques. However, in many other cases it is impossible
to ignore uncertainty without hindering the planner’s knowl-
edge about the world, and hence obtaining sub-par solutions.

Our research on uncertainty so far is twofold:

• Improving heuristic guidance for problems with numeric
uncertainty, by including relevant probabilistic informa-
tion in the heuristic (with a negligible computational
cost).

• Extending prior work on building a policy offline for
problems with nondeterministic action outcomes (Muise,
McIlraith, and Beck 2012), by allowing it to support con-
tinuous numeric uncertainty.

The first contribution is focused on finding plans for
models where there is uncertainty in the outcomes of nu-
meric effects (each governed by a continuous probability
distribution). The task is to find a plan where all the pre-
conditions are met, and the goals are reached, with some
confidence θ. This paradigm has been explored by pre-
vious work, e.g. (Beaudry, Kabanza, and Michaud 2010;
Coles 2012); our first contribution is in providing effective
heuristic guidance in such a setting.

The second contribution – extending prior work on propo-
sitional uncertainty to numeric uncertainty – revolves around
offline planning. The task is to build a policy offline for
models where action outcomes have a set of discrete, non-
deterministic effects. The class of propositional problems
has been addressed by Muise (Muise, McIlraith, and Beck
2012), but numeric uncertainty still remain a challenge. We
have extended one of the basic mechanics of policy-building
– that of regression (applying an action ”backwards” in a
state, to obtain a sufficient predecessor state) – from the
propositional case, to the case of independently distributed
Gaussian numeric uncertainty.

2 Background: Continuous Uncertainty on
Actions’ Outcomes

To begin with, we build on the state-progression semantics
of the planner RTU (Beaudry, Kabanza, and Michaud 2010).
Actions have propositional and numeric preconditions and
effects, as in classical numeric planning, but the numeric ef-
fects have outcomes that are drawn from probability distri-
butions. We say that each effect is of the form 〈v op D(v)〉
where op ∈ {+=,=} and D is a (possibly deterministic)
probability distribution that governs the range of outcomes
of the effect. For example:

• 〈battery += N (−10, 22)〉 – decrease battery by an
amount with mean 10 and standard deviation 2.

• 〈coal += N (15, 32)〉 – increase coal by an amount with
mean 15 and standard deviation 3.

• 〈position error = N (0, 12)〉 – reset the position error to
0 with standard deviation 1 (e.g. after calibration).

In addition to this, we have a confidence level θ ∈ [0.5, 1):
because numeric effects have uncertain outcomes, we need
to prescribe how certain we must be that each numeric con-
dition is satisfied.

A Bayesian network (BN) is used to define the belief of
each v, and as actions are applied, the network is updated
with additional variables. In a state Si, for each vj ∈ v, a
variable vji is associated with the belief of v. If an action
a is applied, leading to a state Si+1, then for each numeric
effect 〈vj op D(v)〉, two random variables are added to
the network. The first of these, Dj

i+1, represents D(v). The
second, vji+1, is associated with the belief of v in Si+1, and
it is determined by either:

• vji+1 = vji +Dj
i+1, if op is +=;

• vji+1 = Dj
i+1, if op is =.

The BN is key to determining whether a plan meets the
required confidence level θ. An action a is applicable in a
state Si if Pre(a) is satisfied. A sequential (linear) solution
is a sequence of steps [a0, .., an], implying a state trajectory
[I, S0, .., Sn]. We use the BN to ensure that with P ≥ θ, in a
given execution of the plan, each action’s preconditions are
met and Sn satisfies any hard goals.

The state progression formalism of Beaudry et al was
adopted and extended by Coles (2012) as the basis of an

21

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1

median

offset

(1-θ)'th
%ile

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-4 -3 -2 -1 0 1 2 3 4

median

offset

(1-θ)'th
%ile

Figure 1: Possible probability distributions: Arbitrary (left)
and Gaussian (right).

over-subscription planning approach. A forward-chaining
planner following these semantics was used to find a single
plan, onto which branches were added by making additional
calls to the planner. A range of other approaches have been
adopted for planning under uncertainty, such as those based
on the use of Markov Decision Processes, e.g. (Meuleau et
al. 2009; Mausam and Weld 2008; Rachelson et al. 2008);
these approaches are particularly useful when a policy needs
to be found. As our first contribution is on the heuristic in-
side a forward-chaining planner, our focus will be on plan-
ning under the semantics of RTU described above.

3 Heuristic Guidance for Forward-Chaining
Planning with Numeric Uncertainty

3.1 Relaxing Numeric Uncertainty
In deterministic forward-chaining numeric planning, one
way to guide search is the Metric Relaxed Planning Graph
(RPG) heuristic (Hoffmann 2003). This performs a forward
reachability analysis that estimates the number of actions
needed to reach goals by relaxing the effects of actions. For
numeric state variables, this amounts to estimating reachable
bounds on the values of variables, by optimistically assum-
ing that increase effects only increase the upper bound, and
decrease effects only decrease the lower bound.

When working with RTU’s semantics, Coles (2012)
adapted this to assume for heuristic purposes that each vari-
able takes its median value. From Jensen’s inequality, we
know that if θ ≥ 0.5, this is guaranteed to be a relaxation.
However, as θ becomes large, it also means the heuristic is
increasingly unrealistic: a numeric condition might be true
assuming variables take their median values; but not when
accounting for the uncertainty in their values. In this section,
we will present two strategies that improve on this:

• we incorporate the shape of the distribution on variables’
values in the heuristic evaluation, rather than discarding it
and using the median;

• for Gaussian distributions, we explicitly track the uncer-
tainty of variables in the relaxed planning graph.

Heuristic Guidance with Monotonically Worsening Un-
certainty Uncertainty can affect problems in two ways: it
either gets worse monotonically (error accumulates and no
action can rectify it); or it may be purposefully corrected
(there may be actions that reduce the error, such as recharg-
ing batteries to a fixed value, or visiting a precise weighing
station).

We first discuss the case of monotonically worsening un-
certainty. Outside the heuristic, each precondition is of the
form w.v ≥ c, and a Monte Carlo simulation is used to
estimate the probability distribution of w.v. Using this dis-
tribution, we can test whether the condition is satisfied with
probability θ, i.e. whether the (1 − θ)’th percentile of w.v
is ≥ c. We represent this percentile as follows:

p1−θ(w.v) = median(w.v)− offsetθ(w.v)

In effect, offsetθ is the margin of error that must be toler-
ated, for the precondition to be true with probability θ. We
illustrate the intuition behind this margin in Figure 1. The
condition itself can then be rewritten:

median(w.v) ≥ c+ offsetθ(w.v) (1)

We define that uncertainty is monotonically increasing if
offsetθ can never decrease. In this case, it is still a relax-
ation to use the offset values when determining which pre-
conditions are true in the heuristic – the only way to make
the condition true would be to apply actions that affect the
values of v, as no actions that decrease offsetθ exist.

An illustrative example would be an autonomous car with
a certain amount of fuel, which is used gradually until it runs
out; refueling is not possible. The activities performed by
the car (e.g. start engine, accelerate, stand still, park) each
require fuel, but the amount varies non-deterministically. As
the plan is constructed, uncertainty and hence offsetθ accu-
mulates monotonically. We can thus heuristically evaluate a
state by assuming offsetθ is constant, and takes its current
value; this is guaranteed to be a relaxation, as offsetθ can
never become smaller.

Heuristic Guidance with Gaussian Uncertainty So far,
we explained how to incorporate distributions on the left-
hand side of preconditions (w.v) into heuristic computa-
tion, by using the offsetθ value to capture uncertainty in-
formation. The relaxation holds when error accumulates and
cannot be lowered. However, problems may contain actions
such as recharge-batteries or visit-weigh-station, which re-
duce uncertainty.

The challenge in these sorts of problems is to ensure the
heuristic remains a relaxation. This is possible in a useful
subset of domains, where the uncertainty is due to indepen-
dent Gaussian-distributed effects on variables, and therefore
has an analytic form. We can utilize this form and extend the
Metric RPG to additionally track the variance on each vari-
able, σ2(v). The expansion phase, building the RPG, pro-
ceeds as follows:

• For each variable v ∈ v, we track the upper and lower
bound on its median value. In the first RPG layer, these
are equal to the value of v in the current state S. We ad-
ditionally track σ2(v), the variance on v. In the first RPG
layer, this is the value according to the BN for S.

• In a regular RPG, if a numeric effect is applied that in-
creases (decreases) some v ∈ v, the upper (resp. lower)
bound on v at the next fact layer is updated accordingly.
Now, additionally, if a numeric effect decreases σ2(v), the
lower bound on σ2(v) at the next fact layer is decreased1.
1Effects increasing σ2(v) are ignored. If θ ≥ 0.5, adding more

22

Algorithm 1: RPG Solution Extraction
Data: RPG , a relaxed planning graph
Result: p, a relaxed plan
last ← last layer index in RPG ;1
goals[last]← G (i.e. the problem goals);2
for l ∈ [last ..0] do for (w.v ≥ c) ∈ goals[l] do3

prev ← max value of w.v in layer l-1;4

prev σ2 ← min value of σ2(w.v) in layer l-1;5

prev offsetθ ← prev σ.Φ−1(θ);6
if prev ≥ c+ prev offsetθ then7

add (w.v ≥ c) to goals[l-1]; continue;8

for (w.v) ∈ w.v where w 6= 0 do9
Choose actions from l-1 that increase (w.v);10
Add them to the relaxed plan and subtract their11
effects from c;
if prev ≥ c+ prev offsetθ then break;12

if prev ≥ c+ prev offsetθ then13
add (w.v ≥ c) to goals[l-1]; continue;14

max offset ← prev − c;15

max σ2 ← (max offset/Φ−1(θ))2;16

add (−σ2(w.v) ≥ −max σ2) to goals[l];17
add (w.v ≥ prev) to goals[l-1];18

• To decide which actions are applicable in each layer, we
take variance into account when checking precondition
satisfaction, as follows. For a precondition of the general
form w.v ≥ c, we can use the additive properties of Gaus-
sians to compute the variance of w.v:

σ2(w.v) =
∑

w.v∈w.v
w2.σ2(v)

We obtain the offset using the Gaussian quantile function:
offsetθ(w.v) = σ(w.v).Φ−1(θ)

Hence, from Equation 1, the precondition becomes:
median(w.v) ≥ c+ σ(w.v).Φ−1(θ)

This gives us everything we need to build an RPG. We
can be confident that the offsetθ values used are relaxations,
because smaller values of variance result in smaller values
of the Gaussian quantile function Φ−1; and the semantics of
the RPG guarantee we will underestimate variance.

The next step is to extract a relaxed plan from the RPG;
we illustrate this in Algorithm 1. The first thing to note is
on lines 5 and 6, where we compute the offsetθ necessary
for the condition to be met. Actions are then chosen in the
standard way to attempt to meet the precondition, given this
value of offsetθ. Then, if line 13 is reached and the precon-
dition is still not true, it must mean that a decrease in vari-
ance caused it to become true at layer l (having been false at
layer l-1). We now need to choose actions that decrease vari-
ance enough to achieve this. On line 15, we work out what
offsetθ needs to be reduced to in order to make the precon-
dition true; we then compute its corresponding variance on

uncertainty never contributes towards preconditions becoming true,
so it suffices to track only the smallest reachable values of variance.

line 16. This variance can then be used to construct a new
condition to be satisfied at this layer: this causes actions to
be added to the relaxed plan in order to reduce variance on a
later iteration of the loop.

As a result of the algorithm described above, the relaxed
plan now contains uncertainty-reducing actions. This makes
for a better-informed heuristic, which is able to provide im-
proved guidance and dead-end detection to the search, as
will be demonstrated in the following section.

3.2 Evaluating the new Heuristic
We evaluate on three domains: Rovers and AUV from (Coles
2012); and a variant of TPP from (Gerevini et al. 2009). In
Rovers, the activities of a planetary rover are constrained
by battery usage, which has Gaussian uncertainty, and the
battery can only be recharged at certain locations. In TPP,
the domain is modified to model the acquisition of suffi-
cient amounts of bulk materials (e.g. coal), and trucks can
visit weighing stations at some suppliers to top up or shed
excess load, which reduces uncertainty. AUV is an over-
subscription problem where the activities of an underwater
vehicle must be planned with a strict bound on total time
taken, and with normally distributed activity durations. Tests
were performed on 3.5GHz Core i5 machines with a limit of
4GB of memory and 1800s of CPU time.

Overall, the new heuristic leads to faster planner perfor-
mance; the time-to-solve scatterplots look the same as the
nodes-generated scatterplots in Figure 2. The extra compu-
tational work (tracking variances etc.) does not adversely af-
fect the time taken to heuristically evaluate a state. Thus,
because significantly fewer states need to be evaluated, and
state evaluation times are comparable, the performance of
the planner is significantly better.

For the Rovers domain (Figure 2a), most striking are the
points on the far right of the graph – these indicate prob-
lems that were previously unsolvable but can now be solved.
In part, this is because the new heuristic is able to recog-
nize many more states as being dead ends, because it does
not disregard uncertainty on the battery level when evaluat-
ing preconditions. In contrast, by ignoring uncertainty, the
old relaxed plans relied on moving somewhere to recharge,
even though in reality uncertainty made it impossible for that
move action to be applied. The new heuristic often avoids
this pitfall by accounting for uncertainty to a greater extent.

In TPP (Figure 2b), all the problems could be solved by
both the old and the new heuristic. However, by not ac-
counting for uncertainty, the old heuristic can reach states
in which the relaxed plan does not need to buy any more
of any goods. In these states, the heuristic value is 0. As
acquiring additional goods requires combinations of travel
and buy actions, a substantial amount of search must be per-
formed with no effective heuristic guidance. Unlike Rovers,
there are no dead ends due to these travel actions, so this
blind search will succeed, but is very time consuming – in
problems furthest from the line y = x, the majority of nodes
evaluated have an old heuristic value of 0.

AUV is an over-subscription problem: search reports a so-
lution plan every time it finds one that solves more goals
than the best so far. We are hence interested in the search

23

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
1

10
2

10
3

10
4

10
5

10
1

10
2

10
3

10
4

10
5

101

102

103

104

101 102 103 104

2nd Solution

3rd Solution

4th Solution

(a) Rovers (b) TPP (c) AUV
Figure 2: Nodes generated to solve problems in the three evaluation domains. Axes are logarithmic, comparing prior work (X
axis) with the new heuristic (Y axis). The Two-Tailed Wilcoxon Signed-Rank Test confirms results are significant to P ≥ 0.95.

effort to find progressively better solutions. Figure 2c com-
pares the nodes generated by each configuration to find the
2nd, 3rd and 4th solutions. (These correspond to satisfying
1, 2, and 3 goals respectively.) The relaxed plans produced
by the old heuristic, by ignoring uncertainty, more often use
actions that there is actually no time to complete. Disregard-
ing uncertainty is less of an impediment than in Rovers and
TPP, as there is no scope for planning actions that reduce un-
certainty (unlike battery charge or goods purchased, actions
cannot create more time). Nonetheless, the new heuristic is
generally able to find better solutions more quickly. If left to
run for long enough, search with the old heuristic will tend
to find solutions as good as search with the new heuristic,
but loses out earlier in the search.

As a concluding remark for our results, we note that so far
we assumed θ = 0.99. At θ = 0.8, the improvements from
using the new heuristic are still noticeable, but not as sub-
stantial. By θ = 0.6, which is close to the median (θ = 0.5),
there is no statistically significant difference between the
two, as uncertainty has only a modest effect on the heuris-
tic, or indeed search itself. This confirms that our heuristic
meets our headline aim of being able to better guide the plan-
ner when the consequences of uncertainty bear a significant
effect upon what is a reasonable solution plan.

4 Background: Discrete Uncertainty on
Actions’ Outcomes

The next step in our research on uncertainty revolves around
problems with discrete non-deterministic action outcomes.
In order to reason about discrete non-determinism, we use
actions that have a precondition (as in the deterministic
case), but instead of having a single effects list, they have
several. Applying an action will nondeterministically trig-
ger one of these. We assume states are fully observable – we
can observe what effects an action had. A solution to prob-
lems containing such actions can be represented by using a
policy – a set of rules that dictates what should be done in
each state.

Since action outcomes are discretely different, a policy
may need to branch out and apply different actions in the

different states reached. A weak plan corresponds to a sin-
gle trajectory of actions that leads from the initial state to
a goal state, assuming it is possible to choose which action
outcome occurs at each point. Weak plans can be found us-
ing a deterministic planner given as input the all outcomes
determinisation (Yoon, Fern, and Givan 2007) – the repre-
sentation of an action with discrete outcomes as a set of
actions having identical preconditions but different lists of
effects (one list corresponding to each discrete outcome).

Muise et al. (2012) present an approach where, by repeat-
edly invoking a deterministic planner to find weak plans, it is
possible to incrementally build a policy. Key to the success
of their approach is exploiting relevance – by regressing the
goal through a weak plan step-by-step, they determine which
facts at each point are relevant to plan success.

Regression begins from the goals, which here are a set
of propositions, ps ′. Regressing ps ′ through an action A,
with preconditions pre(A) and add effects add(A) yields a
partial state ps where:

ps = (ps ′ \ add(A)) ∪ pre(A)

A policy can then be built from these pairs, each 〈ps, A〉.
If executing the policy reaches a state where S � ps , then A
is applied. Otherwise, if there is no such match, the planner
is invoked from S, producing another weak plan which is
added to the policy in this way. Policy building terminates
when ∃〈ps, A〉.S � ps for all states S reachable from the
initial state, via the action choices indicated by the policy.

One caveat of this process is that it must be restarted
if a dead-end state D is reached. If this happens, Muise
et al. record forbidden state–action pairs: D is regressed
through all actions [a0..an] that could lead to it, yielding
states [S0..Sn]; then each 〈S0, a0〉 is forbidden, as applying
ai in Si would reach D once again. To improve generality,
each state Si is generalised – a greedy algorithm is used to
remove facts that do not affect whether Si is a dead-end.

The policy produced by this process, overall, is a strong
cyclic plan: it will always reach the goals, if the goals can
be reached. The work has since been developed to support
conditional effects (Muise, McIlraith, and Belle 2014) and
sensing actions (Muise, Belle, and McIlraith 2014), which

24

are interesting avenues we hope to look at in the future. For
now, we concern ourselves with extending this well-defined
propositional formalism to incorporate continuous numeric
uncertainty.

5 Building Policies Offline for Continuous
and Discrete Uncertainty

5.1 Allowing Numeric Uncertainty in Action
Effects

As detailed in Section 3, we have a planner kernel that is ca-
pable of supporting actions with continuous numeric uncer-
tainty. Additionally, as detailed in Section 4, Muise et al.’s
work on offline policy-building currently supports proposi-
tional effects. It is therefore a natural step to use our plan-
ner to extend their work to numeric effects, thus allowing a
richer set of problems to be tackled.

Furthermore, as we will describe below, extending previ-
ous work in this manner provides more than just the ability
to build policies with numeric effects. It retains and gener-
alises the mechanics we defined previously for dealing with
numeric uncertainty. This greatly increases the level of re-
alism that problems can reflect, as continuous uncertainty
(e.g. will we step 10 metres or 10.5 metres?) can now func-
tion alongside discrete uncertainty (e.g. will we step forward
or will we blow a fuse?).

5.2 Representing Partial States with Numeric
Constraints

The approach of Muise et al. targets problems with propo-
sitional constraints. In their case, partial states can be intu-
itively defined as containing only a subset of propositional
constraints (e.g. the full state {at-home, have-package, is-
birthday} satisfies the partial state {at-home}). We extend
this intuition to numeric constraints: if a full state contains
the constraints {battery=15, altitude=40}, then this can sat-
isfy a partial state {battery ≥ 10}. But, we must addition-
ally take care to account for any variance on the value of
battery at this point.

We first define a representation of a constraint that in-
cludes an explicit record of any variance that needs to apply
to it. For a constraint w.v ≥ c we record a constraint tuple
〈ft , c, vt , av〉 where:
• ft are the formula terms, initially the weighted-sum of

variables, w.v.
• c is the right-hand-side constant, initially c.
• vt are variance terms. These are initially
{〈w0, σ

2(v0), 0〉..〈wn, σ2(vn), 0〉} for eachwi.vi ∈ w.v.
• av is an accumulated variance value, initially 0.

Performing regression is akin to applying an action “back-
wards” in a state, to obtain the sufficient conditions for that
action application to have resulted in that state. If a con-
straintC is regressed through a numeric effect v+=w′.v′+e,
where w.v ∈ ft , the resulting constraint C ′ is:

ft ′ = ft + w.(w′.v′)
c′ = c − w.e

vt ′ = vt
av ′ = av

Regressing through the effect v = w′.v′ + e gives:
ft ′ = ft − w.v + w.(w′.v′)
c′ = c − w.e

vt ′ = vt
av ′ = av

Effects on variance also affect the variance portions of
constraints. If σ2(v) is changed by an effect σ2(v)+=e then
for any constraint with an element 〈w, σ2(v), k〉 ∈ vt , vt ′

is identical modulo k being increased by e. For the ef-
fect σ2(v) = e, then for any constraint with an element
〈w, σ2(v), k〉 ∈ vt , vt ′ is identical modulo this element be-
ing removed, and av ′ = av + e.w2. Conceptually, after re-
gressing through this effect assigning variance a fixed value,
any earlier effects on variance are moot: it suffices to trans-
fer the newly assigned (and weighted) amount to the accu-
mulated variance.

To determine if a state S satisfies a constraint C with con-
fidence θ, we define the Gaussian distribution with mean ft
(taking values of variables from S), and with variance:

av +
∑

〈w,σ2(v),k〉∈vt
w2.(S[σ2(v)] + k)

Then, if the 1 − θ’th percentile of this Gaussian is ≥ c,
we say S satisfies C. Effectively, the condition must be true
allowing for the variance in S, and any in the condition it-
self. This is a slight departure from checking preconditions
on actions as described in Sections 2 and 3, where the only
variance to account for was that in S. Here, the constraints
denote preconditions that must be true later in the weak plan,
so the variance within the constraint tracks the impact of ef-
fects on variance between S and when the precondition must
in fact hold.

5.3 Handling Dead Ends
Muise et al. introduced a particularly insightful contribution
concerning dead ends. As mentioned in Section 4, their idea
is to mark partial state–action pairs as forbidden if they lead
to a dead end. Whenever a new dead end is found while
building the policy, its corresponding partial state–action
pair (i.e. the pair that would lead to that dead end) is gen-
erated via one step of regression, and stored in the forbidden
list. The policy is then deleted, and policy building restarted
with this new information at hand.

We build our extension along the same lines. As we are
performing numeric planning, our states are split into two
parts: logical and numeric. The former can be handled ex-
actly as by Muise et al.: regressed through the logical ef-
fects of the action. For the latter, for each variable value v=k
in the state, following the representation set out in Section
5.2 we build pairs of tuples 〈v, k, {}, 0〉, 〈−v,−k, {}, 0〉.
(Note this equally applies to variance-tracking variables –
which are first-class citizens and appear as state variables
along with the others.) These numeric constraints are then
regressed through the numeric effects of the action.

To generalise these dead-ends, we again look at the log-
ical and numeric parts of the state. For the logical, the ap-
proach of Muise et al. based on the RPG heuristic can be
used: in Section 3, we fortuitously described exactly the sort

25

of RPG heuristic that would be needed to support this. For
the numeric case, if static analysis reveals that larger/smaller
values of a variable are better in terms of satisfying condi-
tions, then we need only keep one constraint tuple, not a pair.
Simply, for a dead-end state where v=k, if we know larger
values of v are better, we only need record 〈−v,−k, {}, 0〉
(which is analogous to v ≤ k), as any state with this value
of v or worse is going to be a dead end.

5.4 Preliminary Observations
So far, we have conducted some preliminary tests on a
modified version of the rovers domain, extended to better
model the distribution of energy usage when moving. Rather
than assuming this can be adequately captured by a single
Gaussian-distributed variable, there is a pessimistic outcome
with high energy usage corresponding to a failure mode of
the rover; and an optimistic outcome corresponding to an
unusually clear path. This leads to a policy being built that
considers what to do for each of these outcomes.

It is clear at this point that the power of partial states seen
in the propositional case, is also being seen in the numeric
case. If a pessimistic navigate outcome occurs, then the pol-
icy does not need to branch if there is still enough power left;
i.e. the resulting state still satisfies the relevant partial state.
Even if branching does occur (i.e. the planner needed to be
invoked to find another weak plan) the recharge actions have
an interesting effect. As these recharge the battery and clear
the variance on its value, there are no restrictions on battery
charge in the partial state before them. Thus, even if the pol-
icy splits into distinct branches, these often later merge.

Generalising dead-ends for numeric resources also has a
beneficial effect: in plain English, the dead-ends seen can
generally be interpreted as ‘if the rover is in this location,
with only this much battery charge, or too much variance
on battery charge, then applying this action will lead to a
dead-end’. These situations arise when the rover would be
unable to reach somewhere it can recharge and then resume
operations. When restarting policy building, the dead-ends
found are effective in pruning unsuitable action choices from
search.

6 Future work
So far we have successfully improved heuristic guidance
in problems with numeric uncertainty. We are also well
into providing an extension to propositional offline policy-
building, allowing it to work in problems with numeric ac-
tion effects. The next stage consists of finalising this exten-
sion, and conducting a detailed evaluation.

We will also allow our planner to accept domains where
there is non-Gaussian uncertainty. For this, we would gener-
alise the techniques we already implemented and tested, in
order to make the transition from Gaussian probability dis-
tributions to arbitrary probability distributions. This would
considerably broaden the spectrum of problems the planner
will be able to solve. In particular, we intend to incorporate
Bayesian Network techniques to support non-Gaussian un-
certainty, and adapt regression and probabilistic dead ends
for this type of uncertainty.

The next promising avenue to explore afterwards would
be to apply our technique to a “planning in the loop” set-
ting, with the scope for adjusting the probability distribu-
tions of action outcomes based on experience gathered from
plan execution so far. As a practical case study, we plan to
test our approach on an autonomous robotic platform operat-
ing in a dynamic environment. A concrete example would be
a quadcopter conducting a rescue mission inside a building
that is still collapsing, or seeking out an outdoor waypoint
amongst vegetation or foliage. The success of practical test-
ing would indicate the programme of work has had its de-
sired outcomes: developing planning approaches that func-
tion well with more realistic world dynamics, and broaden-
ing the spectrum of possible applications of planning.

References
Beaudry, E.; Kabanza, F.; and Michaud, F. 2010. Planning
with Concurrency under Resources and Time Uncertainty.
In Proceedings of ECAI.
Coles, A. J. 2012. Opportunistic Branched Plans to Max-
imise Utility in the Presence of Resource Uncertainty. In
Proceedings of ECAI.
Gerevini, A.; Long, D.; Haslum, P.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic Planning in the Fifth In-
ternational Planning Competition: PDDL3 and Experimen-
tal Evaluation of the Planners. Artificial Intelligence.
Hoffmann, J. 2003. The Metric-FF Planning System: Trans-
lating Ignoring Delete Lists to Numeric State Variables.
Journal of Artificial Intelligence Research 20.
Marinescu, L., and Coles, A. 2016. Heuristic guidance
for forward-chaining planning with numeric uncertainty. In
Proceedings of ICAPS.
Mausam, and Weld, D. S. 2008. Planning with Durative
Actions in Stochastic Domains. Journal of Artificial Intelli-
gence Research 31.
Meuleau, N.; Benazera, E.; Brafman, R. I.; Hansen, E. A.;
and Mausam. 2009. A Heuristic Search Approach to Plan-
ning with Continuous Resources in Stochastic Domains.
Journal of Artificial Intelligence Research 34.
Muise, C.; Belle, V.; and McIlraith, S. 2014. Comput-
ing contingent plans via fully observable non-deterministic
planning. In Proceedings of AAAI.
Muise, C.; McIlraith, S.; and Beck, J. 2012. Improved non-
deterministic planning by exploiting state relevance. In Pro-
ceedings of ICAPS.
Muise, C.; McIlraith, S.; and Belle, V. 2014. Non-
deterministic planning with conditional effects. In Proceed-
ings of ICAPS.
Rachelson, E.; Quesnel, G.; Garcia, F.; and Fabiani, P.
2008. A Simulation-Based Approach for Solving Tempo-
ral Markov Problems. In Proceedings of ECAI.
Yoon, S.; Fern, A.; and Givan, R. 2007. FF-Replan: A base-
line for probabilistic planning. In Proceedings of ICAPS.

26

Session 2

Multi Agent Planning & Plan Execution

27

A Distributed Online Multi-Agent Planning System
(Dissertation Abstract)

Rafael C. Cardoso
{rafael.caue@acad.pucrs.br}

Supervisor: Rafael H. Bordini
FACIN-PUCRS

Porto Alegre - RS, Brazil

Abstract

The gap between planning and execution is still an open
problem that, despite several tries from members of
both automated planning and autonomous agents com-
munities, remains without a proper general-purpose so-
lution. We aim to tackle this problem by using a frame-
work for the development of multi-agent systems in
both the decentralised multi-agent planning stages, and
the execution stages, providing a multi-agent system
with capabilities to solve online multi-agent planning
problems.

1 Introduction
Multi-Agent Systems (MAS) are often situated in dynamic
environments where new plans of actions need to be con-
stantly devised in order to successfully achieve the sys-
tem goals. Therefore, employing planning techniques during
run-time of a MAS can be used to improve agent’s plans us-
ing knowledge that was not previously available, or even to
create new plans to achieve some goal for which there was
no known course of action at design time.

Research on automated planning has been largely focused
on single-agent planning over the years. Although it is pos-
sible to adapt centralised single-agent techniques to work in
a decentralised way, such as in (Crosby, Jonsson, and Rovat-
sos 2014), distributed computation is not the only advantage
of using Multi-Agent Planning (MAP). By allowing agents
to do their own individual planning the search space is effec-
tively pruned, which can potentially decrease planning time
on domains that are naturally distributed. This natural dis-
tribution also means that agents get to keep some (or even
full) privacy from other agents in the system, as they might
have beliefs, goals, and plans that they do not want to share
with other agents. Single-agent planning can have no pri-
vacy, since the planner needs all the information available.

MAS went through a similar process of transitioning from
single to multiple agents, albeit at a faster rate. Recent re-
search, as evidenced in (Boissier et al. 2011; Singh and
Chopra 2010), shows that considering other programming
dimensions such as environments and organisations as first-
class entities along with agents allow developers to create
more robust MAS.

Thus, in this dissertation abstract we introduce the de-
sign of our Distributed Online Multi-Agent Planning System

(DOMAPS). DOMAPS is composed of: i) a formalism for
the representation of decentralised domains and problems in
multi-agent planning, based on Hierarchical Task Network
(MA-HTN); ii) a contract net protocol mechanism for goal
allocation; iii) individual planning with the SHOP2 planner;
and iv) the use of social laws to coordinate the agents dur-
ing execution. Some preliminary results from initial experi-
ments in a novel scenario, the floods domain, are shown.

Although approaches to online single-agent planning usu-
ally involve some kind of interleaving planning and execu-
tion (e.g., lookahead planning), in our initial approach to
online multi-agent planning we focus on domains that al-
low agents some time to plan while the system is still in
execution. DOMAPS allows for the dynamic execution of
plans found during run-time, making it easy to transition
from planning into execution and vice-versa, while still per-
mitting agents to continue their execution, as long as their
actions are believed to not cause any conflict with actions
from a possible solution.

The remainder of the dissertation abstract is structured
as follows. In the next section a discussion on multi-agent
planning is presented. Section 3 introduces the initial de-
sign of the Distributed Online Multi-Agent Planning System
(DOMAPS). Next, in Section 4, we describe the implemen-
tation of DOMAPS in a MAS development framework. In
Section 5, we describe the floods domain, a novel domain
designed for heterogeneous multi-agent systems. Some ini-
tial experiments using DOMAPS in this domain are also
shown. We conclude with a discussion on related work and
some concluding remarks.

2 Multi-Agent Planning
Multi-Agent Planning (MAP) has often been interpreted as
two different things. Either the planning process is cen-
tralised and produces distributed plans that can be acted
upon by multiple agents, or the planning process itself is
multi-agent. Recently, the planning community has been
favouring the concept that MAP is actually both of these
things, that is, the planning process is done by multiple
agents, and the solution is for multiple agents.

When considering multiple agents, the planning process
gets increasingly more complicated, giving rise to several
problems (Durfee and Zilberstein 2013). Actions that agents
choose to make may cause an impact in future actions that

28

the other agents could take. Likewise, if an agent knows
which actions the other agents plan to take, it could change
its own current choices. When dealing with multiple agents,
concurrent actions are also a possibility that may require ad-
ditional care.

In Table 1 we characterise some differences between
single-agent planning and multi-agent planning. Although
computation can be distributed in single-agent planning it is
not commonplace, since the cases where it is actually useful
are too few we omitted it from the table. And while multi-
agent planning could have no privacy, even in fully cooper-
ative domains it is fairly trivial to allow at least some sort of
partial privacy. Full privacy on the other hand is quite diffi-
cult because of the coordination needs in multi-agent plan-
ning. Single-agent planning has no privacy, since the planner
needs all the information available. Agents in single-agent
problem formalisms are usually represented as any other ob-
ject or fact of the environment. Agents in multi-agent plan-
ning are treated as first-class entities, where each agent can
have its own domain and problem specification.

Table 1: Comparisons between single-agent planning (SAP)
and multi-agent planning (MAP).

computation privacy agent
abstraction

SAP centralised none objects

MAP decentralised partial or full first-class
entities

Durfee, in (Durfee 1999), establishes some stages of
multi-agent planning, that were further extended in (Weerdt,
Mors, and Witteveen 2005) and (de Weerdt and Clement
2009):

1. Global goal refinement: decomposition of the global
goal into subgoals.

2. Task allocation: use of task-sharing protocols to allocate
tasks (goals).

3. Coordination before planning: coordination mecha-
nisms that prevent conflicts during the individual planning
stage.

4. Individual planning: planning algorithms that search for
solutions.

5. Coordination after planning: coordination mechanisms
that correct conflicts during the individual planning stage.

6. Plan execution: the agents that participated in the plan-
ning process now carry out the plans.

Not all of these stages are necessary in MAP, some may
even be combined into one.

3 The Distributed Online Multi-Agent
Planning System

Our multi-agent planning system consists of several main
components: planning formalism – formally describes the
information from the planning domain and problem that will
be used during planning; goal allocation – set of techniques

used to allocate goals to agents; individual planning – the
planner used during each agent’s individual planning stage;
and coordination mechanism – used before or after plan-
ning to avoid possible conflicts that can be generated during
planning. DOMAPS was made to work as a general-purpose
domain-independent system, and as such we expect to turn
it into an open platform where many other alternatives for
main components can be added, allowing the MAS designer
to pick and choose the ones that work better for their partic-
ular distributed online multi-agent planning problem.

Currently, DOMAPS can be used in three different situa-
tions where agents have access to the following commands:

• plan: plan for a set of organisational goals in which there
are no know plans.

• replan: plan for a specific organisational goal, either be-
cause the known plan failed, or because the agent detected
a change in the environment that could potentially lead to
a better solution.

• replanall: drop all current organisational goals and their
related intentions, and start a new planning process for
the organisational goals that were dropped, using up-to-
date information about the environment. Useful in case
everything seems to be going wrong, though this construct
is slightly more difficult to automate than the other two.

Figure 1: DOMAPS design overview.

The design overview of DOMAPS is shown in Figure 1.
Multiple agents (a1, a2, ..., an) interact with an environment
to obtain information and carry out their actions. These
agents are part of an organisation, adopting roles and fol-
lowing norms and receiving missions that are related to their
roles, all the while pursuing the organisation’s goals.

The planning process in DOMAPS consists of the fol-
lowing: a mechanism is used to separate and allocate goals
to agents; up-to-date information is collected and translated
into a planning formalism that the planner can understand;
agents start their individual planner in the search for a so-
lution to the set of allocated goals; agents coordinate with
each other either before or after the planning process, in or-
der to prevent the generation of any conflicts or help solve
any dependencies; and finally, each agent translates the so-
lution found by their respective planners into plans that can
be added to their plan library.

29

3.1 Planning Formalism
We propose the Multi-Agent Hierarchical Task Network
(MA-HTN) formalism, which is an extension of the cen-
tralised single-agent HTN formalism used in the SHOP2
planner (Nau et al. 2003). MA-HTN is intended for online
multi-agent planning problems, since domain and problem
information have to be collected during execution. Agents
use a translator to parse their information about the world
into domain and problem specifications that is then passed
to their own individual planner.

Each agent has their own problem and domain specifi-
cation. This provides a decent level of privacy on its own,
since each planner only has access to their respective agent
problem and domain specifications. This means that, unlike
some of the other multi-agent planning formalisms, MA-
HTN does not need to have privacy or public blocks. Al-
though at some point it might be interesting to add the ca-
pability to include private goals into the planning considera-
tion, for now we are interested only on organisational goals.

Actions from other agents can cause conflicts, either at the
moment that action is executed (e.g., concurrent actions) or
in the future (e.g., durative actions). Actions that can cause
conflict have to be annotated by the MAS developer, in order
for the translator to identify them. Likewise, dependencies
between actions can also exist, either as a concurrent action
that requires another agent or as actions that depend on the
actions of other agents to happen first. These dependency
relations also have to be annotated by the MAS developer,
so that the translator can add them to the specification.

3.2 Goal Allocation
A Contract Net Protocol (CNP) mechanism is used to allo-
cate goals to agents in DOMAPS. Our CNP mechanism is
based on the original CNP design of Reid G. Smith (Smith
1980), with a few modifications in order to accommodate
our needs for a goal allocation mechanism in the context of
MAP. The initiator in our case will always be the organi-
sation. It is the organisation’s role to start new auctions for
organisational goals that do not have any known plans on
how to achieve them, or for organisational goals that have
plans, but needs to be re-planned. The bidders, then, are the
agents that are part of the organisation and participate during
planning.

The logic of the bid depends on the rest of the mechanisms
being used in DOMAPS and in the MAS development plat-
form, but it is fair to assume that agents have the ability of
checking their plan library for plans that are able to decom-
pose, at least at some level, the goal that is being auctioned.
Although domain-dependent procedures for determining the
bid will provide better results, we provide a simple domain-
independent general-purpose procedure that agents can use
to determine their bid, shown in Algorithm 1.

The agent checks if the announcement of the goal came
from the organisation and if he is eligible according to the
eligibility criteria provided in the announcement, or other-
wise decides not to bid. If the agent chooses to proceed with
the bid, then, he keeps decomposing the goal into subtasks
and incrementing the bid by 1 for each level that was suc-
cessfully decomposed, either until it is close to the deadline,

or it arrived in an action that could achieve the goal, or it
found a dead end (in which case the bet is null).

Algorithm 1 Domain-independent algorithm for determin-
ing an agent’s bid.

procedure bid (from, goal-name, goal-spec, eligibility,
deadline)
if from 6= organisation then return failure
else if I am not eligible then return failure
else

while ((close to deadline) or (no more levels available
to decompose)) do

decompose one level of one task from goal-spec
bid-value = bid-value++

end while
return bid-value
end if

By the end of the loop the bidder agent will have the value
of the bid to be sent to the initiator. The initiator allocates the
goal to the agent with the lowest (not null) bid. We assume
here that every goal will eventually be allocated, meaning
that there is at least one agent eligible for each organisational
goal.

3.3 Individual Planner
SHOP2 (Nau et al. 2003) is an HTN planner with support
for the sort of anytime planning that DOMAPS requires. No
modifications were made to the actual planning algorithm
and search techniques of SHOP2, as the multi-agent mecha-
nisms present in the other components proved to be enough
for our initial experiments. As long as we can keep the in-
dividual planners intact, DOMAPS benefits from its multi-
layered approach, making it easier to change components as
we see fit, with little to no modification required in the plan-
ners.

Many parameters can be used to tweak the SHOP2 plan-
ner. Perhaps the most relevant to DOMAPS is the parameter
that guides which kind of search that will be made, of which
the possible values are:
• first: depth-first search that stops at the first plan found.
• shallowest: depth-first search for the shallowest plan, or

the first such plan if there are more than one.
• id-first: iterative-deepening search that stops at the first

plan found.

3.4 Coordination Mechanism
Social laws can coordinate agents by placing restrictions on
the activities of the agents within the system. The purpose of
these restrictions is twofold: it can be used to prevent some
destructive interaction from taking place; or it can be used
to facilitate some constructive interaction.

The design of social laws is domain-dependent, and we
require them to be supplied by a designer offline. Thus,
while the social laws are provided before planning, we
do not directly use them during individual planning. In-
stead, we take advantage of the capabilities provided by the

30

MAS development framework, that we used to implement
DOMAPS, in order to apply social laws in coordination af-
ter planning.

In the original model of Shoham and Tennen-
holtz (Shoham and Tennenholtz 1995), social laws were
used to restrict the activities of agents so as to ensure that
all individual agents are able to accomplish their personal
goals. We follow a similar idea, although agents here aim
to achieve organisational goals, and thus, are naturally
compelled to follow the social laws that are present in the
system.

We formally define social laws in our model as:

Definition 1 Given a set of agents Ag, a set of actions
Ac, a set of states S, a set of preconditions P, and a set of
options Θ, a social law is a tuple (ag,ac,s,P,Θ) where ag
∈ Ag, ac ∈ Ac, and s ∈ S.

A social law sl constrains a specific action ac of agent
ag, considered to be a possible point of conflict (as estab-
lished in the operator description, as shown in the MA-HTN
formalism), when the state s satisfies each precondition ρi
∈ P, giving the agent all possible options θi ∈ Θ. Although
not explicitly present in this model, the null action (e.g., do
nothing) can be a possible option, but in order for it to be vi-
able it needs to have been established as an action (operator)
in the MAS.

4 Multi-Agent System Integration
DOMAPS is an online system, and, as mentioned before,
that implicates the use of planning techniques whilst the
MAS is running. Therefore, we need a MAS develop-
ment platform in order to properly implement and evaluate
DOMAPS. We chose to use the JaCaMo1 (Boissier et al.
2011) framework as the MAS development platform, since it
contains all of the programming abstractions that DOMAPS
requires – organisation, environment, and agent abstrac-
tions.

JaCaMo combines three separate technologies into a
framework for MAS programming that makes use of mul-
tiple levels of abstractions, enabling the development of ro-
bust MAS. Each technology (Jason, CArtAgO, and Moise)
was developed separately for a number of years and are
fairly established on their own when dealing with their re-
spective abstraction level (agent, environment, and organi-
sation).

To illustrate the run-time of DOMAPS when the
domaps.plan internal action is executed, consider the
overview provided in Figure 2. When an agent executes
domaps.plan, it goes through phase 1 and activates the
contract net protocol to allocate the organisational goals be-
tween the agents. Then, in phase 2, each agent knowledge
about the world is passed to a MA-HTN translator, that sends
the information needed to SHOP2 for the individual plan-
ning that takes place in phase 3. The solution found by each
agent’s planner goes back through the MA-HTN translator

1http://jacamo.sourceforge.net/.

again, translating the solution into AgentSpeak plans. Fi-
nally, the solution is carried out by the agents in accordance
to the social laws (phase 5) that are associated with actions
from the solution that can cause conflicts.

Figure 2: DOMAPS run-time overview of the
domaps.plan internal action.

5 The Floods Domain
The lack of robust and complex multi-agent domains led us
to design a new domain, in order to best exploit the advan-
tages of MAP and MAS. The inspiration for this specific
domain came from a real-world scenario, taken from another
project that we currently participate. It is a multidisciplinary
and inter-institutional project that focuses on using informa-
tion technology (e.g., a team of autonomous multi-robots) to
help mitigate and prevent natural disasters. This scenario is
specifically targeted at flood disasters, often caused by in-
tense hydro-meteorological hazards that can lead to severe
economic losses, and in some extreme cases even deaths.

Our domain, the Floods domain, is based on that real-
world scenario. In the floods domain, a team of autonomous
and heterogeneous robots are dispatched to monitor flood
activity in a region with multiple areas that are passive of
floods. All of the goals come from the Centre for Disas-
ter Management (CDM) that is located in the region being
monitored. The CDM is usually operated by humans, but in
our JaCaMo+DOMAPS implementation we simulate them
by using agents, capable of creating dynamic goals during
run-time.

In Figure 3, we show the elements that compose the
Floods domain. The domain takes place in a particular re-
gion, which is divided into several interconnected areas.
Movement through the region occurs from traversing these
areas. Flood events are common in the region, especially
during heavy-rain. These floods can be observed from spe-
cific areas in the region. The areas can be connected by a
water path, that can be traversed by naval units, and/or by
a ground path, that can be traversed by ground units. Water

31

sample can be requested to be collected from certain areas.
During flood events, victims may be detected and in need of
assistance. The CDM establishes a base of operations in one
of the areas in the region.

Finally, the naval units are composed of USVs that can
move through areas connected by water paths, collect water
samples, and take pictures of flood events. Meanwhile, the
UGVs are ground units that are able to move through areas
connected by ground paths, take pictures of flood events, and
provide assistance to victims by transporting first-aid kits to
first responders close by. The robots can only perceive other
robots that are in the same area.

Figure 3: Elements from the Floods domain.

5.1 Experiments
For these initial experiments, we maintained the number of
agents and focused on increasing the number of goals. It
seems that there is a relation between the number of goals
and the number of agents. For most domains, having the
number of goals equal to the number of agents, and assum-
ing that each agent is capable of solving its associated goal,
appears to result in faster planning times. As the number of
goals surpasses the number of agents, the planning time ap-
proximates to that of single-agent SHOP2. In Table 2 we
show the some initial experiments on this domain for small
problems with 4, 8, 16, and 32 goals.

The results are shown in regards to time spent planning,
and the number of state expansions and inferences that were
made during planning. These results do not depict any of the
run-time features of DOMAPS, as we are still investigating
how to evaluate it as a whole, and considering what evalua-
tion parameters that could be used both for planning and for
execution.

It is clear that our approach would be faster than regu-
lar SHOP2, since we are assigning goals to agents previ-
ously, while SHOP2 needs to expand states during planning
in order to try different assignments. The real advantage that
these initial experiments show relate to the number of expan-
sions and inferences, showing DOMAPS does much fewer,
even if adding all the agents, than SHOP2. The individual
planning approach taken in DOMAPS can discard many of
the predicates that are usually used to assign tasks between
different objects, remember that agents in SHOP2 are no dif-
ferent than any other object from the planning formalism. By

Table 2: Initial experiment results.
DOMAPS SHOP2usv1 usv2 ugv1

floods 4
pl. time 0.001 0.001 0.001 0.004

exp. 8 8 15 65
inf. 13 13 21 186

floods 8
pl. time 0.001 0.001 0.002 0.011

exp. 15 15 29 129
inf. 21 21 37 360

floods 16
pl. time 0.002 0.002 0.004 0.033

exp. 29 29 57 257
inf. 37 37 69 708

floods 32
pl. time 0.003 0.003 0.005 0.095

exp. 57 57 113 513
inf. 69 69 133 1404

using agents as first-class abstractions during planning we
are free of the use of these predicates. These results should
also be scalable, which we aim to prove in future experi-
ments. Experiments for increasing the number of agents, and
also for increasing the number of predicates, are already un-
derway.

6 Related Work
There has been several surveys over the years describing ad-
vancements in particular areas of planning. Of interest and
related to this research there are, for example: in (desJardins
et al. 1999), a survey on distributed online (continual) plan-
ning is presented, with the state of the art in distributed and
online planning at the time (1999), and a design for a dis-
tributed online planning paradigm; a survey (Meneguzzi and
De Silva 2013) that presents a collection of recent tech-
niques (2013) used to integrate single-agent planning in
BDI-based agent-oriented programming languages, focus-
ing mostly on efforts to generate new plans at run-time; and
two multi-agent planning surveys, in 2005 (Weerdt, Mors,
and Witteveen 2005) and 2009 (de Weerdt and Clement
2009), describing several approaches taken towards multi-
agent planning over the last few years.

In (Nissim and Brafman 2014), the authors propose a
heuristic forward search for classical multi-agent planning
that respects the natural distributed structure of the system,
preserving agent privacy. According to their experiments,
their system showed the best performance in regards to plan-
ning time and communication, as well as the quality of
the solution in most cases, when compared to other offline
multi-agent planning systems.

FLAP (Sapena, Onaindia, and Torreño 2015) is a hy-
brid planner that combines partial-order plans with forward
search and uses state-based heuristics. FLAP implements a
parallel search technique that diversifies the search. Unlike
the other planners, FLAP exploits delaying commitment to

32

the order in which actions are applicable. This is done to
achieve flexibility, reducing the need of backtracking and
minimizing the length of the plans by promoting the paral-
lel execution of actions. These changes come at an increase
in computational cost, though it allows FLAP to solve more
problems than other partial-order planners.

In (Clement, Durfee, and Barrett 2007), multi-agent plan-
ning algorithms and heuristics are proposed to exploit sum-
mary information during the coordination stage in order to
speed up planning. The authors claim that by associating
summary information with plans’ abstract operators it can
ensure plan correctness, even in multi-agent planning, while
still gaining efficiency and not leading to incorrect plans.
The key idea is to annotate each abstract operator with sum-
mary information about all of its potential needs and effects.
This process often resulted in an exponential reduction in
planning time compared to a flat representation. Their ap-
proach depends on some specific conditions and assump-
tions, and therefore cannot be used in all domains, i.e., it
is not a general-purpose system.

Kovacs proposed a recent extension for PDDL3.1 that en-
ables the description of multi-agent planning problems (Ko-
vacs 2012). It copes with many of the already discussed open
problems in multi-agent planning, such as the exponential
increase of the number of actions, but it also approaches new
problems such as the constructive and destructive synergies
of concurrent actions. Although only the formalism is pro-
vided (it is not yet implemented in any system), the ideas
expressed by Kovacs are enticing, making it an interesting
candidate to add to DOMAPS planning formalisms.

7 Conclusion
In this dissertation abstract we described the design of a Dis-
tributed Online Multi-Agent Planning System (DOMAPS).
Specifying each of its main components: i) the planning for-
malism – we introduced the MA-HTN formalism, a multi-
agent variation of the traditional single-agent HTN formal-
ism; ii) the goal allocation mechanism – by using a contract
net protocol, the agents that participate in the planning stage
can pre-select the goals that they believe to be more appro-
priate to them, this pre-planning can cut the planning time
considerably in domains with very heterogeneous agents; iii)
the individual planner – the SHOP2 planner is used in each
agent for individual planning, so as to make the most of the
HTN-like structure of the plan library in Jason agents; iv)
the coordination mechanism – employment of social laws
to coordinate the agents during run-time in order to avoid
possible conflicts made during planning.

Initial experiments and experience with DOMAPS has
presented enough positive incentives to pursue solutions for
the limitations and to provide improvements for the system
overall.

References
Boissier, O.; Bordini, R. H.; Hübner, J. F.; Ricci, A.; and
Santi, A. 2011. Multi-agent oriented programming with
JaCaMo. Science of Computer Programming.

Clement, B. J.; Durfee, E. H.; and Barrett, A. C. 2007. Ab-
stract reasoning for planning and coordination. Journal of
Artificial Intelligence Research (JAIR) 28:453–515.
Crosby, M.; Jonsson, A.; and Rovatsos, M. 2014. A single-
agent approach to multiagent planning. In 21st European
Conf. on Artificial Intelligence (ECAI’14).
de Weerdt, M., and Clement, B. 2009. Introduction to
Planning in Multiagent Systems. Multiagent Grid Syst.
5(4):345–355.
desJardins, M. E.; Durfee, E. H.; Ortiz, C. L.; and Wolver-
ton, M. J. 1999. A survey of research in distributed, contin-
ual planning. AI Magazine 20(4).
Durfee, E. H., and Zilberstein, S. 2013. Multiagent planning,
control, and execution. In Weiss, G., ed., Multiagent Systems
2nd Edition. MIT Press. chapter 11, 485–545.
Durfee, E. H. 1999. Distributed problem solving and plan-
ning. In Mutliagent systems. MIT Press. 121–164.
Kovacs, D. L. 2012. A multi-agent extension of pddl3.1. In
Proceedings of the 3rd Workshop on the International Plan-
ning Competition (IPC), ICAPS-2012, 19–27.
Meneguzzi, F., and De Silva, L. 2013. Planning in BDI
agents: a survey of the integration of planning algorithms
and agent reasoning. The Knowledge Engineering Review
FirstView:1–44.
Nau, D.; Ilghami, O.; Kuter, U.; Murdock, J. W.; Wu, D.; and
Yaman, F. 2003. Shop2: An htn planning system. Journal
of Artificial Intelligence Research 20:379–404.
Nissim, R., and Brafman, R. I. 2014. Distributed heuristic
forward search for multi-agent planning. J. Artif. Intell. Res.
(JAIR) 51:293–332.
Sapena, O.; Onaindia, E.; and Torreño, A. 2015. FLAP: ap-
plying least-commitment in forward-chaining planning. AI
Commun. 28(1):5–20.
Shoham, Y., and Tennenholtz, M. 1995. On social laws for
artificial agent societies: Off-line design. Artif. Intell. 73(1-
2):231–252.
Singh, M., and Chopra, A. 2010. Programming multia-
gent systems without programming agents. In Braubach, L.;
Briot, J.-P.; and Thangarajah, J., eds., Programming Multi-
Agent Systems, volume 5919 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg. 1–14.
Smith, R. G. 1980. The contract net protocol: High-level
communication and control in a distributed problem solver.
IEEE Trans. Comput. 29(12):1104–1113.
Weerdt, M. D.; Mors, A. T.; and Witteveen, C. 2005. Multi-
agent planning: An introduction to planning and coordina-
tion. Technical report, Handouts of the European Agent
Summer.

33

Integrating Planning and Recognition to Close the Interaction Loop

Richard G. Freedman
College of Information and Computer Sciences

University of Massachusetts Amherst
freedman@cs.umass.edu

Introduction
In many real-world domains, the presence of machines is
becoming more ubiquitous to the point that they are usu-
ally more than simple automation tools for one-way interac-
tion. As part of the environment amongst human users, it is
necessary for these computers and robots to be able to inter-
act back reasonably by either working independently around
them or participating in a task, especially one with which
a person needs help. Such interactions are now everywhere
ranging from robots around homes and factories to virtual
agents in mobile devices, video games, and automated dia-
logue systems. While interactive robots and computer sys-
tems have been implemented for various domains, most are
specifically designed for a given domain such as industrial
robotics (Levine and Williams 2014; Wurman, D’Andrea,
and Mountz 2007), elderly care (Schwenk, Vaquero, and
Nejat 2014; Fasola and Matarić 2013), etc. Just as there
are domain-independent heuristics that can effectively find
optimal solutions for any classical planning problem (Hoff-
mann and Nebel 2001; Helmert 2006), I introduce a domain-
independent approach to performing interaction based on the
integration of several research areas in artificial intelligence,
particularly planning and plan recognition.

This interactive procedure requires several steps per-
formed indefinitely as a loop: recognizing the user and en-
vironment from sensor data, interpreting the user’s activity
and motives, determining a responsive behavior, beginning
to perform the behavior, and then recognizing everything
again to confirm the behavior choice and replan if neces-
sary. At the moment, the research areas addressing these
steps, activity recognition, plan recognition, intent recogni-
tion, and planning, have all been primarily studied indepen-
dently. However, pipelining each independent process can be
risky in real-time situations where there may be enough time
to only run a few steps. This leads to a critical question: how
do we perform everything under time constraints? In this
thesis summary, I propose a framework that integrates these
processes by taking advantage of features shared between
them. This includes my current work towards this prelimi-
nary system and outlines how I plan to complete the integra-
tion for a time-constrained interaction loop.

Background
One of the earliest areas of artificial intelligence, planning
is the study of automated action selection. Early approaches

usually involved representing the world as a list of logic
statements and searching for a sequence of actions which
would modify the list until it contained the set of goal con-
ditions; the notation used for this is called STRIPS. Modern
approaches range from improving search over STRIPS to
decision theoretic planning with MDPs and its variants to
approximation methods to handle uncertainties in the world.

As its inverse problem, plan recognition (PR) tries to
identify the problem an agent is solving given its observed
actions. The actions and problems are usually represented at
a higher level such as STRIPS. Activity recognition (AR)
works at the lower level by interpreting sensor data as
higher-level actions. In addition to predicting current activ-
ity, intent recognition (IR) tries to predict the agent’s specific
goal or upcoming actions which allows some degree of fore-
sight into the observed agent’s behavior. Collectively, these
fields of recognition are referred to as PAIR and have be-
come a more popular area of research recently, including the
topic of a Dagstuhl Seminar (Goldman et al. 2011). Various
problems in PAIR are studied in other areas, sometimes un-
der different names, making the literature vast, but they are
still studied largely independently or pipelined in most these
works.

One notable work which integrated plan and activity
recognition was by Levine and Williams (2014) where, for a
given plan with branching points based on a human’s choice
of actions, a robot would select actions to resolve broken
causal links resulting from the human’s action choice(s). Our
approach differs from this work because the given plan pro-
vides instructions for the human to follow, but we do not
restrict the human with directions. This assumed plan is fine
for their intended factory domain, but insufficient for general
interaction in any domain. Daily tasks may be intertwined
over time or contain noise such as answering a ringing tele-
phone while cooking or cleaning; such domains cannot as-
sume that a human will follow a protocol.

Simultaneous Plan and Activity Recognition
The formulation of a typical recognition problem is as fol-
lows: given a sequenceO of observations o1, o2, . . ., on, de-
termine which task(s) in libraryL the agent is performing. In
AR, each oi is a sensor reading andL is a set of actions or ac-
tivities. Supervised machine learning and graphical models
are usually used to infer the label in L which best describes
O. For PR, each oi is a STRIPS action and L contains the

34

Figure 1: Analogy of Distributions for Topics and Actions

Figure 2: Learned Cluster of Postures Resembling Sitting

set of all tasks. A weighted matching method is often used
to compare O to some of each task’s solutions called plans,
a sequence of STRIPS actions that satisfies the goal con-
ditions. A recent method used to perform this matching is
parsing hierarchical task networks, revealing a parallel be-
tween PR and natural language processing (NLP) (Geib and
Steedman 2007). In particular, O is like a sentence and the
breakdown of a complex task into subtasks is like a grammar
of valid derivations.

I began the extension of this analogy by considering
another problem in NLP: topic modeling. Unlike parsing
which determines the underlying structure of a sentence,
topic modeling investigates the concepts discussed in a col-
lection of documents by finding clusters of related words
called topics. For the popular Latent Dirichlet Allocation
(LDA) topic model (Blei, Ng, and Jordan 2003), which
was previously used for AR by Huỳnh, Fritz, and Schiele
(2008), each topic t ∈ T is simply a distribution over the
set of words V and each document d ∈ D is a distribu-
tion over the set of topics T ; the respective distributions
φt∈T : V → [0, 1] and θd∈D : T → [0, 1] are learned using
unsupervised learning to model the training data. For inter-
action in a variety of domains, an unsupervised approach is
more appealing because it is possible to learn a large number
of activities in each domain as they are added to the system.
Furthermore, LDA’s bag-of-words assumption where each
oi is independent of the rest of O was appealing to begin
integrating AR and PR due to the mismatch of the two se-
quence formations. A sensor records over time so that a sin-
gle action has multiple consecutive oi for AR, but a single
STRIPS action is only one oi for PR. Figure 1 illustrates
how this analogously treats actions like topics. Each word
is a sensor reading and the distribution over these readings
describes an action while the task of the recording session
is represented by the distribution of actions. Hence infer-
ring a topic with LDA performs AR and the distribution of
the collection of inferences enables us to approximate PR
simultaneously. The results from running LDA on a small
dataset provided evidence supporting my hypothesis since
each topic contained postures resembling simple actions as
in Figure 2 (Freedman, Jung, and Zilberstein 2014).

-0.00, 0.09, -0.34

0.03, 0.10, -0.32

-1.01, 0.24, -0.90

-0.97, 0.70, -1.49 -1.55, -0.01, 0.01

-1.30, -0.04, -0.01

0.33, 0.52, 0.13

0.20, 0.51, -0.05

0.48, 1.08, 0.31

0.20, 0.73, -0.05

10, 10, 9

10, 10, 9

7, 11, 7

7, 12, 5

5, 10, 10

6, 10, 10

11, 12, 10

11, 12, 10

12, 14, 11

11, 12, 10

1, 1, 1

1, 1, 1

1, 1, 1

1, 1, 0

0, 1, 1

0, 1, 1

1, 1, 1

1, 1, 1 1, 1, 1

1, 2, 1

Figure 3: A posture reaching up towards a shelf with granularity
3 (left) and 21 (middle) from the original angles (right).

Representation of RGB-D Sensor Readings For robotics
applications, Red, Green, Blue - Depth (RGB-D) sensors
have become one of the most common sensors to use due to
their present availability, affordability, and growing popular-
ity. They provide a camera image with an overlaid infra-red
scan to obtain three-dimensional point clouds of their sur-
roundings, which aids segmentation and associating individ-
ual components’ directions of motion (Herbst, Ren, and Fox
2013; Zhang, Nakamura, and Kaneko 2015) including a per-
son’s entire body as a stick figure rendering (Shotton et al.
2011). Because LDA is designed for inputs whose frequen-
cies resemble words in a natural language, it is important to
treat these stick figures in a similar manner. The process of
converting data into a form for natural language methods is
wordification (Perovs̆ek et al. 2013).

The human posture is composed of fifteen joints via ten
rotation matrices; though it is sufficient to create a “vocab-
ulary” of postures as the concatenation of the rotation ma-
trices’ Eulerian transformations (roll, pitch, and yaw), the
frequency of postures is not desirable. In particular, each
wordified posture is in [−π, π]30, which is an uncountably
infinite vocabulary with a very small likelihood of dupli-
cates. Zipf’s Law states that not only should there be dupli-
cate words in any natural language, but that the frequency of
the ith most frequent word is about twice that of the (i+ 1)

th

most frequent word. Hence we make the vocabulary finite
and increase the likelihood of duplicates by discretizing the
space with respect to a granularity parameter g ∈ N, map-
ping each angle to [0, g) ∩ Z as illustrated in Figure 3. The
reduced vocabulary {0, 1, . . . , g − 1}30 is still large in car-
dinality for small g, but many poses do not represent feasible
body structures. For example, the limitations of each joint’s
range of motion will not form postures with hyperextended
limbs, much the same as many combinations of orthographic
letters do not form actual words in a language. Our initial in-
vestigation of g showed that increasing it reduces the num-
ber of duplicate words and that odd g have more duplicates
than even g due to small body motions about the origin.

Extensions for Additional Features I extended LDA to a
generative model that also considers the presence of nearby
objects and/or global temporal patterns. The set of objects
with which the user can interact are represented using a sec-
ond vocabulary in a separate LDA model, but it shares the
same action/topic as the posture at each respective timestep.
The temporal relation is captured in the composite topic
model (Griffiths et al. 2004) by embedding LDA as a state
within a hidden Markov model (HMM), enforcing a syntac-

35

tical structure with the HMM where one state is a ‘blank’ for
semantic words/postures/objects derived by LDA. The im-
proved log-likelihoods of observed task executions with our
new topic model variations serve as evidence that the infor-
mation provided by these two factors are not only indepen-
dent, but assist disambiguating actions that contain common
postures (Freedman, Jung, and Zilberstein 2015). In future
work, I will investigate additional variations and their in-
sights for PAIR.

Integration of Planning with Plan Recognition
Ramı́rez and Geffner (2010) introduced a compilation of PR
problems into classical planning problems. It assigned a dis-
tribution over sets of goal conditions G instead of over pre-
computed plans; they refer to this generalization as a do-
main instead of a library. Bayes’s Rule compares the com-
piled classical planning problems for each entry of the do-
main against each other using the most optimal plans with
and without O as a subsequence. This accounts for the
probability of the agent solving each task conditioned on
its observed actions, considering optimal (shorter) plans to
be more likely. While the accuracy for the method is very
strong, a temporal plot of the probabilities showed that it
only achieved this accuracy towards the completion of the
plan when the final actions were observed.

While their compilation is excellent when the plan’s com-
pleting actions are observed, this is not as practical in inter-
actions because the observed agent will likely be almost fin-
ished executing a plan by the time the machine can respond.
In collaboration with Fukunaga (University of Tokyo), I
have proposed two approaches to address this (Freedman
and Fukunaga 2015). The first one generates a dynamic prior
for Bayes’s Rule that removes the bias for shorter plans and
converges to the true prior over time. The second one counts
the number of linearizations of a partially-ordered plan in
order to account for the number of optimal plans rather than
their length alone.

The updated distribution over G can be used to aggregate
the lists of logic statements which must be true for each goal
and identify the most necessary conditions. If a set of condi-
tions is shared between the most likely tasks, then satisfying
them should be required regardless of the task. Thus a sec-
ond pass of the planner on a variation of the original classical
planning problem should yield a plan that the machine may
execute to interact properly even if the recognized task is
still ambiguous. In order to consider potential coordination
between the observed agent and the machine, we assume that
the response problem is a centralized multi-agent planning
problem and that the observed agent will perform its actions
assigned from that plan. In reality, the agents are decentral-
ized and this synchronization will likely not hold; thus the
interaction loop begins again with the recognition steps to
determine how the observed agent reacts.

Status of Thesis
I plan to close the interaction loop by completing the in-
tegration of these processes. Besides continuing the works
above, there are several key remaining tasks. The most im-

portant one is bridging the gap between simultaneous PR
and AR and the integration of PR with planning. Although it
seems trivial because both contain PR, they do not align due
to the unsupervised nature of topic models. Recognized ac-
tions are clusters of postures (or other forms of sensor data)
without annotation while actions in the newer research are
assumed to be in STRIPS which is designed by humans. I
have begun to identify methods for autonomously extracting
features of the postures with the greatest probability mass
in each cluster and using them to describe the respective ac-
tion (Freedman and Zilberstein 2015). In addition to apply-
ing this automated feature extraction process to sensor data,
I am exploring analogies in topic modeling for natural lan-
guage data with Wallach (Microsoft Research).

I am also considering the application of constraint op-
timization to align LDA clusters (the recognized actions)
with STRIPS operators using ordering of each O and these
extracted features. Due to the frequency of observations
for sensors compared to higher-level actions, |Osensor| ≥
|OSTRIPS|. So there is not necessarily a bijective mapping be-
tween the two sequences; however, a single STRIPS action
should be associated with a particular subset of LDA clus-
ters for its respective postures. This means we can evaluate
a constraint optimization problem of the following form:

• Assign each variable si ∈ Osensor a value pj ∈ OSTRIPS

• Preserve sequence ordering with constraints s1 = p1,
s|Osensor| = p|OSTRIPS|, and si = pj ⇒ si+1 ∈ {pj , pj+1}

• Ensure that each STRIPS action is associated with a lim-
ited subset of LDA clusters with minimization constraints
minVar (τa) for each STRIPS action a where τa : T →
[0, 1] is a probability distribution over the LDA clusters to
which observations of a have been assigned.

Due to its higher-level representation, breaking a single
STRIPS action into smaller subactions like a hierarchical
task network (HTN) (Erol, Hendler, and Nau 1994) may fa-
cilitate the alignment process with additional constraints for
each subaction. However, it would also be necessary to per-
form additional search to find the correct HTN breakdown
for the alignment. This introduces new challenges of identi-
fying heuristics to evaluate snapshots of optimality. A visu-
alization of our extended generative model for recognition
and this HTN alignment is shown in Figure 4.

The integration of other components such as planning
and execution have previously been studied in such areas as
metareasoning (Russell and Wefald 1991; Zilberstein 2011).
After implementing and testing the proposed integrations of
recognition and planning, it will be ideal to integrate IR to
better predict upcoming actions so that the machine does not
interfere with the observed user. For this, I intend to inves-
tigate the planning graph (Blum and Furst 1997) and deter-
mine how to probabilistically select action nodes which are
more likely to be executed. Once these are all in tact, the
preliminary interaction loop will be complete and optimiza-
tion will be necessary to make it usable under realistic time
constraints. For example, the work that currently integrates
planning and plan recognition runs a classical planner 2 |G|
times from the same initial state to identify all the plans for

36

w

zαm

βn

θ

ϕ

T

D

Nd

pγo Ω
Kw

si

φ
C-1

δu

si+1

ξ
C+1

επ

ziz1 z2 zn-1 zn

xjx1 x2 xm-1 xm

S

τxj(zi)

Input

Figure 4: Layout of integrated plan and activity recognition
generative model with wordified sensor inputs and objects
(green), LDA (black), extension for objects (red), HMM for
the temporal extension (blue), and aligned HTN (orange)
where S is the sequence of STRIPS actions to break down.

the Bayes’s Rule computation, but there is research on find-
ing multiple goals in a single heuristic search so that the
classical planner only needs to run one time (Davidov and
Markovitch 2006). This avoids redundant expansion of the
state space.

References
Blei, D. M.; Ng, A. Y.; and Jordan, M. I. 2003. Latent Dirichlet
allocation. Journal of Machine Learning Research 3:993–1022.
Blum, A. L., and Furst, M. L. 1997. Fast planning through planning
graph analysis. Artificial Intelligence 90(1-2):281–300.
Davidov, D., and Markovitch, S. 2006. Multiple-goal heuristic
search. Journal of Artificial Intelligence Research 26:417–451.
Erol, K.; Hendler, J.; and Nau, D. S. 1994. HTN planning: Com-
plexity and expressivity. In Proceedings of the Twelfth National
Conference on Artificial Intelligence, 1123–1128.
Fasola, J., and Matarić, M. J. 2013. Socially assistive robot exer-
cise coach: Motivating older adults to engage in physical exercise.
In Desai, J. P.; Dudek, G.; Khatib, O.; and Kumar, V., eds., Ex-
perimental Robotics, volume 88 of Springer Tracts in Advanced
Robotics. Springer International Publishing. 463–479.
Freedman, R. G., and Fukunaga, A. 2015. Integration of planning
with plan recognition using classical planners (extended abstract).
In Proceedings of AAAI 2015 Fall Symposium on AI for Human-
Robot Interaction, 48–50.
Freedman, R. G., and Zilberstein, S. 2015. Automated interpreta-
tions of unsupervised learning-derived clusters for activity recog-
nition. In Workshop on Learning for Human-Robot Collaboration.

Freedman, R. G.; Jung, H.-T.; and Zilberstein, S. 2014. Plan and
activity recognition from a topic modeling perspective. In Proceed-
ings of the Twenty-Fourth International Conference on Automated
Planning and Scheduling, 360–364.
Freedman, R. G.; Jung, H.-T.; and Zilberstein, S. 2015. Temporal
and object relations in unsupervised plan and activity recognition.
In Proceedings of AAAI 2015 Fall Symposium on AI for Human-
Robot Interaction, 51–59.
Geib, C. W., and Steedman, M. 2007. On natural language pro-
cessing and plan recognition. In Proceedings of the Twentieth In-
ternational Joint Conference on Artificial Intelligence, 1612–1617.
Goldman, R. P.; Geib, C. W.; Kautz, H.; and Asfour, T. 2011. Plan
Recognition – Dagstuhl Seminar 11141. Dagstuhl Reports 1(4):1–
22.
Griffiths, T. L.; Steyvers, M.; Blei, D. M.; and Tenenbaum, J. B.
2004. Integrating topics and syntax. In Proceedings of the Eigh-
teenth Annual Conference on Neural Information Processing Sys-
tems, 537–544.
Helmert, M. 2006. The fast downward planning system. Journal
of Artificial Intelligence Research 26(1):191–246.
Herbst, E.; Ren, X.; and Fox, D. 2013. RGB-D flow: Dense 3-
D motion estimation using color and depth. In Proceedings of
the IEEE International Conference on Robotics and Automation,
2276–2282.
Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. Journal of Artificial In-
telligence Research 14:253–302.
Huỳnh, T.; Fritz, M.; and Schiele, B. 2008. Discovery of activity
patterns using topic models. In Proceedings of the Tenth Interna-
tional Conference on Ubiquitous Computing, 10–19.
Levine, S., and Williams, B. 2014. Concurrent plan recogni-
tion and execution for human-robot teams. In Proceedings of the
Twenty-Fourth International Conference on Automated Planning
and Scheduling, 490–498.
Perovs̆ek, M.; Vavpetic̆, A.; Cestnik, B.; and Lavrac̆, N. 2013. A
wordification approach to relational data mining. In Fürnkranz, J.;
Hüllermeier, E.; and Higuchi, T., eds., Discovery Science, volume
8140 of Lecture Notes in Computer Science. Springer Berlin Hei-
delberg. 141–154.
Ramı́rez, M., and Geffner, H. 2010. Probabilistic plan recogni-
tion using off-the-shelf classical planners. In Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence, 1121–
1126.
Russell, S. J., and Wefald, E. 1991. Principles of metareasoning.
Artificial Intelligence 49(1-3):361–395.
Schwenk, M.; Vaquero, T.; and Nejat, G. 2014. Schedule-based
robotic search for multiple residents in a retirement home environ-
ment. In Proceedings of the Twenty-Eighth AAAI Conference on
Artificial Intelligence, 2571–2577.
Shotton, J.; Fitzgibbon, A.; Cook, M.; Sharp, T.; Finocchio, M.;
Moore, R.; Kipman, A.; and Blake, A. 2011. Real-time human
pose recognition in parts from a single depth image. In Proceedings
of the Twenty-Fourth IEEE Conference on Computer Vision and
Pattern Recognition, 1297–1304.
Wurman, P. R.; D’Andrea, R.; and Mountz, M. 2007. Coordinating
hundreds of cooperative, autonomous vehicles in warehouses. In
Proceedings of the Nineteenth National Conference on Innovative
Applications of Artificial Intelligence, volume 2 of IAAI’07, 1752–
1759. Vancouver, British Columbia, Canada: AAAI Press.
Zhang, B.; Nakamura, T.; and Kaneko, M. 2015. Adaptive fusion
of multi-information based human identification for autonomous

37

mobile robot. In Proceedings of the Twenty-fourth IEEE Interna-
tional Symposium on Robot and Human Interactive Communica-
tion.
Zilberstein, S. 2011. Metareasoning and bounded rationality. In
Cox, M., and Raja, A., eds., Metareasoning: Thinking about Think-
ing. Cambridge, MA, USA: MIT Press. 27–40.

38

Dissertation Abstract: Distributed Privacy-preserving Multi-agent Planning

Andrea Bonisoli
Univrsità degli Studi di Brescia

Dipartimento di Ingegneria dell’Informazione
Via Branze, 38 - 25123 Brescia (IT)

andrea.bonisoli@unibs.it

Abstract

Planning is a well known and studied field of Artificial
Intelligence. Multi-Agent Planning concerns the con-
struction of plans for a group of autonomous agents that
can interact. The aim of multi-agent planning is to au-
tomatically find a solution such that, if every agent exe-
cutes successfully his plan, the environment changes to
a goal state. The solution can be found either by cen-
tralized or distributed algorithms.

Introduction
The aim of planning, a well known field of Artificial In-
telligence, is the automated synthesis of partially ordered
sequences of actions, called plans, that can be executed in
given settings by one or more agents. A plan is called a
solution for a given problem if its execution from an initial
known state achieves the problem goals.

Multi-agent planning can be seen as an extension of clas-
sical planning and in (De Weerdt and Clement 2009) is de-
fined as “the problem of planning by and for a group of
agents”. This definition is intentionally general and there-
fore includes many different approaches. Multi-agent plan-
ning can be applied to a wide range of problems, from team
of robots involved in space exploration or disaster recovery
to logistics chains involving different companies. Whenever
there are multiple actors that operate in the setting and they
need to decide the best course of action, multi-agent plan-
ning can be used to find a solution. It is also worth noting
that, although multi-agent planning is not a new research
field, many important contributions in this topic are quite re-
cent. One of the main motivations in multi-agent planning is
that some or all agents have private knowledge that cannot
be communicated to other agents during the planning pro-
cess and the plan execution.

Problem Definition
Different authors use some slightly different definition of
multi-agent planning, however the most common defini-
tion of this problem relies on the multi-agent language
called MA-STRIPS, a minimal extension of the STRIPS
planning language, which was first described in (Brafman

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Domshlak 2008) and then adopted by several authors
(Jonsson and Rovatsos 2011; Nissim and Brafman 2012;
Brafman and Domshlak 2013; Štolba and Komenda 2013;
Štolba, Fišer, and Komenda 2015a). Other definition of the
problem are also possible (Torreño, Onaindia, and Sapena
2014; 2015; Bonisoli et al. 2014), nonetheless MA-STRIPS
is a simple and effective language to represent the coopera-
tive multi-agent planning.

Formally in a multi-agent planning task is given a set of k
agents Φ = {ϕi}ki=1 and a 4-tuple Π = 〈P, {Ai}ki=1, I, G〉
where:

• P is a finite set of atomic propositions, I ⊆ P encodes
the initial state and G ⊆ P encodes the goal conditions,
as in the classical planning;

• Ai, for 1 ≤ i ≤ k, is the set of actions of the agent ϕi .
Every action a ∈ A =

⋃
Ai is given by its preconditions

and effects; every agent has a different set of actions, i.e.
Ai ∩Aj = ∅ if i 6= j.

A solution is a partially ordered sequence of actions such
that each action in the plan is associated with a single agent.
If there is only one agent in the problem, that is n = 1, this
definition reduces exactly to a STRIPS problem. Therefore,
one can see MA-STRIPS as a partition of the set of actions
of a STRIPS problem and assignment of one agent to each
partition set. This rather simple extension of the language
is easy to understand, but it is quite limited: for example
in MA-STRIPS it is not possible to define different goals
for different agents. The model was also extended for the
case of self-interested agents (Nissim and Brafman 2013).
Another interesting proposal for a standard description lan-
guage that allow for a more direct comparison between sys-
tems and approaches is MA-PDDL (Kovacs 2012), which is
an extension of the PDDL language used by the international
planning competitions. MA-PDDL is aimed at solving most
of the limitations of other multi-agent planning languages.
This language can be used to describe many different multi-
agent systems and was used during the first Competition of
Distributed and Multiagent Planners (Štolba, Komenda, and
Kovacs 2015).

Given the partition of actions in MA-STRIPS, is is pos-
sible to distinguish between private and public actions and
propositions. An atom is private for agent ϕi if it is required
and affected only by the actions of ϕi. An action of ϕi is pri-

39

vate if all its preconditions and effects are private. All other
action are classified as public. This definitions are quite im-
portant and widely used because are the basis for defining
the privacy of the agents.

State of the Art
One of the first distributed algorithms to solve a
MA-STRIPS problem is presented in (Brafman and Domsh-
lak 2008). This approach is based on a distributed solver for
constraint satisfaction problems: using the notions of public
and private actions it is possible to define constraints for the
agents and use them to agree on a solution and let each agent
to autonomously plan their private part. The experimental
results of this algorithm are presented in (Nissim, Brafman,
and Domshlak 2010). Although the basic idea was highly
innovative, the overall efficiency of the algorithm was insuf-
ficient and, therefore, was only able to solve problems of
modest size and complexity. In the same work it is defined
an upper limit to the complexity resolutive for the problems
MA-STRIPS that depends exponentially on two parameters
that quantify the level of coupling of the system.

To increase scalability than the number of agents involved
in (Jonsson and Rovatsos 2011) is proposed an approach
with iterative refinement of the plans: each agent involved
may in turn change their plan to update it according to the
actions planned by other agents. In this way a process is ob-
tained which slowly converges towards a solution plan for
the problem. Unfortunately, this convergence is not guaran-
teed in all cases, as it can not formally prove the optimal-
ity of the solutions produced by the algorithm. However it
uses in it known technologies and planners available oof the
shelf and can therefore take advantage of the latest innova-
tions in the field of research into classical planning. It can
also be used to solve problems with non-cooperative agents,
but only if it is not required to keep private the plans of the
agents.

In contrast in (Nissim and Brafman 2012; 2013) is pre-
sented the extension to the case of multi-agent of the known
search algorithm A*, called MAD-A*. This new algorithm
maintains the properties known from classic case if the
heuristic function used is permissible and also ensures a
level of privacy to agents involved which the authors define
as weak privacy. Moreover, in (Nissim and Brafman 2014)
is also described an additional feature of MAD-A* which al-
lows him to prune the search tree of a larger number of nodes
than classic algorithm. Finally in (Brafman 2015) describes
a modification to the algorithm that allows it to further in-
crease the level of privacy and exchanging fewer messages
between agents, but unfortunately for this version are not
present experimental results.

Instead in (Torreño, Onaindia, and Sapena 2012; 2013;
2014; 2015) is presented an algorithm based on forward
planning with partial ordering and exchange of incomplete
plans. In this case the problem of the proposed model is dif-
ferent than that described in MA-STRIPS, however, the two
models are comparable and the most recent implementation
of this algorithm is able to solve the problems described with
MA-PDDL. It is noteworthy that the privacy of agents is kept

obscuring a part of the partial plans that are exchanged dur-
ing the planning of the agents.

Conversely in (Maliah, Shani, and Stern 2014) is pre-
sented the algorithm GPPP which uses explicitly two dif-
ferent phases to identify a solution plan. During the first
phase the agents want to identify a joint coordination scheme
through a high-level planning of a relaxed problem using
only the public actions of the problem. In the second phase,
each agent individually shall seek a local plan that can sup-
port public actions agreed in coordination shcema. It is evi-
dent that, since the high-level planning has been carried out
on a relaxed problem, it is possible that during the second
phase some of the agents are not able to find a viable solu-
tion. In this case the algorithm executes again the first phase
to determine a different coordination scheme.

Finally in (Tozicka, Jakubuv, and Komenda 2014; 2015)
describes a new and recent approach based on finite state
machines. This algorithm called PSM uses finite automata
to represent a set of plans and then use public screenings
and intersection of automata to compute a solution. Since
public projections do not contain private information, these
are exchanged between agents that have generated a plan
and if the intersection between the projections received from
other agents and its plan is not empty, then the plan is a
solution. The planner based on this algorithm has shown
excellent results in the competition for distributed planners,
in particular in the fully distributed track.

It is also important to note the studies regarding the
heuristic evaluation functions because of their importance
during the research phase: a more accurate heuristic could
bring significant performance gains for algorithms that use
it. For this reason, in (Štolba, Fišer, and Komenda 2015b)
shows a comparison between the performance of differ-
ent heuristics multi-agent. Many of those presented are in
fact an adaptation of heuristics known for classical planning
adapted to the case multi-agent. Most of these heuristics
is an adaptation of the very heuristic notes taken by the fa-
mous classic planner Fast-forward described in (Hoff-
mann and Nebel 2001). It is for example the case of (Štolba
and Komenda 2013; 2014) which distributes between agents
graphs of relaxed schedule used by fast-forward. The
authors Torreño, Onaindia, and Sapena on the contrary us-
ing an approach based on the latest graphs domain transition,
although in their last work (Torreño, Onaindia, and Sapena
2015) show that a hybrid approach between the two differ-
ent heuristics may result on average in more accurate heuris-
tic. In (Maliah, Shani, and Stern 2014) is instead presented
a multi-agent heuristi based on landmark that can also to
maintain the privacy of the agents, while in (Štolba, Fišer,
and Komenda 2015a) describes another heuristic based on
lankmark but admissible. In (Maliah, Shani, and Stern 2015)
a new heuristic based on pattern database is proposed and
shoed to be more effectiv on some domains. It should how-
ever be noted that the distributed heuristic algorithms can
be substantially different from the classic ones that inspired
them and in general could also get different results with re-
spect to their central counterparts.

40

Privacy-preserving Multi-agent Planning
One fundamental problem of MA-STRIPS is that it cannot
express the privacy of the agents beyond the definitions of
public and private facts and actions and does not fully guar-
antee the privacy of the involved agents when at least one
public proposition is confidential (i.e., it should be kept hid-
den from some agent). For example a proposition shared by
two agents should be public for every other involved agent.

Therefore in this section, we propose a more general
model that preserves the privacy of the involved agents. The
model of multi-agent planning that is most similar to the
one we propose here is the model adopted by MAP-POP
(Torreño, Onaindia, and Sapena 2012). This model was first
presented in (Bonisoli et al. 2014).

A privacy-preserving multi-agent planning problem for a
set of agents Σ = {αi}ni=1 is a tuple 〈{Ai}ni=1, {Fi}ni=1,
{Ii}ni=1, {Gi}ni=i, {Mi}ni=1〉 where:

• Ai is the set of actions agent αi is capable of executing,
and such that for every pair of agents αi and αj ,Ai∩Aj =
∅;

• Fi is the set of relevant facts for agent αi;

• Ii ⊆ Fi is the portion of the initial state relevant for αi;

• Gi ⊆ Fi is the set of goals for agent αi;

• Mi ⊆ Fi × Σ is the set of messages agent αi can send to
the other agents.

Facts and actions are literals and pair 〈Pre,Eff〉, respec-
tively, where Pre is a set of positive literals and Eff is a
set of positive or negative literals. Let X+/X− denote
the positive/negative literals in set X , respectively. Let G
be the graph induced by {Mi}ni=1, where nodes represent
agents, and edges represent possible information exchanges
between agents; i.e., an edge from node αi to node αj la-
belled p represents the agent αi’s capability of sending p
to agent αj . In order to have well-defined sets {Mi}ni=1,
∀αi, αj ∈ Σ, ∀p s.t. p ∈ Fi and p ∈ Fj , there should
be a path in G from the node representing αi to the node
representing αj formed by edges labelled p, if p ∈ Ii, or
∃a ∈ Ai · p ∈ Eff+(a), or ∃a ∈ Ai · p ∈ Eff−(a).

A plan for a multi-agent planning problem is a set {πi}ni=1
of n single-agent plans. Each single agent plan is a sequence
of happenings. Each happening of agent αi consists of a
(possibly empty) set of actions of αi, and a (possibly empty)
set of exogenous events. Exogenous events are facts that be-
come true/false because of the execution of actions of other
agents; in this sense, these events cannot be controlled by
agent αi. Formally, πi = 〈h1i , . . . , hli〉, hji = 〈Aj

i , E
j
i 〉,

Aj
i ⊆ Ai, E

j
i ⊆

⋃
k Fk, for i = 1 . . . n, j = 1 . . . l,

k ∈ {1, . . . , i− 1, i+ 1 . . . , n}.
The execution of plan πi generates a state trajectory,

〈s0i , s1i , . . . , sli〉, where s0i = Ii, and a sequence of messages,
〈m1

i , . . . ,m
l
i〉, each of which is a set of literals. At planning

step j agent αi sends literal p/¬p if either αi executes an ac-
tion that makes p true/false or αi receives the message that
lets the agent know p becoming true/false. In this latter case,
αi forwards the received message p/¬p to the agents it is

connected to. For every planning step, the forwarding is re-
peated n− 1 times so that, if sets {Mi}ni=1 are well-defined,
every agent αk such that p ∈ Fk is advised that p becomes
true or false (the length of the shortest path between any pair
of nodes in the graph induced by {Mi}ni=1 is at most n− 1).
At planning step j agent αi sends literal p/¬p if either αi

executes an action that makes p true/false or αi receives the
message that lets the agent know p becoming true/false. In
this latter case, αi forwards the received message p/¬p to
the agents it is connected to. For every planning step, the
forwarding is repeated n − 1 times so that, if sets {Mi}ni=1
are well-defined, every agent αk such that p ∈ Fk is advised
that p becomes true or false (the length of the shortest path
between any pair of nodes in the graph induced by {Mi}ni=1
is at most n− 1).

Formally, state sji and messagemj
i are defined as follows,

for j = 1 . . . l and k = 1 . . . i− 1, i+ 1 . . . n.

sji = sj−1i ∪
⋃

a∈Aj
i

Eff+(a) ∪ E+j
i \

⋃

a∈Aj
i

Eff−(a) \ E−j
i ;

mj
i =

⋃

k

sm+j
i→k(n− 1) ∪

⋃

k

sm−j
i→k(n− 1), with

sm+j
i→k(t) =

{
〈p, αk〉 | 〈p, αk〉 ∈Mi,

p ∈
⋃

a∈Aj
i

Eff+(a) ∪ rm+j
i (t− 1)

}
,

sm−j
i→k(t) =

{
〈¬p, αk〉 | 〈p, αk〉 ∈Mi,

p ∈
⋃

a∈Aj
i

Eff−(a) ∪ rm−j
i (t− 1)

}
,

rm+j
i (t) =

{
p | 〈p, αi〉 ∈

⋃

k

sm+j
k→i(t)

}
,

rm−j
i (t) =

{
p | 〈¬p, αi〉 ∈

⋃

k

sm−j
k→i(t)

}
,

rm+j
i (0) = rm−j

i (0) = ∅.

Intuitively, for planning step j, sm + j
i→k(t)/sm− j

i→k(t) is
the set of positive/negative literals that at the t-th forward-
ing step (t = 1 . . . n − 1) agent αi sends to agent αk;
rm + j

i (t)/rm − j
i (t) is the set of positive/negative literals

that at the t-th forwarding step agent αi receives. Note that
propositional planning assumes that at every planning step
the execution of actions is instantaneous, and hence the in-
formation exchanges also happens instantaneously.

We say that the single-agent plan πi is consistent if the
following conditions hold for j = 1 . . . l and t = 1 . . . n−1:

(1) E+j
i =

⋃
t rm+j

i (t), E−j
i =

⋃
t rm−j

i (t);

(2) ∀a, b ∈ Aj
i · Pre(a) ∩ Eff−(b) = Pre(b) ∩ Eff−(a) = ∅;

(3) ∀a, b ∈ Aj
i ·Eff+(a)∩Eff−(b) = Eff+(b)∩Eff−(a) = ∅;

41

(4) ∀a ∈ Aj
i ,∀e ∈ E−j

i · Pre(a)∩ e = ∅ = Eff+(a)∩ e = ∅.

Basically, (1) asserts that at planning step j all the exoge-
nous events for agent αi are the positive/negative literals αi

receives during the information exchange, i.e., (1) guaran-
tees that these events are generated by some other agent; (2)
and (3) assert that at planning step j agent αi executes no
pair of mutually exclusive actions; finally, (4) asserts that at
planning step j agent αi executes no action that is mutex
with some action executed by other agents.

Let 〈s0i , s1i , . . . , sli〉 be the state trajectory generated by
single-agent plan πi. Plan πi is executable if Pre(a) ⊆ sj−1i ,
∀a ∈ Aj

i , j = 1 . . . l. Plan πi is valid for agent αi if it is ex-
ecutable, consistent, and achieves the goals of agent αi, i.e.,
Gi ⊆ sli. A multi-agent plan {πi}ni=1 is a solution of the
multi-agent privacy-preserving planning task if single-agent
plan πi is valid for agent αi, for i = 1 . . . n.

The main difference with existing models to multi-agent
planning, like (Torreño, Onaindia, and Sapena 2012), is re-
lated to sets {Mi}ni=1 and the purpose for which agents use
them. Essentially, Mi determines the messages agent αi can
generate during the execution of its plan, that can be sent to
other agents without loss of privacy.

Conclusion
Multi-agent planning is an open field of research as many
new contributions in recent years have showed and there are
still some open issues and challenges to address. First of
all, many theoretical properties of some settings of multi-
agent planning are not well known. For example it is still
unknown the actual complexity of different settings or what
make them so difficult. Also, while the theoretical prop-
erties of multi-agent systems are well studied in the multi-
agent system community, the relation to planning is not a
well studied topic and further research work may improve
the understanding of the multi-agent planning problem.

Furthermore, while privacy issues are strong reasons for
using distributed algorithms, the definition of privacy in
multi-agent planning is debated, e.g., what agents should
kept private information (state variables, actions, goals) and
what minimal information they should exchange in order to
be able to construct a joint plan remain an open question.
While the distinction between public and private fluents and
actions is a first step towards the definition of privacy, it is
too weak for many settings not involving cooperative agents.
It is unknown whether partial observability can cope with the
privacy issues.

References
Bonisoli, A.; Gerevini, A. E.; Saetti, A.; and Serina, I. 2014.
A privacy-preserving model for the multi-agent proposi-
tional planning problem. Distributed and Multi-Agent Plan-
ning 25–29.
Brafman, R. I., and Domshlak, C. 2008. From one to
many: Planning for loosely coupled multi-agent systems. In
ICAPS, 28–35.

Brafman, R. I., and Domshlak, C. 2013. On the complexity
of planning for agent teams and its implications for single
agent planning. Artificial Intelligence 198:52–71.
Brafman, R. I. 2015. A privacy preserving algorithm for
multi-agent planning and search. Joint Conference on Arti-
ficial Intelligence (IJCAI 2015) 1530–1536.
De Weerdt, M., and Clement, B. 2009. Introduction to plan-
ning in multiagent systems. Multiagent and Grid Systems
5(4).
Hoffmann, J., and Nebel, B. 2001. The ff planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 253–302.
Jonsson, A., and Rovatsos, M. 2011. Scaling up multiagent
planning: A best-response approach. In Proceedings of the
21st International Conference on Automated Planning and
Scheduling.
Kovacs, D. L. 2012. A multi-agent extension of pddl3. WS-
IPC 2012 19.
Maliah, S.; Shani, G.; and Stern, R. 2014. Privacy preserv-
ing landmark detection. In Proceedings of ECAI, volume 14.
Maliah, S.; Shani, G.; and Stern, R. 2015. Privacy preserv-
ing pattern databases. Distributed and Multi-Agent Planning
(DMAP-15) 9.
Nissim, R., and Brafman, R. I. 2012. Multi-agent a* for par-
allel and distributed systems. In Proceedings of the Work-
shop on Heuristics and Search for Domain-Independent
Planning, 42–51. ICAPS.
Nissim, R., and Brafman, R. I. 2013. Cost-optimal planning
by self-interested agents. In AAAI.
Nissim, R., and Brafman, R. 2014. Distributed heuristic for-
ward search for multi-agent planning. Journal of Artificial
Intelligence Research 51(1):293–332.
Nissim, R.; Brafman, R. I.; and Domshlak, C. 2010. A
general, fully distributed multi-agent planning algorithm.
In Proceedings of the 9th International Conference on Au-
tonomous Agents and Multiagent Systems: volume 1-Volume
1, 1323–1330. International Foundation for Autonomous
Agents and Multiagent Systems.

Štolba, M., and Komenda, A. 2013. Fast-forward heuristic
for multiagent planning. In Proceedings of Distributed and
Multi-agent Planning (DMAP) Workshop of 23rd Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’13), volume 120.
Štolba, M., and Komenda, A. 2014. Relaxation heuristics
for multiagent planning. In 24th International Conference
on Automated Planning and Scheduling (ICAPS), 298–306.

Štolba, M.; Fišer, D.; and Komenda, A. 2015a. Admissi-
ble landmark heuristic for multi-agent planning. In Twenty-
Fifth International Conference on Automated Planning and
Scheduling.

Štolba, M.; Fišer, D.; and Komenda, A. 2015b. Com-
parison of rpg-based ff and dtg-based ff disrtibuted heuris-
tics. Proceedings of Distributed and Multi-Agent Planning
Workshop(DMAP-15) 77.

42

Štolba, M.; Komenda, A.; and Kovacs, D. L. 2015.
Competition of distributed and multiagent planners,
http://agents.fel.cvut.cz/codmap/.
Torreño, A.; Onaindia, E.; and Sapena, Ó. 2012. An ap-
proach to multi-agent planning with incomplete informa-
tion. Proceedings of ECAI.
Torreño, A.; Onaindia, E.; and Sapena, Ó. 2013. Fmap: a
heuristic approach to cooperative multi-agent planning. In
Proceedings of DMAP Workshop of ICAPS, volume 13, 84–
92.
Torreño, A.; Onaindia, E.; and Sapena, Ó. 2014. Fmap:
Distributed cooperative multi-agent planning. Applied Intel-
ligence 41(2):606–626.
Torreño, A.; Onaindia, E.; and Sapena, Ó. 2015. Global
heuristics for distributed cooperative multi-agent planning.
In Twenty-Fifth International Conference on Automated
Planning and Scheduling.
Tozicka, J.; Jakubuv, J.; and Komenda, A. 2014. Generating
multi-agent plans by distributed intersection of finite state
machines. In Proceedings of ECAI.
Tozicka, J.; Jakubuv, J.; and Komenda, A. 2015. On inter-
nally dependent public actions in multiagent planning. Dis-
tributed and Multi-Agent Planning (DMAP-15) 18.

43

Planning with Concurrent Execution

Bence Cserna
Department of Computer Science

University of New Hampshire
Durham, NH 03824 USA

bence@cs.unh.edu

Abstract

In real world planning applications such as planning for
robots or video games, time for decision making is of-
ten limited. Unlike classical search, real-time search al-
gorithms are applicable in these domains due to their
bounded response time. This dissertation addresses the
setting in which planning and execution occur concur-
rently using real-time heuristic search. I advance this
area in three ways.
Real-time planning algorithms have to return the next
action for the agent within a strict time bound. I show
how to adapt previously-proposed methods, which de-
pend on unrealistic assumptions, to allow the use of wall
clock time bounds. Second, in real-time search partial
plans are generated until the goal state is found. It is
not clear whether the agent should commit to one action
along the path to best explored node or all the way to the
search frontier. We investigate the use of metareasoning
algorithms to decide how many actions to commit to.
Third, I will extend the application of real-time search
algorithms to stochastic domains.

Introduction
In real-time planning domains where human interaction is
involved, it is often desirable to reach the goal state as fast as
possible. Consider a path-finding domain in which an agent
has to navigate to a goal location while the user waits for the
execution to be completed.

The performance of classical heuristic search algorithms
is often measured by the solution cost, the overall search
time and the expansion count. These classical heuristic
search metrics are not sufficient for such real-time domains.
In problems where the agent has limited time to act the
performance of the planning algorithm is measured in goal
achievement time (GAT). The GAT measures the wall time
from the start of the search to the completion of the task.

Our primary focus is to advance real-time search in three
different ways.

Real-time search algorithms operate in planning episodes.
After each episode, the planner returns an action or a set of
actions until the goal state is expanded. To satisfy the real-
time property, the time to complete an episode is bounded.

Copyright © 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The current state-of-the-art real-time search, Dynamic f̂
provides responsiveness by limiting the number of explored
states in the planning episodes(Kiesel, Burns, and Ruml
2015). The time bound of the algorithm is expressed in node
expansions. According to the best of the author’s knowledge
none of the real-time heuristic search algorithms utilize wall
time-bound nor are they feasible for such setup. However,
in practical applications, the time bound is expressed in wall
time, not in node expansion. We propose to use wall time to
bound the response time of real-time planners.

In each episode, the planner explores the state space
knowing the agent’s current location and decides how far
it should go in the explored space. Given the framework
where the agent acts in parallel to the planning, the time
the agent spends on executing actions establishes the time
bound for the next planning iteration. The time limit given
to the planner determines how far it can look ahead in the
search space. More time allows the planner to explore more
states and make a more informed decision. It is not clear how
many actions should the agent commit to along the path to
the best explored state on the search frontier. The early real-
time search algorithms only committed to one action, but the
leading algorithm, Dynamic f̂ sends the agent all the way to
the search frontier. We investigate the use of metareasoning
algorithms to dynamically decide how many actions to com-
mit to.

Additionally, unlike in classical benchmarks problems,
acting in the real world is often stochastic. Consider an en-
vironment where a robot has to navigate to a goal loca-
tion. The location of the agent after taking an action is non-
deterministic. The precise location is unknown the planner
can only estimate. The leading real-time search algorithms
do not consider uncertainty, thus are not applicable to such
domains. We propose to extend the existing real-time plan-
ning algorithms to domains with uncertainty.

Time bounded real-time search

The first real-time heuristic search algorithms were proposed
by Korf in 1990. Since then the area of real-time search
has been evolved and several improvements have been pro-
posed. Before discussing the improvements, first we review
the most relevant algorithms to our work.

44

Previous work

A significant drawback of using A* on a situated agent is
that the algorithm has to find a complete solution path be-
fore making a commitment to the first action. The optimal
first move cannot be guaranteed until a complete solution is
found.

Learning Real-time A* (LRTA*) is a suboptimal real-time
search algorithm (Korf 1990). Unlike A*, LRTA* only con-
siders a local search problem. To select an action LRTA*
chooses the successor state that has the lowest sum of cost
and cost-to-goal estimate. It commits to one action and
repeats the search from the selected successor state. The
heuristic value of the neighboring states is augmented by
a depth bounded lookahead. The action selection time has
a theoretical upper bound due to the depth bounded looka-
head.

Local Search Space - LRTA* (LSS-LRTA*) is an im-
proved version of LRTA* (Koenig and Sun 2008).

A search episode of LSS-LRTA* consists of two phases:
exploration and learning. In the exploration phase, the algo-
rithm expands the search tree from the agent’s current loca-
tion. This exploration is limited by a predefined expansion
bound. The states explored in each episode represent the lo-
cal search space. While LRTA* selects the best neighboring
state and commits to one action per search episode, LSS-
LRTA* moves the agent all the way to the search frontier.

After the expansion, LSS-LRTA* uses a learning phase to
propagate back the heuristic values from the search frontier
in order to help the agent escape the local minima of heuris-
tic values.

Dynamic f̂ is a variant of LSS-LRTA* with two improve-
ments. Instead of using and admissible heuristic to explore
the local search space, Dynamic f̂ utilizes an unbiased inad-
missible heuristic function (Kiesel, Burns, and Ruml 2015).
In addition, Kiesel, Burns, and Ruml proposed a technique
to translate time duration to expansion counts to make the
algorithm feasible for practical domains with real-time re-
quirements. Dynamic f̂ uses a lookup table based on the
available time for the upcoming planning episode. The table
is populated by offline learning and contains a predefined set
of expansion limits along with the corresponding measured
mean planning time.

Real-time search using wall clock bounds
In domains where the time for decision making is limited,
the responsiveness of the planning algorithm is essential.
We assume the planner algorithm is running on an operat-
ing system that does not provide real-time guarantees, thus
the running time of an expansion cannot be approximated
precisely.

On such systems the state expansion times could be incon-
sistent, therefore the duration of an episode of an expansion
count limited real-time search algorithm is unpredictable,
while the bounded response time is the primary requirement.

We propose a real-time variant of LSS-LRTA* that uses
real-time measurements to provide more consistent planning
episode duration. This could be achieved by replacing the
expansion limit with a time limit. The proposed real-time
algorithm assesses the time bound after every expansion.

An episode of LSS-LRTA* consists of two phases: explo-
ration and learning. LSS-LRTA* does not account for the
time of the learning phase, thus it is not limited by the ex-
pansion bound. Dynamic f̂ is more sophisticated. It includes
both the planning and the execution phases in the time bound
by measuring the running time of the episodes. However,
these estimates are calculated offline, therefore, they are not
adaptive to the changes in the execution environment.

During the exploration phase of LSS-LRTA* or Dynamic
f̂ , the planner expands the explored state space with new
states until the time or expansion bound is reached. In the
learning phase, the planner propagates back the heuristic
values of the search frontier to local search space that were
explored in the preceding exploration phase until every state
is updated or the bound is reached.

The exploration phase is naturally ended by reaching the
bound. However, the learning step is considered incomplete
if only a subset of states were updated in the local search
space. During the learning phase, the planner increases the
heuristic values of the states in the local search space by
propagating back the most relevant values from the search
frontier. When the time bound is reached during the learn-
ing phase the propagation is terminated, leaving the planner
in an inconsistent state. The partially updated local search
space could be misleading due to the inconsistencies in the
heuristic values. The planner would be biased towards the
areas that were not updated, therefore, the results of an in-
complete learning step should not be used.

The original LSS-LRTA* algorithm does not include the
cost of learning in the episode bound due to the fact that it is
faster to complete the learning phase than a corresponding
exploration phase.

We propose to reverse the order of the learning and explo-
ration in the episodes. The reverse order provides a better
chance for the learning phase to complete. After updating
the values of the local search space, the exploration phase
can utilize the remaining time for the episode. The explo-
ration time and the following learning phase duration are re-
lated. More exploration corresponds to longer learning time.
When the learning step consumes most of the time in the
episode the exploration step has less time to expand new
states, thus, the learning step in the following episode will
complete faster and leave more time for the exploration.

The proposed method makes LSS-LRTA* and Dynamic
f̂ feasible for practical real-time domains where the time
bound is given in wall time.

A flexible commitment strategy
One of the central issues of real-time heuristic search with
a situated agent is the relation between the agent and the
plan. How far should the planner look ahead before commit-
ting to an action? Should it commit to only one action like
LRTA* or should it be less conservative and commit to the

45

best known state on the search frontier (LSS-LRTA*, Dy-
namic f̂).

O’Ceallaigh and Ruml presented the first real-time search
algorithm, Mo’RTS, that incorporates metareasoning to de-
cide when to act, and how many actions to commit to
(O’Ceallaigh and Ruml 2015). They showed the Mo’RTS
can improve the GAT of leading real-time search algorithms,
LSS-LRTA* and Dynamic f̂ . However, there are flaws that
were acknowledged by the authors. First, the Mo’RTS is
bounded by node expansions instead of using wall time
bounds as LSS-LRTA*. The decision-making time was not
included in the metric, thus, the effect of the algorithm on
the GAT is not clear.

More importantly, the work of O’Ceallaigh and Ruml,
while taking a principled approach to the question of
whether or not the agent should commit to an action or de-
liberate further, takes an ad hoc approach to the question of
how many actions the agent should commit to. I will show
how, in fact, the second issue can be answer by appealing
to the first. By showing that the metareasoning overhead of
Mo’RTS can be made small in practice, I will allow the agent
to consider the question of whether or not to commit very
frequently — at multiple points during a single planning it-
eration, in fact. This will allow the agent to naturally decide
how much of the plan prefix to which to commit, solving the
commitment length problem without recourse to an ad hoc
method.

The application of meta-reasoning to problems such as
plan commitment has shown great promise but has not been
fully explored. This dissertation aims to utilize such metar-
easoning techniques while relaxing the strong assumptions
of Mo’RTS.

Extending to stochastic domains
A* based search algorithms are tailored to handle domains
where the actions are deterministic. Thus, real-time search
algorithms such as LSS-LRTA* and Dynamic f̂ are not de-
signed to handle stochastic domains, as plans generated by
these algorithms assume certain state transitions.

Markov Decision Processes (MDPs) provide a popular
framework for planning problems with uncertainty. Real-
time dynamic programming (RTDP) is a generalization of
Korf’s LRTA* to stochastic domains (Barto, Bradtke, and
Singh 1995). Unlike Dynamic f̂ , that explores only the lo-
cal search space, RTDP explores states with simulated se-
quences from the agent’s initial location. However, just as
with traditional real-time, there has been little consideration
of explicitly optimizing GAT. We intend to extend previous
work, such as Sanner’s Bayesian RTDP (Sanner et al. 2009),
using ideas from Mo’RTS to show that MDPs can provide an
agile real-time framework for situated agents planning under
time pressure.

Conclusion
The primary focus of this dissertation is to overcome the ex-
isting issues of real-time heuristic search and to make real-
time search actually real-time, while minimizing the goal
achievement time. Furthermore, it aims to extend the scope

of real-time heuristic search to handle a wider range of real
world applications. My dissertation will advance the science
of planning with concurrent execution in three ways. First,
the current real-time search algorithms are not suited for
planning in a real world environment in which the time for
decision making is limited in wall time, since they provide
responsiveness by limiting the number of expansions. Sec-
ond, in a setting where the planning is concurrent with the
execution, it is not clear whether the agent should commit
to one action along the path to best explored node or all the
way to the search frontier. Mo’RTS proposed an adaptive
metareasoning technique to decide whether the agent should
deliberate further, and I will adapt this method to naturally
handle the length of commitment. Third, I will extend these
ideas to planning under uncertainty.

References
Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995. Learning
to act using real-time dynamic programming. Artif. Intell.
72(1-2):81–138.
Kiesel, S.; Burns, E.; and Ruml, W. 2015. Achieving goals
quickly using real-time search: Experimental results in video
games. Journal of Artificial Intelligence Research 123–158.
Koenig, S., and Sun, X. 2008. Comparing real-time and in-
cremental heuristic search for real-time situated agents. Au-
tonomous Agents and Multi-Agent Systems 18(3):313–341.
Korf, R. E. 1990. Real-time heuristic search. Artificial
Intelligence 42(2-3):189–211.
O’Ceallaigh, D., and Ruml, W. 2015. Metareasoning in
real-time heuristic search. In Eighth Annual Symposium on
Combinatorial Search.
Sanner, S.; Goetschalckx, R.; Driessens, K.; and Shani,
G. 2009. Bayesian real-time dynamic programming. In
Boutilier, C., ed., {IJCAI} 2009, Proceedings of the 21st
International Joint Conference on Artificial Intelligence,
Pasadena, California, USA, July 11-17, 2009, 1784–1789.

46

Session 3

Temporal Planning

47

Mixed Discrete-Continuous Planning with Complex Behaviors

Enrique Fernandez-Gonzalez
Massachusetts Institute of Technology

Computer Science and Artificial Intelligence Laboratory
32 Vassar Street, Building 32-224, Cambridge, MA 02139

efernan@mit.edu

Abstract

Over the last few years, we have witnessed a tremen-
dous increase in the capabilities of robots. However,
robots are still largely teleoperated by humans or con-
trolled by scripts written by experts in advance, in a
time-consuming and costly manner. Many practical ap-
plications require more autonomous robots, but the cur-
rent state of the art in planning is not well suited for this
task.
This thesis aims to fulfill this need by developing a
mixed discrete-continuous temporal planner, Scotty, ca-
pable of reasoning with complex robot behaviors and
accepting high level temporally extended mission goals.
Scotty leverages the proven performance of heuristic
forward search for symbolic planning with the versa-
tility of trajectory optimization for resolving complex
non-linear robot behaviors.

Introduction
Our generation is witnessing a revolution in robotics. Over
the last decade we have seen tremendous improvements in
robot hardware, perception and control. Robots have tran-
sitioned from being, in general, expensive repetitive ma-
chines in automotive factories or relatively simple experi-
ments with limited capabilities in research labs, to sophis-
ticated machines able to walk, run, jump, fly or even drive
autonomously on highways.

All these recent achievements are due to advances in hard-
ware, perception, control, and the availability of small fac-
tor high performance computing power. However, as im-
pressive as these robots are, most of them are either com-
pletely scripted in advance, or teleoperated by humans. This
is works well for some applications. However, these ap-
proaches for operating robots will not be sufficient for many
important robotic applications, such as robotic exploration
of the Solar System. We need robots able to operate in re-
mote hostile environments in which the availability of di-
rect fast communication with human operators cannot be as-
sumed. Such missions will require a more advanced level of
autonomy than what we currently have.

To this day, we are largely not doing any automated plan-
ning with robots, as the current state of the art does not ful-
fill this need. The activity planning community has made
impressive advances in symbolic planning, especially since

the introduction of heuristic forward search. However, most
activity planners, only reason with discrete conditions and
effects. Some have been extended to consider limited forms
of continuous linear time-evolving effects (Coles et al. 2012;
2010), but still focus mainly on logistic or planning competi-
tion problems and are unable to handle the more complicated
non-linear effects required to model robot dynamics.

On the other hand, the AI community has expressed an
increasing interest in the joint problem of activity and mo-
tion planning. Many interesting approaches have emerged
over the last few years (Srivastava et al. 2014; Cambon,
Alami, and Gravot 2009; Garrett, Lozano-Pérez, and Kael-
bling 2014). However, most of these approaches focus on
the manipulation problem, which is hard and interesting but
requires specific assumptions, and often neglect dynamics,
as they are not needed to model common manipulation sce-
narios.

Finally, we have lately seen great advances in the con-
trol of complex underactuated robots, in part thanks to the
success of trajectory optimization. There are many exam-
ples of successful robot behaviors being implemented us-
ing this approach that were impractical to solve in a reason-
able amount of time just a few years ago (Fallon et al. 2015;
Dai, Valenzuela, and Tedrake 2014). To our knowledge there
are no planners able to reason with these complex behaviors.

This thesis aims to address this need by developing a
mixed discrete-continuous temporal planner, Scotty, able
to plan with complex robot behaviors. The Scotty plan-
ner leverages the proven performance of heuristic forward
search for symbolic planning and the recent advances in tra-
jectory optimization to reason with complex robot behaviors
requiring non-linear dynamics.

Problem Description
Scotty is a hybrid temporal planner and, as such, its prob-
lem description inherits the main elements from the activ-
ity planning literature. Scotty’s problem statement is simi-
lar to PDDL2.1(Fox and Long 2011) in that the state of the
system is given by true/false propositions and values to nu-
meric state variables, and that activities have preconditions
(at start, over all, at end) and effects (discrete at start and
at end and also continuous). Scotty’s problem statement dif-
fers from PDDL2.1 in that it allows more expressive goal
specifications and more complex activities with non-linear

48

dynamics and conditions that we call behaviors.
Scotty takes as inputs an initial state, a planning domain

and time-evolved goal representation and produces a plan.
The input to Scotty is a tuple 〈I, A,G〉 where

• I is the initial state of the system at t = 0. The state of the
system at time t, X(t) is given by:

– The set of propositions that hold at time t
– An assignment to all the continuous state variables of

the system, xi(t)

the initial state of the system is then X(0)

• D is the planning domain that defines the allowed activi-
ties and behaviors

• G is the temporally-extended goal specification

The output of Scotty is a temporal plan satisfying the goal
specification.

Temporally-extended goals
The goal specification in the classic temporal planning prob-
lem simply consists of the set of proposition that need to
hold at the end of the plan. This definition is static: it does
not matter what happens between the start and the end of the
plan as long as the objectives are satisfied at the end. How-
ever, in most real world problems objectives evolve over
time and there may be temporal restrictions between them.

We will use Qualitative State Plans (QSPs)(Li and
Williams 2011; Léauté and Williams 2005; Hofmann and
Williams 2006) to represent these temporally-extended
goals. QSPs use episodes and temporal constraints to spec-
ify the users’ objectives and requirements on states, re-
sources and time. Formally, a QSP is represented as a 3-tuple
< E,EP, TC >, where

• E is a set of events. Each event e ∈ E can be assigned a
non-negative real value which denotes a point in time.

• EP is a set of episodes. Each episode specifies an al-
lowed state trajectory between a starting and an ending
event. They are used to represent the state constraints. An
episode, ep, is a tuple < eS , eE , l, u, sc > where:

– eS and eE in ep are the start and end events of the state
trajectory.

– l and u are the lower and upper bounds on the temporal
duration of the episode.

– sc is a state constraint that must hold true over the dura-
tion of the episode. The state constraint sc can be either
a discrete predicate, or a condition over the state vari-
ables.

• TC is set of simple temporal constraints. It represents
the temporal requirement between events in E, and can
be viewed as a special type of episode without state con-
straint. A simple temporal constraint(Dechter, Meiri, and
Pearl 1991) is a tuple < eS , eE , lb, ub > where:

– eS and eE in E are the start and end events of the tem-
poral constraint.

– lb and ub represent the lower and upper bounds of
the duration between events eS and eE , where lb ≤
Time(eE) − Time(eS) ≤ ub, (lb ∈ R ∪ −∞, ub ∈
R ∪+∞).

Activities and composable behaviors
The domain of the planning problem is given by the durative
activities and the behaviors.

Durative activities are similar to the ones defined in the
temporal planning literature and have a bounded control-
lable duration, and a set of discrete effects and conditions
defined at start, over all and at end. The conditions can also
be continuous.

In Scotty we define a new type of activities that we call
behaviors. These behaviors preserve the main elements of
the durative activities but differ from these in that they also
encode continuous non-linear effects that can represent, for
example, the dynamics of a robot moving in an environment.
We will consider that durative activities are a special case of
behaviors with no continuous effects.

Consider for example a behavior collect-water-column-
data of an autonomous underwater vehicle. This behavior
represents the AUV taking measurements in a water col-
umn, and has the discrete effect at end of having collected
the data (data-collected). This behavior also has the discrete
over all conditions that the engine needs to be on and the
sensors activated while the behavior is being executed. It
also has continuous over all conditions that specify that the
AUV needs to stay within some coordinates while taking the
measurements (x, y ∈ Region). Finally, the depth before
collecting the data needs to be within 100 and 120 meters
(100 ≤ z ≤ 120), and the depth at the end has to be smaller
than 40 meters (z ≤ 40). These represent the continuous
conditions at start and at end.

Moreover, the AUV needs to move in an ascending spiral
of fixed radius while collecting the data. This is represented
by the non-linear dynamics of the behavior:

ẋ(t) = v · cos(θ) (1)
ẏ(t) = v · sin(θ) (2)
ż(t) = vz(t) (3)

θ̇(t) = ω (4)
v

ω
= R (5)

The dynamics of this behavior affect state variables x, y,
z and θ and their velocities. These dynamics are driven by
control variables vx, v and ω which are assumed to be con-
trollable within some bounds (actuation limits) during ex-
ecution. Additionally, there may be other state constraints
affecting the execution of this behavior. These constraints
can be user-specified as part of the input QSP (‘ensure the
battery level is always greater than 25%’ or ‘stay within the
high reception region’ for example), or imposed by other ac-
tivities or behaviors being executed at the same time.

An important property of behaviors is that they are com-
posable. That is, behaviors can be pieced together sequen-
tially one after another. Behaviors have inlet and outlet con-

49

nectors. In this example both the inlet and outlet of the
behavior are of type pose. That is, behavior collect-water-
column-data takes a starting pose and transforms it into a
different pose at the end of its execution. Behaviors with
compatible connectors can be connected together. For exam-
ple, in order to start the collect-water-column-data behavior,
the AUV first needs to reach the water column region at a
certain depth. A prior behavior navigate, also with pose con-
nectors, could be the one taking the AUV from it’s starting
pose to a valid starting pose for collect-water-column-data.
In the same way, collect-water-column-data could be fol-
lowed by an additional navigate behavior that could take the
AUV to its final rendezvous region. A third behavior surface
could have a position inlet requiring the AUV to be in the
rendezvous region before ascending to the surface. Because
the position connector (x, y, z) is less specific than the pose
connector (position and orientation), the navigate behavior
can connect to the surface behavior. Scotty ensures that the
connector constraints are satisfied in the solution plan. While
multiple durative activities can be executed simultaneously,
we only allow simultaneous execution of behaviors that do
not affect the same state variables.

Solution
Scotty returns a plan satisfying the temporally-extended
goals and conditions described in the input QSP. The so-
lution plan consists of a list of scheduled behaviors where
each behavior b has an execution start time tb, duration db,
and a trajectory of the value of each of its control variables
from tb to tb + db. The returned plan also needs to satisfy
all the behavior discrete and continuous conditions as well
as the connection constraints between behaviors.

Work so far
In the initial stage of this thesis we first approached the
problem of combining heuristic forward search symbolic
planning with trajectory optimization by solving a simpli-
fied problem. Instead of considering arbitrary dynamics, in
this stage continuous effects are assumed to be linear time
varying. While we allow full discrete activity planning, we
restrict the continuous effects to the ones described before,
and we assume the environment is obstacle free. Therefore
we do not use the robot behaviors defined earlier yet, but
durative activities with some modifications.

We solve this problem by combining heuristic forward
search and trajectory optimization through solving linear
programs that are used to resolve the continuous effects and
to test the consistency of partial plans.

This stage was completed in Spring 2015 and resulted in
an IJCAI-15 publication (Fernandez, Karpas, and Williams
2015).

Simplified Problem Statement
The simplified problem statement is framed as a standard
PDDL 2.1(Fox and Long 2011) planning problem with some
modifications that allow us to define activities with continu-
ous effects that depend on bounded control variables. These
bounded control variables represent, in general, velocities

(:durative-action navigate
:control-variables ((velX) (velY))
:duration (and (<= ?duration 5000))
:condition (and

(over all (>= (velX) -4)) (over all (<= (velX) 4))
(over all (>= (velY) -4)) (over all (<= (velY) 4))
(over all (<= (x) 700)) (over all (>= (x) 0))
(over all (<= (y) 700)) (over all (>= (y) 0))
(at start (AUV-ready)))

:effect (and
(at start (not (AUV-ready)))
(at end (AUV-ready))
(increase (x) (* 1.0 (velX) #t))
(increase (y) (* 1.0 (velY) #t))))

Figure 1: Navigate activity modified by continuous control
variables velX and velY.

that are bounded (the actuation limits of the system). Simi-
larly to PDDL 2.1, durative activities have a bounded con-
trollable duration, discrete effects and continuous and dis-
crete conditions defined at start, over all and at end. Con-
tinuous conditions are limited to linear inequalities over the
state variables according to:

cTx′ ≤ 0 (6)

, where x′ = (x1, . . . , xnx
, 1)T and c ∈ Rnx+1 is a vector

of coefficients, with nx being the number of state variables
of the system.

The simplified problem statement differs from PDDL 2.1
in the effects on continuous variables. Each activity has a
set of control variables, which can be seen as continuous
parameters — each of those constrained by lower and up-
per bounds. The continuous effects of the activity are sim-
ilar to those of PDDL 2.1, except they are affected by the
value chosen for the control variables. Here we restrict each
continuous effect to involve only a single control variable,
cvar, and thus each continuous effect can be defined by
〈x, cvar, k〉, where x is a state variable, cvar is a control vari-
able, and k is a constant.

In the simple case, where a single continuous effect
〈x, cvar, k〉 is active from time tstart to time tend with cvar
fixed to a constant value of c throughout the duration, then
x(t), the value of state variable x at time t is defined by
x(t) = x(tstart) + k · c · (t− tstart) with tstart ≤ t ≤ tend.

Multiple continuous effects on the same state variable are
additive, and thus x(t) is defined by:

x(t) = x(0) +

∫ t

0

Cx(τ)dτ (7)

where Cx(t) is the sum of the values of the control variables
in active continuous effects modifying x at time t (repre-
sented by the set E).

Cx(t) =
∑

〈x,cvar,k〉∈E

k · cvar(t) (8)

where cvar(t) denotes the value chosen for the control vari-
able cvar at time t. An example navigate activity for a robot
is shown in Figure 1. Note the bounded control variables
velX and velY.

In this stage the goal simply consists of the discrete
and continuous conditions that need to hold at the end.
Temporally-extended goals are not supported yet.

50

t

x(t)

tstart tend
tstart + dl tstart + du

x(tstart)

xe

t1

min(k cl, k cu)

max(k cl, k cu)

Figure 2: Flow tube with its reachable region (shaded area).
The solid blue line represents an example valid state trajec-
tory. The flow tube contains all valid state trajectories.

Approach
In order to solve this planning problem, we merge the power-
ful representation of continuous effects based on flow tubes
from Kongming (Li and Williams 2008; Li 2010) with the
efficient solving method based on heuristic forward search
and linear programs for consistency checking that COLIN
(Coles et al. 2009) uses.

Each continuous effect of an activity is represented by a
flow tube. Flow tubes represent the reachable state space re-
gion, that is, the values that the state variable can take after
the activity is started. Remember that here we restrict con-
tinuous effects to linear time varying effects.

If no other flow tubes affect state variable x between tstart
and tend, then the reachable region of x represented by the
flow tube f(dl, du, cvar, x, k) of an activity executed be-
tween tstart and tend is defined by the following equations:

x(tend) = x(tstart) + k ·
∫ tend

tstart

cvar(t) · dt (9)

with cl ≤ cvar(t) ≤ cu (10)
dl ≤ tend − tstart ≤ du (11)

where x(tstart) is the value of the state variable before
the activity is executed. Note that, if the value of the control
variable cvar is constant during the execution of the activity,
equation 9 reduces to x(tend) = x(tstart)+k ·cvar · (tend−
tstart).

Figure 2 shows a flow tube. Note that any point in the
shaded region (reachable region) can be reached at the end
of the activity by carefully choosing the appropriate activity
duration and control variable value. In the figure, we can see
how the state value xe can be reached as fast as in tend = t1
if the control variable cvar is constant and takes its maxi-
mum possible value (cu), or as late as tend = tstart + du if
cvar(t) takes smaller values.

An important characteristic of flow tubes, is that they pro-
vide a compact encoding of all feasible trajectories. In order
to find a feasible plan, we connect flow tubes forward using
heuristic forward search, as explained next.

We use a method based on heuristic forward search and
linear programs for consistency checking that is borrowed
from COLIN. The main difference is that in our formulation,
continuous effects support control variables and are repre-
sented by flow tubes and, therefore, the state evolution con-
straints are different from COLIN’s.

Activities are represented by their start and end events,
analogous to the start and end snap actions used by many
temporal planners (Long and Fox 2003; Coles et al. 2008).
The planner needs to find the ordered sequence of start and
end events that takes the system from the initial conditions
to the goal and the execution time of each event. We also
need to find a trajectory for the values of each activity con-
trol variable between the start and end events of the activity
(cvar(t) with tstart ≤ t ≤ tend).

As explained before, we use heuristic forward search to
find the sequence of start and end events that form a fixed
plan, and linear programs to check the consistency of partial
plans. The search uses Enforced Hill Climbing, which has
proven to be effective in this type of problems (Hoffmann
and Nebel 2001).

Search states contain the set of propositions that are
known to be true due to discrete effects, and are augmented
with the ongoing activities list and the bounds for all state
variables. The ongoing activities list keeps track of the ac-
tivities that have started but not finished at that state and is
needed to keep track of the active overall discrete and con-
tinuous constraints. The lower and upper bounds for the state
variables are used to prune sections of the search tree that are
necessarily not feasible.

Each search state defines a partial plan as the current se-
quence of start and end events, and is tested for consistency
with a linear program. The partial plan is feasible if the lin-
ear program has a solution. In this linear program the de-
cision variables are the event execution times and the val-
ues of the state variables at each event. The constraints in-
clude activity duration, start, end and overall conditions and
state evolution constraints that are built from the current se-
quence of events. These constraints are the same ones that
COLIN uses (Coles et al. 2012) except for the state evolu-
tion constraint, however, due to the presence of control vari-
ables. This constraint is given by the flow tube reachability
equation 9. Because the values of the control variables can
change during the activity execution, and the start and end
times of the activity are variables of the linear program, this
equation is not linear if control variables are decision vari-
ables of the linear program. However, we can redefine the
reachability region of the flow tube with the following linear
inequalities:

xend ≥ xstart +min(k · cl, k · cu) · (tend − tstart) (12)
xend ≤ xstart +max(k · cl, k · cu) · (tend − tstart) (13)

, where cl and cu are the bounds of the control variable.
Note that min(k · cl, k · cu) represents the minimum rate
of change of k · cvar and reduces to k · cl when k > 0. The
more complicated expression is needed to preserve gener-
ality when k < 0. The same applies to the maximum rate
of change. These linear inequalities represent the same flow
tube reachability region described by equation (9) if each of
the activity’s control variables appear in only one continuous
effect.

The consistency program is solved for each state in the
search tree to determine the feasibility of the partial plan,
and to extract the event times (t1 . . . t6), state variable values

51

(x1 . . .x6), and control variables. These values keep chang-
ing as more steps are added to the plan during search. In
order to find the state variable lower and upper bounds, the
LP is solved twice per state variable (to minimize and max-
imize its value).

If the current search state is determined to be consistent,
its heuristic value is computed and the state is added to the
queue. If the state satisfies the goal conditions, a valid fixed
plan has been found and Scotty proceeds to extract the flex-
ible plan next. The last linear program used to extract the
fixed plan tries to minimize the makespan of the plan, al-
though a different optimization objective could be chosen.

The heuristic function used by Scotty is essentially the
same used by COLIN, with minor modifications due to the
use of control variables. The heuristic value for a state is the
number of start or end events to reach the goal in the re-
laxed plan. The planning graph that COLIN expands keeps
track of the state variables lower and upper bounds for each
fact layer, with the caveat that activities can only grow these
bounds, in a similar fashion to Metric-FF (Hoffmann 2003).
COLIN calculates the positive gradient affecting each state
variable by adding the positive rates of change of each ongo-
ing activity (similarly with the negative gradient). In Scotty’s
case, these positive and negative gradients are found by
adding the maximum (and minimum) rates of change given
by the bounds of the control variables affecting each activity.

Future research
Currently, I am working on moving from the limited linear
action model to a more general non-linear model that sup-
ports more interesting robot behaviors.

In particular, I am working towards supporting the follow-
ing:

1. Advanced robot behaviors with non-linear dynamics

2. Temporally-extended goals and user-specified global con-
straints

3. Search heuristics through behavior approximations

Now instead of planning with durative activities, we plan
with behaviors. Behaviors still support the standard discrete
conditions and effects, but are extended to allow non-linear
dynamics and more expressive user-specified constraints.
Also, as described in the problem statement, behaviors are
composable elements that can be connected sequentially and
transform inlets to outlets. Behaviors that produce an out-
let of a certain kind can connect to a behavior accepting the
same kind of inlet.

As an example, imagine that the dynamics of a navigate
behavior are given by the following Dubin’s equations:

ẋ(t) = v · cos(θ) (14)
ẏ(t) = v · sin(θ) (15)

θ̇(t) = u(t) (16)

|u(t)| ≤ 1

ρ
(17)

, where v is the velocity, that can be fixed or not, and ρ is the
minimum turning radius.

Note that now we not only deal with much more com-
plex dynamics than before but we also need to handle switch
points: the connection states between subsequent behaviors.
These were trivial to handle in simplified case with the linear
program formulation, as they corresponded directly with the
decision variables of the LP (the state variables at the switch
points). However, this is harder to handle in this case. The
way we deal with this is by using the connector (inlets and
outlets) specification of behaviors. In effect, the navigate ac-
tivity has a pose (〈x, y, θ〉) inlet and a pose outlet, meaning
that it takes the robot from a starting pose to an ending pose.
When connecting the navigate behavior with a collect-data
behavior with analogous specification, the ending pose after
navigate becomes the start pose for collect-data. Another
deliver behavior may have an inlet of type position (〈x, y〉),
a subset of the pose type. Because the outlet of behavior nav-
igate is a pose which is more specific than a position inlet,
both behaviors can connect (navigate finishes at some posi-
tion and orientation, but deliver only enforces the position to
be inside the delivery region). We handle these relations by
framing a joint trajectory optimization program combining
sequential behaviors in which the connection constraints be-
tween them are added explicitly. Although one may think
that framing large optimization programs like this is not
practical, some combined task and motion planners have fol-
lowed this approach with good results (Toussaint 2015). As
Toussaint notes in his paper, this approach has the great ad-
vantage that it does not require discretizing the continuous
states in advance, and that it lets efficient solvers choose the
best switch poses, which would otherwise require very fine
discretization or many randomly sampled poses with many
combinatorial possibilities if done outside the trajectory op-
timization paradigm.

We now also consider global temporally extended goals
and user-specified constraints. This may be things such as
completing one of the objectives of a mission within a given
time or ensuring that the robot never leaves a certain safe re-
gion. This is represented by a Qualitative State Plan (QSP).
The nodes of the graph represent events, and the black
arcs in between them, episodes. Episodes denote conditions
that need to be satisfied between events. The temporal rela-
tions between events are specified with simple temporal con-
straints. These specifications will be modeled as additional
constraints in the global trajectory optimization program and
will affect the selection of the switch points.

Finally, recall that the heuristic that we used for the sim-
plified problem was based on the relaxed planning graph.
Unfortunately, this approach cannot be easily adapted to
complicated non-linear behaviors. In effect, computing the
bounds of the state variables after executing some non-linear
behavior is not only computationally expensive, but also, it
cannot be determined in general if any arbitrary value inside
those bounds can be reached (this was the case in the linear
effects case).

In this thesis we will try to optimize the forward search
by pruning options that cannot be feasible in order to avoid
wasting time on them. We will do so by using approxima-

52

x, y, θ

goal

Figure 3: An outer approximation for the Dubin’s smooth
path given by an infinite curvature (straight-line) path

tions to the non-linear behaviors that are faster to compute.
We want to use outer approximations that guarantee that if
no solution can be found using the approximation, no so-
lution exists for the more detailed model either. However,
some returned solutions using the approximated model may
not be feasible when checked with the more detailed model.

Figure 3 shows an example of an approximation for the
Dubin’s dynamics model that the navigate activity follows.
The smooth path resulting from Dubin’s equations (shown in
blue) can be approximated by a piece-wise straight-line path
(in red). The linear approximation is faster to compute and
it can be shown that if no linear path exists from the start-
ing conditions to the goal conditions, no Dubin’s path exists
either. On the other hand, there could exist an obstacle-free
linear path between the start and the goal poses but no Du-
bin’s equivalent path (curvature constraints may be violated,
for example). We can use this approximation to calculate
lower and upper bounds on duration (using minimum and
maximum velocities) and to prune search states leading to
infeasible outcomes.

References
Cambon, S.; Alami, R.; and Gravot, F. 2009. A Hybrid Approach
to Intricate Motion, Manipulation and Task Planning. The Interna-
tional Journal of Robotics Research 28(1):104–126.
Coles, A.; Fox, M.; Long, D.; and Smith, A. 2008. Planning with
Problems Requiring Temporal Coordination. In Proceedings of
the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI
2008, Chicago, Illinois, USA, July 13-17, 2008, 892–897.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2009. Temporal
Planning in Domains with Linear Processes. In IJCAI 2009, Pro-
ceedings of the 21st International Joint Conference on Artificial
Intelligence, Pasadena, California, USA, July 11-17, 2009, 1671–
1676.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2010. Forward-
Chaining Partial-Order Planning. In Proceedings of the 20th In-
ternational Conference on Automated Planning and Scheduling,
ICAPS 2010, Toronto, Ontario, Canada, May 12-16, 2010, 42–49.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2012. COLIN: Plan-
ning with continuous linear numeric change. Journal of Artificial
Intelligence Research (JAIR) 44:1–96.
Dai, H.; Valenzuela, A.; and Tedrake, R. 2014. Whole-body mo-
tion planning with centroidal dynamics and full kinematics. In Hu-

manoid Robots (Humanoids), 2014 14th IEEE-RAS International
Conference on, 295–302. IEEE.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal constraint
networks. Artificial Intelligence.
Fallon, M.; Kuindersma, S.; Karumanchi, S.; and Tedrake, R.
2015. An Architecture for Online Affordance-based Perception
and Whole-body Planning. Journal of Field
Fernandez, E.; Karpas, E.; and Williams, B. C. 2015. Mixed
Discrete-Continuous Heuristic Generative Planning Based on Flow
Tubes. In Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-31, 2015, 1565–1572.
Fox, M., and Long, D. 2011. PDDL2.1: An Extension to PDDL for
Expressing Temporal Planning Domains. CoRR abs/1106.4561.
Garrett, C. R.; Lozano-Pérez, T.; and Kaelbling, L. P. 2014.
FFRob: An efficient heuristic for task and motion planning.
lis.csail.mit.edu.
Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. Journal of Artificial In-
telligence Research 253–302.
Hoffmann, J. 2003. The Metric-FF Planning System: Translating
”Ignoring Delete Lists” to Numeric State Variables. J Artif Intell
Res(JAIR) 20:291–341.
Hofmann, A., and Williams, B. C. 2006. Robust Execution of
Temporally Flexible Plans for Bipedal Walking Devices. In Pro-
ceedings of the Sixteenth International Conference on Automated
Planning and Scheduling, ICAPS 2006, Cumbria, UK, June 6-10,
2006, 386–389.
Léauté, T., and Williams, B. C. 2005. Coordinating Agile Sys-
tems through the Model-based Execution of Temporal Plans. In
Proceedings, The Twentieth National Conference on Artificial In-
telligence and the Seventeenth Innovative Applications of Artificial
Intelligence Conference, July 9-13, 2005, Pittsburgh, Pennsylva-
nia, USA, 114–120.
Li, H. X., and Williams, B. C. 2008. Generative Planning
for Hybrid Systems Based on Flow Tubes. In Proceedings of
the Eighteenth International Conference on Automated Planning
and Scheduling, ICAPS 2008, Sydney, Australia, September 14-18,
2008, 206–213.
Li, H., and Williams, B. C. 2011. Hybrid Planning with Tempo-
rally Extended Goals for Sustainable Ocean Observing. In Pro-
ceedings of the Twenty-Fifth AAAI Conference on Artificial Intelli-
gence, AAAI 2011, San Francisco, California, USA, August 7-11,
2011.
Li, H. X. 2010. Kongming: a generative planner for hybrid systems
with temporally extended goals. Ph.D. Dissertation, Massachusetts
Institute of Technology.
Long, D., and Fox, M. 2003. Exploiting a Graphplan Framework in
Temporal Planning. In Proceedings of the Thirteenth International
Conference on Automated Planning and Scheduling (ICAPS 2003),
June 9-13, 2003, Trento, Italy, 52–61.
Srivastava, S.; Fang, E.; Riano, L.; and Chitnis, R. 2014. Com-
bined task and motion planning through an extensible planner-
independent interface layer. . . . (ICRA).
Toussaint, M. 2015. Logic-Geometric Programming: An
Optimization-Based Approach to Combined Task and Motion
Planning. In Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-31, 2015, 1930–1936.

53

Planning with Flexible Timelines in the Real World

Alessandro Umbrico, Marta Cialdea Mayer
University Roma TRE, Italy

alessandro.umbrico@uniroma3.it

Andrea Orlandini
CNR - National Research Council of Italy

Institute of Cognitive Science and Technology

Abstract

Planning is a core field of Artificial Intelligence since its be-
ginnings. Broadly speaking, planning techniques aim at pro-
viding artificial agents with the capability to autonomously
solve ”complex” problems. Several planning techniques have
been introduced in the literature that employ different ap-
proaches for modeling and solving planning problems.
My PhD research activities concern timeline-based approach
to planning. Timeline-based planning is a particular Tempo-
ral Planning paradigm which has been successfully applied to
solve real-world problems. Despite it practical success there
is not a shared view of this planning approach. There are sev-
eral timeline-based frameworks that have been introduced in
the literature each of which applies its own interpretation of
timelines, timeline-based plans and planning domains.
In this regard the objective of my PhD is to analyze the
features of the different existing timeline-based systems and
to provide a complete characterization of timeline-based ap-
proach by providing a semantics for the related planning con-
cepts, defining a methodology to model domains and prob-
lems and by defining domain independent heuristics and de-
velop a suited timeline-based planning framework, called
EPSL.

Introduction
Timeline-based planning has been introduced in early 90s
(Muscettola 1994), it takes inspiration from the classical
control theory. It models a complex system by identify-
ing a set of relevant features that must be controlled over
time. This approach has been successfully applied in several
real-world contexts (especially in space applications) thanks
to take into account the temporal aspects of the problem.
Several planning frameworks have been developed for the
synthesis of timeline-based P&S applications, e.g. EUROPA
(Barreiro et al. 2012), ASPEN (Chien et al. 2010), APSI-TRF
(Cesta et al. 2009) or IXTET (Laborie and Ghallab 1995).

Despite its practical success, there is a lack of formaliza-
tion of timeline-based planning related concepts. There is
not a uniform and shared view of concepts like timelines,
timeline-based plans, domains and problems. Every frame-
work applies its own interpretation of timeline-based plan-
ning. This results in different ways of considering timeline-

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

based problems and also, different ways of modeling and
solving such problems.

In this context, my PhD research goal is to characterize
timeline-based planning approach from different point of
views and develop a suited planning framework, called EPSL
- the Extensible Planning and Scheduling Library. Namely,
we aim at understanding timeline-based planning by provid-
ing an acceptable semantics for the related planning con-
cepts, defining a methodology to model and solve problems
by means of timelines.

The following sections introduce timeline-based planning
approach by exploiting the formalization we have proposed
in some recent works (Cialdea Mayer, Orlandini, and Um-
brico 2015; 2014) and the EPSL planning framework that
I’m currently developing. Later sections describe an in-
teresting application of EPSL (and the timeline-based ap-
proach) to a manufacturing real-world context for the de-
velopment of a knowledge-based control module (KBCL -
the Knowledge-Based Control Loop). In particular, this ap-
plication gave an important contribution for the definition of
a hierarchical modeling approach for timeline-based plan-
ning and a domain independent heuristic that we have im-
plemented and tested in the EPSL framework.

Finally we briefly present some ongoing works on the
comparison of our ”vision” of timeline-based planning and
EPSL with EUROPA which is one of the most known
timeline-based software environment in the literature.

Timeline-based Planning Approach
The main result concerning the formalization of timeline-
based planning approach is represented by our work
(Cialdea Mayer, Orlandini, and Umbrico 2015). The key
contribution of this work, which builds and extends previ-
ous works (Cialdea Mayer, Orlandini, and Umbrico 2014),
is to provide a formal stand-alone definition of the main con-
cepts of timeline-based planning and the relative controlla-
bility properties, independently from the concrete structure
exploited to represent timelines.

The importance of this feature is due to the fact that
representing a flexible timeline-based plan as a temporal
network entails a sort of simplification of the associated
plan structure, thus causing a loss of information on the
causal/temporal ”dependencies” among its components. In-
deed, such information can be useful for planning engines

54

(for instance to define suited heuristics as we’ll see in the
next sections) and in general, for supporting a more detailed
analysis of the relevant features enclosing in the generated
plans.

The timeline-based approach pursues the idea that plan-
ning and scheduling for controlling complex physical sys-
tems consists of the synthesis of desired temporal behaviors
(i.e. timelines). Thus, a planning domain is modeled as a set
of features with an associated set of temporal functions on a
finite set of values.

The time-varying features of the domain can be modeled
by means of multi-valued state variables. The possible evo-
lutions of these features are described by some causal laws
and limited by domain constraints. These are specified in a
domain specification. A timeline-based planner must find a
sequence of decisions that brings the timelines into a final
desired set, satisfying the domain specification and goals.
Thus, a domain specification must provide the set of causal
and temporal constraints that specify which value transitions
are allowed for the state variables, and the minimal and max-
imal duration of each valued interval.

State variables A state variable models a particular fea-
ture of the domain that must be controlled over time. For-
mally it is characterized by four components: the set V of
values representing the possible state or actions the feature
can assume or perform over time; a function T mapping
each value v ∈ V to the set of values that are allowed to
follow v; a function γ tagging each value v ∈ V with infor-
mation about its controllability; a function D setting upper
and lower bounds on the duration of each value of the vari-
able. In particular, the controllability tagging fucntion γ tags
each value v ∈ V as controllable γ(v) = c or not γ(v) = u.
If a value v is controllable it means that the planner (or the
executor of the plan) can decide the actual duration of the
value. If a value v is uncontrollable, instead, the planner
can decide its start time but the planner cannot decide its
end time. Namely, the planner cannot make any hypothesis
about the actual duration of uncontrollable values during the
solving process.

Synchronization rules A domain specification must pro-
vide global constraints that coordinate the temporal behav-
iors of the state variables. Such relations are specified by
means of synchronization rules that constrain values of dif-
ferent state variables. Namely, synchronization rules specify
how the domain features must behave in order to perform
some complex tasks.

Formally, a synchronization rule is an expression of the
form:

a0[x0 = v0]→ ∃ a1[x1 = v1] . . . an[xn = vn] .C
where (i) a0, . . . , an are distinct token variables; (ii) for all
i = 0, . . . , n, xi is a state variable and vi ∈ values(xi); and
(iii) C is a positive boolean formula where only the token
variables a0, . . . , an occur.

Token variables represents particular instances of values
of the domain state variables. It is important to point out

that the use of token variables allows to specify multiple in-
stances of the same value of a state variable in the right-hand
part of a synchronization rule. The left-hand part of the syn-
chronization rule, a0[x0 = v0], is called the trigger of the
rule and represents the value the rule can be applied to.

Timelines A timeline represents the temporal evolution of
a system component up to a given time (the horizon). It is
made up of a sequence of valued intervals, called tokens,
each of which represents a time slot in which the variable
assumes a given value. It is important to point out that,
when planning with timelines, time flexibility is taken into
account by allowing token durations to range within given
bounds. A token for a variable x = (V, T, γ,D) is com-
pletely described by representing its start and end ”times”
with temporal intervals as follows:

xi = (v, [e, e′], [d, d′], γ(v))

Thus a timeline FTLx is a for a state variable x =
(V, T, γ,D) is a finite sequence of tokens of the form:

FTLx = x1 = (v1, [e1, e
′
1], [d1, d

′
1], γ(v1)), ..., xk =

(vk, [ek, e
′
k], [dk, d

′
k], γvk)

It is important to point out that once a token xi is embed-
ded in a timeline, the time interval to which its start points
belongs can be easily computed by considering the end time
of the previous token, start time(xi+1) = end time(xi)
(where the start time of the first token x0 is [0, 0]).

A scheduled timeline is a particular case where each token
has a fixed end time [t, t]. A schedule of a timeline FTLx

is essentially obtained from FTLx by narrowing down to
singleton (i.e. time points) the end times of the tokens. The
schedule of a token corresponds to one of the valued inter-
vals it represents which is obtained by choosing an exact end
point in the allowed interval without changing its duration
bounds. In this regards, a scheduled timeline is a sequence
of scheduled tokens that satisfy their duration bounds.

Flexible plans The main component of a flexible plan is a
set of timelines representing different sets of scheduled ones.
It may be the case that not every scheduled timelines satisfy
the synchronization rules of the domain. In order to guar-
antee that every set of scheduled timelines represented by a
given flexible plan π (i.e. the different ways of executing π)
is valid with respect to the underlying planning domain, the
plan has to be equipped with additional information about
the temporal relations that have to hold in order to satisfy
the synchronization rules of the domain. Namely, the rep-
resentation of a flexible plan must also include information
about the relations that must hold between tokens in order to
satisfy the synchronization rules of the planning domain.

In general, a flexible plan includes a set of temporal con-
straints (R) on tokens π = (FTL,R). When there are dif-
ferent ways to satisfy a synchronization rule by the same
set FTL of flexible timelines, there are also different (valid)
flexible plans with the same set of timelines FTL; each of
them represents a different way to satisfy synchronizations.

55

framework EPSL. In particular we aim at characterizing qualities of plans generated us-
ing different planner configurations. It is also interesting to evaluate relations among
the defined metrics as, in some cases, metrics may be in contrast. This means that it is
not possible to obtain a plan with the maximum level of all desired qualities but that the
planner must be carefully configured in order to obtain the desired balance among all
desired qualities

4 Extensible Planning and Scheduling Library

EPSL [12] is a layered framework built on top of APSI-TRF1 [7]. It aims at defining a
flexible software environment for supporting the design and development of timeline-
based applications. The key point of EPSL flexibility is its interpretation of a planner as
a “modular” solver which combines together several elements to carry out its solving
process.

Modeling)Layer).)APSI.TRF)

EPSL)framework)

Engine) Heuris>cs)Search)

Applica>on)

Microkernel)

Fig. 1. EPSL Architectural Overview

Figure 1 describes the main architectural elements of the architecture of EPSL. The
Modeling layer provides EPSL with timeline-based representation capabilities to model
a planning domain in terms of timelines, state variables, synchronizations and manage
flexible plans. The Microkernel layer is the key element which provides the framework
with the needed flexibility to “dynamically” integrate new elements into the framework.
It is responsible to manage the lifecycle of the solving process and the elements com-
posing the application instances (i.e. the planners). The Search layer and the Heuristics
layer are the elements responsible for managing strategies and heuristics that can be
used during the solving process.

1 APSI-TRF is a software framework developed for the European Space Agency by the Planning
and Scheduling Technology Laboratory at CNR (in Rome, Italy).

Figure 1: EPSL architecture

The Extensible Planning and Scheduling
Library

Timeline-based applications, typically, are strictly related to
the specific domain they have been designed for. It is hard
to exploit ”past experience” in order to adapt already devel-
oped applications to different context with different features.
Thus, it is usually start developing new applications from
scratch.

In this regard, the EPSL (the Extensible Planning
and Scheduling Library) (Umbrico, Orlandini, and
Cialdea Mayer 2015) is a layered software framework (built
on top of APSI-TRF (Cesta and Fratini 2008)) which aims
at defining a flexible software environment for supporting
the design and development of timeline-based applications.
The key point of EPSL is its interpretation of a planner as a
modular solver which combines together several elements
to carry out its solving process.

Figure 1 shows the main architectural elements of the
EPSL architecture. In particular, the Engine Layer is the ar-
chitectural element responsible for managing the portfolio
of algorithms (called resolves) a planner can use to actually
solve timeline-based problems. The higher is the number of
available resolver the higher is the solving capability of the
framework. Indeed, the solving process of an EPSL-based
planner consists of a plan refinement procedure which iter-
atively refines the plan by solving ”undesired” conditions,
called flaws. A flaw represents a particular condition which
threats the completion or the consistency of the current plan
(e.g. a planning goal). Every resolver is responsible for
detecting and solving a particular type of flaw. The set of
available resolvers determines what an EPSL-based planner
can actually do to solve a problem. Similarly, the Heuristic
Layer is the architectural element responsible for managing
the set of available criteria an EPSL-based planner can use
to select flaws when solving.

Thus, the EPSL solving approach can be ”easily” adapted
to the particular problem to address by changing the set of
resolvers and heuristics the planner can use (i.e. the planner
configuration). As a matter of fact, the particular strategy
or heuristics applied can strongly affect the behavior and the
performance of a planner.

Knowledge-Based Control Loop
The KBCL is a knowledge-based control module developed
within the GECKO project I have collaborated to during my
PhD. The reader may refer to several works (Stefano et al.
to appear; Borgo et al. 2015; 2014a; Carpanzano et al. 2015;
Borgo et al. 2014b) for a detailed description of the approach
and the specific application context.

The key direction of the GECKO project has been to en-
dow the control architecture of an agent with a knowledge
reasoning mechanism capable of representing the actual ca-
pabilities of the related agent. Thus we made a tight integra-
tion between knowledge representation techniques with and
timeline-based planning by exploiting the EPSL framework.

In general, a plan-based controller can endow an agent
with the deliberative capabilities needed to autonomously
perform complex tasks. In particular contexts like the RTS
(Reconfigurable Transportation System) of the manufac-
turing case study we have considered within the GECKO
project, the dynamic nature of the system we want to control
does not guarantee a continuous control process capable to
face all the particular situations/configurations.

Indeed, the specific capabilities of a Transportation Mod-
ule (TM) of the RTS can be affected by many factors, e.g.
a partial failure of the internal elements or a reconfiguration
of an RTS plant (see cited works for further details). Thus
it is not always possible to to design a plan-based controller
which is able to efficiently handle all these situations. The
higher is the complexity of the planning domain the higher
is the time needed to synthesize the plans.

Our proposed solution was to ”extend” the control loop of
an agent with a knowledge-reasoning mechanism capable of
representing its actual capabilities. In this way, it is possi-
ble to simplify the planning model specification by consid-
ering only the actual capabilities of the agent (e.g. a TM of
the RTS) to control. In particular, the knowledge reasoning
mechanism allows to realize a continuous control process by
dynamically synthesizing the timeline-based planning mod-
del every time a change in the capabilities of the agent (i.e.
the TM) occurs.

Delibera(ve	 Controller	

2. MODEL GEN.

Mechatronic	 Module/Controller	

Diagnosis	 Module	

Planning	 Framework	

Planner	

Planning	
Problem	 Planning	

Domain	

3. PLAN

Execu6ve	 System	

1. SETUP 5. RECONF

4. EXEC

Knowledge	 Manager	

Ru
le
-‐b
as
ed

	 	
In
fe
re
nc
e	
En

gi
ne

	

Rules	

Knowledge	 Base	

Contexts Taxonomy of
Function

Figure 2: The KBCL module architecture

Figure 2 shows the extended control loop which results

56

from the integration of two ”big boxes”. The Knowledge
Manager which contains the knowledge about the agent to
control, and the Deliberative Controller which represents
the ”classical” plan-based control architecture where EPSL
is integrated in an execution environment for the synthesis
and execution of timeline-based plans.

The ontological approach The Knowledge Manager of
Figure 2 relies on a suited ontology which captures the gen-
eral knowledge of the manufacturing environment. The on-
tology contains (i) a context-based classification of the infor-
mation about the agent and production environment, and (ii)
a taxonomy of function which classifies the set of functions a
generic agent can perform in a manufacturing environment.

The Knowledge Manager exploits the ontology to build
and manage the Knowledge Base (KB) of the specific agent
(i.e. TM) to control. In particular the context-based ap-
proach classifies information according to three contexts that
characterize the agent from three different point of views.
The internal context characterizes the internal structure of
the agent and its components. The local context character-
izes environment in terms of other agents or elements of the
production environment the agent must interact with. The
global context contains information of interest for all the
agent composing the shop floor, e.g. the type of product
to work or information about the performance of the factory.

The KBCL in action The management of the KB, the gen-
eration of the planning domain and the continous monitor-
ing of the information concerning the actual status of the
agent (and its environment) are complex activities that must
be properly managed by the KBCL process at runtime. In
this regard the KBCL is composed by the following phases
(depicted in Figure 2: (i) the setup phase; (ii) the model gen-
eration phase; (iii) the plan and execution phase; (iv) the
reconfiguration phase.

Broadly speaking, the setup phase generates the KB of
the agent by processing the raw data received by the agent
(a TM in the GECKO project) through the Diagnosis Mod-
ule of Figure 2. The resulting KB completely describes the
agent to control in terms of its structure, its capabilities and
the related production environment. The model generation
phase exploits the KB of the agent to automatically generate
the timeline-based planning domain needed by the Deliber-
ative Controller to actually control the device.

When the planning model has been generated the plan and
execution phase starts. The KBCL process behaves like a
classical plan-based controller during this phase. However,
whenever a structural changes occurs in the agent or its en-
vironment e.g. a failure of an internal component or a fail-
ure of a collaboratore of the shop floor, the reconfiguration
phase starts. The reconfiguration phase determines a new
iteration of the KBCL cycle and a new version of the KB
and a new version of the timeline-based planning model are
generated.

A Hierarchy-based Modeling Appraoch
When applying timeline-based approach usually, we must
control an ”artificial agent” able to perform some complex
tasks in a specific working environment e.g. a TM of the
GECKO project. In order to provide a suited timeline-based
model it is necessary to capture all the features, the opera-
tional and temporal constraints that characterize a specific
domain. In this regards, exploiting the context-base analysis
described in the previous section to characterize the knowl-
edge about the functional capabilities of an agent, the mod-
eling approach we propose, follows a functional decomposi-
tion of the domain by identifying three relevant types of state
variables. They are (i) the functional variables, (ii) primitive
variables and (iii) external variables (see (Umbrico, Orlan-
dini, and Cialdea Mayer 2015) for further details).

A functional variable provides a logical representation of
the agent in terms of the high-level task the agent can per-
form, notwithstanding its internal composition. A primi-
tive variable models a specific physical/logical component
of the system. Values of such a variable correspond to con-
crete state/actions the related element is actually able to as-
sume/perform over time. Finally, an external variable pro-
vides a logical view of an element whose behavior is not un-
der the control of the system but affect the execution of its
functionalities. Such a variable models conditions that must
hold in order to successfully perform internal activities.

Synchronization rules specify constraints between differ-
ent variables of the planning domain. These rules allow to
further constrain the behaviors of the domain state variables
in order to safely realize complex tasks. In this regard, given
the described modeling approach, synchronization rules can
be used to specify how the high-level functionalities (i.e. the
values of the functional state variables) are implemented by
the agent. A synchronization rule specifies the set of primi-
tive and/or external values and the needed temporal relations
that allow the agent to successfully perform the related high-
level function (i.e. the functional value the synchronization
applies to).

IdleTM-Channel

Channel
F-L

Channel
F-LChannel

F-R

Channel
Cross1-B

Conveyor-1

Idle

Channel
F-Cross1

Channel
Down-Up

Cross1

Idle

Channel
Up-Down

Channel
Up-R

Conveyor-2

Idle

Channel
Up-L

contains

contains

before

contains

before

Available

Neighbor-F

Not
Available

during

Available

Neighbor-L

Not
Available

during

FUNCTIONAL VARIABLES

PRIMITIVE VARIABLES

EXTERNAL VARIABLES

Figure 3: A planning domain example

Figure 3 shows an example of a planning domain obtained
by applying the modeling approach described to a Trans-
portation Module (TM) of the manufacturing plant in the

57

GECKO project. The functional state variable TM-Channel
models the transportation tasks the module is able to per-
form (e.g. Channel-F-B, Channel-R-L). The primitive state
variables model the internal component of the TM in terms
of the operations they can perform (e.g. a conveyor of the
module is able to move a pallet between two internal posi-
tion of the module). The external state variables model the
status of other agents (i.e. other TMs) of the plant the TM
must cooperate with.

Finally the read arrows of Figure 3 models constraints
among values of the state variables that must be satisfied
to perform the tasks. Specifically, the constraints describe
the way the TM can implement the possible transportation
tasks. E.g. the TM performs a ”Channel-F-R” by moving
the pallet from position ”F” to position ”Cross1” by means
of ”Conveyor-1”. Then the ”Cross1” moves the pallet from
position ”down” to position ”up”. Finally, the ”Conveyor-2”
moves the pallet from position ”up” to position ”L”.

A domain-independent heuristic It is possible to observe
that a synchronization rule basically, represent a dependency
between two or more variables and their timelines. Thus,
given a timeline A and a timeline B, a synchronization rule
SA,B from a token x ∈ A to a token y ∈ B implies a depen-
dency between these timelines. Namely, tokens on timeline
B are subject to tokens on timeline A.

the hierarchy level of B. If no path in the DG connects B to A, then A is at a higher
level in the hierarchy than B (i.e. timeline A is more independent than timeline B).
Conversely if A is connected to B and vice-versa in the DG (i.e. a cycle is detected) then
timelines A and B have the same hierarchical level, and they are said to be hierarchically
equivalent. For instance the hierarchy extracted from the DG in Figure 2 is A � C �
B � D.

Usually planning domain specifications that follow a hierarchical modeling ap-
proach (like the approach described in [11]), generate a non-flat hierarchy of timelines
(and sometimes even an acyclic DG).

A"

B"

C"

D"

SA,B"SA,C"

SC,B" SB,D"

SC,D"

SB,D

A

B

C

D

SA,B'

SA,C'

SC,B'

SC,D'

(a) (b)

Fig. 2. From Synchronization rules to Dependecy Graph: (a) domain timelines and synchroniza-
tion rules; (b) the dependency graph resulting from synchronization rules between timelines

The HFS exploits this hierarchy to define a flaw hierarchy feature and characterize
the independency degree of plan flaws. The idea is to solve first “independent” flaws,
i.e. flaws belonging to the top most timeline in the hierarchy (e.g. flaws on timeline A
w.r.t. Figure 2), in order to simplify the resolution of “dependent” flaws. In addition to
the hierarchy feature, HFS uses a flaw type feature to define a structure for the solving
process and the flaw degree feature to characterize the criticality of a flaw (similarly to
the fail first principle in constraint satisfaction problems).

The HFS selects the best flaw to solve next by combining together all the features
described above as a pipeline of filters:

�0(⇡)
fh�! �1(⇡)

ft�! �2(⇡)
fd�! �3(⇡)! �⇤ 2 �3(⇡)

where fh filters plan flaws according to the flaw hierarchy feature (i.e. it returns
only the subset of flaws belonging to the most independent timeline of the hierarchy),
ft filters flaws according to the flaw type feature and fd filters flaws according to the
flaw degree feature. Then, given a set of flaws of a plan �0(⇡) every filter extracts
the subset of the relevant flaws according to the related feature. The pipeline resulting
set �3(⇡) ✓ �0(⇡) is composed by flaws representing equivalent choices from the
heuristic point of view, so HFS randomly select the “best” one to solve next �⇤ 2 �3(⇡).

Dependency Graph

hierarchy: A < C < B < D

Figure 4: Extracting hierarchy from synchronizations

Given this assumption, it is possible to build a dependency
graph (DG) among timelines by analyzing synchronization
rules. Figure 4 shows a set of timelines with synchroniza-
tion rules and the resulting dependency graph. The nodes of
the graph represent timelines (or state variables) and edges
represent dependecies between them (i.e. at least a synchro-
nization rule between tokens of the related timelines exists).

Given the DG, it is possible to extract the hierarchy of
the domain. An edge from a node A to a node B in the DG
represents a dependency between timeline A and timeline B.
Consequently, the hierarchy level of timeline A is not lower
than the hierarchy level of timeline B. If not path in the DG
connectsB toA (i.e. no cycle is detected) then the hierarchy
level of A is higher than the hierarchy level of B. Thus if
the DG contains a cycle among two or more nodes then the
related timelines have the same hierarchy level and they are
said to be hierarchically equivalent.

In this regard, the heuristic we have defined exploits hier-
archy information to assign ”priority” to the flaws detected

during the solving process. The work (Umbrico, Orlan-
dini, and Cialdea Mayer 2015) shows some promising re-
sults concerning the application of this heuristic to improve
the solving capabilities of EPSL-based planners. In partic-
ular, the heuristic can be represented as a pipeline of filters
that extract the most promising flaws to solve first as follows:

Φ0(π)
fh−→ Φ1(π)

ft−→ Φ2(π)
fd−→ Φ3(π)→ φ∗ ∈ Φ3(π)

Given a partial plan π with an initial set of flaws Φ0(π),
each filter f of the pipeline extract the subset of flaws to
solve according to a particular criteria. The first filter fh ap-
plies the hierarchy by selecting the flaws that belong to the
most independent timelines (i.e. the timeline with the high-
est hierarchy level). The flaws composing the last set rep-
resent equivalent choices from the hierarchy point of view.
Thus the planner can randomly selects one of these flaws to
solve φ∗ ∈ Φ3(π).

Ongoing Works
Currently we are making a comparison of EPSL framework
with EUROPA which is one of the most known timeline-
based planning framework in the literature. In particular our
comparison aims at taking into account different aspects of
the planning frameworks and not only their performances.
Namely, our goal is to make a deep analysis of thedifferent
approaches to timeline-based planning by considering their
modeling capabilities, their expressiveness and their solving
capabilities, in order to create a shared understanding of the
meaning of both timelines and timeline-based plans.

In particular, we are taking into account two real world
scenarios by defining the ROVER and the NEPTUS planning
domains. Indeed, the selected domains represent two inter-
esting real-world applications that are particularly relevant
from the point of view of a plan-based control system. The
core of both problems is to model and control a complex
system which is able to perform some operations in a spe-
cific environment. The plan-based controller must provide
the agent with the deliberative capabilities to autonomously
synthesize and schedule the sequences of activities needed
to perform high-level tasks.

The ROVER planning domain has been extracted from the
scenario described on the EUROPA’s web site concerning an
autonomous exploration rover. This scenario represents a
typical and well known application context in AI. It is rel-
evant because it represents a classical single agent control
scenario concerning the capability to provide a robotic de-
vice with autonomy in order to perform some complex tasks.

Similarly, the NEPTUS planning domain has been ex-
tracted from a real-world application senario, described in
(Chrpa et al. 2015), where a number of AUVs must gather
data about some known underwater phenomena. The prob-
lem of controlling an AUV may seem similar to the problem
of controlling an autonomous exploration rover. However
we have selected this domain for the coordination aspect in-
volved. Indeed, in this context, the point is not just to control
a single agent, but to safely coordinate several agents (i.e.
the AUVs) in order to perform the tasks.

Initial results show relevant difference concerning their
modeling approaches w.r.t. the structure of a timeline-based

58

planning domain, the type of elements the frameworks can
model and the way a user must specify constraints to ob-
tain the desired behavior of the system. Moreover there are
also relevant differences concerning their interpretation of
timeline-based plans and planning solutions.

Moreover I’m currently extending the EPSL planning
framework by introducing the capabilities of modeling and
reasoning about the temporal uncertainty of a planning do-
main. Thus, following the proposed formalization the plan-
ning framework must be able to model activities whose ac-
tual duration cannot be decided by the planner.

References
Barreiro, J.; Boyce, M.; Do, M.; Frank, J.; Iatauro, M.;
Kichkaylo, T.; Morris, P.; Ong, J.; Remolina, E.; Smith, T.;
and Smith, D. 2012. EUROPA: A Platform for AI Planning,
Scheduling, Constraint Programming, and Optimization. In
ICKEPS 2012: the 4th Int. Competition on Knowledge En-
gineering for Planning and Scheduling.
Borgo, S.; Cesta, A.; Orlandini, A.; Rasconi, R.; Suri-
ano, M.; and Umbrico, A. 2014a. Towards a cooperative
knowledge-based control architecture for a reconfigurable
manufacturing plant. In 19th IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA
2014). IEEE.
Borgo, S.; Cesta, A.; Orlandini, A.; Rasconi, R.; Suriano,
M.; and Umbrico, A. 2014b. A cooperative model-based
control agent for a reconfigurable manufacturing plant. In
ICAPS-14, PlanRob - The 2nd ICAPS Workshop on Plan-
ning and Robotics.
Borgo, S.; Cesta, A.; Orlandini, A.; and Umbrico, A. 2015.
An ontology-based domain representation for plan-based
controllers in a reconfigurable manufacturing system. In The
Twenty-Eighth International Flairs Conference.
Carpanzano, E.; Cesta, A.; Orlandini, A.; Rasconi, R.; Suri-
ano, M.; Umbrico, A.; and Valente, A. 2015. Design and
implementation of a distributed part-routing algorithm for
reconfigurable transportation systems. International Jour-
nal of Computer Integrated Manufacturing 1–18.
Cesta, A., and Fratini, S. 2008. The Timeline Representa-
tion Framework as a Planning and Scheduling Software De-
velopment Environment. In PlanSIG-08. Proc. of the 27th
Workshop of the UK Planning and Scheduling Special Inter-
est Group, Edinburgh, UK, December 11-12.
Cesta, A.; Cortellessa, G.; Fratini, S.; and Oddi, A. 2009.
Developing an End-to-End Planning Application from a
Timeline Representation Framework. In IAAI-09. Proc.
of the 21st Innovative Application of Artificial Intelligence
Conference, Pasadena, CA, USA.
Chien, S.; Tran, D.; Rabideau, G.; Schaffer, S.; Mandl,
D.; and Frye, S. 2010. Timeline-Based Space Operations
Scheduling with External Constraints. In ICAPS-10. Proc.
of the 20th Int. Conf. on Automated Planning and Schedul-
ing.
Chrpa, L.; Pinto, J.; Ribeiro, M. A.; Py, F.; Sousa, J.; and
Rajan, K. 2015. On mixed-initiative planning and control for
autonomous underwater vehicles. In Intelligent Robots and

Systems (IROS), 2015 IEEE/RSJ International Conference
on, 1685–1690.
Cialdea Mayer, M.; Orlandini, A.; and Umbrico, A. 2014.
A formal account of planning with flexible timelines. In The
21st International Symposium on Temporal Representation
and Reasoning (TIME), 37–46. IEEE.
Cialdea Mayer, M.; Orlandini, A.; and Umbrico, A. 2015.
Planning and execution with flexible timelines: a formal ac-
count. Acta Informatica 1–32.
Laborie, P., and Ghallab, M. 1995. Ixtet: an integrated
approach for plan generation and scheduling. In Emerg-
ing Technologies and Factory Automation, 1995. ETFA ’95,
Proceedings., 1995 INRIA/IEEE Symposium on, volume 1,
485–495 vol.1.
Muscettola, N. 1994. HSTS: Integrating Planning and
Scheduling. In Zweben, M. and Fox, M.S., ed., Intelligent
Scheduling. Morgan Kauffmann.
Stefano, B.; Amedeo, C.; Andrea, O.; and Alessandro, U. to
appear. A planning-based architecture for a reconfigurable
manufacturing system. In The 26th International Confer-
ence on Automated Planning and Scheduling.
Umbrico, A.; Orlandini, A.; and Cialdea Mayer, M.
2015. Enriching a temporal planner with resources and a
hierarchy-based heuristic. In AI*IA 2015, Advances in Ar-
tificial Intelligence. Springer International Publishing. 410–
423.

59

Dissertation Abstract

Emre Ökkeş Savaş
Supervisors: Maria Fox, Derek Long

Department of Informatics,
King’s College London, London, WC2R 2LS, UK

e-mail: okkes.savas@kcl.ac.uk

Abstract
This dissertation outlines the work I have done since the be-
ginning of my research degree. My research interest is in
constrained resource planning, where I am particularly inter-
ested in the applications of operations research techniques in
the task planning. Planning community has started to use op-
erations research tools in their work in recent years. I aim
to introduce new techniques to the task planning, which are
widely practiced in operations research. The contribution of
this paper is to present a generalisation of variables in the
planning domain. We consider all types of predefined vari-
ables and the duration to a new type, which we call control
parameters. We also describe the development of our new
planner POPCORN (Partial-Order Planning with Constrained
Real Numerics) that can reason with control parameters. We
present an example of how existing task planning benchmark
domains can be extended to develop enriched plans. We also
provide an example to demonstrate the robustness and appli-
cability of our approach.

1 Introduction
Integration of the temporal and metric fluents has become
a popular field of research in the task planning. Many
off-the-shelf planners (Della Penna et al. 2009; Fernández-
González, Karpas, and Williams 2015a; Bajada, Fox, and
Long 2015; Bryce et al. 2015; Piacentini et al. 2015) have
overcome challenges posed in hybrid systems with the help
of some optimisation tools. Finding the timestamps and the
durations of actions have been the major interest of such
planners, while the remainder dynamics of the real-world
problems are neglected. The duration of an action is the
only variable in PDDL domains, for which the planner has
the freedom to assign a value. However, there are numer-
ous time-independent dynamics in real-world problems. For
instance, the driver decides on the initial velocity of the ve-
hicle, the refuel amount before or during the journey. These
dynamics are assigned with a fixed value at the initial state
in PDDL problem instances, but the planner should not be
constrained with such discretised values. In this paper, we
present an approach to include variables other than the dura-
tion of the action in planning domains. We consider gener-
alising all sorts of variables into a new type, which we call
control parameters. We consider the duration of an action
as a special type of control parameter, where it plays an im-
portant role in the plan ordering.

(:durative-action refuel
:parameters (?v - vehicle ?l - location)
:control (?fuel - number)
:duration (= ?duration 10)
:condition (and
(at start (>= ?fuel 0))
(at start (<= ?fuel (fuel-max ?v)))
(at start (at ?v ?l))
(over all (at ?v ?l))
(at start (has-petrol-station ?l)))

:effect (at end
(increase (fuel-left ?v) ?fuel)))

Figure 1: Updated refuel action in Transport-numeric do-
main

Many state-of-the-art planners only find a sequence of the
time-stamped actions to reach a goal state. Additionally,
the use of control parameters enables a planner to make a
decision about the values of the variables predefined in the
planning domain. The planner can constrain the feasible re-
gion of a control parameter during the plan construction. We
can present a simple example here, based on the transport-
numeric domain, which is used as a benchmark domain in
the International Planning Competition in 20081. In this do-
main, trucks deliver packages from their initial locations to
the goal locations. The fuel level of trucks decreases as
trucks move from one location to another. The refuel
durative action fills the tanks of trucks to the full tank (a
fixed value), even if the truck only needs a small amount of
petrol to reach its goal location. It would be more realistic
if the planner does not assign a fixed numeric value to the
fuel level, but assigns a value that is sufficient to reach its
goal. This value can be constrained by numeric constraints
that are dynamically developed during planning. Figure 1
shows the updated version of the refuel action where
the refuel amount is taken as a control parameter: ?fuel,
where it is constrained within the real numeric region of [0,
(fuel-max ?v)] ((fuel-max ?v) state variable is
fixed with a constant value at the initial state).

In this paper we present our new planning system, POP-
CORN, that can reason with control parameters with the

1Original domain used in the competition can be obtained from
http://ipc08.icaps-conference.org/deterministic/domains.html

60

help of linear programming (LP). The implementation we
have so far focussed on linear constraints, however we will
extend this concept to a non-linear case in the future. POP-
CORN is built on POPF (Coles et al. 2010), so that the ex-
isting sophistication of a temporal planner is preserved. The
main objective of this paper is to describe the major steps
taken to develop our new planning system. The structure of
this paper is in the following order. We consider the related
work in the field in Section 2. We then provide a simple ex-
ample in Section 3 to use throughout the paper. We carry on
with the description of POPF planner, which constitutes the
basis of our implementation, in Section 2. We then describe
the required modifications to the existing problem formula-
tion, constructing linear program (LP), the heuristic guid-
ance, and the forward state space search. Finally, we pro-
vide the future work and the preliminary evaluation of our
approach.

2 Related Work
Early work exploring the use of the control parameters in
planning domain is considerably limited. Kongming plan-
ner (Li and Williams 2008) captures the interaction of the
dynamic continuous variables with flow tubes produced at
each action layer. The flow tubes contain control trajecto-
ries of the variables as the graph expands over time. It can
only handle problems with linear effects. In order to capture
the continuous dynamics of a problem, time is discretised
while the rate of change is taken as a variable. This con-
cept contrasts with COLIN (Coles et al. 2009) and POPF
planners, where the duration is taken as a variable, while the
rate of change remains constant. Kongming suffers from the
limitation of the number of happenings in the plan, so it fails
generating plans requiring long time horizons.

Enrique Fernández-González, Erez Karpas and Brian
Williams have recently studied the planning with contin-
uous control parameters (2015a). Their work has consid-
ered the main stages in the development of the Scotty plan-
ning system. The Scotty planner combines the flow tube
representation of the Kongming with the forward-chaining
search and the linear programming used in the COLIN plan-
ner. The flow tubes are used to capture continuous effects
with control parameters. It uses the forward search to over-
come the happening limitation of Kongming. The planner
finds a fixed plan, in which the planner assigns a value to the
control parameters at an early stage during planning, which
makes the plan invalid due to early-commitment. There-
fore, Scotty finds a flexible plan, in which it leaves the
decision of the values of control parameters to an exec-
utive during plan execution in order not to invalidate the
plan. On the other hand, the planner assigns values to the
timestamps of actions without any interaction with an ex-
ecutive. In addition, Scotty does not support discrete nu-
meric change (Fernández-González, Karpas, and Williams
2015b). Our planner, however, makes a decision for the val-
ues of control parameters without any human interaction,
and it delays the valuation of these parameters, including
?duration and the timestamps of actions, until a decision
is forced by the planner.

3 A Motivating Example
We now present a simple example to introduce the control
parameters. Suppose that we are planning to go to a pub.
Initially, we are at home and have only £2 in our pocket. We
aim to be at the pub with £20 in our pocket and to have al-
ready bought snacks on the way to the pub. Intuitively we
would withdraw sufficient cash to buy snacks and to have
£20 at the pub. We would not want to withdraw more or less
cash than required when at the cash point. There are three
ATM machines at the cash point. Each machine has a lim-
ited balance available that can be withdrawn ((balance
?m)), and minimum withdrawal amount is £3. Actions of
this domain and the initial/goal states are given in Figure 3
and 2, respectively. In addition, Figure 2 shows the met-
ric objective of the problem that plays an important role in
the valuation of the control parameter ?cash . The lan-
guage we use is a modified version of PDDL 2.1 to encode
control parameters. We list all control parameters except
?duration in a new line, :control(), in a durative ac-
tion.

(:init (at person1 home)
(canbuy person1 store)
(canwithdraw person1 cashpoint)
(available)
(located atm1 cashpoint)
(located atm2 cashpoint)
(= (inpocket person1) 2)
(= (balance atm1) 50)
(= (balance atm2) 100)
(= (balance atm3) 150))

(:goal (and (>= (inpocket person1) 20)
(gotsnacks person1) (at person1 pub))
(:metric minimize (inpocket person1)))

Figure 2: The initial state of the cash point problem.

In this example, the amount of cash we want to withdraw,
?cash, depends on which actions we apply after visiting
the cash point. Early assignment of the value of a control
parameter may lead to generate poor plans. For instance,
assigning a value to ?cash before buying snacks would re-
sult in visiting the cash point twice. Therefore, the deci-
sion of withdrawal amount should be made at a later stage
in the plan (or eventually, at the end of the plan). POP-
CORN builds up all the linear constraints acting upon the
control parameter ?cash until the end of the plan. Then,
the planner calls the linear program to optimize all variables,
i.e. ?cash, subject to the metric objective of the problem.
Since the metric objective is to minimize inpocket state
variable in this example, the planner chooses the minimum
bound of this variable as its value.

4 Background
Temporal and numeric planning has been emerged together
with the help of linear programming. Numeric and tempo-
ral constraints are handled separately in the early instances
of temporal planners (Coles et al. 2008). Integration of the

61

(:durative-action WithdrawCash
:parameters (?p - person ?a - location
?m - machine)
:control (?cash - number)
:duration (= ?duration 2)
:condition (and (over all (at ?p ?a))

(at start (>= ?cash 3))
(at start (<= ?cash (balance ?m)))
(at start (canwithdraw ?p ?a))
(at start (located ?m ?a)))

:effect (and
(at start (decrease (balance ?m) ?cash))
(at end (increase (inpocket ?p) ?cash))))

(:durative-action BuySnacks
:parameters (?p - person ?a - location)
:duration (= ?duration 1)
:condition (and (at start (at ?p ?a))
(over all (at ?p ?a))
(at start (>= (inpocket ?p) 5))
(at start (canbuy ?p ?a)))

:effect (and (at start (not (available)))
(at end (decrease (inpocket ?p) 3))
(at end (gotsnacks ?p))))

Figure 3: Main actions of the cash point domain.

temporal and numeric constraints together made it possible
to handle continuous numeric change, in which the value of
a state variable can depend on the timestamp and the dura-
tion of the action (Coles et al. 2012). In order to implement
temporal-numeric planning with control parameters we built
our planning system on the POPF planner, which can already
handle this integration. In general, the state representation
of a temporal-numeric planning problem can be shown by a
tuple S = 〈F, V,Q, P,C〉, where:

F is the set of propositions that are true in the current state
S.

V is the vector of values of the numeric state variables. De-
pending on the length of a state S, the state variable V
varies within V min and V max due to linear continuous
numeric effects.

Q is a list of actions, which are started but not yet finished.
P is the plan to reach the current state S.
C is a list of temporal constraints accumulated over the

steps in P.

In addition to the state representation given above, POPF
includes further elements2 to support partial-order planning.
The partial-order mechanism simply minimises the order-
ing constraints to avoid early-commitment during forward
search in order to achieve flexible plans. The temporal con-
straints are added as they are needed to meet the precon-
ditions of actions in a possible plan.The existing partial-
order mechanism of POPF helps POPCORN to avoid early-
commitment of assigning values to the control parameters.
As discussed in Section 3, the early-commitment in the val-
uation may lead to generate poor plans.

2Full list of partial ordering extensions to state representation for
propositional and numeric case can be found in (Coles et al. 2010)

LP Temporal and Numeric Scheduling
The POPF planner inherits the use of linear programming
from the COLIN planner. It uses the LP to check the tem-
poral and the numeric consistency of a state. The state vari-
ables that capture discrete/continuous numeric change along
the trajectory of the plan are defined as follows:
Each vi ∈ Vi records the value of each state variable v just
before the step i. Similarly, each v′i ∈ V ′

i records the value
of a state variable v immediately after the step i. For in-
stance, a state variable v can have a discrete instantaneous
numeric change at a step i. In this case, v′i = vi + c con-
straint, where vi is increased by the numeric value of c at
the step i, is added to the LP in order to record this change.
Table 1 shows the constraints and variables created to record
numeric changes over the control parameter. bali and inpi
represents the (balance ?m) and (inpocket ?p) state vari-
ables at step i, respectively.

Plan Action LP Variable [lb, ub] Constraints
Withdraw cash [3, inf] cash ≥ 3

(start) [0,50] cash ≤ bal0
bal0 [50,50] bal0
bal′0 [0,47] = bal0 − cash

Withdraw cash [3,50] cash
(end) inp1 [2,2] inp1

inp′1 [5,52] inp1 + cash
BuySnacks inp2 = inp′1

(start) inp′2 [5,52] ≥ 5
BuySnacks inp3 [5,52] = inp′2

(end) inp′3 [2,49] = inp3 − 3

Table 1: Variables and constraints acting upon ?cash pa-
rameter, that are collected from the initial state to reach the
goal state. [lb, ub] represents the upper and lower bound
limits of the variables at a state.

The use of LP makes it possible to record numeric change
between steps. This change can be considered as a contin-
uous change, because the time elapsed between steps is a
variable. In this case, v′i+1 = v′i + δvi(stepi+1 − stepi) is
added to the LP that records the continuous linear numeric
change between consecutive steps. stepi is the timestamp
LP variable of step i, while δvi represents the gradient of
continuous change on v at step i. The value of a state vari-
able v depends on time elapsed before the next action is ex-
ecuted. We can then say the value of state variable v varies
between lower (vmin ∈ V min) and upper (vmax ∈ V max)
bounds, which are required to check state validity when the
action is still executing. In order to compute these bounds,
additional variables, vnow and stepnow, are added to the LP
to check the state validity. Figure 4 shows the relationship
discussed between temporal, numeric variables encoded into
the LP.

5 Planning with Control Parameters
The main distinction between POPF and POPCORN plan-
ners is that POPCORN can reason with variables other than
the duration in planning. We consider all variables avail-
able in the planning domain as control parameters. This is

62

Figure 4: Schematic representation of the relationship be-
tween numeric state variable, V , and timestamp variable that
are encoded in LP. Vnow is used to compute upper-lower
bounds of V during continuous linear numeric change.

achieved by extending the existing machineries of the POPF.
We consider the details of each component in their related
subsections. In summary, we extend the existing problem
definition to capture the control parameters defined in ac-
tions. We define the additional constraints and variables
added to the LP based on the numeric preconditions and ef-
fects. We provide the modifications made to the existing
heuristic approach of POPF and analyse the effects of the
control parameters to the search space.We use the cash point
example to enumerate elements discussed in the related sub-
sections.

Problem Definition
Many state-of-the-art temporal planners make a decision
only about which actions to apply, and when to apply these
actions. Our new planner can additionally make a deci-
sion about the values of the predefined numeric variables,
which are constrained with linear constraints in the linear
program. Slightly different than the existing state represen-
tation of POPF, the new state representation for temporal-
numeric planning with control parameters problem can be
shown by a tuple S = 〈F, V,Q, P,D,L〉, where:

F is the set of propositions that are true in the current state
S.

V is the vector of values of the numeric state variables. De-
pending on the length of a state S, the state variable V
varies within V min and V max due to continuous or con-
trol parameter numeric effects.

Q is a list of actions, in which actions started but not yet
finished.

P is the plan to reach the current state S.
D is a list of all control parameters available, including the
?duration variable in durative actions, in the planning
domain, where each d ∈ D is a tuple 〈op, i, num〉:
• op is the identifier of instantiated action,
• i is the index of the step in the plan,
• num is the unique identifier of each d ∈ D,
where the corresponding control parameter(s) are added.
The unique identifier, num, of duration variable is identi-
cal in every durative action, since there is only one dura-
tion variable defined in an action.

L is a list of constraints that encapsulates discrete numeric
change with the control parameters over the steps in
P, where each l ∈ L of the form minControl(d) ≤
d ≤ maxControl(d). The value of d lies within
a range of values constrained by minControl(d) and
maxControl(d). These bounds on d are determined from
the numeric preconditions of the action on d. If there is
not any numeric precondition in d defined, the range of
d is set to [0, inf]. We restrict our definition of d to be
a positive real number in order to avoid modeling errors
due to sign convention in the domain.

Checking Plan Consistency with LP
In this section we consider additional variables and con-
straints added to the LP to support control parameters. Be-
fore we begin the formulation, it is worthwhile mentioning
the main characteristic of control parameters within an ac-
tion instance. The control parameter is a local variable,
whose scope is limited to the action it is defined. It can be
carried out through the plan with the numeric state variables.
The following equation gives the relationship between these
state variables v, and control parameters.

In general form, where step k is the current state:

vi+1 = vval +
num∑

n=0

δwi,ndi,n (1)

where,
• di,n is the nth control parameter defined in the action op

applied to the plan at stepi.
• vval is the variable that contains the most recent numeric

value of v prior to v is affected by the control parameter
d. If there is no discrete numeric effect on v at stepi, the
value of vval is equal to vi

• δwi,n is the total gradient of the nth control parameter
acting upon v.

• vi+1 is the value of the numeric state variable immediately
after the discrete control parameter effect acting on v
Temporal and numeric constraints are added to the LP to

confirm that the plan to reach a state S can be scheduled.
In our new planner POPCORN, the constraints with control
parameters are used to check whether there is a feasible
range of values of the control parameter that can satisfy the
plan to reach state S. In order to capture these constraints,
the following constraints below are added to the LP.
• Any numeric precondition that is given in the form:
〈v, sgn, w·v+k.(di,n) + c〉, s.t. sgn ∈ {≤, <,=,≥, >}
〈di,n, sgn, v〉, s.t. sgn ∈ {≤, <,≥, >}
〈di,n, sgn, c〉, s.t. sgn ∈ {≤, <,≥, >}

• Any numeric effect that is in the form:
〈v, sgn, w·v+k.(d) + c〉, s.t. sgn ∈ {+=,-=,=};
c, k ∈ R

are added as constraints over V to the LP. If the constructed
LP with these constraints is not solvable, then the state S is
pruned from the search space, and the planner backtracks to
look for a state, in which the LP has a feasible solution. Our
approach isolates the nonlinear interaction between a control
parameter and a temporal variable. The LP is inadequate to

63

check state consistency for nonlinear states. We are working
on addressing this with the help of an appropriate nonlinear
solver.

Temporal-Numeric State-Space Search
Duration of an action in a durative action may not be
fixed, and it can be determined by either the values
of metric fluents: i.e. (<= ?duration (v ?p)),
or it is constrained within a range of values (Coles
et al. 2009), i.e. (and (>= ?duration 10) (<
?duration 50)). Likewise, the value of control pa-
rameter defined in an action is not fixed, but it can be con-
strained within some interval. Similar logic applies to the
numeric state variables that have ever had a discrete control
parameter dependent change. The value of a state variable
is constrained within a range of values, [vmin, vmax], that
the planner has the freedom to choose. Figure 5 shows the
differences between discrete, continuous, and discrete con-
trol parameter changes acting upon state variable v. Suppose
that state variable v is affected by discrete numeric changes
at step1 and step4, linear continuous change between step2
and step3, and discrete change with control parameter at
step3. v can take at any numeric value within dashed area.

Figure 5: Schematic representation of numeric state vari-
able, v, affected by discrete, continuous, discrete control
parameter numeric change over steps 0 to 5. Shaded area
shows the feasible region of values of v that can be assigned
by calling linear program. ?d is a control parameter with a
value of d lies within range of [dmin, dmax]. a, b, c ∈ R.

The existence of control parameters generate a complex
branching choice in the search space, while there remains
a finite set of action choices available in the search space.
Then we can say the width of the search tree remains the
same, while the depth of the search tree dramatically in-
creases after a control parameter effect. Figure 6 illustrates
this effect in the search space for our cash point example.
(inpocket += ?cash) effect produces infinitely many states,
because the value of ?cash is not yet assigned. However,
if our implementation is forced to branch over this infinite
space, it avoids this by leaving the choice to the LP con-
straint space. avoids this by leaving the decision to the LP
constraint space.

Figure 6: Schematic representation of the search space
where there is a control parameter effect. The nodes rep-
resent the state reached, and the edges represent the action
applied to reach the next state. The graphs in black boxes
represent the LP constraint space, which is used to avoid
complex branching choice.

Modifications to The Temporal RPG Heuristic
The Metric Relaxed Planning Graph (Hoffmann 2003)
heuristic has been widely used in the numeric planning over
the last decade. POPF planner uses a heuristic, Temporal
RPG, to guide the planner in the search space towards the
goal. The Temporal RPG (TRPG) heuristic is a modified
version of the Metric RPG. The main difference between
two heuristics is the timestamps associated to each action
and fact layer in TRPG.

Our modification to the existing temporal RPG heuristic
of POPF is to make an optimistic assumption: If an action a
has a control parameter effect on a variable v, then the con-
trol parameter is relaxed to whichever minControl(d) or
maxControl(d) gives the largest(smallest) effect. In case
the minControl(d) and/or maxControl(d) depend on a
the value of a state variable (i.e: (<= ?cash (balance
?m))), then the heuristic calls the LP, which only contains
the time-independent numeric constraints of the action, to
precompute the bounds for the heuristic before extracting a
relaxed plan. For instance, in the reachability analysis, the
following LP constructed to find the upper bound of ?cash:

Maximise: ?cash
Subject to:
bal0 = 50
?cash ≥ 3
?cash− bal0 ≥ −inf
?cash− bal0 ≤ 0
?cash+ bal′0 − bal0 = 0
inp0 = 2
inp′0 − inp0−?cash = 0

64

6 Evaluation
In this section we present the preliminary results of our im-
plementation. Since the existing planners that reason about
control parameters are not available online, we compare
the capability of our implementation with our base planner.
However, POPF can not run at all on the cash point problem
if we do not provide a fixed withdrawal value. Therefore,
we fix the withdrawal value, ?cash, at £10 for running the
experiments with POPF. Regardless of the value we fix the
withdrawal value to, the POPF will always generate longer
plans. The POPCORN does not require any fixed value, so
it is able to solve the problem for any value of (inpocket
?p) within the bounds defined.

We compared the performance of POPF and POP-
CORN in problems, where the goal (>= (inpocket
person1) 500) incrementally increases to (>=
(inpocket person1) 950) in every problem in-
stance. We observe lengthy plans produced by POPF due
to repetitive WithdrawCash actions. Table 2 shows
the results of this evaluation. This preliminary evaluation
shows that our approach dramatically decreases the number
of states evaluated and the plan length produced by our
based planner. POPF is not able to produce plans for
(>= (inpocket person1) 900) problem instances,
because it runs out of memory.

States Evaluated Plan Length
inpocket≥ POPF POPCORN POPF POPCORN
500 508 457 57 10
550 2089 142 62 10
600 2248 484 67 12
650 3892 484 72 12
700 7461 484 77 12
750 14143 1430 82 13
800 8750 1430 87 13
850 32341 1430 92 13
900 – 4366 – 14
950 – 4366 – 14

Table 2: Number of states evaluated and plan length evalu-
ation of POPF and POPCORN planners, where inpocket
goal is discretised for POPF.

7 Future Work
I consider finalising the implementation of POPCORN pre-
sented in this paper, and extend its capability by implement-
ing a nonlinear solver to solve problems requiring nonlinear
numeric change. In order to achieve this, I will initially iden-
tify which nonlinear solver is sufficient to use in planning.
Then, I will explore the required modifications to implement
this solver within our existing planning system. Another fu-
ture work I want to work on is about managing the prefer-
ences of objectives defined in the domain. I plan to use Goal-
Programming approach to minimise the penalty costs for the
multi-objective planning domains. The minimised penalty
cost can be used to get guidence in the search space as a
tie-breaking factor (where the timespan of plan options are

equal). Finally, I consider extending the generalisation of the
control parameters with non-numeric object variables. As
mentioned in Section 1, the planner is initially constrained
with discretised assignments, for which the planner actually
should have freedom to choose. This approach can be im-
plemented for objects defined in planning problem.

8 Conclusion
Physical and logical properties of the real-world examples
require multiple numeric variables to create realistic plan-
ning models. In this paper we provide the preliminary work
of our implementation to handle control parameters in the
planning domain. We generalise the use of all parameters to
a new type to fully integrate temporal and numeric planning.
At this stage we identified the necessary modifications to the
existing mechanism of our base planning system.

References
Bajada, J.; Fox, M.; and Long, D. 2015. Temporal planning
with semantic attachment of non-linear monotonic continuous be-
haviours. In Proceedings of the 24th International Conference on
Artificial Intelligence, 1523–1529. AAAI Press.
Bryce, D.; Gao, S.; Musliner, D.; and Goldman, R. 2015. Smt-
based nonlinear pddl+ planning. In Proceedings of the Twenty
Nineth Conference on Artificial Intelligence (AAAI-15). AAAI
Press.
Coles, A. I.; Fox, M.; Long, D.; and Smith, A. J. 2008. Planning
with problems requiring temporal coordination. In Proceedings of
the Twenty-Third AAAI Conference on Artificial Intelligence (AAAI
08).
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2009. Temporal
planning in domains with linear processes. In Twenty-First Inter-
national Joint Conference on Artificial Intelligence (IJCAI). AAAI
Press.
Coles, A.; Coles, A.; Fox, M.; and Long, D. 2010. Forward-
Chaining Partial-Order Planning. In Proc. Int. Conf. on Automated
Planning and Scheduling (ICAPS), 42–49.
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2012. Colin: Plan-
ning with continuous linear numeric change. Journal of Artificial
Intelligence Research 1–96.
Della Penna, G.; Magazzeni, D.; Mercorio, F.; and Intrigila, B.
2009. Upmurphi: a tool for universal planning on pddl+ prob-
lems. In Nineteenth International Conference on Automated Plan-
ning and Scheduling.
Fernández-González, E.; Karpas, E.; and Williams, B. C. 2015a.
Mixed discrete-continuous heuristic generative planning based on
flow tubes. In Twenty-Fourth International Joint Conference on
Artificial Intelligence.
Fernández-González, E.; Karpas, E.; and Williams, B. C. 2015b.
Mixed discrete-continuous heuristic generative planning based on
flow tubes. In Proceedings of the 3rd Workshop on Planning and
Robotics (PlanRob-15), 106–115.
Hoffmann, J. 2003. The metric-ff planning system: Translat-
ing“ignoring delete lists”to numeric state variables. Journal of Ar-
tificial Intelligence Research 291–341.
Li, H. X., and Williams, B. C. 2008. Generative planning for hybrid
systems based on flow tubes. In Int. Conf. on Automated Planning
and Scheduling (ICAPS), 206–213.
Piacentini, C.; Alimisis, V.; Fox, M.; and Long, D. 2015. An ex-
tension of metric temporal planning with application to ac voltage
control. Artificial Intelligence 229:210–245.

65

Planning with PDDL3.0 Preferences by Compilation into STRIPS with Action
Costs

Percassi Francesco
University of Brescia

Department of Information Engineering
f.percassi@unibs.it

Abstract

The research community has sought to extend the clas-
sical planning problem following two strategies. The
first one follows a top-down approach consisting in
the development of solvers that support a more general
class of problems; the second one follows a bottom-up
approach consists in extending the applicability range
of current classical planners. A possible interesting ap-
proach consists in compiling the new features offered
by recent extension of planning language into a sim-
pler target language such as STRIPS or ADL. PDDL
3.0, the official language in 2006 fifth IPC, introduced
state-trajectory constraints and preferences in order to
better characterize the solution quality. In this work I
present a compilation schema, inspired by some previ-
ous works, for traslating a STRIPS problem enriched
with all kind of PDDL 3.0 preferences into an equiva-
lent STRIPS problem with action cost.

Introduction and background
Given a problem described by an action domain, an intial
state and a description of goal state, the aim of classic plan-
ning paradigm is finding a sequence of actions that can trans-
form, if they are performed, the initial state into the target
state. It is possible to distinguish which solution is prefer-
able among the set of possible solutions evaluating the plan
cost as the number of its actions. This approach has been
extended to the minimal plan cost evaluated as the sum of
the cost assigned to each contained action. A more sophisti-
cated recent approach for characterizing when a solution is
better than others is based on the notion of preference, which
are properties that a plan has to satisfy to increase its qual-
ity. Planning with preferences concerns the generation of
plans for problems involving soft goal or soft state-trajectory
constraints, called preference in PDDL 3.0 (Gerevini et al.
2009), which are preferable to satisfy, but that they are not
necessary to hold in a valid plan.

In PDDL 3.0 has been proposed some new features in or-
der to increase the expressive power about the quality so-
lution specification. The new introduced constructs include
soft state-trajectory constraints, which are constraints that

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

should be satisfied in the state trajectory to increase the qual-
ity plan, and soft problem goal. An approach to assign a pri-
ority to each preference (hereafter we indicate indistinctly
a soft goal or a soft state-trajectory as preference) consists
into penalizing their violation with a real value that is used
to decrease the plan metric.
In PDDL 3.0 the following class of preferences can be ex-
pressed:
• always, which requires that a condition should hold in ev-

ery reached state; this kind of preferences is very useful
to express safety or maintenance conditions;

• sometime-before, which requires that a condition Ψ has
become true before a second condition Φ becomes true;

• sometime, which requires that a condition becomes true at
least once in the state trajectory of the plan;

• at-most-once, which requires that a condition becomes
true at-most-once once in the state trajectory of the plan;

• soft goal.
This work describes a compilation scheme which is an

extension of what proposed in (Ceriani and Gerevini 2015)
where only always preference and soft goal are considered.

STRIPS+ with preferences
A STRIPS+ problem is a tuple 〈F, I,O,G, c〉 where
〈F, I,O,G〉 is a STRIPS problem and c is a function that
maps each o ∈ O to a non-negative real number. The cost
of a plan π is defined as c(π) =

∑|π|−1
i=0 c(ai), where c(ai)

represents the cost of the i-th action ai in π and |π| is the
plan lenght. Without loss of generality, we will assume that
the condition of a preference Pi is expressed in conjuctive
normal form, for example Pi = p1∧p2∧...∧pn, where each
pj with j ∈ [1, ..., n] is a clause of Pi formed by literals
over the problem fluents. We write π |=typ Pi to indicate
that plan π satisfies a typ preference Pi where typ indicate
its type among {a, sb, st, amo, sg} which abbreviating
always, sometime-before, sometime, at-most-once and soft
goal.

Definition 1 A STRIPS+ problem with preferences is a tu-
ple 〈F, I,O,G,P, c, u〉 where:
• 〈F, I,O,G, c〉 is a STRIPS+ problem;

66

• P = {AP∪SBP∪STP∪AMOP∪SG} is the set of the
preferences of Π where AP , SBP , STP , AMOP and
SG contain respectively always, sometime-before, some-
time, at-most-once and soft goal prefences;

• u is an utility function mapping each P ∈ P to a value in
R+

0

In the following the class of STRIPS+ with a set of prefer-
ences is indicated with STRIPS+P.

Definition 2 Let Π be a STRIPS+P problem with a set of
different kind of preference P . The utility u(π) of a plan
π solving Π is the difference between the total amount of
utility of the preferences by the plan and its cost u(π) =∑
P∈P:π|=typ(P)P

u(P) − c(π) where typ is a function that
map each P ∈ P to the respective type, i.e. typ : P →
{a, sb, st, amo, sg}

A plan π with utility u(π) for a STRIPS+P problem is
optimal when there is no plan π′ such that u(π′) > u(π).
The definitions below are introduced to simplify the notation
in the discussion.

Definition 3 Given a preference clause p = l1∨l2∨...ln, the
set L(p) = {l1, l2, ..., ln} is the equivalent set-based defini-
tion of p and L(p) = {¬l1,¬l2, ...,¬ln} is the literal com-
plement set of L(p).

Definition 4 Given an operator o ∈ O of a STRIPS+P
problem, Z(o) is the set of literal defined as: Z(o) =
(prec(o) \ {p | ¬p ∈ eff(o)−}) ∪ eff(o)+ ∪ eff(o)−.
Note that set Z(o) represents the literals certainly true in
the state resulting from the application of operator o.

Preferences and Class of Operators
In our compilation scheme of a STRIPS+P problem we have
to distinguish, for each kind of preference, different class of
operators that are specified in the following definitions. This
distinction is important in order to specialize the operators
compilation based on how they interact with the preferences
of the problem.

Definition 5 Given an operator o and CNF formula Φ of
a preference P of a STRIPS+P problem, we say that o can
make true Φ if:

• there is at least a clause ϕ of Φ such that L(ϕ)∩Z(o) 6= ∅
and L(ϕ) 6⊆ prec(o); we indicate the set of clause which
satisfy this condition as C(o,Φ); the complementary set
of the remaining clauses is defined as C(o,Φ) = {ϕ ∈
Φ | ϕ 6∈ C(o,Φ)}

• for each clause ϕ 6∈ C(o,Φ)⇒ L(ϕ) 6⊆ Z(o).

The first condition in Definition 5 requires that exists at least
a clause of the formula which contains some literals that be-
come certainly true in the state resulting from the execution
of o and that this clause is not true in the state where o is ap-
plied. The second condition requires that the other clauses
of the formula, which are not contained in C(o,Φ), are not
falsified in the resulting state from the application of o.

Always
An always preference has the following PDDL syntax
(always Φ) where the formula Φ has to hold in each reached
state of the plan.

Definition 6 Given an operator o and an always preference
P = (always Φ) of a STRIPS+P problem, o is a violation
of P if there is a clause φ of Φ such that:
L(p) ⊆ Z(o) ∧ L(p) 6⊆ prec(o).

If an operator violates a preference, the preference is un-
satisfied independently from the state resulting from the ap-
plication of the operator.

Definition 7 Given an operator o and a always preference
P of a STRIPS+P problem, o is a threat of P if it is not a
violation and there exists a clause p of P such that:
L(p) ∩ Z(o) 6= ∅ ∧ L(p) ∩ Z(o) = ∅ ∧ L(p) 6⊆ prec(o)

A clause p of P satisfying the condition of the defini-
tion above is a threatened clause of P . A threatened pref-
erence (clause) may be falsified by an operator depending
on the state where the operator is applied. The expression
L(p) 6⊆ prec(o) in Defintion 5-6-7 is necessary to avoids
that an operator o is considered a violation/threat when its
precondition is already violated in the state where it is ap-
plied. The set of always preferences of Π which are threat-
ened/violated by the operator o are denoted respectively
Tag(o) and Vag(o).

Definition 8 Given an operator o and a always preference
P of a STRIPS+P problem, o is a safe for P if:

• for all clauses p of P ,L(p)∩Z(o) 6= ∅ orL(p)∩Z(o) = ∅
holds;

• there exists a clause p such that L(p) ⊆ prec(o).

Sometime-Before
A sometime-before constraint has the following PDDL syn-
tax (sometime-before Φ Ψ), which in the following we ab-
breviate with 〈Φ,Ψ〉. The meaning of 〈Φ,Ψ〉 is that if Φ is
true in a state s then Ψ must have been true in state before s.

Definition 9 Given an operator o and a sometime-before
preference P = 〈Φ,Ψ〉 of a STRIPS+P problem, o is a po-
tential support for P if o can make Ψ true.

An operator that satisfied Definition 9 is a potential support
because its behaviour respect to the interested preference de-
pends by the state where o is applied and consequently from
the resulting state. We can distinguish two situations:

• if formula Ψ of P does not become true in the resulting
state, then o is a neutral operator;

• if P is not violated in the state s where o is applied and
the formula Ψ of P becomes true in the resulting state,
then o is a real support operator.

The compilation scheme must take account of both these
possibilities.

Definition 10 Given an operator o and a sometime-before
preference P = 〈Φ,Ψ〉 of a STRIPS+P problem, o is a po-
tential threat for P if o could make true Φ.

67

Similarly to definition 9 also in this case the potential threat
defines its behavior in correspondence of the consequences
of its application. We distinguish the following situations:

• if formula Ψ of P does not become true in the resulting
state, then o is a neutral operator;

• if formula Ψ of P becomes true in the resulting state and
the formula Φ has become true at least once in a earlier
state, than s is neutral otherwise if the formula Φ has
never become true, then o is a violation.

The set of sometime-before preferences of Π which are
potentially threatned/supported by the operator o are de-
noted respectively with Tsb(o) and Ssb(o).

Sometime
A sometime preference has the following PDDL syntax
(sometime Φ) where the formula Φ has to become true at
least once state in the plan state trajectory.

Definition 11 Given an operator o and a sometime prefer-
ence P = (sometime Φ) of a STRIPS+P problem, o is a
potential satisfying operator for P if o can make true Φ.
If an operator o can not make true Φ then the operator is
neutral for P .

The set of sometime preferences of Π which are potentially
satisfied by the operator o are denoted with Sst(o).

At-most-once
An at-most-once preference has the following PDDL syntax
(at −most − once Φ) where the formula Φ has to become
true at most once in the plan state trajectory.

Definition 12 Given an operator o and an at-most-once
preference P = (at−most−once Φ) of a STRIPS+P prob-
lem, o is a potential threat operator for P if o could make
true Φ.

We distinguish the following situations:

• if Φ has never become true in states earlier than the state s
where o is applied and Φ becomes true in the state result-
ing from the application of o in s, then the corrispondent
compiled operator o′ has to take account this fact, other-
wise, if Φ has become true in a earlier state, then o is a
violation;

• if Φ does not become true in the state resulting from the
application of o, then o is a neutral operator.

The set of at-most-once preferences of Π which are poten-
tially threatned by the operator o are denoted with Tamo(o).

Compilation intro STRIPS+
Definition 13 If an operator o ∈ O is safe for every always
preference in P and neutral for everey sometime-before, at-
most-once and sometime preference in P then we say that o
is neutral for the problem Π and we write this property with
neutral(o). The set containing all the neutral operators for
Π is defined as N(Π) = {o ∈ O | neutral(o)}.

Definition 14 Given an operator o ∈ O of a STRIPS+P
problem Π I(op) is the following set: {Ta(o) ∪ Tsb(o) ∪
Ssb(o) ∪ Tamo(o) ∪ Sst(o)} which contains all the prefer-
ences p ∈ P of Π which are affected by the execution of
o.

Given a STRIPS+P problem, an equivalent STRIPS+
problem can be derived by translation which has some
similarities to what proposed by Keyder and Geffner for
soft goals but also significant difference. The scheme
proposed by Keyder and Geffner is considerable simpler
than ours because it does not to consider the interaction
between actions and preferences such as threats, supports
and violations. In order to simplify the compilation scheme
we don’t consider the compilation of soft goals because
it can be easily added using the same method of Keyder
and Geffner. Moreover we assume that every always and
sometime-before preference is satisfied in the problem
initial state I .

Given a STRIPS+P problem Π = 〈F, I,O,G, P, c, u〉,
the compiled STRIPS+ problem of Π is Π′ =
〈F,′ I ′, O′, G′, P ′, c′〉 with:

• F = F ′ ∪ Va,sb,st,amo ∪ D ∪ C ∪ C ′ ∪
{normal-mode, end-mode, pause};

• I ′ = I ∪ C ′st ∪ Vst ∪ {normal-mode};
• G′ = G ∪ C ′;
• O′ = {collect(st), forgo(st) | st ∈ ST ⊆ P}∪{end}∪
Ocomp

• c′(o) =

u(st) if ifo = forgo(st), st ∈ ST
c(o) if o ∈ N(Π)
ctv(o) if o 6∈ N(Π)
0 otherwise

where:

• Va,sb,st,amo = ∪ki=1{Pi-violated}, k = |P |;
• D = ∪ni=1{Pi-doneo1 , ..., Pi-donem} where n = |O|

and m = |I(o)|;
• C ′st = {ST ′i | STi ∈ ST ⊆ P} and C ′st = {ST ′i |
STi ∈ ST ⊆ P}

• Vst ⊆ Va,sb,st,amo;
• collect(STi) = 〈{end-mode,¬STi-violated, ST ′i},
{ST ′,¬ST ′}〉

• forgo(STi) = 〈{end-mode, STi-violated, ST ′i},
{ST ′,¬ST ′}〉

• end = 〈{normal-mode,¬pause},
{end-mode, normal-mode}〉

• Ocomp = Oneutral ∪Ochained ∪Oviolation
• Oneutral = {〈pre(o) ∪
{normal-mode,¬pause}, eff(o)}〉 | o ∈ O ∧ o ∈
N(Π);

• Ochained and Oviolation are the compiled operators sets
generated by the transformation schema applied to the op-
erators of Π that threaten, violate or interact with at least a

68

preference of Π. An operator o ∈ O is compiled through
the compilation schema if |I(o)| > 0; the compiled op-
erators ochained of the non-neutral operators are defined
as:

⋃
o∈O,o6∈N(Π)

chain(o) where chain(o) is a function de-

fined further down;
• ctv(o) is the cost of an operator o 6∈ N(Π).

For each sometime preference ST , the transformation of
Π into Π′ adds a dummy hard goal ST ′ to Π′ which can
be achieved in two ways: with action collect(ST), that has
a cost 0 but requires that ST is satisfied, or with action
forgo(ST), that has a cost equal to utility of ST and can be
performed when ST is unsatisfied in sn. Note that the orig-
inal initial state I is extended with the Vst set, which con-
tains, for each ST ∈ STS ⊆ P , a literal is-violated-ST
stating that ST is violated until a o ∈ Sst(o) satisfies the as-
sociated formula. For each sometime preference exactly one
of {collect(ST), forgo(ST)} appears in the plan.
This approach is not used for every other kind of preference,
except sometime, whose violation is catched by the model
during planning and not at the end of the planning.

The compilation schema
Each operator o such that |I(o)| > 0, or equivalently
o 6∈ N(Π), is compiled into a set of new operators.
The set of the m preferences affected by o is I(o) =
{P1, ..., Pm}. Then o is compiled into a set of operators
chain(o) = {Θ(o, P1), ...,Θ(o, Pm)} where each Θ(o, Pi)
for i ∈ [1, ...,m] is a set of operators, called stage, re-
lated to an affected preference Pi ∈ I(o). The definition
of each stage Θ(o, Pi) depends on the kind of preference
typ(Pi) and the value of i. Furthermore the stage set are
built in order to execute the following operators sequence
ωchain(o) = 〈o′P1

, ..., o′Pm
〉 where o′Pi

, with i ∈ [1, ...m], is
selected from the i-th set Θ(o, Pi).

Given a not-neutral operator o of Π, the set of the
compiled operators related to o for Π′, called chain for o, is
defined as:

chain(o) =
⋃

pi∈I(o),i∈[1,...,|I(o)|]
Θ(o, pi)

This set is called chain because the operators in each
stage are built in order to force the sequential execution of
ωchain(o).

In this presentation I provide the detailed descripion for
the compilation of an operator o that affects the i-th at-most-
once preference in I(o).

Definition 15 The compilation-method for the translation
of a non-neutral operators o that affect the i-th at-most-
once preference Pi = (at-most-once ai) where ai =

∧
j

aij

(where aij is a clause) of I(o) is:

• if i = 1 (init stage):
prec(oa1) = prec(o) ∪ {¬pause,¬is-violated-a1,
¬seen-a1} ∪

{⋃
a1j∈C(o,ai)

a1j

}

eff(oa1) = {pause, seen-a1, a1-doneo}

prec(oa1) = prec(o) ∪ {¬pause,¬is-violated-a1,
seen-a1} ∪

{⋃
a1j∈C(o,a1) a1j

}

eff(oa1) = {pause, is-violated-a1, a1-doneo}

prec(oa1) = prec(o) ∪ {¬pause,¬is-violated-a1} ∪
¬
{∧

a1j ∈ C(o, ai)a1j

}

eff(oa1) = {pause, a1-doneo}

prec
(
oa1

)
= prec(o) ∪ {¬pause, is-violated-a1}

eff
(
oa1

)
= {pause, a1-doneo}

• if 1 < i < m = |I(o)| (middle stage):
prec(oai) = {pause,¬is-violated-ai,
¬seen-ai, ai−1-doneo} ∪

{⋃
aij∈C(o,ai)

aij
}

eff(oai) = {pause, seen-ai,¬ai−1-doneo, ai-doneo}

prec(oai) = {pause,¬is-violated-ai,
seen-ai, ai−1-doneo} ∪

{⋃
aij∈C(o,ai)

aij
}

eff(oai) = {pause, is-violated-ai,¬ai−1-doneo, ai-doneo}

prec(oai) = {pause,¬is-violated-ai, ai−1-doneo} ∪
¬
{∧

aij ∈ C(o, ai)aij
}

eff(oai) = {pause,¬ai−1-doneo, ai-doneo}

prec
(
oai

)
= {pause, is-violated-ai, ai−1-doneo}

eff
(
oai

)
= {pause, ai−1-doneo,¬ai−1-doneo, ai-doneo}

• if i = m (final stage):
prec(oam) = {pause,¬is-violated-am,
¬seen-am, am−1-doneo} ∪

{⋃
amj∈C(o,am) amj

}

eff(oam) = eff(o) ∪
{¬pause, seen-am,¬am−1-doneo }

prec(oam) = {pause,¬is-violated-am,
seen-am, am−1-doneo} ∪

{⋃
amj∈C(o,am) amj

}

eff(oam) = eff(o) ∪
{¬pause, is-violated-am,¬am−1-doneo }

prec(oam) = {pause,¬is-violated-am, am−1-doneo}∪
¬
{∧

amj ∈ C(o, am)amj
}

eff(oam) = eff(o) ∪
{¬pause,¬am−1-doneo }

prec
(
oam

)
= {pause, is-violated-am, am−1-doneo}

eff
(
oam

)
= eff(o) ∪

{¬pause, am−1-doneo,¬am−1-doneo }

In accordance with Definition 12 the i-th stage
θamo(o, Pi) providing the following possible choices:

• oai is a neutral operator for Pi which asserting that the
related formula ai has been seen for the first time;

69

• oai is a violation of Pi because the related formula ai has
been true in a previous state;

• oai is a neutral operator for Pi because it does not make
ai true;

• oai is a neutral operator for Pi because it has already been
violated in a previous state.

Conclusion
In my first years of PhD, I have worked on the compilation of
PDDL 3.0 preferences into STRIPS with action costs. As a
base I started from two works of (Keyder and Geffner 2009),
for the compilation of soft goal, and (Ceriani and Gerevini
2015) for the compilation of always goal. I have developed a
new compilative scheme for three type of preference which
were not considered in the previous work. All the propose
compilative methods have been implemented and prelim-
inary experiments show that the investigated approach is
competitive in terms of performance with other existing ap-
proaches to planning preferences.

References
Ceriani, L., and Gerevini, A. E. 2015. Planning with always
preferences by compilation into strips with action costs. In
Eighth Annual Symposium on Combinatorial Search.
Gerevini, A. E.; Haslum, P.; Long, D.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic planning in the fifth inter-
national planning competition: Pddl3 and experimental eval-
uation of the planners. Artificial Intelligence 173(5):619–
668.
Keyder, E., and Geffner, H. 2009. Soft goals can be com-
piled away. Journal of Artificial Intelligence Research 547–
556.

70

Planning Under Uncertainty with Temporally Extended Goals

Alberto Camacho ∗
Department of Computer Science

University of Toronto. Canada.
acamacho@cs.toronto.edu

1 Introduction
In the last decade, we have seen an exponential increase
in the number of devices connected to the Internet, with
a commensurate explosion in the availability of data. New
applications such as those related to smart cities exemplify
the need for principled techniques for automated intelligent
decision making based on available data. Many decision-
making problems require reasoning in large and complex
state spaces, sometimes under stringent time constraints.
The nature of these problems suggests that planning ap-
proaches could be used to find solutions efficiently. Auto-
mated planning is the basis for a diversity of problems such
as automated diagnosis, controller synthesis, and story gen-
eration and understanding. Nevertheless, most studied plan-
ning models make assumptions that do not hold in many
real-world problems. These include assumptions regarding
the nature of actions (e.g. assumed to be deterministic) and
goals (e.g. assumed to pertain only to the final state).

We are interested in exploring and formalizing new plan-
ning models that capture properties of existing real-world
problems with the aim of moving a step forward towards
the design of efficient and scalable algorithms. To date, our
contributions in FOND and probabilistic planning provide
a foundation for future exploration and advances with more
complex models, including those with continuous variables,
and temporal planning on the horizon.

Illustrative Example Consider the problem of designing
a tourist route to visit a set of touristic attractions in Lon-
don. The tour is subject to certain constraints, such as vis-
iting places in a specific order, not visiting the London Eye
before the Houses of Parliament, and visiting the Maritime
Museum right after the Greenwich Observatory. Moreover,
plans need to include a safety constraint to ensure the tourist
is drinking water every hour. These are examples of tem-
porally extended goals. Following with our example, cer-
tain dynamics of the environment are not controllable to the

∗The contributions presented in this paper reflect joint work
with (in alphabetical order) Jorge Baier (jabaier@ing.puc.cl),
Sheila McIlraith (sheila@cs.toronto.edu), Christian Muise
(cjmuise@mit.edu), and Eleni Triantafilou (eleni@cs.toronto.edu).
Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

agent, such as traffic, punctuality of public transport, and the
weather. If the stochastic model for these events is available,
we can quantify the expected quality of the plan according to
a certain metric (e.g. probability of visiting at least 5 touris-
tic attractions at the end of the journey) and attempt to pro-
duce plans that maximize it. When the stochastic model is
not available, we may want to produce plans that are robust
to any incontingency (e.g. a plan that suggests visiting mu-
seums, at any moment, if it starts raining).

2 Progress to the Date
In our work to day, we have advanced the state of the art in
planning problems with non-deterministic actions and tem-
porally extended goals. In this section, we introduce the
FOND and probabilistic planning models, and describe the
high-level contributions of our work. We refer the reader to
the respective publications for further details.

A Fully Observable Non-Deterministic (FOND) planning
problem is a tuple P = 〈S, sI ,A, F, SG〉, where S is a finite
set of states, sI ∈ S is the initial state, SG ⊆ S is a set of
goal states, and A is a finite set of actions. For each action
a ∈ A, and state s ∈ S, the result of applying a in s is
one of the states in the set F (s, a) ⊆ S. Solutions to FOND
planning problems are policies, or mappings π : S → A
from states into actions. In concrete, strong-cyclic solutions
are those that lead the agent to a goal state with complete
guarantees (Cimatti et al. 2003).

A probabilistic planning problem is a tuple P =
〈S, sI ,A, T, SG〉. Different than the FOND model, for each
action a ∈ A, and pair of states s, s′ ∈ S the T (s, a, s′) is
the transition probability of reaching s′ when a is applied in
s. Solutions to probabilistic planning problems are policies.
In goal-oriented probabilistic planning models such as Max-
Prob, solutions are policies that lead the agent to a goal state
with maximal probability.

2.1 ProbPRP
In (Camacho, Muise, and McIlraith 2016) we present
ProbPRP, a probabilistic planner that finds solutions to prob-
abilistic planning problems where the objective is to attempt
to maximize the probability of reaching a goal state. We for-
malize this class of problems and call it HighProb.

ProbPRP has two important merits. First, it overpasses
difficulties that previous offline algorithms experienced to

71

scale in big problems. And second, it offers increased opti-
mality guarantees with respect to the previous state of the art
in HighProb, the online planner RFF (Teichteil-Königsbuch,
Kuter, and Infantes 2010). Despite being an offline algo-
rithm, ProbPRP outperforms RFF in general and solutions
are of better quality.

ProbPRP leverages core similarities between probabilistic
and FOND planning, making use of state-of-the-art FOND
planning techniques from PRP (Muise, McIlraith, and Beck
2012) in its underlying algorithm. The partial state repre-
sentation obtained via plan regression facilitates states en-
tailment during the search process, and results in consider-
able improvements in the algorithm convergence. Besides,
the compact representation of state results in smaller poli-
cies. The deadend detection mechanism prunes the search
space effectively by means of forbidden state-action pairs
(FSAPs) generated automatically during the search process,
and guarantees optimality of the algorithm when deadends
are avoidable.

ProbPRP extends the state-of-the-art FOND planner PRP
(Muise, McIlraith, and Beck 2012) with techniques that
leverage probabilistic information to produce high quality
solutions. Some of these enhancements of ProbPRP include
the bias towards search of high-likelihood plans, and the fi-
nal FSAP-free round. ProbPRP biases search towards ex-
ploration of high-likelihood plans. As result, policies have
smaller expected plan length, which is orders of magnitude
lower in the most beneficial cases. A final search round is
performed to extend the best incumbent policy found by
the algorithm, this time with the FSAP mechanism disabled.
The probability of reaching a goal state of the final policies
increment up to 30% in the most beneficial cases.

2.2 LTL FOND Translations
In (Camacho et al. 2016) we address the problem of plan-
ning with non-deterministic actions and temporally ex-
tended goals. We assume goals are specified as LTL formu-
las (Pnueli 1977), and call the model LTL FOND.

LTL formulae can be interpreted over finite or infinite
state trajectories. Solutions to different interpretations are
not always equivalent. A number of techniques exist to solve
planning with LTL goals, with and without presence of non-
deterministic actions, and with finite and infinite LTL inter-
pretations. A common approach is to compile the problem
into one with final-state goal, and solve the resulting prob-
lem with state-of-the-art planning technology (e.g. (Baier
and McIlraith 2006; Patrizi, Lipovetzky, and Geffner 2013;
Torres and Baier 2015)).

We present translations to compile LTL FOND into
FOND. In concrete, two translations that handle finite LTL
interpretations, and two translations that handle infinite LTL
interpretations. Remarkably, we are the first to solve the full
spectrum of LTL FOND planning interpreted on inifite state
trajectories. Equipped with strong-cyclic planner, PRP, our
system proves competitive with other state-of-the-art algo-
rithms for LTL FOND, with the advantage of being able to
solve the full spectrum of LTL FOND problems.

Our translations leverage ideas from (Baier and McIl-
raith 2006; Torres and Baier 2015; Patrizi, Lipovetzky, and

Geffner 2013), and use Non-deterministic Finite Automata
(NFA) and Alternating Automata (AA) representations of
the LTL formula to monitor progression, and strong-cyclic
planning to synthesize solutions. The size of NFA-based
translations is worst-case exponential in the size of the for-
mula, and the size of AA-based translations is worst-case
polynomial. Interestingly, PRP performance was better with
NFA-based translations, with smaller policies and lower run-
times than with AA-based translations.

3 Future Work
A natural next step is to extend our recent work by defin-
ing the class of probabilistic planning problems with LTL
goals and solving them using our existing translations and
ProbPRP as a probabilistic planner. This raises a more gen-
eral question, which is to characterize the class of planning
problems with LTL goals in which our translations are ap-
plicable.

We plan to explore other planning models that capture
further properties reflected in real-world problems. This in-
cludes studying a more general description of actions and
variables, e.g. stochastic actions, planning with continuous
variables, temporal planning, and hybrid planning.

References
Baier, J., and McIlraith, S. 2006. Planning with first-order
temporally extended goals using heuristic search. In AAAI,
788–795.
Camacho, A.; Triantafilou, E.; Baier, J. A.; Muise, C.; and
McIlraith, S. A. 2016. LTL Synthesis for Non-Deterministic
Systems on Finite and Infinite Traces. Under Review.
Camacho, A.; Muise, C.; and McIlraith, S. A. 2016. From
fond to robust probabilistic planning: Computing compact
policies that bypass avoidable deadends. In ICAPS.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P. 2003.
Weak, strong, and strong cyclic planning via symbolic
model checking. AIJ 147:35–84.
Muise, C.; McIlraith, S. A.; and Beck, J. C. 2012. Improved
Non-deterministic Planning by Exploiting State Relevance.
In ICAPS, 172–180.
Patrizi, F.; Lipovetzky, N.; and Geffner, H. 2013. Fair LTL
synthesis for non-deterministic systems using strong cyclic
planners. In IJCAI.
Pnueli, A. 1977. The temporal logic of programs. In FOCS,
46–57.
Teichteil-Königsbuch, F.; Kuter, U.; and Infantes, G. 2010.
Incremental plan aggregation for generating policies in
MDPs. In AAMAS, volume 1, 1231–1238.
Torres, J., and Baier, J. A. 2015. Polynomial-time refor-
mulations of LTL temporally extended goals into final-state
goals. In IJCAI, 1696–1703.

72

Temporal Inference In Forward Search Temporal Planning
Dissertation Abstract

Atif Talukdar
Supervisors: Maria Fox and Derek Long

King’s College London
London WC2R 2LS

atif.talukdar@kcl.ac.uk

Abstract
Forward search planners are typically good at using search
mechanisms to find solutions to a problem. They do search
by performing state evaluations and selecting a promising
successor state to navigate to. These planners often use a re-
laxation to solve an easier form of the problem in each state
evaluation, in order to attain heuristic guidance. A popular
relaxation is the delete relaxation used by planners such as
FF (Hoffmann and Nebel 2001). However, forward search
planners can often find it difficult to make use of inference,
and as a result lose the power that inference brings. Without
inference, a planner needs to search for every action, even
ones that could have been inferred without any search. This
paper identifies patterns of required concurrency and pro-
vides an analysis of these patterns and the inferences that
can be deduced from them. We discuss ideas of how these
inferences can be implemented in a current forward search
planner, POPF (Coles et al. 2010).

1 Introduction
In temporal planning, an interesting class of problems are
those which require close temporal coordination between
actions within a finite time window. Some of these interac-
tions arise where actions need to occur concurrently in order
for a solution to be found. Required concurrency is where
two or more actions must occur at least partly within the
duration of the other, for all possible plans to the problem
(Cushing et al. 2007).

Currently, even powerful forward search temporal plan-
ners still perform search for required actions that could be
inferred. However, search is still needed since the required
concurrency is not explicitly identified. Recognising the
types of situations where required concurrency exists, and
identifying the patterns in which they occur, provides valu-
able information. It is possible to leverage this information
within a forward search planning framework, to solve
problems with required concurrency, faster and with less
search. The current work focusses on required concurrency
between two actions only.

The patterns of required concurrency presented in this
paper, are based on those identified by Cushing et al.
(2007). However, the types of required concurrency they

identify are in the context of grounded actions, with specific
problem goals identified. Our work currently abstracts from
grounded actions in the detection of required concurrency,
to give an analysis of the action definitions in the domain
structure, before grounding takes place. Our objective is to
automate the recognition of these patterns in the domain
structure before the planner begins its search process. This
can be used to identify opportunities for using inference
during plan construction instead of pure search. If one
action in a required concurrency pair is added to the plan,
and the other is not already in the plan, then it can be
added through inference, reducing the amount of search.
In addition, for problems with required concurrency, states
that do not have the required actions occurring concurrently,
can be pruned from the search space.

We recognise that in constraint based planners such as
CPT (Vidal and Geffner 2004) and eCPT (Vidal and Geffner
2005), inference is exploited as a powerful pruning tool.
Our intention is to explore how inference can be used in a
forward-chaining search framework, where a plan head is
maintained at each state. We intend to compare and evaluate
the benefits of inference between the two approaches at a
later stage, once our approach has been fully implemented
and tested.

In a similar way to how POPF provides a compromise
between the principles of least commitment in partial
ordering and total ordering commonly used in forward
search, we propose a compromise between search using
relaxed heuristic guidance and inference. Using inference in
forward search has potentially immense benefits, when the
action added via search that triggers an inference is the right
choice. If the action that triggers an inference is found to
have been a wrong choice later on during plan construction,
the impact of backtracking is reduced by the fact that some
actions were added without an expensive search process.
Presently, we focus our analysis on propositional domain
problems, with the intent to scale up as we develop and test
our algorithms.

Section 2 describes the patterns of required concurrency.
Section 3 describes the inferences possible from each pat-
tern of required concurrency and the actions needed in the

73

plan to form these inferences. Section 4 describes how we
intend to use inference in a forward chaining search frame-
work to reduce search. Section 5 discusses the current state
of the implementation of our approaches in POPF. Section 6
concludes the report and outlines the next stage of work.

2 Patterns of Required Concurrency and
Temporal Constraints

This section discusses the patterns of required concurrency
between two actions which are identified using a pre-search
analysis of the plan head, and our method of representing
the various constraint types. The Simple Temporal Network
(STN) diagrams represent the temporal constraints between
actions that must exist by the end of plan construction, if
those actions are used in the plan. Each pattern is identified
in the top sub-figure, and its corresponding STN in the bot-
tom sub-figure. For the pattern diagrams, the letters above
the actions represent the start, overall, and end preconditions
going from left to right. The letters below are the start and
end effects going from left to right. Diagrams illustrating
the patterns of required concurrency in figures 2 to 8 do not
display action durations. We assume that in patterns iden-
tifying cases where an action B, needs to occur entirely or
partly within the duration of another action A, that the du-
ration of A must be long enough to encompass that part of
action B.

2.1 STN Constraint Types
We describe three types of ordering relation which are
maintained in the STNs. The block arrows in the STN
diagrams shown in figure 1a, represent the constraint that
any start action, denoted A`, must be followed by its corre-
sponding end action, denoted Aa. This is the relationship
between start and end snap actions as presented in (Coles et
al. 2008). This Start-End relationship is already maintained
in the STN by POPF. The single solid line arrows with
block heads illustrated in figure 1b represent the contingent
constraint between a concurrent pair of actions, showing
that both must be in the plan head with the action being
pointed to, occurring after the action being pointed from.
Actions connected by a contingent constraint must be in
the plan head in the order shown, for the inference to take
place. The broken line arrows with a hollow head, shown
in figure 1c depict the constraints which are inferred from
knowing the start-end and contingent constraints, using
their respective arrow types.

(a) Start-End Constraint.

(b) Contingent Constraint.

(c) Inferred Constraint.

Figure 1: Types of constraints between actions in STNs.

2.2 Patterns of Required Concurrency
We start by noting that for the current work, we assume that
there is a single achiever action for each fact that appears
in a pattern of required concurrency. Concurrency pattern
A in figure 2a displays the situation where one action A,
provides a resource “p”, for its duration only. Any action B,
which requires this resource must occur within the temporal
window created by action A. In this case action B requires
resource “p” for its entire duration, which is provided by A;
therefore action B must occur entirely within the execution
of A. As soon as the plan head contains A` and B`, with A`
before B`, it can be inferred that Ba < Aa.

(a) Concurrency Pattern A.

(b) STN Constraints.

Figure 2: Concurrency Pattern A and Inferred Temporal
Constraints.

Concurrency pattern B in figure 3a shows the same tem-
poral window created by A for resource P, however in this
case, B only needs the effect of A as a start precondition,
therefore B` must occur after A` and before Aa, but Ba can
come after Aa. As soon as A` and B` appear in the plan
head, it can be inferred that B`< Aa.

(a) Concurrency Pattern B

(b) STN Constraints

Figure 3: Concurrency Pattern B and Inferred Temporal
Constraints.

Concurrency pattern C in figure 4a is the same situation
again, except that action B requires P as an end precondi-
tion. However, we can do more inference in pattern C than
in patterns A and B. This is since, as soon as B` is in the
plan head, we can infer that A`< Ba and Ba< Aa.

We can see that patterns A and B are more constrained
that pattern C, in terms of the power of the inference. This
is since pattern A and B required the start of both actions A
and B to be in the plan head, to trigger the inferred ordering

74

constraints. Furthermore, any other actions conflicting with
B, that also need to occur within the envelope of A, would
result in tighter scheduling being required between the ac-
tions.

(a) Concurrency Pattern C

(b) STN Constraints

Figure 4: Concurrency Pattern C and Inferred Temporal
Constraints.

Concurrency pattern D in figure 5a represents another sce-
nario where one action must occur entirely within the execu-
tion of another action, similar to the situation of concurrency
pattern A in figure 2a. However, in this case the reasoning is
different, since action A does not create a temporal window
for the availability of a resource. Instead action B requires
the effect of A`, which persists following Aa. Therefore B`
must come after A`. However, Ba has an effect which is the
end precondition for Aa, thus Ba must also come before Aa.
Each action produces an effect which the other action needs
as a precondition. In the case of pattern D, the effect of each
action is needed as a precondition of the other at the same
end point. Pattern D is recognised as soon as A` appears in
the plan head. This inference is quite powerful, as we are
able to immediately commit A`< B` and Ba< Aa.

(a) Concurrency Pattern D.

(b) STN Constraints.

Figure 5: Concurrency Pattern D and Inferred Temporal
Constraints.

Concurrency pattern E in figure 6a displays a similar situ-
ation to pattern D, except the effect that B provides, needed
by Aa, is now provided by B`, instead of Ba. This in effect
produces the same type of required concurrency as pattern
B, however there is again a different reason for it. B` must
occur after A` and before Aa, but Ba can occur after Aa.
This is because the precondition of Aa is this time produced
by B` instead of Ba. Again, there is a powerful inference

available since the appearance of A` in the plan head allows
us to infer A`< B` and B` < Aa.

(a) Concurrency Pattern E.

(b) STN Constraints.

Figure 6: Concurrency Pattern E and Inferred Temporal
Constraints.

Concurrency pattern F in figure 7a presents a similar situ-
ation as pattern C, except that fact “p” is needed by B as an
end precondition and provides “q” as its end effect, which
action A needs as its end precondition. The temporal con-
straints in the STN of pattern F in figure 7b can be deduced
after the addition of either A` or B` to the plan. As soon
as A` or B` appears in the plan head, we can infer A`< Ba
and Ba< Aa.

(a) Concurrency Pattern F.

(b) STN Constraints.

Figure 7: Concurrency Pattern F and Inferred Temporal
Constraints.

Concurrency pattern G presents the case where an end
precondition of each action in the pair is provided by the
start effect of the other. For this reason, the minimal amount
of required concurrency between a pair of actions of this
pattern, is where only one end point of both actions, must
occur during the execution of the other. The most optimal
form of concurrency, in regards to plan makespan, being
where one action is executed entirely during the execution
of the other. As soon as A` or B` appears in the plan head,
we can infer A`< Ba and B` < Aa.

Patterns F and G are the most powerful of all, since infer-
ence can be made based on the appearance of either A` or

75

(a) Concurrency Pattern G.

(b) STN Constraints.

Figure 8: Concurrency Pattern G and Inferred Temporal
Constraints.

B` in the plan head. In all patterns A to G, as soon as the
available inferences are made, the temporal constraints can
be added to the plan without search.

3 Inferences from Concurrency Patterns
This section describes the inferences possible from each
pattern of required concurrency. Table 1 displays which
actions need to be in the plan as input, to infer the corre-
sponding temporal constraints from each pattern of required
concurrency as the output. Figure 9 displays the increase
in the power of inference from the patterns of required
concurrency. The inference is very powerful in patterns C
to G, since the start of one action in the plan, allows us
to infer that another action must be added to the plan, to
satisfy all the preconditions. This is additional information
we can infer compared to patterns A and B, where actions
A` and B` are already in the plan, and only the ordering of
the action ends can be inferred.

The constraints which are inferred through transitivity,
given the actions already in the plan head are shown in
brackets in table 1. Figure 9 show patterns A and B to be
in the first level, since only ordering constraints can be in-
ferred; actions A` and B` must already be in the plan head.
Although patterns C to G all allow a new action to be in-
ferred as required in the plan, they have been split into an-
other two levels. This is since patterns C, D, E require a
specific action to infer their concurrent action. In contrast,
patterns F and G are more flexible in that the appearance of
either action in the pair, allows the inclusion of other to be
inferred, making them more powerful.

4 Using Inference to Reduce Search
In this section, we discuss how inference reduces search
and our approach to perform the required concurrency de-
tections and inferences. Forward search planners typically
navigate the search space, by evaluating potential successor
states from the current state. This can often result in a large
number of state expansions, even in cases there is required
concurrency and only a single solution to the problem
exists. We propose to reduce search in the forward plan

Pattern Current Plan Constraints Inferred
A A`< B` Ba < Aa

(B` < Aa)
B A`< B` B` < Aa
C B` A` < Ba

Ba < Aa
(B` < Aa)

D A` A` < B`
Ba < Aa

(B` < Aa)
E A` A` < B`

B` < Aa
F A` ∨ B` A` < Ba

Ba < Aa
(B` < Aa)

G A` ∨ B` A` < Ba
B` < Aa

Table 1: Inferred temporal constraints.

Figure 9: Increase in Power of Inference.

construction process, by detecting triggers for inference,
and immediately adding the inferred actions to the plan,
instead of doing state evaluation and heuristic search. This
type of inference applies to concurrency pairs for patterns
of types C to G. A trigger action is one that identifies that
its partner action must be added and occur concurrently.
Our detection process identifies pairs of concurrent actions
within the domain at a pre-search stage before any plan
construction begins. If an action is added to the plan via the
normal search process, and is identified as a trigger action,
its corresponding partner action will be added to the plan
instead evaluating the successor state and searching for the
next action.

The example in figure 10 displays a situation where a
chain of inferences are made, allowing for a large reduction
in the number of state evaluations. Suppose we have a prob-
lem with an empty initial state and a goal state with fact “g”.
Although Action 1 achieves the goal, the plan requires all
the actions displayed in figure 10, due to the interdependen-
cies between the actions. Currently it takes POPF 20 state
evaluations to reach a solution using the existing search ma-
chinery. Using our proposed approach for inference, it is
possible to reduce this to a single state evaluation. We can
see that Action 1 achieves the goal fact and that the other
actions are needed, each as a partner action in a concurrency
pattern. According to the patterns of required concurrency

76

identified in section 2, there are 4 patterns identified in figure
10, D, E, F and G. Action 1 is a trigger action for pattern D,
causing the addition of Action 2, this is a trigger for a pat-
tern E pair, adding Action 3. Action 3 is then the trigger for
adding Action 4 in a pattern F pair. Lastly, either Action 4
or Action 5 is the trigger for inferring and adding the other,
in a pattern G pair. Since either the start or end of each ac-
tion satisfies at least one precondition of another, all of these
actions are needed in the plan to reach a solution.

Figure 10: Chain of Inferred Actions. The arrows represent
inferred ordering constraints. In this problem example, the
initial state is empty and the goal state is to make fact “g”
true.

5 Implementation
Here, we describe our progress in implementing our tech-
niques for detecting required concurrency, doing inference
and our process for interleaving search with inference .

5.1 Detecting Required Concurrency
The technique for detecting required concurrency works in
two core parts. The first part works by searching through the
domain structure for durative actions, and extracting relevant
information from the condition and effects lists of the action
definitions and storing possible candidates for required con-
currency. The second part works by comparing the lists of
candidate actions attached to each candidate predicate and
matching action pairs which meet the criteria of a particular
pattern of required concurrency. The algorithms for imple-
menting both of these components have been implemented
in the POPF code.

5.2 Inference Instead of Search
Any inference performed by the planner is triggered by
a previous action added to the plan, either via search or
through inference. Even if the trigger action is one added
through inference like it is in figure 10 for a chain of infer-
ences, the chain of actions will trace back to an action added
via search. This ensures that actions added via inference are
always required. Algorithm 1 displays our proposed method
for deciding when the planner should use inference to add
the next action in the plan, instead of using search.

An example of the standard search process currently
used by POPF is shown in figure 11. Here, we see that
S1 is evaluated and A` selected, progressing the state to
S2. State S2 is also then evaluated, providing 3 possible
actions to apply next. Suppose that actions A and B make
up a pattern D pair, applying A means that B must be
applied concurrently. However, currently POPF still needs
to evaluate S2 and choose either B`, C` or D` to progress
the state to either S4, S5 or S6 respectively. If B` is not
selected due to one of the other actions having a better
heuristic value, then B` will still have to be in plan and
therefore searched for, given that A` has already been added
to the plan.

We propose an alternative to this system, whereby if A` is
a trigger for inferring B`, instead of evaluating the successor
state S2 and searching for the next action, we simply add B`
as the next action. This is provided that the preconditions
of B` are satisfied and it is applicable. Figure 12 shows the
proposed approach of search and inference. Here, action A`
is a trigger for inference, therefore instead of evaluating the
next state S2, we skip its evaluation, check that the inferred
action B` is applicable and if so, apply it straight away and
progress to S4. This reduces search and the need to evalu-
ate alternative actions, C` and D`. Even if C` and D` are
good choices to apply as the next action in S2, due to the
detection of the required concurrency pattern, we know that
B` must go in the plan at some future point concurrently
with A`. Therefore, if the inferred action is applicable and
can be be applied next, we do so by promoting inference
above search. If the inferred action B` is not yet applica-
ble, then it is stored, search is performed as normal and the
applicability of B` checked at the next successor state. If
the inferred action never becomes applicable due to other
unsatisfied preconditions, then the trigger action would be
removed for action pairs of patterns D to G. However, if this
were to happen, backtracking would be less expensive than
having used pure search. The implementation of the search
and infer process in algorithm 1 is currently in progress.

Figure 11: POPF using current search mechanism and no
inference. S2 must be evaluated and alternative actions con-
sidered even though action B is part of a pattern of required
concurrency.

77

Algorithm 1: searchAndInfer
Inout : States S, S′, Actions A`, B`
evaluate S;1
applyAction(A` to S);2
if (S, A`).triggersInference() then3
if inferredAction B` isNotInPlan() then4
if B`.isApplicable() then5

Recursively applyAction(B` to S);6
end7
else8

store B`;9
S←S′;10
goto step 1;11

end12
else13

S←S′;14
goto step 1;15

end16
else17

S←S′;18
goto step 1;19

end20

Figure 12: POPF detecting A` as a trigger for inference and
applying B` without evaluating state S2, immediately pro-
gressing to S4.

6 Conclusion
The goal of this PhD is to exploit the power of inference
in a forward search framework, which current forward
search planners do not do. Our inferences are based on
specific patterns of required concurrency detected in a
pre-search analysis of the domain structure. Any action
added via inference and not search, is an action that would
have required search if inference had not been used. This
is since detection of the patterns presented in section 2.2,
guarantee that where one action of the pattern is in the plan,
so must the other. Therefore, since an action that triggers
an inference is added via the existing search mechanism, an
action added via inference will always be a correct decision,
given the actions already in the plan.

The next stage of work will be to complete the imple-
mentation of the search and inference mechanism outlined
in algorithm 1. Once this is completed, a rigorous testing

phase will be conducted to determine how robust the mech-
anisms for this search and infer process are and whether the
results match our expectations. A good starting point will be
to test if the 20 state evaluations currently needed to produce
the plan of actions shown in figure 10, is reduced to a sin-
gle state evaluation as expected. First, a robust implemen-
tation of the combined inference and search approach has
to be achieved in domains with single achiever actions for
each fact in a pattern. Following this, the next step will be
to conduct research into required concurrency, where there
are multiple achievers for these pattern facts. The challenge
will be to identify which action instances to use for the re-
quired concurrency patterns, when the planner has a choice
and how these choices can be prioritised. The work so far
has focussed on the required orderings of concurrent actions,
we do not currently use action durations for forming infer-
ences. However, action durations are another aspect that we
expect may be used as a foundation for further inferences in
the future.

References
Coles, A.; Fox, M.; Long, D.; and Smith, A. 2008. Planning
with problems requiring temporal coordination. In Proceed-
ings of the Twenty-Third AAAI Conference on Artificial In-
telligence, AAAI 2008, Chicago, Illinois, USA, July 13-17,
2008, 892–897.
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2010.
Forward-chaining partial-order planning. In Proceedings of
the Twentieth International Conference on Automated Plan-
ning and Scheduling (ICAPS-10).
Cushing, W.; Kambhampati, S.; Mausam; and Weld, D. S.
2007. When is temporal planning really temporal? In IJCAI
2007, Proceedings of the 20th International Joint Confer-
ence on Artificial Intelligence, Hyderabad, India, January
6-12, 2007, 1852–1859.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. CoRR
abs/1106.0675.
Vidal, V., and Geffner, H. 2004. Branching and pruning:
An optimal temporal POCL planner based on constraint pro-
gramming. In Proceedings of the Nineteenth National Con-
ference on Artificial Intelligence, Sixteenth Conference on
Innovative Applications of Artificial Intelligence, July 25-29,
2004, San Jose, California, USA, 570–577.
Vidal, V., and Geffner, H. 2005. Solving simple planning
problems with more inference and no search. In Principles
and Practice of Constraint Programming - CP 2005, 11th
International Conference, CP 2005, Sitges, Spain, October
1-5, 2005, Proceedings, 682–696.

78

Session 4

Planning and Scheduling

79

Task Scheduling and Trajectory Generation
of Multiple Intelligent Vehicles

Jennifer David
Intelligent Systems Lab

School of Information Technology
Halmstad University

Halmstad, Sweden 30118
jendav@hh.se

Abstract

The problem of multi-vehicle path planning can be
treated as a machine scheduling or a vehicle routing
problem with definite temporal, spatial and other con-
straints. We consider the scenario of path planning of
multiple Automated Guided Vehicles (AGVs) and Au-
tomated Trucks (ATs) in a Ship-Container Terminal
area*. Our main focus is on developing global and local
path planning methods for each of these vehicles along
with a centralized task scheduler to designate goals to
each of the vehicle. The whole problem can be divided
in to two folds: Firstly, it is required to produce optimal
schedule (planned path lengths), for a fleet of AGVs to
certain goal points to pickup/drop off containers. It is
treated similar to a truck scheduling problem with spe-
cial constraints to deal with dynamic and complex envi-
ronment. Secondly, it involves finding collision free tra-
jectories for each of the vehicle using gradient descent
method. We aim to propose an integrated framework
for solving the goal assignment and trajectory planning
problem minimizing the maximum cost over all vehicle
trajectories and avoiding conflicts.

Research Situation
I started my PhD program in May 2014 at the Intelligent
Systems Lab under the Center for Applied Intelligent
Systems Research at Halmstad University. My supervisors
are Prof. Thorsteinn Rognvaldsson and Dr. Rafael Valencia.
I am also being by Dr. Karl Iagnemma (Visiting Professor
from MIT, Cambridge, MA). Dr. Roland Philippsen of
Google Inc., USA is my research mentor. My project is
funded by EU Project Cargo-ANTs FP7-605598 in collab-
oration with three industrial partners Volvo AB - Sweden,
TNO - Netherlands and ICT Automatisering Netherlands
and academic partners IRI-CSIC, Spain. The project started
on September 2013 and the aim of the project is to create
smart Automated Guided Vehicles (AGVs) and Automated
Trucks (ATs) that can co-operate in shared workspaces for
efficient and safe freight transportation in main ports and
freight terminals. The project ends on August 2016. The
PhD program is generally 3-4 years and I two more years
to defend my thesis. There is no research proposal stage

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and I have been working on the project from the start of my
program.

My focus of my part of the project is on multi-vehicle
path planning. The objective of the work is to develop and
demonstrate planning, decision, control and safety strategies
for automated vehicles. My main research question is to
setup a high level interaction planning which integrates with
the vehicle control system. So far, a complete navigation
framework has been developed in this work as shown
in figure 1. It consists of a task scheduler, global path
planner and a local planner. Literature review has been
conducted on each of these areas to choose on the specific
approach/methodology that will fit our application scenario.
This will be discussed in the third section. A simple task
assignment algorithm based on the classical Hungarian
Assignment (Kuhn 1955), a dynamic navigation global
planner based on Estar (Philippsen 2002) and a local planner
based on CHOMP (Covariant Hamiltonian Optimization
Algorithm for Motion Planning) by Zucker 2012 has been
adapted for this framework.

The novelty of my thesis is to adapt this approach for the
chosen scenario which will be discussed in the next sec-
tion. With respect to this, a simple ROS navigation stack
has been developed in C++. Preliminary results of the local
planner have been conducted on an Automated Truck Volvo
FH 60 since November 2015 and have been continuously
debugged. The ROS stack has been continuously extended
to adapt to complex and dynamic environments. Presently,
I have been integrating mapping and vehicle control tech-
niques with this framework by conducting real time tests as
well as simulation tests in Gazebo. High level planning and
task scheduler are needed to be integrated yet. Moreover,
research questions on task scheduler and novelty problems
faced during integration have to be addressed yet.

Content and Motivation
More than 60% of the worlds cargo has been transported
using ships and there is a continuous growth in global
container trade. Hence, container transport industry faces
new challenges such as increasingly stringent environmental
regulations as well as capacity bottlenecks at ports and hin-
terland connections. The Cargo-ANTs project is based on

80

the premise that technological innovations in transshipment
technologies will play a key role in meeting these demands
in an integrative and cost efficient manner especially on the
truck scheduling problem in container terminals.

In this regard, there is a need of a completely autonomous
system to transport containers using AGVs and ATs. Hence,
in this work, apart from developing global and local planner
for making an AGV/AT fully autonomous, there is a need
for creating an optimal task scheduler that resembles a tradi-
tional truck scheduler used in ports. However, this scheduler
is integrated with the vehicle planners in such a way that it
can avoid path conflicts with other vehicles as well as pro-
duces optimal paths in terms of the path length. This is the
novelty of my thesis.

Figure 1: Navigational Framework

Related Work
The core part of the thesis is about Multi-Vehicle Path
Planning. It can be dealt as a centralized planner or a
decentralized planner. But, there is a tradeoff between
complexity and optimality in these approaches. There are
also other approaches as in swarm robotics as multi robot
coordination problem but they are far from optimality.
Recently, a new approach involves treating multi robot
vehicle problem as task allocation problem which is a
balance between centralized and decentralized approach
that gives near optimal solutions. Liu and Shell (2013) used
an any time assignment algorithm which was a dual to the
Hungarian algorithm. Turpin et al. (2014) used an optimal
goal assignment method coupled with trajectory planning
for multiple quadcopters.

All of these approaches used only assignment methods
especially the Hungarian or any variant of this algorithm.
There is no scheduling involved that includes temporal and
spatial constraints. Gombolay et al. (2009) developed a fast
task sequencer in conjunction with a MILP solver to gener-
ate near-optimal task schedules. But there is no integration

with trajectory planner here. Hence, this work tries to ex-
ploit the usage of a centralized task scheduler to avoid path
conflicts between vehicles. Since task scheduler itself is a
time complexity problem, coupling a planner with it, is a
challenging problem to look on.

Problem Statement
The main research problem that will be addressed here is on
exploiting the global nature of the task scheduler in avoid-
ing local conflicts between vehicle paths by coupling it with
the trajectory planner. This problem has not been discussed
in the literature due to the computational complexity of the
scheduler. However, if scheduler is coupled with trajectory
planner, it is possible to develop near optimal solutions for
multi-vehicle planning problems with less complexity.

Research Goals/Methodology
The whole of this work is a synergetic amalgamation of
three different areas - optimization techniques in container
terminal schedulers, multi robot task allocation and trajec-
tory planners. Depending upon our application, a navigation
framework is to be designed that could be run on real AGVs
and ATs in a dynamic environment as the container termi-
nal area. The research problem is to develop a centralized
task scheduler similar to a traditional truck scheduler for
container terminals with additional constraints suitable for
autonomous vehicles. The second part of the research prob-
lem deals with the trajectory planner of the vehicle in opti-
mizing the planned trajectory to adapt to the kinematic and
non-holonomic constraints of the vehicle using a gradient
descent method. The main research goals are:
• Development of a centralized task scheduler for au-

tonomous vehicles.
• Development of a smooth and collision free trajectory

planner.
• Integration of the scheduler with the trajectory planner to

avoid conflicts.
We presently use Hungarian, variants of Hungarian and

auction algorithm for task assignments in a simple environ-
ment. Hence, for task scheduler, we adapt an existing fast
task sequencer (Gombolay et al. 2009) that can work for
truck scheduling constraints. For obtaining smooth and col-
lision free trajectories, a gradient descent method (CHOMP)
is used. Adaptation of these algorithms for this specific ap-
plication is one of the major research goals.

Dissertation Status
Literature survey has been done on three different areas -
truck schedulers in container terminal areas, trajectory plan-
ners and multi-robot task allocation methods. With respect
to the dissertation, adding side-slip constraints to the wheels
of the vehicles has been implemented on the trajectory plan-
ner. The problem formulation of the truck scheduler with
spatial and temporal constraints have been devised. Imple-
mentation of this scheduler instead of the regular task se-
quencer is under study. Literature study is being done on
ways to couple scheduler with trajectory planner.

81

Expected Contributions
The expected outcome of this thesis is to find an approach
that is computationally less expensive and produces near op-
timal solutions for multi vehicle path planning problems.
Though the concept of task allocation has yielded better re-
sults in literature, we aim to replace it with task scheduler.
By this, the application of this approach can be extended
to more complex and dynamic environment with temporal
constraints. Moreover, the global nature of the task sched-
uler can be used to resolve the local path conflicts between
vehicles thus avoiding priority setting of vehicles.

References

Zucker, M., Ratliff, N., Dragan, A.D., Pivtoraiko, M., Klin-
gensmith, M., Dellin, C.M., Bagnell, J.A. and Srinivasa,
S.S., 2013. Chomp: Covariant hamiltonian optimization for
motion planning. The International Journal of Robotics Re-
search, 32(9-10), pp.1164-1193.

Turpin, M., Mohta, K., Michael, N. and Kumar, V., 2014.
Goal assignment and trajectory planning for large teams of
interchangeable robots. Autonomous Robots, 37(4), pp.401-
415.

Liu, L. and Shell, D.A., 2013. An anytime assignment al-
gorithm: From local task swapping to global optimality. Au-
tonomous Robots, 35(4), pp.271-286.

Kuhn, H.W., 1955. The Hungarian method for the assign-
ment problem. Naval research logistics quarterly, 2(12),
pp.83-97.

Philippsen, R. and Siegwart, R., 2005, April. An interpolated
dynamic navigation function. In Robotics and Automation,
2005. ICRA 2005. Proceedings of the 2005 IEEE Interna-
tional Conference on (pp. 3782-3789). IEEE.

Gombolay, M.C., Wilcox, R. and Shah, J.A., 2013, June.
Fast Scheduling of Multi-Robot Teams with Temporospatial
Constraints. In Robotics: Science and Systems.

Acknowledgments
This work has been supported by the EU Project Cargo-Ants
FP7-605598.

82

Decoupled State Space Search – Dissertation Abstract

Daniel Gnad
Saarland University

Saarbrücken, Germany
gnad@cs.uni-saarland.de

Abstract

Decoupled State Space Search is a recent approach to ex-
ploiting problem structure in classical planning. The partic-
ular structure needed is a star topology, with a single cen-
ter component interacting with multiple leaf components.
All interaction of the leaves with the rest of the problem
has to be via the center. Given this kind of problem decom-
position, we have showed that search on this reformulated
state space can be exponentially more efficient than standard
search. However, there do also exist cases in which decoupled
search has to spend exponentially more effort to solve a task.
We want to tackle this issue by combining decoupled search
with different known search enhancement techniques, such
as partial-order reduction, symmetry reduction, or dominance
pruning. Presumably, these can be nicely combined with our
new approach, such that we can prevent the exponential blow-
up. Decoupled search is not restricted to classical planning,
though. Its principles apply to all kinds of (heuristic) search
problems, like, e. g., in Model Checking.

Introduction
In classical planning, heuristic search is a popular approach
to solve a variety of input problems. The solution of such a
planning task takes the form of a path, i. e., a sequence of
transitions that lead from a given start state to a state satis-
fying certain goal conditions. To find such a path, (possibly
huge) deterministic transition system, the task’s state space,
need to be explored. Inherent in this way of finding solutions
to planning problems is the issue of state space explosion.
We propose decoupled state space search (Gnad and Hoff-
mann 2015; Gnad et al. 2015) to solve this problem. Decou-
pled search can be seen as a form of factored planning (e. g.,
(Amir and Engelhardt 2003; Brafman and Domshlak 2006;
2008; 2013; Fabre et al. 2010)) , that restricts the interaction
between the factors to take the form of a star, with a single
center factor that interacts with multiple leaf factors. All in-
teraction of a leaf with another factor has to be via the center.
Hereby, decoupled search exploits a kind of conditional in-
dependence between the leaves – given a fixed center path
πC , compliant leaf paths can be scheduled independently
along πC . This allows for an efficient search and solution
reconstruction, since complex cross-factor dependencies do
not have to be resolved, which can make other factored plan-
ning approaches infeasible in practice. In our experiments,

we observed that the decoupled state space, oftentimes is
exponentially smaller than the standard state space.

There is also bad news, however. Although in most of
our experiments we see an exponential reduction of the state
space size under decoupled search, the state space can also
get exponentially larger. This is so because of the special
structure of the leaves, that “remember” the center path lead-
ing to the current decoupled state. Thus, when reaching the
same state via different paths, decoupled search treats all
these states as if they were different, leading to the blow-up.
One possible means to circumvent this issue are dominance
pruning methods. The simple method employed by (Gnad
and Hoffmann 2015) already suffices to guarantee that the
decoupled state space – which in principle can grow to infi-
nite size – stays finite. Future work is going to derive more
elaborate pruning methods that are more effective in reduc-
ing the size of the decoupled state space; the eventual goal
being to upper bound its size by that of the standard state
space.

Besides, many search enhancement techniques that have
been proposed for standard state space search can probably
also be deployed in the decoupled setting. Prominent topics
in standard search are for example partial-order reduction,
or symmetry, and dominance pruning.

Further more, although our theoretical framework allows
for general star-shape factorings, in practice we only use
fork and inverted-fork like structures. One of the reasons
why we stuck to this is the complexity of computing general
star factorings. Even if the only objective is the maximiza-
tion of the number of leaf factors, obtaining such a factoring
is NP-hard.

The rest of this work is organized as follows. The next
chapter gives a brief summary of the relevant definitions of
decoupled search as provided by (Gnad and Hoffmann 2015;
Gnad et al. 2015). The reader familiar with decoupled search
is invited to skip this chapter and proceed to Future Work,
which introduces several lines of future research. We con-
clude with a brief summary.

Decoupled Search
Background
Our prior work has introduced Decoupled Search using a
finite-domain state variable formalization of planning (e. g.

83

(Bäckström and Nebel 1995; Helmert 2006)). A finite-
domain representation planning task, short FDR task, is a
quadruple Π = 〈V,A, I,G〉. V is a set of state variables,
where each v ∈ V is associated with a finite domain D(v).
We identify (partial) variable assignments with sets of vari-
able/value pairs. A complete assignment to V is a state.
I is the initial state, and the goal G is a partial assign-
ment to V . A is a finite set of actions. Each action a ∈ A
is a triple 〈pre(a), eff(a), cost(a)〉 where the precondition
pre(a) and effect eff(a) are partial assignments to V , and
cost(a) ∈ R0+ is the action’s non-negative cost.

For a partial assignment p, V(p) ⊆ V denotes the sub-
set of state variables instantiated by p. For any V ′ ⊆ V(p),
by p[V ′] we denote the assignment to V ′ made by p. An
action a is applicable in a state s if pre(a) ⊆ s, i. e., if
s[v] = pre(a)[v] for all v ∈ V(pre(a)). Applying a in s
changes the value of each v ∈ V(eff(a)) to eff(a)[v], and
leaves s unchanged elsewhere; the outcome state is denoted
s[[a]]. We also use this notation for partial states p: by p[[a]]
we denote the assignment over-writing p with eff(a) where
both p and eff(a) are defined. The outcome state of apply-
ing a sequence of (respectively applicable) actions is de-
noted s[[〈a1, . . . , an〉]]. A plan for Π is an action sequence
s.t.G ⊆ I[[〈a1, . . . , an〉]]. The plan is optimal if its summed-
up cost is minimal among all plans for Π.

To define factorings, we need the notion of the causal
graph (e. g. (Knoblock 1994; Jonsson and Bäckström 1995;
Brafman and Domshlak 2003; Helmert 2006)) using the
commonly employed definition in the FDR context, where
the causal graph CG is a directed graph over vertices V ,
with an arc from v to v′, which we denote (v → v′),
if v 6= v′ and there exists an action a ∈ A such that
(v, v′) ∈ [V(eff(a))∪V(pre(a))]×V(eff(a)). In words, the
causal graph captures precondition-effect as well as effect-
effect dependencies, as result from the action descriptions.
A simple intuition is that, whenever (v → v′) is an arc in
CG, changing the value of v′ may involve changing that of
v as well. We assume for simplicity that CG is weakly con-
nected (this is wlog: else, the task can be equivalently split
into several independent tasks).

We will also need the notion of a support graph, SuppG,
similarly as used e. g. by (Hoffmann 2011). SuppG is like
CG except its arcs are only those (v → v′) where there exists
an action a ∈ A such that (v, v′) ∈ V(pre(a)) × V(eff(a)).
In words, the support graph captures only the precondition-
effect dependencies, not effect-effect dependencies. This
more restricted concept will be needed to conveniently de-
scribe our notion of star topologies, for which purpose the
effect-effect arcs in CG are not suitable.

Given the required notation, we can now define a factoring
as a partition of the variables V into non-empty subsets F ,
called factors.

Definition 1 (Star Factoring) Let Π be an FDR task,
and let F be a factoring. The support-interaction graph
SuppIG(F) of F is the directed graph whose vertices are
the factors, with an arc (F → F ′) if F 6= F ′ and there exist
v ∈ F and v′ ∈ F ′ such that (v → v′) is an arc in SuppG.
F is a star factoring if |F| > 1 and there exists FC ∈ F s.t.

the following two conditions hold:

(1) The arcs in SuppIG(F) are contained in {(FC →
FL), (FL → FC) | FL ∈ F \ {FC}}.

(2) For every action a, if there exist FL
1 , F

L
2 ∈ F \ {FC}

such that FL
1 6= FL

2 and V(eff(a))∩ FL
1 6= ∅ as well as

V(eff(a)) ∩ FL
2 6= ∅, then V(eff(a)) ∩ FC 6= ∅.

FC is the center of F , and all other factors FL ∈ FL :=
F \ {FC} are leaves. A star factoring F is strict if the arcs
in IG(F) are contained in {(FC → FL), (FL → FC) |
FL ∈ F \ {FC}}.

Note that every FDR task has a star factoring. In fact, any
partition of the variables into two non-empty subsets is a
star factoring: Calling one half of the variables the “center”,
and the other the “leaf”, we have a (strict) star factoring,
as Definition 1 does not apply any restrictions if there is a
single leaf only. That said, it is not clear whether single-leaf
factorings are useful in practice.

Example 1 As an illustrative example, consider a trans-
portation task with one package p, and two trucks tA, tB
moving along three locations l1, l2, l3 arranged in a line.
The FDR planning task Π = 〈V,A, I,G〉 is defined as
follows. V = {p, tA, tB} where D(p) = {A,B, l1, l2, l3}
and D(tA) = D(tB) = {l1, l2, l3}. The initial state is
I = {p = l1, tA = l1, tB = l3}, i. e., p and tA start at l1,
and tB starts at l3. The goal is G = {p = l3}. The actions
(all with cost 1) are truck moves and load/unload:

• move(x, y, z) with precondition {tx = y, p = x} and
effect {tx = z}, where x ∈ {A,B} and {y, z} ∈
{{l1, l2}, {l2, l3}}.

• load(x, y) with precondition {tx = y, p = y} and effect
{p = x}, where x ∈ {A,B} and y ∈ {l1, l2, l3}.

• unload(x, y) with precondition {tx = y, p = x} and ef-
fect {p = y}, where x ∈ {A,B} and y ∈ {l1, l2, l3}.
Observe that a truck can only move if the package is cur-

rently inside it. The causal graph is shown in Figure 1.

p

tA tB

Figure 1: The causal graph of the example.

In this task, several factorings are possible. Consider,
e. g., F1 = {{tA, tB}, {p}}, F2 = {{tA}, {tB}, {p}}, or
F3 = {{tA}, {tB , p}}, all of which are clearly star factor-
ings (though for F2 only if we set FC = {p}).

We are now defining the state space of a decoupled plan-
ning task. In contrast to standard search, decoupled search
only branches over the center actions, enumerating what
each leaf factor can do, separately. The center actions AC

are all those actions affecting the center. The leaf actions
AL|FL for FL ∈ FL are all those actions affecting FL. Ob-
serve thatAC andAL|FL are not disjoint, as the same action

84

may affect both AC and AL|FL . A leaf path is a sequence of
leaf actions applicable to I when ignoring all center precon-
ditions. A center path is a sequence of center actions appli-
cable to I when ignoring all leaf preconditions.

After applying a center action to a state s, we update what
is called the pricing function of s, prices[s]. prices[s] as-
signs each leaf state of a leaf factor a price, representing
the summed-up leaf action cost one would have to spend to
reach the state from the initial state of the leaf factor. The up-
date is performed for every reachable leaf state in s. We ap-
ply all leaf actions applicable given the center preconditions
of s[[a]], updating prices[s[[a]]] accordingly. More formally,
the decoupled state space is defined as follows:

Definition 2 (Decoupled State Space) Let Π be an FDR
task, and F a star factoring with center FC and leaves FL.
A decoupled state s is a triple 〈center[s], πC [s], prices[s]〉
where center[s] is a center state, πC [s] is a center path
ending in center[s], and prices[s] is a pricing function,
prices[s] : SL 7→ R0+ ∪ {∞}, mapping each leaf state to
a non-negative price. The decoupled state space is a labeled
transition system ΘFΠ = 〈SF , AC , TF , IF , SFG 〉 as follows:

(i) SF is the set of all decoupled states.
(ii) AC , the set of center actions, gives the transition la-

bels.

(iii) TF is the set of transitions, with (s
aC

−−→ t) ∈ TF if:
aC ∈ AC; πC [s] ◦ 〈aC〉 = πC [t]; pre(aC)[FC] ⊆
center[s] and center[s][[aC]] = center[t]; for every
FL ∈ FL where pre(aC)[FL] 6= ∅, there exists sL ∈
SL|FL s.t. pre(aC)[FL] ⊆ sL and prices[s](sL) <
∞; and, for every leaf FL ∈ FL and leaf state
sL ∈ SL|FL , prices[t](sL) is the cost of a cheapest
path from I[FL]0 to sLn in CompGΠ[πC [t], FL], where
n := |πC [t]|.

(iv) IF is the decoupled initial state, where center[IF] :=
I[FC], πC [IF] := 〈〉, and, for every leaf FL ∈
FL and leaf state sL ∈ SL|FL , prices[IF](sL) is
the cost of a cheapest path from I[FL]0 to sL0 in
CompGΠ[〈〉, FL].

(v) SFG are the decoupled goal states sG, where center[sG]
is a center goal state and, for every FL ∈ FL,
there exists a leaf goal state sL ∈ SL|FL s.t.
prices[sG](sL) <∞.

We refer to paths πF in ΘFΠ as decoupled paths. A solution
for s ∈ SF is a decoupled path (denoted GlobalPlan) from
s to some sG ∈ SFG . A solution for ΘFΠ is a called a solution
for IF . A decoupled state, respectively ΘFΠ , is solvable if it
has a solution.

Example 2 In our example, when using the factoring F =
{{p}, {ta, tB}} with center factor FC = {tA, tB}, the ini-
tial state of the decoupled state space has only a single suc-
cessor, resulting from aC = move(A, l1, l2). The precon-
dition p = A of move(A, l1, l2) is reachable from I[FL]0
given the empty center path, but that is not so for the precon-
dition p = B of move(B, l3, l2). This reflects the fact that,
in the initial state of the task, we can move only the package

(not moving a truck i. e. the center) so that move(A, l1, l2)
becomes applicable, but we cannot make move(B, l3, l2) ap-
plicable in this manner.

We don’t provide the details of compliant paths and com-
pliant path graphs, here, since this is out of scope for the
presented work. Instead, we briefly summarize the intuition
behind the notion of compliance.

A decoupled state s is a center path πC(s) associated for
every leaf FL ∈ FL with the πC-compliant path graph
CompGΠ[πC(s), FL]. Given πC(s) and a leaf path πL, for
πL to be compliant with πC(s) we require that (1) the sub-
sequences of shared actions in πL and πC coincide, and (2)
in between, we can schedule πL at monotonically increas-
ing points alongside πC s.t. (2a) the center precondition of
each leaf action holds in the respective center state and (2b)
the FL precondition of each center action holds in the re-
spective leaf state. The compliant path graph of s for a leaf
FL keeps track of all leaf paths in the leaf state space of FL

compliant with πC(s). In practice, we do not store the com-
pliant path graphs for each state, but only the corresponding
pricing functions.

For illustration, consider Example 3. The arcs from one
layer to the next state that the surviving leaf states are
only those which comply with move(A, l1, l2)’s precondi-
tion, and will be mapped to possibly different leaf states
by move(A, l1, l2)’s effect. Within each layer the arcs corre-
spond to those leaf-only actions whose center precondition
is enabled at t. Note that, if move(A, l1, l2) had no precon-
dition on FL, then all leaf states would survive, and since
move(A, l1, l2) has no effect on FL, all leaf states remain
the same at t+ 1.

Example 3 Consider again our illustrative example, using
the factoring F = {{p}, {ta, tB}} with center factor FC =
{tA, tB} and the center path πC = 〈move(A, l1, l2)〉. The
πC-compliant path graph is shown in Figure 2.

(p = A)0 (p = B)0 (p = l1)0 (p = l2)0 (p = l3)0

(p = A)1 (p = B)1 (p = l1)1 (p = l2)1 (p = l3)1

(un)load(A, l1) (un)load(B, l3)

move(A, l1, l2)0

(un)load(A, l2) (un)load(B, l3)

Figure 2: The compliant path graph for πC =
〈move(A, l1, l2)〉 in our illustrative example.

From layer 0 to layer 1, the only arc we have is that from
(p = A)0 to (p = A)1. This is because move(A, l1, l2) has
precondition p = A, so all other values of p do not comply
with the center action being applied at this layer, and are
excluded from the compliant paths. Note that the arc has a
weight of 0, because we do not account for the cost of center
actions in the compliant path graph.

85

In our previous work, we showed that the plans for Π are
in one-to-one correspondence with center paths augmented
with compliant leaf paths. Say π is a plan for Π. The sub-
sequence πC of center actions in π is a center path. For
a leaf FL ∈ FL, the sub-sequence πL of AL|FL actions
in π is a leaf path. The sub-sequence of AC ∩ AL|FL ac-
tions in πL coincides by construction with the sub-sequence
of AC ∩ AL|FL actions in πC . Furthermore, between any
pair of subsequent shared actions, all FC preconditions of
πL, and all FL preconditions of πC , must be satisfied be-
cause π is a plan, so we can read off an embedding, and πL

is πC-compliant. Vice versa, say center path πC ends in a
goal center state, and can be augmented for every FL ∈ FL

with a πC-compliant leaf path πL ending in a goal leaf state.
Note that, if an action a affects more than one leaf, by the
definition of star factorings a must also affect the center, so
the sub-sequences of such actions are synchronized via πC :
They must be identical for every leaf involved, and corre-
spond to the same action occurrences in πC .

Overall, goal paths in the decoupled state space ΘF cor-
respond to center goal paths augmented with compliant leaf
goal paths, which correspond to plans for the original plan-
ning task Π, of the same cost. So (optimal) search in ΘF is
a form of (optimal) planning for Π.

Heuristic Functions
In decoupled search, two different kinds of heuristic func-
tions are of interest. Center heuristics hC that estimate the
remaining cost the center has to spend to reach the goal, and
star heuristics hS that estimate the overall remaining cost.
We say that h is center-admissible if h ≤ hC∗, and star-
admissible if h ≤ hS∗. The conceptual distinction between
hC and hS lies in that hC cares only about how much work
is left for the center factor, i. e., the cost of a center path suffi-
cient to enable every leaf to reach its goal somehow. In con-
trast, hS accounts for the combined cost of center and leaves,
i. e. for the best extension of our current center path into an
overall decoupled plan. We refer to heuristics attempting to
estimate hC∗ as center heuristics, and to heuristics attempt-
ing to estimate hS∗ as star heuristics, and distinguish them
notationally by superscripts “C” respectively “S”.

Observe that hC is a special case of hS : We can compute
hC as hS in a modified planning task where the cost of all
leaf actions is set to 0. hC keeps track only of which leaf
states are reachable, not of the associated cost.

This may lead to qualitatively different decisions, i. e., hC
and hS may disagree. Using a transportation example again,
say that there are two alternative kinds of plans, (a) ones that
pass the packages through several trucks, loading/unloading
every time, vs. (b) ones that make more truck moves but
have to load/unload each package only once and thus are
better globally. Then hC will draw search towards plans (a),
whereas hS will draw search towards plans (b).

Search Algorithms
Disregarding optimality, we can run any search algorithm
on the decoupled state space, stopping at the first decoupled
goal state. For optimal planning, matters are more subtle.
One of our methods is formulated on a modified state space

Algorithm DX:
Input: FDR planning task Π, star factoring F

Heuristic search algorithm X
star heuristic hS

Output: A plan for Π, or “failed”

Let hSG$:=

{
hS(s) s ∈ SF
0 s = G′

Run X with hSG$ on ΘFG$

If X found a solution path π = πF ◦ 〈sG → G′〉
return GlobalPlan(πF)

else return “failed”

Figure 3: Exploiting any known search algorithm X .

Algorithm ADA∗:
Input: FDR planning task Π, star factoring F

Center heuristic hC , star heuristic hS

Output: An optimal plan for Π, or “unsolvable”
Let U :=∞ /* best known upper bound */
Let πFU := ⊥ /* corresponding plan */
Run A∗ with hC on ΘF , with these modifications:

Continue search until the open list is empty
Whenever a goal vertex node N [sG] is expanded:

If g(N) + Gprice(sG) < U
let U := g(N) + Gprice(sG)
let πFU := the decoupled plan leading to N

If Gprice(sG) = MINGprice
return GlobalPlan(πFU) /* early termination */

Whenever a node N [s] is generated, and U 6=∞:
If g(N) + hS(s) ≥ U

discard N /* upper-bound pruning */
If πFU 6= ⊥ return GlobalPlan(πFU) else return “unsolvable”

Figure 4: Anytime search algorithm. Search nodes are no-
tated N [s] where s is the state and N the node itself.
MINGprice is the sum, over the leaf factors FL ∈ FL, of
optimal plan cost for the projection of Π onto FL.

where the goal pricing functions are explicit. Consider Fig-
ure 3. DX (“Decoupled X”) just runs any search algorithm
X on ΘFG$, which is defined as ΘF with the only difference
that from every decoupled goal state sG ∈ SFG , we introduce
a new transition to an artificial goal state G′. These transi-
tions have cost Gprice(sG) =

∑
FL∈F min prices[sG](sL)

with sL ∈ SL|FL being a leaf goal state. If X is complete,
then DX is complete. If X is optimal for admissible heuris-
tics, then DX is optimal for star-admissible heuristics.

Consider now Figure 4. ADA∗ guides A∗ by a center
heuristic, and uses a star heuristic merely for upper-bound
pruning. The search is drawn to cheap center paths, disre-
garding leaf costs, so to guarantee optimality we must ex-
haust the open list. Without early termination, this would
be dominated by DA∗ because ADA∗ would then have to
expand at least all N [s] where g(N) + hS(s) is less than
optimal solution cost. With early termination, that is not
so because in the best case we have to exhaust only those

86

N [s] where g(N) + hC(s) is less than optimal center so-
lution cost. ADA∗ is complete, and is optimal for center-
admissible hC and star-admissible hS .

Future Work
Having introduced Decoupled Search in the previous chap-
ter, we can now go into future work topics that arise more or
less naturally from the pitfalls mentioned above. Besides, it
is quite obvious that many search enhancement techniques
that have been developed for standard search, can also be
adapted to work in the decoupled setting.

A serious drawback of decoupled search, mentioned in the
introduction, is that – in principle – the decoupled state space
can be infinitely large. This is the case because the pricing
functions implicitly remember the center path taken to the
decoupled state. Consider a slightly changed version of our
illustrative example, that does not require a package to be
loaded in a truck to be able to move the truck. With the fac-
toring that has the package as the center and the two trucks
as leaves, there are only 5 center states (the different posi-
tions of the package). In the initial state, i. e., with the empty
center path, the trucks can be located at all three positions
with a price of 0 to 2, depending on their initial position.
Say we decide to load the package into tB , using the com-
pliant leaf state tB = l1 for a price of 2 and to immediately
unload the package again, resulting in the decoupled state
s1. Then, the initial center state is identical to that of s1, but
their prices for tB differ. For the initial state, they are [2, 1, 0]
for [tB = l1, tB = l2, tB = l3] and for s1 they are [2, 3, 4].
Consequently, we must consider s1 to be a new decoupled
state. However, it is intuitively obvious, that the initial state
“is better” than s1, more formally: Whatever we can do in s1,
we can at least as cheaply do in the initial state. The question
arises what “better” means in this scenario, so how can we
define a notion of dominance between two decoupled states
s1 and s2? As already described, the simple notion of dom-
inance employed by (Gnad and Hoffmann 2015) is suffi-
cient to guarantee that the just characterized problem can no
longer occur. The dominance check does a pointwise com-
parison of the prices of the two states and whenever the cen-
ter states are identical and prices[s1](sL) ≤ prices[s2](sL)
for all leaf states, s1 dominates s2 and we can discard s2.
However, this does not prevent the exponential blow-up of
the decoupled state space compared to the standard one, yet.
How to further reduce the size of the decoupled state space
and possibly upper bound it by the size of the standard state
space, is still an open question.

Closely related to this is the idea of not only being able
to introduce dominance between decoupled states with the
same center, but also when the center states differ. Recent
work (Hall et al. 2013; Torralba and Hoffmann 2015) has
introduced such kind of pruning in the standard state space.
It will be a highly interesting research question how to adapt
this to the decoupled setting.

In a similar direction goes the pruning of symmetric
states, that has been used in planning for several years (e. g.
(Pochter et al. 2011; Domshlak et al. 2012; 2013)). Can
we detect symmetries between center states and perform

pruning based on some criteria of their corresponding pric-
ing functions? Or is it even possible to detect more global
symmetries in the decoupled state space, e. g., considering a
standard logistics example. If two packages are completely
symmetric, there is no need to handle them separately, but
they can be treated as a single package.

In some domains, our current factoring strategies do find
factorings with a high number of leaves, but these are very
small and the remaining center state space is not much
smaller than the whole standard state space. In this case,
it makes sense to think of methods further reducing the
size of the center state space. One promising approach is
partial-order reduction via strong stubborn sets, a technique
originally proposed in the context of model checking, that
has recently been introduced in planning (Valmari 1989;
Wehrle and Helmert 2012; Wehrle et al. 2013; Wehrle and
Helmert 2014). The inverted setting does occur, too. A fac-
toring resulting in a small center factor where enumerating
the state space of few very big leaves leads to a significant
runtime overhead. In this case, does it make sense to apply
partial-order reduction to the leaves?

Talking about the factoring strategies, so far we only de-
ployed fork-like factorings, though our framework allows
for much more general star topologies. Further exploring
the space of possible factoring methods is an important task,
making decoupled search applicable to a large number of
new domains. This not only considers the application to
other classical planning domains, but also extends the scope
to other search-based areas such as puzzles, or multi-agent
planning, but also model checking.

The combination of decoupled search with other known
techniques from, e. g., model checking is highly interest-
ing, too. How about a kind of hybrid search that performs
standard search in the center part and symbolic search in
the leaves? Especially if the leaves have a rather large state
space, as, e. g., is very likely if we look at 2-factor star
topologies, this promises to solve the problem of the big
overhead needed to compute and store the pricing functions.

Overall, there is a great variety of techniques and meth-
ods, combining which with decoupled search can enrich the
state-of-the-art in planning and related search applications.

Conclusion

Decoupled state space search promises a wide open new re-
search area, exploring which is far beyond the scope of a
single dissertation. The initial framework has already been
introduced and tightened, so new extensions have a stable
basis to build on. The enhancement techniques outlined in
the previous chapter are mostly known from standard state
space search and can presumably be combined with decou-
pled search. Being orthogonal to the idea of decoupling –
which is exploiting conditional independence between parts
of a planning task – a significant additional improvement
over the plain variant can be expected when enabling these
methods in decoupled search.

87

References
Eyal Amir and Barbara Engelhardt. Factored planning. In
G. Gottlob, editor, Proceedings of the 18th International
Joint Conference on Artificial Intelligence (IJCAI-03), pages
929–935, Acapulco, Mexico, August 2003. Morgan Kauf-
mann.
Christer Bäckström and Bernhard Nebel. Complexity results
for SAS+ planning. Computational Intelligence, 11(4):625–
655, 1995.
Ronen Brafman and Carmel Domshlak. Structure and com-
plexity in planning with unary operators. Journal of Artifi-
cial Intelligence Research, 18:315–349, 2003.
R. I. Brafman and C. Domshlak. Factored planning: How,
when, and when not. In Yolanda Gil and Raymond J.
Mooney, editors, Proceedings of the 21st National Confer-
ence of the American Association for Artificial Intelligence
(AAAI-06), pages 809–814, Boston, Massachusetts, USA,
July 2006. AAAI Press.
Ronen I. Brafman and Carmel Domshlak. From one to
many: Planning for loosely coupled multi-agent systems.
In Jussi Rintanen, Bernhard Nebel, J. Christopher Beck,
and Eric Hansen, editors, Proceedings of the 18th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’08), pages 28–35. AAAI Press, 2008.
Ronen Brafman and Carmel Domshlak. On the complexity
of planning for agent teams and its implications for single
agent planning. Artificial Intelligence, 198:52–71, 2013.
Carmel Domshlak, Michael Katz, and Alexander Shleyf-
man. Enhanced symmetry breaking in cost-optimal plan-
ning as forward search. In Blai Bonet, Lee McCluskey,
José Reinaldo Silva, and Brian Williams, editors, Proceed-
ings of the 22nd International Conference on Automated
Planning and Scheduling (ICAPS’12). AAAI Press, 2012.
Carmel Domshlak, Michael Katz, and Alexander Shleyf-
man. Symmetry breaking: Satisficing planning and land-
mark heuristics. In Daniel Borrajo, Simone Fratini, Sub-
barao Kambhampati, and Angelo Oddi, editors, Proceedings
of the 23rd International Conference on Automated Plan-
ning and Scheduling (ICAPS’13), Rome, Italy, 2013. AAAI
Press.
Eric Fabre, Loı̈g Jezequel, Patrik Haslum, and Sylvie
Thiébaux. Cost-optimal factored planning: Promises and
pitfalls. In Ronen I. Brafman, Hector Geffner, Jörg Hoff-
mann, and Henry A. Kautz, editors, Proceedings of the
20th International Conference on Automated Planning and
Scheduling (ICAPS’10), pages 65–72. AAAI Press, 2010.
Daniel Gnad and Jörg Hoffmann. Beating LM-cut with
hmax (sometimes): Fork-decoupled state space search. In
Ronen Brafman, Carmel Domshlak, Patrik Haslum, and
Shlomo Zilberstein, editors, Proceedings of the 25th Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS’15). AAAI Press, 2015.
Daniel Gnad, Jörg Hoffmann, and Carmel Domshlak. From
fork decoupling to star-topology decoupling. In Levi Lelis
and Roni Stern, editors, Proceedings of the 8th Annual Sym-
posium on Combinatorial Search (SOCS’15). AAAI Press,
2015.

David Hall, Alon Cohen, David Burkett, and Dan Klein.
Faster optimal planning with partial-order pruning. In
Daniel Borrajo, Simone Fratini, Subbarao Kambhampati,
and Angelo Oddi, editors, Proceedings of the 23rd Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’13), Rome, Italy, 2013. AAAI Press.
Malte Helmert. The Fast Downward planning system. Jour-
nal of Artificial Intelligence Research, 26:191–246, 2006.
Jörg Hoffmann. Analyzing search topology without running
any search: On the connection between causal graphs and
h+. Journal of Artificial Intelligence Research, 41:155–229,
2011.
Peter Jonsson and Christer Bäckström. Incremental plan-
ning. In European Workshop on Planning, 1995.
Craig Knoblock. Automatically generating abstractions for
planning. Artificial Intelligence, 68(2):243–302, 1994.
Nir Pochter, Aviv Zohar, and Jeffrey S. Rosenschein. Ex-
ploiting problem symmetries in state-based planners. In
Wolfram Burgard and Dan Roth, editors, Proceedings of the
25th National Conference of the American Association for
Artificial Intelligence (AAAI-11), San Francisco, CA, USA,
July 2011. AAAI Press.
Álvaro Torralba and Jörg Hoffmann. Simulation-based ad-
missible dominance pruning. In Qiang Yang, editor, Pro-
ceedings of the 24th International Joint Conference on Ar-
tificial Intelligence (IJCAI’15), pages 1689–1695. AAAI
Press/IJCAI, 2015.
Antti Valmari. Stubborn sets for reduced state space gener-
ation. In Proceedings of the 10th International Conference
on Applications and Theory of Petri Nets, pages 491–515,
1989.
Martin Wehrle and Malte Helmert. About partial or-
der reduction in planning and computer aided verification.
In Blai Bonet, Lee McCluskey, José Reinaldo Silva, and
Brian Williams, editors, Proceedings of the 22nd Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’12). AAAI Press, 2012.
Martin Wehrle and Malte Helmert. Efficient stubborn sets:
Generalized algorithms and selection strategies. In Steve
Chien, Minh Do, Alan Fern, and Wheeler Ruml, editors,
Proceedings of the 24th International Conference on Auto-
mated Planning and Scheduling (ICAPS’14). AAAI Press,
2014.
Martin Wehrle, Malte Helmert, Yusra Alkhazraji, and Robert
Mattmüller. The relative pruning power of strong stub-
born sets and expansion core. In Daniel Borrajo, Simone
Fratini, Subbarao Kambhampati, and Angelo Oddi, editors,
Proceedings of the 23rd International Conference on Auto-
mated Planning and Scheduling (ICAPS’13), Rome, Italy,
2013. AAAI Press.

88

Hierarchical Task Model with Alternatives for Predictive-reactive Scheduling

Marek Vlk and Roman Barták (supervisor)
Charles University in Prague, Faculty of Mathematics and Physics

Malostranské nám. 25, 118 00 Praha 1, Czech Republic
{vlk, bartak}@ktiml.mff.cuni.cz

Abstract

Attaining optimal results in real-life scheduling is hin-
dered by a number of problems. One such problem is dy-
namics of scheduling environments with breaking-down
resources and hot orders coming during the schedule
execution. Traditional approach to react to unexpected
events occurring on the shop floor is generating a new
schedule from scratch. Complete rescheduling, how-
ever, may require excessive computation time. More-
over, the recovered schedule may deviate a lot from the
ongoing schedule. Some work has focused on tackling
these shortcomings, but none of the existing approaches
tries to substitute jobs that cannot be executed with a set
of alternative jobs. This paper describes the scheduling
model suitable for dealing with unforeseen events us-
ing the possibility of alternative processes and states the
future goals.

Introduction
Scheduling, the aim of which is to allocate scarce resources
to activities in order to optimize certain objectives, has been
frequently addressed in the past decades. Developing a de-
tailed schedule in manufacturing environment helps maintain
efficiency and control of operations.

In the real world, however, manufacturing systems face
uncertainty owing to unforeseen events occurring on the shop
floor. Machines break down, operations take longer than
anticipated, personnel do not perform as expected, urgent
orders arrive, others are canceled, etc. These disturbances
may bring inconsistencies into the ongoing schedule. If the
ongoing schedule becomes infeasible, the simple approach
is to collect the data from the shop floor when the disrup-
tion occurs and to generate a new schedule from scratch.
Because most of the scheduling problems are NP-hard, com-
plete rescheduling usually involves prohibitive computation
time and an excessive deviation of the recovered schedule
from the original schedule.

To avoid the problems of rescheduling from scratch, reac-
tive scheduling, which may be conceived as the continuous
correction of precomputed predictive schedules, is becoming
more and more important. Reactive scheduling is contradis-
tinguished from predictive scheduling mainly by its on-line

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

nature and associated real-time execution requirements. The
schedule update must be accomplished before the running
schedule becomes invalid, and this time window may be
very short in complex scheduling environments.

Several novel sophisticated methods attempt to cope
with the shortcomings of complete rescheduling, e.g., by
rescheduling only the activities somehow affected by the
disturbance. To the best of our knowledge, however, none of
the existing approaches tries to replace some activities by a
set of alternative activities (using other available resources)
to achieve the same goal.

In this paper we propose a model suitable for development
of algorithms for modifying a schedule to accommodate dis-
turbances, such as a machine breakdown, using the possi-
bility of alternative processes, i.e., to re-plan the influenced
part of the schedule.

Related Work
The approaches how to tackle dynamics of the scheduling
environment can be divided basically into two branches ac-
cording to whether or not the predictive schedule is com-
puted before the execution starts (Vieira, Herrmann, and Lin
2003). If the predictive schedule is not computed beforehand
and individual activities are assigned to resources pursuant
to some so called dispatching rules during the execution, we
talk about completely reactive scheduling or on-line schedul-
ing. This strategy is suitable for very dynamic environments,
where it is not known in advance which activities it will be
necessary to process. On the other hand, it is obvious that
this approach hardly ever leads to an optimal or near-optimal
schedule.

If the schedule is crafted beforehand and then updated
during its execution, it is referred to as predictive-reactive
scheduling. When correcting the ongoing schedule in re-
sponse to changes within the environment, the aim is usually
to minimize the schedule modification. The motivation for
minimizing the alteration of the schedule is that every aber-
ration may lead to deterioration in the performance owing
to affecting other planning activities based upon the original
schedule. Similarity of two schedules may be formally de-
fined for example as a minimal perturbation problem (Barták,
Muller, and Rudová 2003).

There is an extensive literature on rescheduling (Ouelhadj
and Petrovic 2009; Raheja and Subramaniam 2002). First,

89

the heuristic-based approaches do not guarantee finding an
optimal solution, but they respond in a short time. The sim-
plest schedule-repair technique is the right shift rescheduling
(Abumaizar and Svestka 1997), which shifts the operations
globally to the right on the time axis in order to cope with
disruptions. This may lead to schedules of very bad quality.

Another simple heuristic is affected operation reschedul-
ing (Smith 1995), also referred to as partial schedule repair,
the essence of which is to reschedule only the operations
directly and indirectly affected by the disruption in order to
minimize the deviation from the initial schedule.

Better schedules to the detriment of computational effi-
ciency may be attained by using meta-heuristics such as
simulated annealing, genetic algorithms, tabu search, and it-
erative flattening search (Oddi et al. 2007). These high level
heuristics guide local search methods to escape from lo-
cal optima by occasional accepting worse solutions or by
generating better initial solutions for local probing in some
sophisticated way.

Some techniques from the field of artificial intelligence
and knowledge-based systems are also applied in reschedul-
ing, namely case-based reasoning (Cunningham and Smyth
1997), fuzzy logic (Ramkumar, Tamilarasi, and Devi 2011),
and neural networks (Jain and Meeran 1998). Another ap-
proach, which is rather an independent branch, is multi-agent
based architectures (Zhang et al. 2011). Multi-agent systems
seem to be the most promising approach, but the coordination
among the agents is hard to achieve.

The attempts to absorb certain amount of uncertainty based
on the past executions of schedules is considered in another
strategy, usually referred to as robust proactive scheduling.
One such example is a model and an algorithm generating a
predictive schedule of production workflows that is (proac-
tively) robust with regard to so called immediate events,
which include breakdown of a workstation and faulty ter-
mination of a workflow execution (Dulai and Werner-Stark
2015). The robustness is attained by shifting activities (tra-
ditional introducing or enlarging gaps on resources) based
on the probabilities of resource failures, which are estimated
according to previous experiences. The drawback of the al-
gorithm is the assumption that every resource failure is only
temporary, and the time for how long the resource is unavail-
able in case of its failure is known in advance.

While there is a great amount of work devoted to plan-
ning with time and resources and to integrating planning
and scheduling techniques, to the best of our knowledge,
there is no research carried out aiming at the possibility of
re-planning in the field of predictive-reactive scheduling.

Scheduling Model Description
The scheduling model we work with is taken from the
FlowOpt system (Barták et al. 2012), which contains a tool
for designing and editing manufacturing workflows. Work-
flow in general may be understood as a scheme of performing
some complex process, itemized into simpler processes and
relationships among them. Manufacturing workflow is then
an outline how to obtain a desired product.

In order to make editing of workflows easier, the work-
flows in our model match up the structure of Nested Tem-

Figure 1: An example of a workflow (Skalický 2011).

Figure 2: A decomposition tree for the workflow. The label
”ALT” beneath tasks stands for alternative decomposition;
the other decompositions are parallel. Activities are ellipse-
shaped.

poral Networks with Alternatives (Barták and Čepek 2007),
where the nodes of a network correspond to the tasks of a
workflow. The tasks decompose into other tasks, referred
to as their children. There are two types of decomposition:
parallel and alternative. The tasks that do not decompose
further (i.e., leaves) are called primitive tasks. The primitive
tasks correspond to activities (or operations) and are associ-
ated with some additional parameters, namely start, end, and
duration.

An example of a workflow and its decomposition tree are
depicted in Figures 1 and 2. It contains eight primitive tasks
(activities), three parallel tasks, and two alternative tasks.

The workflows as described define a number of feasible
processes. A process is a subset of tasks selected to be pro-
cessed. While a parallel task requires all its children to be
processed, an alternative task requires exactly one of its chil-
dren to be processed. If an arbitrary task is not in a process,
none of its offspring is in the process either. Hence, to en-
sure that an instance of a workflow is actually processed, its
root task has to be in the selected process. An example of a
process is depicted in Figure 3.

To introduce some restrictions in terms of occurrences of
tasks in the process and their time data, a pair of tasks can be
bound by a constraint. Temporal constraints include prece-
dences (one task has to be accomplished before the execution
of another task starts), and synchronizations (one task has to

90

Figure 3: The decomposition tree with a selected process.

start/end exactly when another task starts/ends). Logical con-
straints include implications (if one task is in the process, the
other task must be in the process too), equivalences (either
both tasks must be in the process or none of them can be in
the process), and mutual exclusions (at most one of the tasks
can be in the process).

In Figure 1, there is one equivalence constraint enforcing
that a tube and a rod are both either bought or made. The
other constraint (synchronization) ensures that the activities
”cutting tube” and ”cutting rod” start at the same time.

Besides these constraints added by a user, which are re-
ferred to as custom constraints, there are some implicit con-
straints arising from the hierarchical structure of tasks. For
example, the start time of a task equals the start time of its
earliest child, and the end time of the task equals the end
time of its latest child.

Activities are processed on resources. All resources are
unary, which means that each resource may perform no more
than one activity at a time. This limitation is often referred to
as a resource constraint and belongs to the mentioned implicit
constraints. Each activity is specified by a set of resources on
which the activity can be processed (resource group), and in
the resulting schedule, each activity in the selected process
must be allocated to exactly one resource (selected resource).

Note that workflow is only a guideline how to manufac-
ture a particular product. If a user wants n such products,
n instances of the corresponding workflow are inserted into
the model. An instance of a workflow is referred to as an
order. It contains some additional data, such as due date and
lateness penalty.

Finally, a resulting schedule is feasible if all custom as
well as implicit constraints are satisfied.

Scheduling Problem
Formally, schedule S is a triplet of three sets: Tasks,
Constraints, and Resources.

Tasks Tasks match up a forest structure. Therefore, every
task T either has a parent, i.e., ∃P ∈ Tasks : parent(T) =
P , or is a root, i.e., parent(T) = null.

• subtasks(T) = {C ∈ Tasks | parent(C) = T}
• Roots = {R ∈ Tasks | parent(R) = null}

There are three types of tasks: parallel, alternative, and
primitive tasks.

• Tasks = Parallel ∪Alternative ∪ Primitive
• ∀T ∈ Parallel ∪Alternative : subtasks(T) 6= ∅
• ∀T ∈ Primitive : subtasks(T) = ∅

Let process P ⊆ Tasks be the set of tasks selected to
be processed. Making the process feasible introduces the
following constraints:

• T ∈ P ∩ Parallel : subtasks(T) ⊆ P
• T ∈ P ∩Alternative : |subtasks(T) ∩ P | = 1

• T /∈ P : subtasks(T) ∩ P = ∅
Let Si and Ei denote the start time and end time, respec-

tively, of taskTi. Each activity corresponding to the primitive
task Ti is specified by the duration Di. Then the time data
are computed as follows:

• ∀Ti ∈ P ∩ Primitive : Si +Di = Ei

• ∀Ti ∈ P ∩ (Parallel ∪Alternative) :
Si = min{Sj | Tj ∈ subtasks(Ti) ∩ P}
Ei = max{Ej | Tj ∈ subtasks(Ti) ∩ P}

Constraints There are two basic types of constraints: tem-
poral, and logical. Temporal constraints restrict mutual po-
sition in time of two distinct activities. We take into con-
sideration precedence and synchronization constraints, the
semantics of which is as follows:

• (i→ j) : Ti, Tj ∈ P ⇒ Ei ≤ Sj

• (i ss j) : Ti, Tj ∈ P ⇒ Si = Sj

• (i se j) : Ti, Tj ∈ P ⇒ Si = Ej

• (i es j) : Ti, Tj ∈ P ⇒ Ei = Sj

• (i ee j) : Ti, Tj ∈ P ⇒ Ei = Ej

Logical constraints are of three types: implications, equiv-
alences, and mutexes. The semantics of the constraints is
such:

• (i⇒ j) : Ti ∈ P ⇒ Tj ∈ P
• (i⇔ j) : Ti ∈ P ⇔ Tj ∈ P
• (i mutex j) : Ti /∈ P ∨ Tj /∈ P
Resources Let T ∈ Primitive, then the set of re-
sources that may process the primitive task T is denoted
Resources(T). The set Resources(T) is often referred to
as a resource group.

Each activity to be processed needs to be allocated to
exactly one resource from its resource group. Let T ∈
Primitive, then a resource R ∈ Resources(T) is selected
if resource R is scheduled to process the primitive task T ,
which we denote SelectedResource(T) = R.

Each primitive task that is selected to the process P must
have a selected resource to make a schedule feasible. For-
mally:

∀T ∈ P ∩ Primitive : SelectedResource(T) 6= null

All resources in a schedule are unary, which means that
they cannot execute more tasks simultaneously. Therefore,

91

in a feasible schedule for all selected primitive tasks Ti 6= Tj
the following holds:

SelectedResource(Ti) = SelectedResource(Tj)

⇒ Ei ≤ Sj ∨ Ej ≤ Si

Schedule
A schedule S (sometimes referred to as a resulting sched-
ule or a solution) is acquired by determining the set P ,
and allocating the primitive tasks from P in time and
on resources. Allocation in time means assigning particu-
lar values to the variables Si and Ei for each Ti ∈ P .
Allocation on resources means selecting a particular re-
source (SelectedResource(T)) from the resource group
(Resources(T)) of each task T ∈ P ∩ Primitive.

To make a schedule feasible, the allocation must be con-
ducted in such a way that all the mentioned constraints in the
problem are satisfied.

Rescheduling Problem
The problem we actually deal with is that we are given a
particular instance of the scheduling problem along with a
feasible schedule, and also with a change in the problem
specification. The aim is to find another schedule that is
feasible in terms of the new problem definition. The feasible
schedule we are given is referred to as an original schedule
or an ongoing schedule.

Formally, let R = (Pr0, Sch0, δ
+, δ−) be a rescheduling

problem, which is given by the original scheduling problem
Pr0, the original feasible schedule Sch0, elements δ+ to be
added to the problem Pr0, and elements δ− to be removed
from the problem Pr0. New scheduling problem Pr1 is then
Pr0 ∪ δ+ \ δ−. The task of the rescheduling problem R is
then to find a schedule Sch1 for problem Pr1, the quality
of which is measured with respect to the original schedule
Sch0.

The way the scheduling problem can be modified depends
on the disturbance. In case of a resource failure, we are
given a resource that cannot be used (from a certain time
point) while the set of orders remains unchanged, therefore
δ+ = ∅ and δ− is the broken down resource.

Another example is an urgent order arrival, which is a
disturbance where an order (a set of workflow instances) is
added into the model, and the aim is to update the ongoing
schedule in such a way that the added order is accomplished
as early as possible. In this case δ+ is the new order (including
constraints among new tasks) and δ− = ∅.

As explained in the introduction, regardless of what the
optimization objective of the original schedule is, it seems
to be wise to modify the schedule in such a way that the new
schedule is as similar to the original one as possible. For this
purpose we need to evaluate the modification distance.

LetPz denote the selected processP in the scheduleSchz ,
and Sz

i denote the start time of task Ti in schedule Schz .
Then, apart from computation time, we take into account the
following distance functions:

f0 = |{T ∈ P1 \ P0}|+ |{T ∈ P0 \ P1}|

f1 =
∑

Ti∈P0∩P1∩Primitive

|S1
i − S0

i |

f2 = |{Ti ∈ P0 ∩ P1 ∩ Primitive | S1
i 6= S0

i }|

f3 = max
Ti∈P0∩P1∩Primitive

|S1
i − S0

i |

In words, f0 is the number of different tasks in the sched-
ules, f1 measures the total sum of time shifts of activities, f2
counts the number of shifted activities, and f3 is the biggest
time shift of an activity. There are other conceivable distance
functions, but we concentrate on these ones.

Current Work
Our recent work (Barták and Vlk 2015) proposes two meth-
ods to handle a resource failure occurring on the shop floor
during the schedule execution. The first method, Right Shift
Affected, takes the activities that were to be processed on a
broken machine, reallocates them, and then it keeps repair-
ing violated constraints until it gets a feasible schedule. This
approach is suitable when it is desired to move as few ac-
tivities as possible, that is, minimizing the distance function
f2.

The second method, which is aimed at shifting activi-
ties by a short time distance regardless of the number of
moved activities (that is, minimizing the distance functions
f1 and f3), is called STN-recovery. The routine deallocates
a subset of activities and then it allocates the activities again
through integrating techniques from the field of constraint
programming, namely Conflict-Directed Backjumping with
Backmarking (Kondrak and Van Beek 1997). Before the al-
location process, the search space is suitably pruned based
on the values from the original schedule, which is another
thing that seems to be neglected in the related literature.

The shortcoming of both the algorithms is that they neglect
the possibility of alternative processes, which in practice
may lead to a schedule recovery at a blow. Moreover, if the
ongoing schedule is not recoverable, the algorithms are not
able to securely report it and terminate.

Future Plans
We are currently developing algorithms under the hierar-
chical model described, where, in response to unexpected
events, the intention is not only to modify the allocation of
activities of the selected process, but to replace tasks in the
process by other tasks that are not in the process, i.e., to
re-plan some (ideally the smallest necessary, hence the mo-
tivation for the distance function f0) subset of the schedule.

The first algorithm to try will work as follows. First, find
the feasible process from all the orders in the schedule top-
down, preferring the branches from the original schedule
whenever possible. Second, after the process is selected,
allocate activities from the process in time and on resources.
If the second step fails, go back to the first step. Iterate until
the schedule is found. For the second step, the crucial part
of the STN-recovery algorithm mentioned above may be
employed.

92

One natural improvement might be trying to allocate an
activity straightaway when the corresponding primitive task
is considered to be selected to the process. If the activity
is successfully allocated, the searching for the process pro-
ceeds, otherwise it backtracks for alternatives.

However, our main effort will be made towards updating
the schedule as locally as possible. If a resource suddenly
becomes unavailable, it may suffice to merely replace the
affected activities by alternatives that are just one level (one
task decomposition) from the affected activities. It follows
that the process should not be discarded and sought again
top-down as described above, but it should be explored in a
bottom-up fashion (from the primitive tasks upwards). The
main difficulty of this approach are the logical constraints
that must be propagated whenever the membership of a task
in the process is being flipped.

In further future, the target is to extend the model of Nested
Temporal Networks with Alternatives by recursion, and to
suggest algorithms for this model. The recursion will bring
the full power of planning, i.e., the possibility to generate
tasks according to a given target. The main inspiration comes
from the Hierarchical Task Networks (Nau et al. 2003). We
will try modeling problems by attribute grammars, where
modeling relations among attributes will be realized by con-
straint satisfaction problem rather than traditional semantic
rules (Barták 2016).

Acknowledgments
This research is partially supported by SVV project number
260 224 and by the Czech Science Foundation under the
project P103-15-19877S.

References
Abumaizar, R. J., and Svestka, J. A. 1997. Rescheduling
job shops under random disruptions. International Journal
of Production Research 35(7):2065–2082.
Barták, R., and Čepek, O. 2007. Nested temporal networks
with alternatives. In AAAI Workshop on Spatial and Tem-
poral Reasoning, Technical Report WS-07-12, AAAI Press,
1–8.
Barták, R., and Vlk, M. 2015. Machine breakdown recovery
in production scheduling with simple temporal constraints.
In Agents and Artificial Intelligence. Springer. 185–206.
Barták, R.; Jaška, M.; Novák, L.; Rovenský, V.; Skalický, T.;
Cully, M.; Sheahan, C.; and Thanh-Tung, D. 2012. Flowopt:
Bridging the gap between optimization technology and man-
ufacturing planners. In Luc De Raedt et al. (Eds.): Proceed-
ings of 20th European Conference on Artificial Intelligence
(ECAI 2012), 1003–1004. IOS Press.
Barták, R.; Muller, T.; and Rudová, H. 2003. Minimal
perturbation problem-a formal view. Neural Network World
13(5):501–512.
Barták, R. 2016. Using attribute grammars to model nested
workflows with extra constraints. In SOFSEM 2016: Theory
and Practice of Computer Science. Springer. 171–182.

Cunningham, P., and Smyth, B. 1997. Case-based reasoning
in scheduling: reusing solution components. International
Journal of Production Research 35(11):2947–2962.
Dulai, T., and Werner-Stark, Á. 2015. A database-oriented
workflow scheduler with historical data and resource sub-
stitution possibilities. In Proceedings of the International
Conference on Operations Research and Enterprise Systems,
325–330. SciTePress.
Jain, A. S., and Meeran, S. 1998. Job-shop scheduling
using neural networks. International Journal of Production
Research 36(5):1249–1272.
Kondrak, G., and Van Beek, P. 1997. A theoretical evaluation
of selected backtracking algorithms. Artificial Intelligence
89(1):365–387.
Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock,
J. W.; Wu, D.; and Yaman, F. 2003. Shop2: An htn planning
system. J. Artif. Intell. Res.(JAIR) 20:379–404.
Oddi, A.; Policella, N.; Cesta, A.; and Smith, S. F. 2007.
Boosting the performance of iterative flattening search. In
AI* IA 2007: Artificial Intelligence and Human-Oriented
Computing, LNCS 4733. Springer Verlag. 447–458.
Ouelhadj, D., and Petrovic, S. 2009. A survey of dynamic
scheduling in manufacturing systems. Journal of Scheduling
12(4):417–431.
Raheja, A. S., and Subramaniam, V. 2002. Reactive recovery
of job shop schedules – a review. International Journal of
Advanced Manufacturing Technology 19:756–763.
Ramkumar, R.; Tamilarasi, A.; and Devi, T. 2011. Multi cri-
teria job shop schedule using fuzzy logic control for multiple
machines multiple jobs. International Journal of Computer
Theory and Engineering 3(2):282–286.
Skalický, T. 2011. Interactive scheduling and visualisation.
Master’s thesis, Charles University in Prague.
Smith, S. F. 1995. Reactive scheduling systems. In D.
Brown and W. Scherer (eds.), Intelligent scheduling systems,
155–192. Springer US.
Vieira, G.; Herrmann, J.; and Lin, E. 2003. Rescheduling
manufacturing systems: a framework of strategies, policies,
and methods. Journal of Scheduling 6:39–62.
Zhang, L.; Wong, T.; Zhang, S.; and Wan, S. 2011. A multi-
agent system architecture for integrated process planning
and scheduling with meta-heuristics. In Proceedings of the
41st International Conference on Computers & Industrial
Engineering.

93

Dissertation Abstract: Numeric Planning

Johannes Aldinger
Albert-Ludwigs-Universität Freiburg

Institut für Informatik
Georges-Köhler-Allee 52
79110 Freiburg, Germany

aldinger@informatik.uni-freiburg.de

Extended Abstract1

Planning is the art to automatically find solutions to prob-
lems where a model of the world is described in terms of
variables and actions. A solution to such a planning prob-
lem is a sequence of actions (called plan) transforming the
initial situation to a state that satisfies a goal description. In
classical planning, the world is described by Boolean vari-
ables and the field is well studied with eminent advances of
the state of the art in the last decades. However, classical
planning is not expressive enough, e.g. for many interest-
ing real-world applications that rely on numeric quantities.
Therefore, we contemplate on numeric planning in this dis-
sertation.

Background
For planning, the domain description language PDDL is the
standard to model planning problems. Fox and Long (2003)
extended this language in order to model more expressive
planning problems. In PDDL2.1, the expressiveness of the
planning language is classified into layers. Classical plan-
ning problems can be expressed in layer 1. Layer 2 allows
for numeric, rational valued, variables and can therefore ex-
press physical properties (such as the velocity of a vehicle)
as well as resources (such as the fuel level of a vehicle). In
layer 3, actions can have a duration in order to model plan-
ning problems requiring the concurrent execution of actions.
Changes to the world happen at specific instants (start of ac-
tion, end of action), an assumption that is lifted in layer 4,
where continuous change of variables (e.g. the concurrent
filling and draining of a tub) can be modeled as well. Finally,
layer 5 allows for exogenous events: the world is dynamic
and events can happen without the influence of the planning
agent. This dissertation aims at shedding light on numeric
planning expressible with PDDL2.1, layer 2, also known as
numeric planning with instantaneous actions.

A numeric planning task Π = 〈V,O, I,G〉 is a 4-tuple
where V is a set of numeric variables v with domain Q∞ :=
Q∪{−∞,∞}. O is a set of operators, I the initial state and
G the goal condition. A numeric expression e1◦e2 is an arith-
metic expression with operators ◦ ∈ {+,−,×,÷} and ex-
pressions e1 and e2 recursively defined over variables V and

1Parts of this extended abstract were adopted from previous
work (Aldinger, Mattmüller, and Göbelbecker 2015)

constants from Q. A numeric constraint (e1 ./ e2) compares
numeric expressions e1 and e2 with ./ ∈ {≤, <,=, 6=}. A
condition is a conjunction of propositions and numeric con-
straints. A numeric effect is a triple (v ◦= e) where v ∈ V ,
◦= ∈ {:=,+=,−=,×=,÷=} and e is a numeric expres-
sion. Operators o ∈ O are of the form 〈pre → eff〉
and consist of a condition pre and a set of effects eff =
{eff1, . . . , effn} containing at most one numeric effect for
each numeric variable and at most one truth assignment for
each propositional variable.

The semantics of a numeric planning task is straightfor-
ward. For constants c ∈ Q, s(c) = c. Numeric expressions
(e1 ◦ e2) for ◦ ∈ {+,−,×,÷} are recursively evaluated in
state s: s(e1 ◦ e2) = s(e1) ◦ s(e2). a numeric constraints
(e1 ./ e2), with expressions e1, e2 and ./ ∈ {≤, <,=, 6=},
s � (e1 ./ e2) is satisfied iff s(e1) ./ s(e2).

Related Work
Extending classical delete relaxation heuristics to numeric
problems has been done before, albeit only for a subset of
numeric tasks, where numeric variables can only be manip-
ulated in a restricted way. The Metric-FF planning system
(Hoffmann 2003) tries to convert the planning task into a lin-
ear numeric task, which ensures that variables can “grow” in
only one direction. When high values of a variable are ben-
eficial to fulfill the preconditions, decrease effects are con-
sidered harmful. Another approach to solve linear numeric
planning problems is to encode numeric variables in a lin-
ear program and solve constraints with an LP-solver. Coles
et al. (2008) analyze the planning problem for consumers
and producers of resources to obtain a heuristic that ensures
that resources are not more often consumed than produced
or initially available. The RANTANPLAN planner (Bofill,
Arxer, and Villaret 2015) uses linear programs in the context
of planning as satisfiability modulo theories. Instead, we are
interested in approaching numeric planning supporting all
arithmetic base operations.

Contributions
The objective of this dissertation is to provide planning sys-
tem for numeric planning with instantaneous actions. At the
core stands the Fast Downward planning system (Helmert
2006) for classical planning. Our intent is to extended Fast

94

Downward with full numeric functionality without impair-
ing its performance on classical domains. Numeric Fast
Downward (NFD), the numeric extension of Fast Downward
has to alter almost all components of the Fast Downward
planning systems. Fast Downward transforms the PDDL in-
put into more convenient and effective data structures. Dur-
ing the translation phase, the task is grounded translated into
a multi-valued SAS+ representation. During a knowledge
compilation step, domain transition graph and causal graph
are determined. Finally, different search algorithms can be
used together with a multitude of heuristics in order to solve
the planning task. Extending Fast Downward requires major
modifications in all steps, and NFD has to deal with inter-
actions between numeric variables, interactions between nu-
meric and multi-valued variables and new challenges com-
ing from the numeric abilities (e.g. an operator can now have
infinitely many different outcomes, depending on the previ-
ous state). Some of the extensions for NFD could be adopted
from Temporal Fast Downward (TFD) (Eyerich, Mattmüller,
and Röger 2009), a temporal planner based on an earlier ver-
sion of Fast Downward, e.g. the handling of numeric expres-
sions by recursively introducing auxiliary variables for each
expression. The evaluation of these auxiliary variables is
then handled by numeric axioms. Other extensions had to
be developed from scratch, either because the Fast Down-
ward evolved from the time when TFD branched from it,
or because some features were never implemented for TFD
(e.g. the detection of unreachable world states early on can
simplify internal data structures).

In order to obtain a baseline heuristic for numeric plan-
ning, we implement numeric extensions of the relaxation
heuristics from classical planning hmax, haddand hFF. In or-
der to do so, we found that the theoretical base for relaxed
numeric planning was not set and had to be established first.
Numeric planning is undecidable (Helmert 2006) in general,
while classical planning is PSPACE-complete (Bylander
1994). Nevertheless, plans exist for many numeric problems
and for many numeric problems we can prove unsolvability,
so we seek guidance for these problems. This guidance is
obtained by heuristics and in order to be tractable we want
the estimate to be computable in polynomial time. The idea
of a relaxation heuristic is that every fact that is achieved
once during planning remains achieved. The problem is
simplified as the set of achieved facts grows monotonously.
We studied different extensions to relaxation for numeric
planning (Aldinger, Mattmüller, and Göbelbecker 2015) and
found intervals to be suitable. The idea of an interval relax-
ation is to store the lower and the upper bound of achievable
values in an interval, ensuring that the reachable values can
only grow at each step. The methods to deal with intervals
have been studied in the field of interval arithmetic. Never-
theless, a major obstacle in numeric planning has to be over-
come: the repeated application of numeric operators. While
relaxed operators are idempotent in classical planning, the
same operator can alter the state of the world arbitrarily often
(e.g. 〈∅ → x += 1〉 can increase x0 = [0, 0] to xi = [0, i]
after i steps). We analyzed conditions under which this re-
peated application of operators can be captured in polyno-
mial time, and how interval relaxed plans can be derived by

explicating the number of repetitions. For acyclic numeric
planning tasks, i.e. tasks where variables do not depend di-
rectly or indirectly on themselves, we proved that the inter-
val relaxation in P. For cyclic tasks, we can introduce cycle
breaker actions that artificially set the reachable values of a
variable to (−∞,∞). While this impairs the quality of the
heuristic estimate, it ensures that the heuristic can be com-
puted in polynomial time.

On the practical side we use numeric planning in the con-
text of earth observation satellites application of numeric
planning to earth observation satellites (Aldinger and Löhr
2013). An Earth observation satellite equipped with heavy
optical sensors has to slew towards regions of interest while
orbiting Earth. The number of observation sites exceeds the
capability of the satellite and attitude dynamic constraints
have to be satisfied.

Open Research Ideas
In the near future we are interested in addressing the open
question whether the restriction to acyclic numeric planning
tasks can be weakened. We are also interested in tackling
another problem inherent to relaxation heuristics: the cyclic
resource transfer problem (Coles et al. 2008). Numeric vari-
ables are frequently used to model resources. If an opera-
tor can transfer resources from one location to another, this
is modeled by reducing the quantity at the source location
while increasing it at the target. In the relaxed problem, the
quantity of the resource is not decreased at the source lo-
cation, and as such a resource can be “produced” by mov-
ing it around. This deteriorates heuristic estimates in many
(relevant) numeric planning problems. Coles et al. (2008)
use linear programming to ensure that no more resources
are consumed than produced. Linear programs are also used
in the numeric planning system RANTANPLAN by Bofill,
Arxer, and Villaret (2015). We believe that linear program-
ming can be fruitful for numeric planning in many ways and
opens many promising research directions for future work.

References
Aldinger, J., and Löhr, J. 2013. Planning for Agile Earth
Observation Satellites. In Proceedings of the ICAPS-2013
Workshop on Planning in Continuous Domains (PCD 2013),
9–17.
Aldinger, J.; Mattmüller, R.; and Göbelbecker, M. 2015.
Complexity of Interval Relaxed Numeric Planning. In Pro-
ceedings of the 38th German Conference on Artificial Intel-
ligence (KI 2015).
Bofill, M.; Arxer, J. E.; and Villaret, M. 2015. The
RANTANPLAN Planner: System Description. In Pro-
ceedings of the ICAPS-15 Workshop on Constraint Satis-
faction Techniques for Planning and Scheduling Problems
(COPLAPS 2015), 1–10.
Bylander, T. 1994. The Computational Complexity of
Propositional STRIPS Planning. Artificial Intelligence 69
165–204.
Coles, A.; Fox, M.; Long, D.; and Smith, A. 2008. A Hybrid
Relaxed Planning Graph-LP Heuristic for Numeric Planning

95

Domains. In Proceedings of the 20th International Confer-
ence on Automated Planning and Search (ICAPS 2008), 52–
59.
Eyerich, P.; Mattmüller, R.; and Röger, G. 2009. Using
the Context-enhanced Additive Heuristic for Temporal and
Numeric Planning. In Proceedings of the 19th International
Conference on Automated Planning and Scheduling (ICAPS
2009), 130–137.
Fox, M., and Long, D. 2003. PDDL2.1 : An Extension to
PDDL for Expressing Temporal Planning Domains. Journal
of Artificial Intelligence Research 20 (JAIR) 61–124.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research 26 (JAIR) 191–
246.
Hoffmann, J. 2003. The Metric-FF Planning System: Trans-
lating ‘Ignoring Delete Lists’ to Numeric State Variables.
Journal of Artificial Intelligence Research 20 (JAIR) 291–
341.

96

Exploiting Search Space Structure in Classical Planning:
Analyses and Algorithms
(Dissertation Abstract)

Masataro Asai
Graduate School of Arts and Sciences

University of Tokyo

State of the Current Work, Future Plans and
Expectations from the Consortium

The author has completed 2 years of research in Masters de-
gree and is in the first year of the PhD, which is not so close
to the dissertation. As a result, this dissertation abstract con-
tains several speculative materials. This is because the author’s
current publications lack the coherent story, primarily due to
the lack of good understanding of macro operators and search
algorithms in the planning community. I address this issue in
the future work sections and make up the coherent story that is
necessary to form a viable thesis.

At the time of writing this, I expect from the Consortium the
advice how to form a viable, coherent dissertation thesis, which
is completely different from writing an individual research pa-
per. I also wish to connect with mentors and students in the
Consortium for future collaboration, because some of future
work may not make way into the thesis.

In the following sections, I first present my past work, then I
propose some future ideas.

Current Work
Factored Planning System CAP
We proposed a Factored Planning framework CAP (Asai and
Fukunaga 2015).

Factored Planning (FP) is a class of planning framework
which first decompose a problem into (hierarchical) subprob-
lems, then (hierarchically) merge the results of the subproblems
into a concrete solution of the entire problem. FP subsumes Hi-
erarchical Task Network in which the decomposition is written
by humans. In contrast, recent FP systems use the automatic
decomposition of the planning problems (Amir and Engel-
hardt 2003; Brafman and Domshlak 2006; Kelareva et al. 2007;
Fabre et al. 2010).

CAP is a variant of FP systems which only weakly requires
the decomposability of the problem. Previous FP systems as-
sume the full disjointness (subgoals do not conflict with each
other) and the concatenability (high-level solver can connect
the solutions of the decomposed subproblems), primarily be-
cause it tries to solve the problem using all and only the solu-
tions to the decomposed subproblems. CAP, in contrast, uses
the solutions to the subproblems as macro operators, and com-
pose the plan using macros as well as the primitive actions.

Figure 1: CAP system overview. SubPlanner and MainPlanner
are domain-independent planners, e.g., FD/lama (Helmert 2006),
FF (Hoffmann and Nebel 2001). They can be the same planner,
or different planners.

Figure 1 shows the overview of the CAP framework. Sub-
Planner and MainPlanner are domain-independent planners,
e.g., FD/lama (Helmert 2006), FF (Hoffmann and Nebel 2001),
Probe (Lipovetzky and Geffner 2011), YAHSP3 (Vidal and oth-
ers 2004; Vidal 2011; 2014). They can be the same planner, or
different planners (mixed configuration). In detail, CAP works
as follows:

1. Problem Decomposition: Perform a static analysis of the
PDDL problem in order to identify the independent subprob-
lems. Each subproblem is called a component task, which is
created from an abstract component. There are several ways
to construct abstract components, which affect the resulting
component task.

2. Generate Subplans with SubPlanner: Solve the subproblems
with a domain-independent planner (SubPlanner).

3. Macro generation: For each subplan, concatenate all of its
actions into a single, ground (nullary) macro operator.

4. Main Search by MainPlanner: Solve the augmented
PDDL domain (including macros) with a standard domain-
independent planner (MainPlanner).

5. Decoding: Finally, any macros in the plan found by Main-
Planner are decoded back to the primitive actions.

Unlike the previous Factored Planning frameworks, CAP
was shown to be capable of solving wide range of planning
problems. We tested CAP in extremely large planning problems
generated by the same problem generators in the standard IPC
Sequential Satisficing domains, as well as the Learning Track
Test instances of IPC. Table 1 shows that CAP and MUM, a
state-of-the-art macro learning system, improve performance in

97

a completely different domains, and that CAP combined with
MUM further improves the performance.

X = FF X = FD/lama X = Probe

Domain FF M
U

M
(F

F)
C

A
P7

.5
s

(F
F)

M
U

M
(C

A
P7

.5
s

(F
F)

)

FD
/la

m
a

M
U

M
(F

D
/la

m
a)

C
A

P7
.5

s
(F

D
/la

m
a)

M
U

M
(C

A
P7

.5
s

(F
D

/la
m

a)
)

Pr
ob

e
M

U
M

(P
ro

be
)

C
A

P7
.5

s
(P

ro
be
)

M
U

M
(C

A
P7

.5
s

(P
ro

be
))

IP
C

20
11

L
ea

rn
in

g

barman-ipc11-learn(30) 0 0 29 30 5 0 29 0 9 1 24 30
blocksworld-ipc11-learn(30) 6 25 6 25 2529 25 29 1929 20 29

depots-ipc11-learn(30) 2 3 1 1 0 0 0 0 2829 27 30
gripper-ipc11-learn(30) 0 0 0 0 0 5 0 5 0 30 0 30
parking-ipc11-learn(30) 1 1 1 1 1414 8 10 4 2 3 2
rover-ipc11-learn(30) 2 0 3 4 27 0 12 23 15 0 10 19

satellite-ipc11-learn(30) 2 1 2 3 5 0 0 0 0 0 0 0
spanner-ipc11-learn(30) 0 0 0 0 0 0 0 0 0 0 0 0

tpp-ipc11-learn(30) 0 9 20 30 1430 30 30 10 0 10 0
Sum 1339 62 94 9078104 97 8591 94 140

Table 1: IPC2011 Learning Track results on 15 minutes,
4GB memory setting, using the standard planner X ∈
{FD/lama, FF, Probe}, with/without either/both of macros intro-
duced by CAP and MUM.

CAP has a plenty of rooms for enhancements. It can be en-
hanced by using the different planners in the subproblem solv-
ing and the main planning enhanced by macros. The timelimit
criteria of the subproblem solving can be dynamically opti-
mized by the iterative resource allocation. Some subproblems
can be pruned by the compatibility criteria between the sub-
problems, which is checked by detecting the graph isomor-
phism. CAP can also be enhanced with a “restoration macro”,
a macro that “bridges the gap” to the next applicable macro.

Revisiting the Utility Problem: An Empirical Analysis

Although the performance improvement of CAP is clear, we
gave further in-depth analysis on why CAP system works and
why their enhancements work.

With this task in mind, we revisited the Utility Problem, a
tradeoff between the benefit and the cost of introducing macros.
Although recent macro systems such as MacroFF (Botea et al.
2005), Wizard (Newton et al. 2007) and MUM (Chrpa, Val-
lati, and McCluskey 2014) employ sophisticated macro prun-
ing methods, some of key assumptions regarding the utility
problem predate current heuristic search based planners. We
reinvestigate the utility problem for macro operators using two
models, “partial solution macros” and “junk macros”, each rep-
resents how “obviously useful” macros and “obviously use-
less” macros affect the search performance of planners. As a
result, we get the following observations:

First, contrary to conventional wisdom, macro operators do
not increase the effective branching factor in modern heuris-
tic search-based planners. We show that introducing randomly
chosen “junk” macros reduces node evaluations in many do-
mains, and in some domains, junk macros improves the runtime
(Table 2).

(LAMA) Preprocess Search Total Eval
Domain L [sec] [sec] [sec] [node]
airport 8 112 (1.1) 355 (.50) 467 (.57) 280721 (.74)

cybersec 8 2217 (.91) 3 2220 (.91) 3309
depot 8 22 (1.3) 149 (.50) 171 (.54) 190577 (.47)

driverlog 5 24 (1.3) 105 (1.6) 129 (1.5) 179752 (.88)
hanoi 2 3 (1.0) 287 (.79) 290 (.79) 2070986 (.97)

mystery 5 87 (1.4) 4 (.21) 91 (1.1) 2643 (.08)
pipesworld-t 8 304 (1.5) 893 (2.1) 1197 (1.9) 355576 (.89)

rovers 2 331 (1.1) 114 (.96) 445 (1.0) 87475 (.90)
transport-sat11 2 205 (1.3) 630 (2.0) 835 (1.8) 47244 (.47)
Table 2: Selective results showing the improvements by junk
macros of length L, using LAMA planner. Each cell shows
the sum over all instances in the domain solved by all con-
figurations, averaged by the 10 runs. Ratios relative to LAMA
are shown, e.g., “(.86)” means the ratio compared to LAMA is
0.86. Improvement/degradation are tested with statistical sig-
nificance (p < 0.001).

cov. macros (L ≥ 2) usage (%) expansion time
baseline 557 0 0 0 0/0 83009511 1765
split1 561 598 595 557 93.6 16194 0.36
split3 561 1794 1727 1550 89.7 175689 3.74
split10 561 5980 4100 2999 73.1 3683892 50.2
split3gap1 561 1794 1648 1423 86.3 389398 20.6
split3gap3 560 1794 1444 1158 80.2 1811416 74.7
split3gap5 561 1794 1260 984 78.1 7540669 202

Table 3: Results on problems with partial solution macros and
partial solution macros with gaps.

Next, we show that the planner may fail to use even trivially
useful “partial solution macros”.

The most trivially useful macros are the complete solutions
to the planning problem itself — Any solution can be encoded
as a macro, such that applying it to the initial state results
in reaching the goal in one step. Although such macros are
clearly unrealistic, understanding the behavior of modern plan-
ners with such a macro can yield useful insights.

As a next step we investigate partial solution macros, which
are the macros generated by splitting a solution into several
parts and encoding the individual pieces as macros. Since con-
necting those macros solve the entire problem instantly, smart
planners should be able to successfully connect them. We refer
to this assumption a concatenability assumption, an important
assumption made by Factored Planners. However, we empir-
ically show that the planners are in fact not able to connect
them, and the concatenability assumption does not hold. We
show that an important factor determining such success/failure
in utilizing macros is the difficulty of establishing a chain of
macro applications, i.e., the “gap” between the partial solution
macros (Table 3).

By applying new insights, we can now fully investigate CAP
and restoration macros, an enhancement to CAP which ad-
dresses the problem of large gaps between the macros found
by CAP.

Tiebreaking Strategy for A*: How to Explore the
Final Frontier
Despite recent improvements in search techniques for cost-
optimal classical planning, the exponential growth of the size
of the search frontier in A* is unavoidable. We investigate

98

tiebreaking strategies for A*, experimentally analyzing the
performance of standard tiebreaking strategies that break ties
according to the heuristic value of the nodes. We find that
tiebreaking has a significant impact on search algorithm per-
formance when there are zero-cost operators that induce large
plateau regions in the search space. We develop a new frame-
work for tiebreaking based on a depth metric which measures
distance from the entrance to the plateau, and proposed a new,
randomized strategy which significantly outperforms standard
strategies on domains with zero-cost actions (Asai and Fuku-
naga 2016).

We showed that contrary to conventional wisdom, tiebreak-
ing based on the heuristic value is not necessary to achieve
good performance. We also proposed a new framework for
defining tiebreaking policies based on depth. Our depth-based,
randomized strategy [h, rd, ro], which uses the heuristic value,
but explicitly avoids depth and ordering biases present in pre-
vious methods, significantly outperforms previous strategies
on domains with zero-cost actions, including practical appli-
cation domains with resource optimization objectives in the
IPC benchmarks. The proposed approach is highly effective on
domains where zero-cost actions create large plateau regions
where all nodes have the same f and h costs and the heuristic
function provides no useful guidance.

Summary of Contributions
Our current contributions can be summarized as follows. (1)
We proposed CAP, a satisficing factored planner using macros.
(2) We investigated of the general effect of macro operators in
satisficing planning, and applied the new observation to CAP.
(3) We investigated the past tiebreaking strategies of A* for
optimal search, and proposed a new tiebreaking methods which
diversifies the search depth.

Although (1) and (2) are the same line of work, (3) does not
nicely fit into the storyline, which will be fixed in the future
work as proposed in the following sections.

Introduction (Future Work)
Current State-of-the-Art planner such as Fast Downward (?)
can solve the planning problems of a moderately large size in
a reasonable amount of time, mainly thanks to the greedy for-
ward search combined with sophisticated heuristic functions
such as delete-relaxation (?) and landmarks (Richter and West-
phal 2010), combined with techniques specifically tailored to-
ward planning problems such as helpful actions (?) and consis-
tency criteria (Lipovetzky and Geffner 2011).

However, Classical Planning is PSPACE-Complete (Bylan-
der 1994) and intractable in general. Above strategies are made
upon the assumption that the problems are serially decompos-
able, and in fact its usefullness does not hold in the random
problem instances generated by algorithm A, B or C in (By-
lander 1996; Rintanen and others 2004) nor in some domains
such as Floortile, Scanalyzer in recent IPCs (Alcázar, Veloso,
and Borrajo 2011).

Moreover, there are several satisficing search strategies that
seem still yet relatively incompatible to, or independent from
the heuristic forward search. Examples include SAT-based
planners (Rintanen 2012), Lookaheads (Vidal and others 2004),

Macro actions (Chrpa, Vallati, and McCluskey 2015), Fac-
tored Planning (Amir and Engelhardt 2003; Asai and Fuku-
naga 2015), Diversified Search (Imai and Kishimoto 2011;
Xie et al. 2014; Burfoot, Pineau, and Dudek 2006).

In our work, we try to provide a consistent theoretical back-
ground unifying all these strategies, and then propose several
practical algorithms inspired by the new observations.

Macro-conversion of the Search Algorithms
First, we formally define the notion of best first search with
lookaheads (L-BFS) and show that macro actions can simu-
late any L-BFS, and vice versa (L-BFS can simulate any macro
actions). The intuition is as follows: When BFS starts a depth-
first lookahead during the search in a certain condition, that
condition can be directly encoded in the preconditions of the
macros, although in a problem-specific manner. This unifies
various inadmissible search strategies as a modification of the
search space using macro actions, which greatly simplifies the
discussions in the later sections. We hereafter call the act of
simulating L-BFS by macro operators as “macro-conversion”.

Phase Transition of the Search Space
Next, we tackles the problem of Phase Transition in the com-
plex search space of planning problems. Phase transition in a
class of search problems is a phenomenon that the difficulty
and the complexity of the problems are ruled by a simple meta-
level parameter, and become increasingly easy or hard when
the parameter crosses a critical value.

In AI research, phase transition was first found in the boolean
satisficing problems (Huberman and Hogg 1987; Cheeseman,
Kanefsky, and Taylor 1991; Selman, Mitchell, and Levesque
1996) and are recently connected to the physical phenomenon
in the Ising model of the spin grass (Barahona 1982). In
boolean-SAT problems, the meta-level parameter is the ratio
r = L/N of the number of clauses L and the number of propo-
sitions N , with a critical value rc ≈ 4.24 (Crawford and Auton
1993). In boolean SAT, whenN →∞, the probability of being
SAT is 0 when r < rc and 1 when r > rc. When N is finite,
it becomes increasingly difficult to determine the satisfiability
when p approaches pc from either above or below.

In planning problems, previous strategies for analyzing the
phase transition are primarily based on the analogy from the
boolean satisficing problems. For example, the meta-parameter
that is claimed to be controlling the problem difficulty is the
ratio of number of operators versus the number of state vari-
ables (Rintanen and others 2004). In Algorithm B, (Bylander
1996) A and C (Rintanen and others 2004), planning operators
are generated randomly.

We instead analyze the planning problems based on the Per-
colation Theory (Stauffer and Aharony 1994), a theory describ-
ing the behavior of the fluid percolating through porous mate-
rial from one end to the other end. The same theory is already
shown to be applied to the pathfinding on random graph and
ACO algorithm (Velloso and Roisemberg 2008) because the
existence of a satisficing path in a graph is equivalent to perco-
lating the material from one porous site to the goal site with the
fluid. However, the search spaces of planning problems and the
random graphs are claimed to have the different characteristics
(Bylander 1996; Rintanen and others 2004).

99

Percolation theory dictates that the connectability of the
graph is controlled simply by the ratio p of the number of oc-
cupied edges to the number of all edges. In the infinite graph,
the probability p of two points having a path is 0 when the ra-
tio r is below a critical threshold rc, and is 1 when r > rc.
The value of rc depends on the topology of the graph. In case
of finite graph, the probability p becomes a continuous func-
tion p(r) which has a critical region around rc where the value
grows from 0 to 1. The width of the region is called correlation
index radius, which basically means the radius in which a node
is affected by the other nodes.

Using these theories, we treat the grounded search space di-
rectly, rather than through the number of operators. An operator
does not represent a single edge in the search space, and in-
stead they representing multiple edges starting from the states
which satisfies the precondition — the partial specification of
the states. We plan to propose a new random problem genera-
tion methods which considers the number of states that is ap-
plicable to each operator, and show it achieves a much steeper
phase transitions than the previous methods. We will also pro-
vide a formal proof that the SAT/UNSAT of the problem ap-
proaches to 0/1 around the critical value as the size of the graph
approaches to the infinity.

Restart-based, Probabilistically Complete
Search Algorithm with Randomly Reduced

Number of Edges
We propose a restart-based search algorithms which solve the
problems by randomly removing the edges in the search space.
The reduced instances may be UNSAT, but we show that as
long as we control the number of edges so that the meta-
parameter r is above the critical region, we can still solve the
problems asymptotically as we restart with different random
seeds.

This method has an effect of shifting the meta-level param-
eter outside the critical region and making the problem easily
SAT/UNSAT, which follows the intuitive observation that the
search finishes quickly due to the reduced branching factor, or
the problem is quickly proven to be UNSAT using reachabil-
ity analysis on the relaxed planning graph. We plan to empir-
ically show that this method achieves a good performance in
IPC problems.

Extensions of Tiebreaking Strategy for A* to
Satisficing Planning
We analyse our tiebreaking strategy for A* (Asai and Fukunaga
2016) using macro-conversion and percolation theory. Since
the strategy explores the search space sparsely, it would have
the similar effect as the previous algorithm (Search Algorithm
with Randomly Reduced Number of Edges) on the plateau re-
gion of A*.

Using the same tiebreaking strategy, we also propose a
constant-error search method as compared to the famous
constant-times-error method WA*. It divides f-value by a con-
stant error value c, ignoring the remainder. Since it introduces
an intensive increase of the plateau region, we use the same
tiebreaking strategy as in (Asai and Fukunaga 2016).

Another possible application of this tiebreaking is the tem-
poral planning problems, where the actions with short duration
can be hidden behind the actions with longer duration, which
is known as ε-cost traps (Cushing, Benton, and Kambhampati
2010).

Analysing CAP using Percolation Thoery
Finally, we analyse CAP using Percolation Theory. Since the
macros introduced by CAP tends to be long, it has a significant
impact on the connectability of the search space. This analysis
is expected to finally form a into a coherent story out of the
current work which have the different topics.

Conclusion
I summarized several current work of mine (including the ma-
terials being under review) and showed that they have diverged
topics which are hard to form a coherent thesis. Then I pro-
posed an idea how to merge those topics into a single topic,
percolation theory, using the macro-conversion technique.

References
Alcázar, V.; Veloso, M.; and Borrajo, D. 2011. Adapting a rapidly-
exploring random tree for automated planning. In SoCS.
Amir, E., and Engelhardt, B. 2003. Factored planning. In IJCAI,
volume 3, 929–935. Citeseer.
Asai, M., and Fukunaga, A. 2015. Solving Large-Scale Planning
Problems by Decomposition and Macro Generation. In Proceed-
ings of the International Conference of Automated Planning and
Scheduling(ICAPS).
Asai, M., and Fukunaga, A. 2016. Tiebreaking Strategies for Clas-
sical Planning Using A∗ Search.
Barahona, F. 1982. On the computational complexity of ising spin
glass models. Journal of Physics A: Mathematical and General
15(10):3241.
Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J. 2005.
Macro-FF: Improving AI Planning with Automatically Learned
Macro-Operators. JAIR 24:581–621.
Brafman, R. I., and Domshlak, C. 2006. Factored planning: How,
when, and when not. In AAAI, volume 6, 809–814.
Burfoot, D.; Pineau, J.; and Dudek, G. 2006. RRT-Plan: A Ran-
domized Algorithm for STRIPS Planning. In Proceedings of the
International Conference of Automated Planning and Schedul-
ing(ICAPS), 362–365.
Bylander, T. 1994. The Computational Complexity of Proposi-
tional STRIPS Planning. Artificial Intelligence 69(1):165–204.
Bylander, T. 1996. A Probabilistic Analysis of Prepositional
STRIPS Planning. Artificial Intelligence 81(1):241–271.
Cheeseman, P.; Kanefsky, B.; and Taylor, W. M. 1991. Where the
really hard problems are. In IJCAI, volume 91, 331–340.
Chrpa, L.; Vallati, M.; and McCluskey, T. L. 2014. MUM: A
Technique for Maximising the Utility of Macro-operators by Con-
strained Generation and Use. In ICAPS, 65–73.
Chrpa, L.; Vallati, M.; and McCluskey, T. L. 2015. On the Online
Generation of Effective Macro-Operators. In International Joint
Conference on Artificial Intelligence, 1544–1550.

100

Crawford, J. M., and Auton, L. D. 1993. Experimental results on
the crossover point in satisfiability problems. In AAAI, volume 93,
21–27. Citeseer.
Cushing, W.; Benton, J.; and Kambhampati, S. 2010. Cost Based
Search Considered Harmful.
Fabre, E.; Jezequel, L.; Haslum, P.; and Thiébaux, S. 2010. Cost-
Optimal Factored Planning: Promises and Pitfalls. In ICAPS, 65–
72.
Helmert, M. 2006. The Fast Downward Planning System. JAIR
26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF Planning System: Fast
Plan Generation through Heuristic Search. JAIR 14:253–302.
Huberman, B. A., and Hogg, T. 1987. Phase transitions in artificial
intelligence systems. Artificial Intelligence 33(2):155–171.
Imai, T., and Kishimoto, A. 2011. A Novel Technique for Avoid-
ing Plateaus of Greedy Best-First Search in Satisficing Planning.
In AAAI.
Kelareva, E.; Buffet, O.; Huang, J.; and Thiébaux, S. 2007. Fac-
tored Planning Using Decomposition Trees. In IJCAI, 1942–1947.
Lipovetzky, N., and Geffner, H. 2011. Searching for Plans with
Carefully Designed Probes. In ICAPS.
Newton, M. H.; Levine, J.; Fox, M.; and Long, D. 2007. Learning
Macro-Actions for Arbitrary Planners and Domains. In Proceed-
ings of the International Conference of Automated Planning and
Scheduling(ICAPS), 256–263.
Richter, S., and Westphal, M. 2010. The LAMA Planner: Guiding
Cost-Based Anytime Planning with Landmarks. J. Artif. Intell.
Res.(JAIR) 39(1):127–177.
Rintanen, J., et al. 2004. Phase Transitions in Classical Planning:
An Experimental Study. In Proceedings of the International Con-
ference of Automated Planning and Scheduling(ICAPS), volume
2004, 101–110.
Rintanen, J. 2012. Planning as satisfiability: Heuristics. Artificial
Intelligence 193:45–86.
Selman, B.; Mitchell, D. G.; and Levesque, H. J. 1996. Generating
hard satisfiability problems. Artificial intelligence 81(1):17–29.
Stauffer, D., and Aharony, A. 1994. Introduction to percolation
theory. CRC press.
Velloso, B. P., and Roisemberg, M. 2008. Percolation analyses in
a swarm based algorithm for shortest-path finding. In Proceedings
of the 2008 ACM symposium on Applied computing, 1861–1865.
ACM.
Vidal, V., et al. 2004. A Lookahead Strategy for Heuristic Search
Planning. In Proceedings of the International Conference of Auto-
mated Planning and Scheduling(ICAPS), 150–160.
Vidal, V. 2011. YAHSP2: Keep it simple, stupid. Angel Garcıa-
Olaya, SJ, and López, CL, eds., Seventh International Planning
Competition 83–90.
Vidal, V. 2014. YAHSP3 and YAHSP3-MT in the 8th International
Planning Competition. Vallati, Mauro and Chrpa, Lukáš and Mc-
Cluskey, Thomas L., Eighth International Planning Competition
64–65.
Xie, F.; Müller, M.; Holte, R.; and Imai, T. 2014. Type-Based Ex-
ploration with Multiple Search Queues for Satisficing Planning. In
Proceedings of the Twenty-Eighth AAAI Conference on Artificial
Intelligence, July 27 -31, 2014, Québec City, Québec, Canada.,
2395–2402.

101

UNIVERSITAT DE GIRONA

DEPARTAMENT D’INFORMÀTICA, MATEMÀTICA APLICADA I ESTADÍSTICA
UNIVERSITAT DE GIRONA, SPAIN

Dissertation Abstract: SAT/SMT techniques for planning problems

Author:
Joan ESPASA

Supervisors:
Mateu VILLARET

February 17, 2016

102

Abstract

Although a lot of work has been devoted to the encoding of
planning tasks to propositional logic, only a few works can
be found in the literature on satisfiability based approaches to
planning in domains that require numeric reasoning. This is
probably due to the difficulty of efficiently handling at the
same time numeric constraints and propositional formulas.
Surprisingly, satisfiability modulo theories (SMT) has been
scarcely considered in planning, despite being an active and
growing area of research. Since SMT is the natural exten-
sion of SAT when propositional formulas need to be com-
bined with numeric constraints, we think it is worth consider-
ing SMT for SAT-based planning with numeric domains. The
purpose of this thesis is to adapt and take advantage of the
expressivity of SMT technology for solving planning prob-
lems with numerical constraints. Nevertheless, we remark
that most of the results accomplished are generalized to SMT,
not just SAT modulo linear arithmetic.

Introduction

The problem of planning, in its most basic form, consists in
finding a sequence of actions that will allow to reach a goal
state from a given initial state. Although initially consid-
ered a deduction problem, it was rapidly seen that it could
be better addressed by looking at it as a satisfiability (model
finding) problem (Kautz and Selman 1992). Many (incom-
plete) heuristic methods can be found in the literature to
efficiently deal with this problem, most of them oriented
towards finding models. Exact methods were ruled out at
the beginning due to their inefficiency. However, in (Kautz,
McAllester, and Selman 1996) it was shown that modern
off-the-shelf SAT solvers could be effectively used to solve
planning problems. In the last years, the power of SAT
technology has been leveraged to planning (Rintanen 2012),
making reduction into SAT state of the art for deterministic
planning.

As we have stated, a lot of work has been devoted to
the encoding of plans in propositional logic, but only a few
works can be found in the literature on satisfiability based
approaches to planning in domains that require numeric rea-
soning. However, the advances in satisfiability modulo theo-
ries (SMT) (Barrett et al. 2009) in the last years make worth
considering this alternative.

The pioneering work of LPSAT (Wolfman and Weld
1999) on planning with resources can indeed be considered
one of the precursors of SMT, as the basic ideas of SMT
(Boolean abstraction, interaction of a SAT solver with a the-
ory solver, etc.) were already present in it. A comparison
between SAT and SMT based encodings for planning in nu-
meric domains can be found in (Hoffmann et al. 2007).

Other approaches, related to SMT to some amount as
well, have been developed more recently. In (Belouaer and
Maris 2012), a set of encoding rules is defined for spatio-
temporal planning, taking SMT as the target formalism. On
the other hand, in (Gregory et al. 2012) a modular frame-
work, inspired in the architecture of lazy SMT, is developed
for planning with resources.

Hipothesis
Methods and techniques for SAT have been adapted and ex-
tended successfully for dealing with problems modelled us-
ing more expressive logics than propositional. In the case of
SAT Modulo Theories (SMT), its objective is to decide the
satisfiability of a set of propositional formulas, in combina-
tion of theories like equality, linear or real integer arithmetic,
bit vectors, . . . The application of SMT technology to combi-
natorial problems has given very good results. The purpose
of this thesis is to adapt and take advantage of the expressiv-
ity of SMT technology for solving planning problems with
numerical constraints. This objective can be seen as a two
step plan: Finding good encodings for the problems, and
then adapting the current solvers to tackle planning prob-
lems more efficiently.

Efficient Encodings
The first step we have focused on is to efficiently encode
PDDL problems into SMT problems.

As SMT is an expressive language, a first translation
of planning problems expressed with PDDL was achieved,
wich resulted in a publication (Bofill, Espasa, and Villaret
2014) where it was shown that it has promising results.

Our approximation is competitive with other exact and
complete methods for planning with resources on the tackled
problem, and also with some incomplete (heuristic) ones. In
particular, we obtained better results than NumReach (Hoff-
mann et al. 2007) and similar results to SGPlan (Hsu and
Wah 2008).

But some of the instances were big or long enough to
make this approach not feasible. As the number of vari-
ables, and hence the search space, rapidly grows with the
number of time steps considered, a key idea to improve the
performance of this approach is to consider the possibility
of executing several actions at the same time, i.e., the notion
of parallel plans. Parallel plans increase the efficiency not
only because they allow to reduce the time horizon, but also
because it is unnecessary to consider all total orderings of
the actions that are performed in parallel.

Parallelization of actions relies in the notion of (non-
)interference, which is usually determined at compile time,
i.e., independently of any state. This method often overesti-
mates the chances of interference, but guarantees the feasi-
bility of the plan.

To ensure that a parallel plan is sound, it is necessary that
all actions proposed to be executed at the same time do not
interfere. Different notions of interference have been de-
fined, some more restrictive, some more relaxed.

A generalization of the standard notion of interference be-
tween actions in SAT-based planning to the case of formulas
over Boolean and linear arithmetic propositions, makes it
suitable for planning with resources. In particular, we are
developing novel ideas that can help to determine in a more
fine-grained way interference between actions, as we think
that it is a key ingredient for dealing with planning with re-
sources efficiently.

To illustrate the situations where classic notions of in-
terference(Fox and Long 2003) overestimate affectation be-

103

tween actions, consider the following example. The prob-
lem consists in transporting people between cities using cars.
Each car has a limited number of seats and a given fuel ca-
pacity. The actions on this example are drive and board.

A car can only drive if it is transporting somebody and
it has enough fuel to reach its destination, and boarding is
limited by seat availability:

(:action fly
:parameters (?a - aircraft ?c1 ?c2 - city)
:precondition (and (at ?a ?c1)

(> (onboard ?a) 0)
(>= (fuel ?a)
(distance ?c1 ?c2)))

:effect (and (not (at ?a ?c1))
(at ?a ?c2)
(decrease (fuel ?a) (distance ?c1 ?c2))))

(:action board
:parameters (?p - person ?a - aircraft ?c - city)
:precondition (and (at ?p ?c)

(at ?a ?c)
(> (seats ?a) (onboard ?a)))

:effect (and (not (at ?p ?c))
(in ?p ?a)
(increase (onboard ?a) 1)))

The classic notion of interference would determine inter-
ference between drive and board, since board mod-
ifies the onboard function (number of passengers) and
drive checks the value of this function in its precondi-
tion. We are developing techniques that can find out that
there is no interference at all, since it is impossible that
the preconditions of board and drive were true at the
same time, and after executing board the precondition
of drive becomes false. Note that the precondition of
drive requires (> (onboard ?a) 0) and the effect
(increase (onboard ?a) 1) of board can never
falsify (> (onboard ?a) 0).

Parallelism in the Planning Modulo Theories
framework
Planning Modulo Theories (PMT) (Gregory et al. 2012) is a
modular framework that generalizes the integration of arbi-
trary theories with propositional planning. It is inspired in
the architecture of lazy SMT, which is the natural extension
of SAT when propositional formulas need to be combined
with other theories.

Existing works on numeric planning use syntactic or lim-
ited semantic approaches to determine interference between
actions, in a fairly restrictive way (Kautz and Walser 1999;
Fox and Long 2003; Gerevini, Saetti, and Serina 2008), and
not much is said in terms of interference between actions
when other theories are involved

Following the advances we made regarding parallelism
in the field of planning with resources, we decided to gen-
eralize our ideas to a more general framework like PMT.
We accomplished a more general notion of interference be-
tween actions, new relaxed semantics for parallel plans and
a chained encoding that can benefit from these, all in the
context of PMT.

This chained encoding, as its name suggests, lets the
solver chain the effects of various actions that the notion
classifies as non-interfering in one time-step.

Actually we are working in a relaxed version of our notion
of interference for PMT, together with new encodings that
can benefit from it. We aim to decrease further the number
of necessary checks to reach a valid plan.

More compact encodings
As the previously introduced encodings grow considerably
with time, to the point of getting unmanageable instances in
some big domains, we are developing more compact encod-
ings, using the theory of uninterpreted functions to express
predicates, functions and actions. These encodings are remi-
niscent of the lifted causal encodings in (Kautz, McAllester,
and Selman 1996).

In the SMT-LIB standard (Barrett, Stump, and Tinelli
2010), QF UFLIA stands for the logic of Quantifier-Free
Boolean formulas, with Linear Integer Arithmetic con-
straints and Uninterpreted Functions. Uninterpreted func-
tions have no other property than its name and arity. In
other words, they are only subject to the following axiom
schema of consistency: x1 = x′

1 ∧ · · · ∧ xn = x′
n =⇒

f(x1, . . . , xn) = f(x′
1, . . . , x

′
n).

Every defined object (ship, port, cargo, . . .) in the prob-
lem is mapped to an integer. For each function, predicate
and action an uninterpreted function is declared. Uninter-
preted functions corresponding to predicates and actions re-
turn a Boolean value, whilst the ones for functions return an
integer value.

This encoding is more compact, and it retains most of
the problem original structure. It remains to be seen if a
parallelized version of this encoding could lead to better re-
sults than the encoding without functions. To the best of our
knowledge, there are no works using parallelized encodings
with uninterpreted functions. It should hence be studied how
to generalize the standard parallel encodings to this setting.

Adapting SMT solvers
All the abovementioned encodings and techniques are be-
ing implemented in the RANTANPLAN planner (Bofill, Es-
pasa, and Villaret 2015). To this day, existing works to solve
combinatorial problems using SMT are based in using SMT
solvers as black boxes. This approximation has obvious lim-
its, as much is left to the internal design decisions of the
solver strategies.

We aim to adapt SMT solvers for efficiently modelled
planning problems, helping the solver search strategies and
even adapting existing theories to our benefit. There is a lot
of room for improvement in this area, and we expect to be
able to continue doing meaningful contributions to the com-
munity.

References
Barrett, C.; Sebastiani, R.; Seshia, S.; and Tinelli, C. 2009.
Satisfiability Modulo Theories. In Handbook of Satisfiabil-
ity, volume 185. IOS Press. chapter 26, 825–885.
Barrett, C.; Stump, A.; and Tinelli, C. 2010.
The Satisfiability Modulo Theories Library (SMT-LIB).
http://www.SMT-LIB.org.

104

Belouaer, L., and Maris, F. 2012. SMT Spatio-Temporal
Planning. In ICAPS 2012 Workshop on Constraint Satis-
faction Techniques for Planning and Scheduling Problems
(COPLAS 2012), 6–15.
Bofill, M.; Espasa, J.; and Villaret, M. 2014. Efficient SMT
Encodings for the Petrobras Domain.
Bofill, M.; Espasa, J.; and Villaret, M. 2015. The RANTAN-
PLAN Planner: System Description. Constraint Satis-
faction Techniques for Planning and Scheduling Problems
(COPLAS-15) 1.
Fox, M., and Long, D. 2003. Pddl2. 1: An extension to pddl
for expressing temporal planning domains. J. Artif. Intell.
Res.(JAIR) 20:61–124.
Gerevini, A. E.; Saetti, A.; and Serina, I. 2008. An approach
to efficient planning with numerical fluents and multi-
criteria plan quality. Artificial Intelligence 172(8):899–944.
Gregory, P.; Long, D.; Fox, M.; and Beck, J. C. 2012. Plan-
ning Modulo Theories: Extending the Planning Paradigm.
In Twenty-Second International Conference on Automated
Planning and Scheduling (ICAPS 2012). AAAI.
Hoffmann, J.; Gomes, C. P.; Selman, B.; and Kautz, H. A.
2007. SAT Encodings of State-Space Reachability Problems
in Numeric Domains. In 20th International Joint Confer-
ence on Artificial Intelligence (IJCAI 2007), 1918–1923.
Hsu, C.-W., and Wah, B. W. 2008. The SGPlan Planning
System in IPC-6. http://wah.cse.cuhk.edu.hk/
wah/Wah/papers/C168/C168.pdf.
Kautz, H., and Selman, B. 1992. Planning as Satisfiabil-
ity. In 10th European Conference on Artificial Intelligence
(ECAI 92), 359–363. John Wiley & Sons, Inc.
Kautz, H., and Walser, J. P. 1999. State-space planning by
integer optimization. In AAAI/IAAI, 526–533.
Kautz, H. A.; McAllester, D. A.; and Selman, B. 1996. En-
coding Plans in Propositional Logic. In Fifth International
Conference on Principles of Knowledge Representation and
Reasoning (KR 96), 374–384. Morgan Kaufmann.
Rintanen, J. 2012. Planning as Satisfiability: Heuristics.
Artificial Intelligence 193:45–86.
Wolfman, S. A., and Weld, D. S. 1999. The LPSAT Engine
& Its Application to Resource Planning. In Sixteenth Inter-
national Joint Conference on Artificial Intelligence (IJCAI
99), 310–317. Morgan Kaufmann.

105

Session 5

Planning under Uncertainty and
Applications

106

Robotic control through model-free reinforcement learning

Hofer Ludovic

1 Introduction
My PhD thesis aims at developping new reinforcement

learning algorithms specifically designed to control model-
free stochastic systems. This thesis is supervised by Hugo
Gimbert and Olivier Ly from Bordeaux University, at the
LaBRI. The main targeted application is learning of bipedal
walking for low-cost humanoid robots, the experimental
platform used is Sigmaban (Passault et al. 2015). Modeling
such a task properly involves taking into account the back-
lash of the reduction gears, the bending of the parts as well
as the contact with the ground. Therefore, model-based ap-
proaches are not suited to learn such a task. We chose to
model this task as a Continuous State and Action Markov
Decision Process (CSA-MDP). Since it is hard to predict the
shape of the optimal policy, we use value iteration method
based on the q-value.

It has already been exhibited that RL algorithms could
bring improvements for dynamical tasks requiring a very
high accuracy such as the ball-in-a-cup task (Kober and Pe-
ters 2009) or hitting a baseball (Peters and Schaal 2008).
However most of the reinforcement learning involving
robots are based on policy gradient method. While those
methods are very effective, they present two major draw-
backs: the motor primitive has to be defined by the user and
they require the possibility of computing the gradient of the
reward with respect to the parameters of the motor primitive.
Therefore, applying those methods require a high repeatabil-
ity of the system and they are limited to a family of solutions
specified as a parameter of the algorithm.

Due to the lack of repeatability in low-cost robotics sys-
tems, it is quite common to represent them as CSA-MDP.
This field has known major breakthrough recently, such as
the possibility to find exact solutions when the model is
known and has discrete noise, piecewise linear transitions
and piecewise linear reward (Zamani, Sanner, and Fang
2012), based on the use of symbolic dynamic programming
and extended algebraic decision diagrams (Sanner, Delgado,
and de Barros 2012). Although these theorical results are
outstanding, they cannot be used to control low-cost robots

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

because of the requirements on the transition and reward
functions.

Among the previous work on model-free solvers for MDP,
we can note the Least-Square Policy Iteration (LSPI) al-
gorithm (Lagoudakis 2003) which manage to learn hard
tasks on problems with continuous state and discrete ac-
tions. Although this algorithm lead to satisfying results, it
requires expert function approximators adapted to the prob-
lem. On the other hand, Fitted Q-Iteration (FQI) (Ernst,
Geurts, and Wehenkel 2005) grows regression forests from
gathered samples and achieve slightly lower performance
than LSPI without requiring custom function approxima-
tors. While both methods were initially designed for dis-
crete action choices, Binary Action Search (BAS) (Pazis and
Lagoudakis 2009) allows to use them on CSA-MDP.

In order to apply algorithms such as LSPI or FQI to high-
dimensional control problems, it is mandatory to use ef-
ficient exploration algorithm in order to reduce the num-
ber of samples required to learn a near-optimal policy. Op-
timistic algorithms such as Multi-Resolution Exploration
(MRE) (Nouri and Littman 2009) allows to improve the pro-
cess of collecting samples, while providing guarantees to
converge to a nearly-optimal solution.

2 Tools and Methods
As mentioned previously, there is a gap between model-

free CSA-MDP methods and robotic applications. Complex
tasks such as bipedal walking involves high-dimensional
spaces for state and actions. Therefore, it is hard to pre-
dict the time required to converge to a near-optimal strat-
egy. Moreover, running experiments directly on robots re-
quire human supervision and the manufacturing process is
costly and time consuming. In order to run realistic simula-
tions and to make our source code more easy to use, we de-
cided to use ROS1 and Gazebo2. Once learning algorithms
lead to satisfying results in simulation, it will be possible to
test them directly on the robots.

1http://www.ros.org
2http://www.gazebosim.org

107

We base our learning of the q-value on the FQI algo-
rithm (Ernst, Geurts, and Wehenkel 2005), which uses re-
gression forests. While our current implementation of re-
gression forest is based on Extra-Trees (Geurts, Ernst, and
Wehenkel 2006), we also plan to test and develop other al-
gorithms growing regression forests.

We compute an approximation of the greedy policy cor-
responding to the q-value calculated by FQI algorithm us-
ing regression forest. This process provides two advantages:
firstly, it allows to retrieve actions at a very low computa-
tional cost, secondly, by smoothing the discretization noise
on the q-value, it also improve the performance of the con-
troler. Real-time constraint is particularly important to en-
sure that closed-loop control is available.

Currently, exploration is ensured by an algorithm based
on MRE (Nouri and Littman 2009). This algorithm is based
on the optimistic approach which considers the the couple
state-actions which are unknown lead to a maximal reward.
It allows to build a knowledge function based on kd-trees,
this function provides a result in [0, 1], which is mainly
based on the ratio between the density inside the leaf and
inside the whole tree. Using this information, collected sam-
ples are modified in order to increase the reward if they use
an unknown transition or lead to an unknown state. In or-
der to obtain a smoother value function, we use a forest of
kd-trees.

While MRE update the policy at a fixed interval of step
(chosen by the user), this method leads to an increasing time
of update, even if the time required to compute the policy
grows linearly with respect to the number of samples, the
time required to collect n samples grow quadratically with
respect to n. On the other hand, if we wait too many steps
before updating the policy, there is a high risk of getting
stucked in attracting trajectories. In this case, the collected
samples will be redundant and will not improve quickly the
knowledge of the MDP. Moreover, on real robots, all the up-
dates to the policy have to be quick enough to ensure that the
control frequency can be maintained. In other words, there
are no ways to freeze the system in its state. In order to face
this issue we plan to develop an algorithm allowing to in-
sert dynamically new samples without needing to restart the
learning process from scratch. Another option allowing to
increase the space between two consecutive update of the
policy would be to detect attracting trajectories.

Another issue relative to solving CSA-MDP is long-term
reward. This problem is particularly strong for FQI, since
each iteration on the value update involves an approxima-
tion. While some problems such as stabilizing an inverted
pendulum are harder when the control frequency is lower, a
very high frequency can make intractable problems such as
inverted pendulum swing-up since it would require to com-
pute the q-value at a very high horizon. We plan to test the
effect of including the time during which an action should
be applied as one of the dimension of the action.

References
Ernst, D.; Geurts, P.; and Wehenkel, L. 2005. Tree-Based
Batch Mode Reinforcement Learning. Journal of Machine
Learning Research 6(1):503–556.
Geurts, P.; Ernst, D.; and Wehenkel, L. 2006. Extremely
randomized trees. Machine Learning 63(1):3–42.
Kober, J., and Peters, J. 2009. Policy Search for Motor Prim-
itives in Robotics. Advances in Neural Information Process-
ing Systems 21 849–856.
Lagoudakis, M. 2003. Least-squares policy iteration. The
Journal of Machine Learning Research 4:1107–1149.
Nouri, A., and Littman, M. L. 2009. Multi-resolution Ex-
ploration in Continuous Spaces. Advances in Neural Infor-
mation Processing Systems 1209–1216.
Passault, G.; Rouxel, Q.; Hofer, L.; Guyen, S. N.; and Ly,
O. 2015. Low-cost force sensors for small size humanoid
robot. 33405.
Pazis, J., and Lagoudakis, M. G. 2009. Binary action search
for learning continuous-action control policies. Proceedings
of the 26th International Conference on Machine Learning
(ICML) 793–800.
Peters, J., and Schaal, S. 2008. Reinforcement learning
of motor skills with policy gradients. Neural Networks
21(4):682–697.
Sanner, S.; Delgado, K. V.; and de Barros, L. N. 2012. Sym-
bolic Dynamic Programming for Discrete and Continuous
State MDPs. In Proceedings of the 26th Conference on Ar-
tificial Intelligence, volume 2.
Zamani, Z.; Sanner, S.; and Fang, C. 2012. Symbolic
Dynamic Programming for Continuous State and Action
MDPs.

108

Dissertation Abstract:
Exploiting Symmetries in Sequential Decision Making under Uncertainty

Ankit Anand
Indian Institute of Technology, Delhi

New Delhi,India-110016
ankit.anand@cse.iitd.ac.in

Synopsis
The problem of sequential decision making under uncer-
tainty, often modeled as an MDP is an important problem
in planning and reinforcement learning communities. Tradi-
tional MDP solvers operate in flat state space and don’t scale
well in large state and action spaces. A lot of real world do-
mains have exponential number of states in terms of repre-
sentation but many of these states and actions are symmet-
ric to each other. In this work, we focus on exploiting sym-
metry in these domains to make contemporary algorithms
more efficient and scalable. Our recent works ASAP-UCT
and OGA-UCT which define new state-action pair symme-
tries and apply them in UCT show promising initial results
of this approach. We study important research questions re-
lated to finding and using symmetry based abstractions and
discuss interesting links with lifted inference in graphical
models.

Introduction
The problem of sequential decision making under uncer-
tainty, often modeled as a Markov Decision Process (MDP),
is a fundamental problem in the design of autonomous
agents(Russell and Norvig 2003). Traditional MDP solv-
ing algorithms (value iteration and variants) perform offline
dynamic programming or linear programming in flat state
spaces and scale poorly with the number of domain fea-
tures due to the curse of dimensionality. A well-known ap-
proach to reduce computation in these scenarios is through
domain abstractions. An interesting aspect which have been
observed in many domains of interest is that even though flat
state space is very large, many states are symmetric to one
other. Existing offline abstraction techniques (Givan, Dean,
and Greig 2003; Ravindran and Barto 2004) make use of
these symmetries and compute equivalence classes of states
such that all states in an equivalence class have the same
value. This projects the original MDP computation onto an
abstract MDP, which is typically of a much smaller size.
We intend to study these symmetry exploiting abstractions
in traditional MDP setup as well as state of art algorithms
which are mostly online, anytime and deal with very large
state and action spaces.

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Our recent works (Anand et al. 2015b)(Anand et al.
2015a), expands the aforesaid traditional notion of symme-
tries by giving a novel notion of abstractions, state-action
pair (SAP) abstractions, where in addition to computing
equivalence classes of states, we also compute equivalence
classes of state-action pairs, such that Q-values of state-
action pairs in the same equivalence class are the same.
Moreover, SAP abstractions find symmetries even when
there aren’t many available state abstractions, which is com-
monly true for many domains in practice.

During the last decade, Monte-Carlo Tree Search (MCTS)
algorithms have become quite an attractive alternative to tra-
ditional approaches. MCTS algorithms, exemplified by the
well-known UCT algorithm (Kocsis and Szepesvári 2006),
intelligently sample parts of the search tree in an online fash-
ion. They can be stopped anytime and usually return a good
next action. A UCT-based MDP solver (Keller and Eyerich
2012) won the last two probabilistic planning competitions
(Sanner and Yoon 2011; Grzes, Hoey, and Sanner 2014). Un-
fortunately, UCT builds search trees in the original flat state
space too, which is wasteful if there are useful symmetries
and abstractions in the domain.

One of the recent works which correct this limitation is by
(Jiang, Singh, and Lewis 2014), which introduced the first
algorithm to combine UCT with automatically computed ap-
proximate state abstractions, and showed its value through
quality gains for a single deterministic domain. Our prelim-
inary experiments with this method (which we name AS-
UCT: Abstractions of state in UCT) on probabilistic plan-
ning domains indicate that it is not as effective in practice.
This may be because AS-UCT tries to compute state abstrac-
tions on the explored part of the UCT tree and there likely
isn’t enough information in the sampled trees to compute
meaningful state abstractions. In our recent works (Anand et
al. 2015a)(Anand et al. 2016), we fill this gap by implement-
ing SAP abstractions inside the UCT framework.

In our recent work (Anand et al. 2015a), we develop an
algorithm- ASAP-UCT(Abstraction of State-Action Pairs
in UCT) which is a first attempt to exploit SAP abstractions.
ASAP-UCT is a batch algorithm like AS-UCT and alter-
nates between two phases. One phase consists of an abstrac-
tion computation routine that uses the existing UCT tree to
induce groups of symmetric nodes. These nodes are aggre-
gated to construct an abstract search tree. The second phase

109

is the (modified) UCT algorithm, which is run as per orig-
inal UCT in the beginning, but is modified to incorporate
the abstractions after the abstraction routine has been run at
least once. Experiments show that ASAP-UCT significantly
outperforms both AS-UCT and vanilla UCT on a number
of planning domains obtaining upto 26% performance im-
provements.

Our further research shows that these batch algorithms do
not achieve the full potential of abstractions because of the
two disjoint phases. Since abstractions are computed on a
sampled tree, they are approximate. Erroneous abstractions
computed as part of one batch of abstraction computation
may get corrected only after a full phase of modified UCT –
this wait could severely impact the solution quality.

In response, we propose On the Go Abstractions (OGA),
a novel approach in which abstraction computation is tightly
integrated into the MCTS algorithm in our recent work
(Anand et al. 2016). We implement these on top of UCT
and name the resulting algorithm OGA-UCT. It has several
desirable properties, including (1) rapid use of new informa-
tion in modifying existing abstractions, (2) elimination of
the expensive batch abstraction computation phase, and (3)
focusing abstraction computation on important part of the
sampled search space. We experimentally compare OGA-
UCT against ASAP-UCT, a recent state-of-the-art MDP al-
gorithm as well as vanilla UCT algorithm. We find that
OGA-UCT is robust across a suite of planning competition
and other MDP domains, and obtains up to 18 % quality
improvements. Based on these initial promising results, we
intend to develop a domain independent state of art planner
which can benefit from domain abstractions.

Lastly, in the past decade, there has also been revival of
interest in abstractions and symmetries with the emergence
of lifting techniques in probabilistic graphical models lit-
erature. Many of the problems which previously were in-
tractable in probabilistic inference can now be solved by
these advances in lifting techniques. Also, there is a strong
co-relation between MDP solving methods and probabilistic
inference as both of these algorithms depend upon local in-
teractions between neighboring nodes. The ideas of Count-
ing BP (Kersting, Ahmadi, and Natarajan 2009) is very sim-
ilar to block-splitting algorithm proposed by Givan et. al.
Also, homomorphisms (Bui, Huynh, and Riedel 2012) have
also been well studied in probabilistic inference literature.
Under this theme, we would like to explore the possibility
of unifying these two different problems and other related
problems under a common abstraction framework so that a
generic abstraction approach for solving these can be devel-
oped.

Background and Related Work
An infinite horizon, discounted cost Markov Decision
Process(MDP) (Puterman 1994) is modeled as a 5-tuple
(S,A, T , C, γ). An agent in a state s ∈ S executes an ac-
tion a ∈ A making a transition to s′ ∈ S with a probability
T (s, a, s′) incurring a cost C(s, a) with a discount factor of
γ (γ < 1). A policy π : S → A specifies an action to be
executed in a state s ∈ S. Given a starting state s0 ∈ S, the
expected discounted cost V π(s) associated with a policy π is

given by V π(s0) = E[
∑∞
t=0 C(s

t, at)γt|π(st) = at, t ≥ 0]
where expectation is taken over the transition probability
T (st, at, st+1) of going from state st to st+1 under action
at. The expected cost Qπ(s, a) denotes the discounted cost
of first taking action a in state s and then following π from
then on. The optimal policy π∗ minimizes the total expected
cost for every state s ∈ S, i.e. π∗(s) = argminπV

π(s).
Q∗(s, a) and V ∗(s) are shorthand notations for Qπ

∗
(s, a)

and V π
∗
(s) respectively, and V ∗(s) = mina∈AQ∗(s, a).

Presence of goals can be dealt by having absorbing states
for goals.

An MDP can be equivalently represented as an AND-
OR graph (Mausam and Kolobov 2012) in which OR nodes
are MDP states and AND-nodes represent state-action pairs
whose outgoing edges are multiple probabilistic outcomes
of taking the action in that state. Value Iteration (Bellman
1957) and other dynamic programming MDP algorithms can
be seen as message passing in the AND-OR graph where
AND and OR nodes iteratively update Q(s,a) and V(s) (re-
spectively) until convergence.

A finite-horizon MDP executes for a fixed number of steps
(horizon) and minimizes expected cost (or maximizes ex-
pected reward). States for this MDP are (s, t) pairs where
s is a world state and t is number of actions taken so far.
Finite horizon MDPs can be seen as a special case of infi-
nite horizon MDPs by having all the states at the horizon be
absorbing goal states and setting γ = 1.

Abstractions for Offline MDP Algorithms
In many MDP domains, several states behave identically,
and hence, can be abstracted out. Existing literature defines
abstractions via an equivalence relation E ⊆ S × S, such
that if (s, s′) ∈ E , then their state transitions are equivalent
(for all actions). All states in an equivalence class can be
collapsed into a single aggregate state in an abstract MDP,
leading to significant reductions in computation.

Various definitions for computing abstractions exist. Gi-
van et al. (2003)’s conditions deduce two states to have an
equivalence relation if they have the same applicable ac-
tions, local transitions lead to equivalent states and imme-
diate costs are the same. Ravindran and Barto (2004) refine
this by allowing the applicable actions to be different as long
as they can be mapped to each other for this state pair. This
can find more state abstractions than Givan’s conditions. We
call these settings AS (Abstractions of States) and ASAM
(Abstractions of States with Action Mappings), respectively.

Our framework ASAP unifies and extends these previous
notions of abstractions – we go beyond just an equivalence
relation E over states, and compute equivalences of state-
action pairs. This additional notion of abstractions leads to a
discovery of many more symmetries and obtains significant
computational savings when applied to online algorithms.

Monte-Carlo Tree Search (MCTS)
Traditional offline MDP algorithms store the whole state
space in memory and scale poorly with number of do-
main features. Sampling-based MCTS algorithms offer an
attractive alternative. They solve finite-horizon MDPs in

110

an online manner by interleaving planning and execution
steps. A popular variant is UCT (Kocsis and Szepesvári
2006), in which during the planning phase, starting from
the root state, an expectimin tree is constructed based
on sampled trajectories. At each iteration, the tree is ex-
panded by adding a leaf node. Since these MDPs are fi-
nite horizon a node is (state,depth) pair. UCT chooses an
action a in a state s at depth d based on the UCB rule,

argmina∈A
(
Q(s, d, a)−K ×

√
log(n(s,d))
n(s,d,a)

)
where K >

0. Here, n(s, d) denotes the number of trajectories that pass
through the node (s, d) and n(s, d, a) is the number of tra-
jectories that take action a in (s, d).

Evaluation of a leaf node is done via a random rollout, in
which actions are randomly chosen based on some default
rollout policy until a goal or some planning horizon P is
reached. This rollout results in an estimate of the Q-value
at the leaf node. Finally, this Q-value is backed up from
the leaf to the root. UCT operates in an anytime fashion –
whenever it needs to execute an action it stops planning and
picks the best action at the root node based on the current
Q-values. The planning phase is then repeated again from
the newly transitioned node. Due to the clever balancing
of the exploration-exploitation tradeoff, MCTS algorithms
can be quite effective and have been shown to have signifi-
cantly better performance in many domains of practical in-
terest(Gelly and Silver 2011).

Abstractions for UCT
Hostetler et. al. (2014) develop a theoretical framework for
defining a series of state abstractions in sampling-based al-
gorithms for MDP. But they do not provide any automated
algorithm to compute the abstractions themselves. Closest
to our works is (Jiang, Singh, and Lewis 2014), which ap-
plies Givan’s definitions of state abstractions within UCT.
The key insight is that instead of an offline abstraction algo-
rithm, they test abstractions only for the states enumerated
by UCT. Since UCT solves finite-horizon MDPs, only the
states at the same depth will be considered equivalent. Then,
at any given depth, they test Givan’s conditions (transition
and cost equality) on pairs of states to identify ones that
are in the same equivalence class. This algorithm proceeds
bottom-up starting from last depth all the way to the root.
Their paper experimented on a single deterministic game
playing domain and its general applicability to planning was
not tested. We advance Jiang’s ideas by applying our novel
SAP abstractions in UCT, and show that they are more ef-
fective on a variety of domains.

ASAP: Abstraction of State-Action Pairs
In this section, we introduce a new type of State-Action Pair
(SAP) abstractions (proposed by us) in addition to previ-
ously defined State Abstractions. SAP abstractions are gen-
eral and can be used independently by any of MDP solving
algorithms.

Our Abstractions of State-Action Pairs (ASAP) frame-
work unifies and extends Givan’s and Ravindran’s defini-
tions for computing abstractions. To formally define the

framework we introduce some notation. Consider an MDP
M = (S,A, T , C, γ). We use P to denote the set of state-
action pairs i.e. P = S × A. We define an equivalence re-
lation E over pairs of states i.e. E ⊆ S × S. Let X denote
the set of equivalence classes under the relation E and let
µE : S → X denote the corresponding equivalence function
mapping each state to the corresponding equivalence class.
Similarly, we define an equivalence relation H over pairs of
SAPs i.e. H ⊆ P × P). Let U denote the set of equiva-
lences classes under the relationH, and let µH : P → U de-
note the corresponding equivalence function mapping state-
action pairs to the corresponding equivalence classes. Next,
we will recursively define state equivalences over state-pair
equivalences and vice-versa.
State Abstractions: Suppose we are given SAP abstrac-
tions, and µH. Intuitively, for state equivalence to hold, there
should be a correspondence between applicable actions in
the two states such that the respective state-action pair nodes
are equivalent. Formally, let a, a′ ∈ A denote two actions
applicable in s and s′, respectively. We say that two states s
and s′ are equivalent to each other (i.e, µE(s) = µE(s′)) if
for every action a applicable in s, there is an action a′ appli-
cable in s′ (and vice-versa) such that µH(s, a) = µH(s′, a′).
SAP Abstractions: As in the case of state abstractions, as-
sume we are given state abstractions and the µE function.
Two state-action pairs (s, a), (s′, a′) ∈ P are said to be
equivalent (i.e. µH(s, a) = µH(s′, a′) if:

• ∀si ∈ S such that T (s, a, si) = p, ∃s′i ∈ S, µE(si) =
µE(s′i) and T (s′, a′, s′i) = p. (Condition 1(a))

• ∀s′i ∈ S such that T (s′, a′, s′i) = p, ∃si ∈ S, µE(s′i) =
µE(si) and T (s, a, si) = p. (Condition 1(b))

• C(s, a) = C(s′, a′) (Condition 2)

Intuitively, for state-action pair equivalence to hold, the
corresponding states that they transition to should be equiva-
lent and the respective transition probabilities should match.
Second condition requires the costs of applying correspond-
ing actions to be identical to each other. For Goal-directed
MDPs, all goal states are in an equivalence class: ∀s, s′ ∈
G,µE(s) = µE(s′). For finite-horizon MDPs, all goal states
at a given depth are equivalent.
Example: Figure 1 illustrates the AND-OR graph abstrac-
tions on a soccer domain. Here, four players wish to score
a goal. The central player (S0) can pass the ball left, right
or shoot at the goal straight. The top player (S1) can hit the
ball right to shoot the goal. Two players at the bottom (S2,
S3) can hit the ball left for a goal. The equivalent AND-
OR graph for this domain is the leftmost graph in the fig-
ure. Givan’s Abstraction of States (AS) conditions check for
exact action equivalence. They will observe that S2 and S3
are redundant players and merge the two states. Ravindran’s
Abstraction of States with Action Mapping (ASAM) condi-
tions will additionally look for mappings of actions. They
will deduce that S1’s right is equivalent to S2’s left and will
merge these two states (and actions) too. They will also no-
tice that S0’s left and right are equivalent. Finally, our ASAP
framework will additionally recognize that S0’s straight is
equivalent to S1’s right and merge these two SAP nodes.

111

S0

S0, L

S0, S

S0, R

S1 S2

S1, R S2, L

G

S0

S0, L

S0, S

S1

G

AND-OR Graph in Flat Space ASAP Graph

S3

S3, L

S0

S0, L

S0, S

S0, R

S1 S2

S1, R S2, L

G

AS Graph

S0

S0, L

S0, SS1

S1, R

G

ASAM Graph

Figure 1: An example showing abstractions generated by various algorithms on a soccer domain. Givan’s AS, Ravindran’s
ASAM and our ASAP frameworks successively discover more and more symmetries.

Overall, ASAP will identify the maximum symmetries in the
problem. Next, we state theoretical results corresponding to
ASAP.

Theorem 1. Both AS and ASAM are special cases of ASAP
framework. ASAP will find all abstractions computed by AS
and ASAM.

Theorem 2. Optimal value functions V ∗Gr(x), Q
∗
Gr(x, u),

computed by Value Iteration on a reduced AND-OR graph
Gr, return optimal value functions for the original MDPM .
Formally, V ∗Gr(x) = V ∗M (s), and Q∗Gr(x, u) = Q∗M (s, a),
∀s ∈ S, a ∈ A s.t. µE(s) = x, µH(a) = u.

ASAP Symmetries in UCT
We next describe algorithms to incorporate ASAP frame-
work in UCT. Firstly, we describe a batch algorithm ASAP-
UCT which is followed by OGA-UCT. OGA-UCT builds
on ASAP-UCT by computing abstractions on the go as we
are building the tree. We show empirically that ASAP-UCT
performs better than AS-UCT and ASAM-UCT and further
illustrate that OGA-UCT outperforms ASAP-UCT on sev-
eral domains of interest.

ASAP-UCT
ASAP-UCT is a UCT-based algorithm that uses the power
of abstractions computed via the ASAP framework. Recall
that since UCT constructs a finite-horizon MDP tree, states
at different depths have to be treated differently. Therefore,
ASAP-UCT tests state equivalences for states at the same
depth only. To compute abstractions over UCT tree, we
adapt and extend ideas in Jiang et al. (2014)’s work.
Computing UCT Abstractions: ASAP-UCT computes ab-
stractions in a bottom up fashion starting with the leaves and
successively computing abstractions at each level (depth) all
the way to the root (Algorithm 1). It takes as input a UCT
Search Tree (ST) and outputs an Abstracted Search Tree
(AST). At each level, it calls the functions for computing
state and state-action pair abstractions, alternately.

For the pseudo-code it is helpful to understand each depth
as consisting of a layer of state nodes and a layer of SAP
nodes above it. We use the superscript d to denote the state
(SAP) pair equivalence function µdE (µdH) at depth d. Sim-
ilarly, we use Sd to denote the set of states at depth d and
P d to denote the set of SAP nodes at depth d. To keep
the notation simple, we overload the equivalence function

(map) µdE to also represent the actual equivalence relation-
ship over state pairs (similarly for µdH). ComputeAS and
ComputeASAP at each level operate as per the definitions
described in ASAP framework. As we are going bottom up,
the abstractions at below level have already been computed.

Algorithm 1 Computing Abstracted Search Tree
ComputeAbstractedSearchTree(SearchTree ST)
dmax ← getMaxDepth(ST), µdmax+1

H ← {}
for d := dmax → 1 do

µdE ← ComputeAS(Sd, µd+1
H);

µdH← ComputeASAP(P d, µdE);
end for
AST ← SearchTree with Computed Abstractions
return AST

Updating Q-Values: Once the nodes at a level have been
made a part of the same abstract state, we maintain an es-
timate of the expected cost (to reach the goal state) for the
abstract node only (both in the state layer as well as in the
state-action layer). The abstract node is initialized with the
average of the expected cost of its constituent in the begin-
ning. Any future Q-value updates are performed over the ab-
stracted out representation.
When to Compute Abstractions: Since we need the cur-
rent sampled tree for calculating the abstractions, abstraction
can be computed only after the tree has been constructed to
a certain level. But if we wait until the full expansion of the
tree (i.e. end of the planning phase), the abstractions would
not be useful. We compute abstractions for a fixed number
of times l in each decision. After every abstraction, the Q-
values are computed on the abstract tree. Future expansions
might invalidate the abstractions computed earlier. We cor-
rect for this by performing the next phase of abstractions
from scratch on the flat (unabstracted) tree. In summary, the
algorithm can be described as a batch algorithm which in-
terleaves expansions, Q-value computations and abstraction
steps.

Experimental Results with ASAP-UCT We compare the
four algorithms, vanilla UCT, AS-UCT, ASAM-UCT and
ASAP-UCT, in all three domains. For each domain instance
we vary the total time per trial and plot the average cost
obtained over 1000 trials. Figures 2 shows the comparisons
across two domains. Note that time taken for a trial also in-
cludes the time taken to compute the abstractions. In almost

112

22 34 45 58 71 99 131 169 214

-200

-190

-180

-170

-160

-150
 Domain: Game of Life Dimensions: 3x3

UCT
AS-UCT
ASAM-UCT
ASAP-UCT

Time of a trial (in ms)

A
cc

u
m

u
la

te
d

 C
o

st

100 200 300 400 500 600 700
50

60

70

80

90

Domain: Navigation Dimensions: 20x5

UCT
AS-UCT
ASAM-UCT
ASAP-UCT

Time of a trial (in ms)

A
cc

u
m

u
la

te
d

 C
o

st
Figure 2: ASAP-UCT outperforms all other algorithms on
problems from three domains.

all settings ASAP-UCT vastly outperforms both UCT, AS-
UCT and ASAM-UCT. ASAP-UCT obtains dramatically
better solution qualities given very low trial times incurring
up to 26% less cost compared to UCT. Its overall benefit re-
duces as the total trial time increases, but almost always it
continues to stay better or at par.

OGA-UCT
Here, we describe OGA-UCT, an On the Go Abstraction al-
gorithm which computes abstractions as we are building the
tree. Our algorithm is best understood in terms of the con-
struction of the original UCT tree. The UCT computation
can be broadly divided in three phases 1) Sampling of a tra-
jectory 2) Random rollout from a newly discovered leaf node
3) Back up of Q-values. In OGA-UCT, during the first phase,
along with sampling of the trajectory, an abstraction for each
state is also maintained on the go. Abstraction for any node
is computed using the recursive updates similar to the ones
used by ASAP-UCT. But the key difference is that instead
of doing the batch computation uniformly for each node, we
do it incrementally and in an adaptive manner. Each node
has an associated recency count which stores the number of
times the node was visited after its abstraction was last up-
dated. If the recency count reaches a pre-decided threshold
K, we re-compute the abstraction for this node and set the
recency count back to 0. In the second phase when a roll-
out is performed, we initialize the abstraction of the newly
created leaf and set its recency count to 0. Any Q-value up-
dates in the UCT tree are now done over the abstract nodes
rather than the original nodes. Since abstractions at a cer-
tain depth depend on the abstractions in the tree below, it
may happen that when a node’s abstraction changes, there
could be a change in the abstraction of its ancestor nodes.
Therefore, any change in the abstraction of a node at depth
d, is propagated all the way up to the root of the tree, recom-
puting abstractions as necessary. We describe the Sampling
Trajectory Procedure 2 in detail here.

Sampling Trajectory (Algorithm 2): This is the main
procedure of our algorithm. Lines 1-4 check the base condi-
tion for stopping a trajectory. Lines 7-11 add a newly discov-
ered leaf node to the tree, initialize its abstraction and per-
form a rollout. If the procedure comes to line 12, we have
not discovered a new leaf node yet. Line 12 selects an ac-
tion based on the UCB rule. In lines 13-14, we add a newly
discovered SAP node to the tree and initialize its abstrac-
tion. Lines 18-19 sample a new state node based on the cho-
sen action and recursively call SAMPLETRAJECTORY. Lines
19-23 take care of maintaining the recency count and calling

update abstractions if the count has reached the thresholdK.
Here, Update SAP abstraction updates the abstractions with
respect to the state abstractions at the next level. Also, if
the abstraction of SAP node changes, this change calls Up-
date State Abstractions for the parent node and this update
procedure is recursively repeated till the root if the abstrac-
tions changes. Finally, the UCT counts and Q values are up-
dated in lines 24-26. It is insightful to note that if we remove
the lines for computing abstractions and maintaining the re-
cency count (lines 9,15-16,20-23), the procedure becomes
identical to what standard UCT would do.

Algorithm 2 Sample Trajectory in UCT
1: procedure VAL = SAMPLETRAJECTORY(s, d)
2: if terminal(s) then
3: return −reward(s)
4: else if d == Horizon then
5: return 0
6: end if
7: if (s, d) is not in tree T then
8: Add state node (s, d) to tree T
9: INITIALIZESTATEABSTRACTION(s, d)

10: return GETROLLOUT(s, d)
11: end if
12: a← SELECT-UCB-ACTION(s, d)
13: if (s, a, d) is not in tree T then
14: Add SAP node (s, a, d) to tree T
15: INITIALIZE-SAP-ABSTRACTION(s, a, d)
16: RecencyCount[s, a, d]← 0
17: end if
18: s′ ← SAMPLE(s, a)
19: RecencyCount[s, a, d] + +
20: newV al← SAMPLETRAJECTORY(s′, d+ 1)
21: if RecencyCount[s, a, d] == K then
22: UPDATE-SAP-ABSTRACTION(s, a, d)
23: end if
24: INCREMENTCOUNT(s, a, d)
25: UPDATEQ((s, a, d), newV al)
26: return newV al
27: end procedure

It is also important to note that OGA-UCT converges
to correct Q-values as computed by UCT given sufficiently
large amount of time.

Theorem 3. Given an MDP M = (S,A, T , C,H), the
value function computed by OGA-UCT for the abstract node
containing a state s at depth d converges to the value func-
tion computed by UCT for state s, as number of trajectories
N →∞ i.e ∀s ∈ S ∀d ≤ Horizon

lim
N→∞

V NOGA(µ
d
X (s), d) = lim

N→∞
V NUCT (s, d)

Empirical Results of OGA-UCT We compare OGA-
UCT with ASAP-UCT and unabstracted UCT on these prob-
lems with different total planning times and draw cost vs.
time curves. Representative runs on two domains are illus-
trated in Figure 3. Each curve is an average of 1,000 reruns
and 95% confidence interval bars are also drawn.

113

Figure 3: OGA-UCT performs better or at par with ASAP-
UCT and UCT for most of the domains

We observe that OGA-UCT performs the best or on par
with the best on four out of the five domains. These results
demonstrate that difference in the performances of ASAP-
UCT and UCT can depend heavily on the domain, but OGA-
UCT admits least variance and is robust across these many
domains.

Proposed Scope and Future Focus
Abstraction and symmetry in MDPs in itself is a relatively
old field with rich theoretical literature on it. This work has
assumed great importance in today’s world with the need for
real time MDP solvers for large problem instances. The ad-
vent of space exploration missions like Mars rover is a per-
fect example of reinforcement learning problem where hard
multiple objectives need to be achieved with in constraints
of time, cost and safety. We plan to extend these abstraction
frameworks and adapt these in complete end to end systems
which can be used in real world. To achieve this, we will
focus on some or all of these problems.

• A Domain Independent Abstraction Based Planner:
Initial investigations of applying abstractions in UCT
have shown promising results both in OGA-UCT and
ASAP-UCT. Presently both OGA-UCT and ASAP-UCT
operate in flat state space, how to modify and use the fac-
tored representations is an important step in the develop-
ment of such a planner.

• Learning Abstractions: With advances in machine
learning techniques, an interesting approach to compute
abstractions is by learning the symmetries of state space.
A recent work by Srinivasan et. al. (Srinivasan, Talvitie,
and Bowling 2015) suggests the use of nearest neighbor
approach to improve exploration in UCT. Learning ab-
stractions is an important problem to be studied in con-
text of online algorithms where abstraction computation
overhead may become a bottleneck.

• Relation between Lifted inference and Planning As
pointed out earlier, symmetries have played a significant
role in advancing inference techniques in graphical mod-
els. Due to local nature of computation, there is signifi-
cant overlap of techniques used to exploit symmetries in
both planning and graphical models. We intend to study
this co-relation in detail and wish to develop a generic ab-
straction framework for both these fields.

Finally, we believe that exploiting symmetry based ab-
stractions could lead to significant improvements in many
algorithms not limited to planning and reinforcement learn-
ing. Our initial investigations with it and development of
ASAP-UCT and OGA-UCT clearly show the first step in

this direction. Nevertheless, there are significant challenges
like computing symmetries efficiently, operating in factored
state space and adapting comtemporary algorithms to com-
pute symmetries which are non-trivial and need to be inves-
tigated thoroughly.

References
Anand, A.; Grover, A.; Mausam; and Singla, P. 2015a.
ASAP-UCT: Abstraction of State-Action Pairs in UCT. In
IJCAI, 1509–1515.
Anand, A.; Grover, A.; Mausam; and Singla, P. 2015b. A
Novel Abstraction Framework for Online Planning. In AA-
MAS.
Anand, A.; Noothigattu, R.; Mausam; and Singla, P. 2016.
OGA-UCT: On-the-Go Abstractions in UCT. In ICAPS.
Bellman, R. 1957. A Markovian Decision Process. Indiana
University Mathematics Journal.
Bui, H. H.; Huynh, T. N.; and Riedel, S. 2012. Automor-
phism groups of graphical models and lifted variational in-
ference. CoRR abs/1207.4814.
Gelly, S., and Silver, D. 2011. Monte-carlo tree search and
rapid action value estimation in computer Go. Artificial In-
telligence 175(11):1856–1875.
Givan, R.; Dean, T.; and Greig, M. 2003. Equivalence no-
tions and model minimization in Markov decision processes.
Artificial Intelligence 147(1–2):163 – 223.
Grzes, M.; Hoey, J.; and Sanner, S. 2014. International Prob-
abilistic Planning Competition (IPPC) 2014. In ICAPS.
Hostetler, J.; Fern, A.; and Dietterich, T. 2014. State Aggre-
gation in Monte Carlo Tree Search. In AAAI.
Jiang, N.; Singh, S.; and Lewis, R. 2014. Improving UCT
Planning via Approximate Homomorphisms. In AAMAS.
Keller, T., and Eyerich, P. 2012. PROST: Probabilistic Plan-
ning Based on UCT. In ICAPS.
Kersting, K.; Ahmadi, B.; and Natarajan, S. 2009. Counting
Belief Propagation. In UAI, UAI ’09, 277–284. Arlington,
Virginia, United States: AUAI Press.
Kocsis, L., and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In Machine Learning: ECML. Springer.
Mausam, and Kolobov, A. 2012. Planning with Markov
Decision Processes: An AI Perspective. Morgan & Claypool
Publishers.
Puterman, M. 1994. Markov Decision Processes. John Wi-
ley & Sons, Inc.
Ravindran, B., and Barto, A. 2004. Approximate homomor-
phisms: A framework for nonexact minimization in Markov
decision processes. In Int. Conf. Knowledge-Based Com-
puter Systems.
Russell, S. J., and Norvig, P. 2003. Artificial Intelligence: A
Modern Approach. Pearson Education, 2 edition.
Sanner, S., and Yoon, S. 2011. International Probabilistic
Planning Competition (IPPC) 2011. In ICAPS.
Srinivasan, S.; Talvitie, E.; and Bowling, M. 2015. Improv-
ing Exploration in UCT Using Local Manifolds. In AAAI
Conference on Artificial Intelligence.

114

Recommending and Planning Trip Itineraries for Individual Travellers and
Groups of Tourists

Kwan Hui Lim*†
*Department of Computing and Information Systems, The University of Melbourne, Australia

†Victoria Research Laboratory, National ICT Australia, Australia
limk2@student.unimelb.edu.au

Abstract

Trip planning is both challenging and tedious for
tourists due to their unique interest preferences and var-
ious trip constraints. Despite the availability of online
resources for tour planning and services provided by
tour agencies, there are various challenges such as: (i)
selecting POIs that are personalized to the unique inter-
ests of individual travellers; (ii) constructing these POIs
as an itinerary, with considerations for time availabil-
ity and starting/ending place preferences (e.g., near a
tourist’s hotel); (iii) for tour agencies to group tourists
into tour groups such that the recommended tour ap-
peals to the interests of the group as a whole; and (iv)
similarly, for tour agencies to assign tour guides with
the right expertise to lead each of these tour groups.
In our work, we aim to develop algorithms for recom-
mending personalized tours to both individual travellers
and groups of tourists, based on their interest prefer-
ences, which we automatically determine based on geo-
tagged photos posted by these tourists. Using a Flickr
dataset of geo-tagged photos as ground-truth for real-
life POI visits in multiple cities, we evaluate our pro-
posed algorithms using various metrics such as preci-
sion, recall, F1-score, user interest scores and POI pop-
ularity, among others.

1 Introduction
1.1 Motivations
Tourism is an important industry to the world economy, con-
tributing more than US$1.2 trillion in revenue and account-
ing for more than 1.1 billion international tourists (UNWTO
2015). Despite the importance of tourism, planning a tour
or trip itinerary is still a challenging task for any visitor in a
foreign city, due to unfamiliarity with the various Points of
Interest (POI) in the city. Although there are many online
resources available for tour planning, there still exist chal-
lenges such as: (i) many travel guides simply recommend
popular POIs that do not reflect the tourist’s interest prefer-
ences or consider various trip constraints, such as the avail-
able time for touring and preferred starting/ending location,
e.g., starting and ending near the tourist’s accommodation;
and (ii) even after obtaining a list of POIs, it is a tedious task

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Geo-tagged photos
(lat/long, time taken)

List of Points of Interests
(lat/long, category)

POI Popularity Tourist Interests

Landmark
(10 min)

Travel Sequences
(Visit duration, travel
time, user interests)

Landmark
(10 min)

Food
(1 hr)

Leisure
(4 hrs)

20 min 50 min

40 min

1

2

3
UserID Interests

684115665 {Park, Museum}
165514864 {Shopping, Beach}
165518648 {Food, Landmark}
123248566 {Shopping}
122365448 {Park, Beach, Food}
211568645 {Landmark}
231231654 {Museum, Park}
231231848 {Food, Church, Park}
323123165 {Shopping, Food}
545645645 {Beach, Park}

Figure 1: Tour Recommendation Framework. The various
steps indicate: (1) Mapping of geo-tagged photos to list of
POIs; (2) Construction of tourist visit history/sequences; and
(3) Calculation of POI popularity and tourist interests.

to construct an itinerary of sequential POI visits with the
considerations of travelling time, visiting time, and specific
starting/ending points.

One possible solution is to engage the services of tour
operators to organize such tour itineraries. However, tour
operators may not be aware of the unique interests of indi-
vidual tourists and face the same challenge of recommend-
ing tours that are personalized to the tourist’s interest pref-
erences. Furthermore, tour operators typically offer group
tours to multiple tourists and face the additional challenges
of: (i) optimizing for an appropriate tour group size, e.g.,
large groups to minimize cost overheads or small groups
to maximize tourist experience; (ii) constructing tours with
POIs that are appealing to multiple tourists in a group; and
(iii) assigning tour guides with the appropriate expertise to
best lead each tour group.

Our work aims to address the challenges of recommend-

115

ing tours that are suitable for individual travellers1 and
groups of tourists, in particular, considering the diverse set
of interests among these tourists. To achieve these goals, we
implemented a tour recommendation framework (Figure 1)
that utilizes geo-tagged photos (Flickr) and crowd-sourced
information (Wikipedia), and proposed various algorithms
based on variants of the Orienteering problem and various
clustering algorithms. In the following section, we describe
the three main research questions that we aim to address as
part of this work.

1.2 Research Questions
Our PhD research aims to develop tour recommendation al-
gorithms that are meaningful at multiple levels, namely for
individual tourists, groups of tourists, and the entire tourist
population. Our work is further motivated by the following
research questions (RQ):

• RQ 1: At the individual level, how can we recommend
personalized tours that consider the interest preferences
and trip constraints (e.g., time/distance budget and pre-
ferred starting/destination POIs) of individual tourists?

• RQ 2: At the group level, how can we recommend group
tours that consider appropriate tour group sizes, interest
preferences for multiple tourists in a group and assign-
ment of tour guides based on their expertise?

• RQ 3: At the global level, how can we recommend tours
that benefit the tourist population as a whole? I.e., how do
we plan tours that minimizes undesirable effects at POIs,
such as over-crowdedness and long queuing times?

1.3 Related Work
As our work aims to recommend tours for individual trav-
ellers and groups of tourists, we first discuss some state-of-
the-art works in the respective areas of tour recommendation
for individual travellers and tour recommendation for groups
of tourists.

Tour Recommendation for Individuals. There are vari-
ous works that aim to recommend tours for individuals, i.e.,
a single tourist, and we discuss some key literature from
this area. Many of these works approach tour recommen-
dation as an optimization problem, such as the Orienteer-
ing problem (Tsiligirides 1984; Vansteenwegen, Souffriau,
and Oudheusden 2011) or Generalized Maximum Coverage
problem (Cohen and Katzir 2008). For example, (Choud-
hury et al. 2010) was one such work that recommended tours
for an individual tourist, with a specific starting and ending
POI, while ensuring that the tour can be completed within a
certain time. Others like (Gionis et al. 2014) extended upon
this research area by implementing the constraint of a se-
quence ordering to the POI visits, e.g., restaurant → shop-
ping → beach → park. Similarly, (Brilhante et al. 2013;
2015) modelled tour recommendation based on the Gen-
eralized Maximum Coverage problem, with considerations

1We use the terms “traveller” and “tourist” interchangeably.

for both POI popularity and user interests. Other tour rec-
ommendation research also included transportation-related
considerations, such as (Chen et al. 2015) that consid-
ered varying travelling times based on traffic conditions,
and (Kurashima et al. 2010; 2013) that utilized different
modes of transportation in their travel routes. For more
information, (Gavalas et al. 2014) provides a comprehen-
sive discussion of algorithms that aim to recommend tours
to individual tourists. In addition, there have been many
web/mobile-based applications developed for the same pur-
pose such as (Brilhante et al. 2014; Refanidis et al. 2014;
Castillo et al. 2008), which are based on variations of the
discussed works.

Tour Recommendation for Groups. In recent years,
group recommendations have been studied in-depth by re-
searchers, such as by (Amer-Yahia et al. 2009) and (Hu et
al. 2014), who proposed and applied group recommendation
algorithms to the retail domain, i.e., recommending top-k re-
tail items such as movies, books, music.2 For the tourism do-
main, there are many interesting works that apply group rec-
ommendation algorithms for tourism-related purposes, re-
sulting in applications such as e-Tourism (Garcia, Sebastia,
and Onaindia 2011; Garcia et al. 2009), Intrigue (Ardis-
sono et al. 2003) and Travel Decision Forum (Jameson,
Baldes, and Kleinbauer 2003). Extending upon (Sebastia et
al. 2009), e-Tourism (Garcia, Sebastia, and Onaindia 2011;
Garcia et al. 2009) explicitly solicits the interest preferences
and group membership details of users, then recommends
tours that best satisfy the interest preferences of the entire
group based on the user-provided groupings. Other applica-
tions like Intrigue (Ardissono et al. 2003) and Travel Deci-
sion Forum (Jameson, Baldes, and Kleinbauer 2003) aim to
fulfil a similar purpose of recommending tours to groups of
tourists. The main difference is that Intrigue requires users
to provide their POI preferences instead of specific interests,
while Travel Decision Forum includes an additional online
discussion phase to get its users to mutually agree on pro-
posed changes to the tour itinerary.

1.4 Structure and Organization

The rest of the paper is organized as follows. In Section 2,
we describe some of our main contributions in the area of
tour recommendation. In Section 3, we discuss some future
directions that we aim to embark on for the remaining of
my PhD. Finally, we summarize and conclude this paper in
Section 4.

2While group recommendation research is related to tour rec-
ommendation for groups of tourists, the latter involves additional
challenges, such as constructing the recommended POIs (items)
into a connected itinerary and considerations for specific start-
ing/ending points, and a limited time budget for visiting and trav-
elling between POIs. As such, we focus more on literature regard-
ing tour recommendation for groups of tourists and refer readers
to (Boratto and Carta 2011) for a more comprehensive discussion
on group recommendation works.

116

2 Contributions to Date
In the following sections, we describe some of our main
contributions thus far, which include: (i) implementing a
general framework for deriving user-POI visit history based
on geo-tagged photos (Section 2.1); (ii) formulating the
basic tour recommendation problem and various variants
(Section 2.2); (iii) proposing tour recommendation algo-
rithms for individual tourists (Section 2.3); and (iv) propos-
ing tour recommendation algorithms for groups of tourists
(Section 2.4).

2.1 General Framework

As illustrated in Figure 1, our overall tour recommenda-
tion framework makes use of: (i) geo-tagged photos that are
tagged with a geographical coordinates (latitude/longitude)
and stamped with the time taken; and (ii) a POI list compris-
ing POI names, category and latitude/longitude coordinates.
The geo-tagged photos can be obtained from any photo shar-
ing website such as Flickr or Instagram, and the POI list
can be obtained from Wikipedia or a specific city’s tourism-
related website (e.g., City of Melbourne). This framework
comprises the following steps:

1. Map geo-tagged photos to a list of POIs if their coordi-
nates differ by a specific distance, e.g., ≤100m, resulting
in a list of POI visits. For calculating this spherical (earth)
distance, we make use of the Haversine formula (Sinnott
1984).

2. Construct the tourist travel history by connecting POI vis-
its (obtained from Step 1) of the same tourist. In particu-
lar, we derive a user’s visit duration at a POI based on the
time difference between his/her first and last photo (of a
consecutive nature) at that POI.

3. Calculate POI popularity and tourist interest preferences
based on tourist travel histories from Step 2. POI popu-
larity is based on the number of visits to a specific POI
(the more visits, the more popular), while tourist interest
is based on variations of POI visit durations (which is dis-
cussed later).

While Step 1 typically uses geo-tagged photos, it can
be easily extended to other media with a lat/long coordi-
nate and time-stamp, e.g., GPS traces on mobile phones
or other location-based social networking services such as
geo-tagged tweets on Twitter. As input to this frame-
work, we use Wikipedia and Flickr geo-tagged photos that
are publicly available as part of the Yahoo! Flickr Cre-
ative Commons 100M dataset (Yahoo! Webscope 2014;
Thomee et al. 2016).3 This framework was used in vari-
ous of our works, such as (Lim et al. 2015b; Lim 2015;
Lim et al. 2016), which we describe in more detail in the
later sections.

3Our pre-processed dataset (i.e., photos mapped to POI vis-
its and visit sequences) are also made publicly available at
https://sites.google.com/site/limkwanhui/datacode.

2.2 Basic Problem Definition
We now restate the basic tour recommendation problem def-
inition that we described in (Lim et al. 2015b). Given the
set of POIs P , a budget B, starting POI p1 ∈ P , destination
POI pN ∈ P , our main goal is to recommend a tour itinerary
that maximizes both user interests Int(Cati) and POI pop-
ularity Pop(i), while adhering to the budget B. Formally,
we want to construct a tour itinerary I = (p1, ..., pN) that:

Max
N−1∑

i=2

N∑

j=2

xi,j

(
ηInt(Cati) + (1− η)Pop(i)

)
(1)

where xi,j = 1 if we travel directly from POI i to j (i.e., we
visit POI i, followed by POI j), and xi,j = 0 otherwise. We
then attempt to solve for Eqn. 1, subjected to the following
constraints:

N∑

j=2

x1,j =

N−1∑

i=1

xi,N = 1 (2)

N−1∑

i=1

xi,k =

N∑

j=2

xk,j ≤ 1, ∀ k = 2, ..., N − 1 (3)

N−1∑

i=1

N∑

j=2

Cost(i, j)xi,j ≤ B (4)

2 ≤ pi ≤ N, ∀ i = 2, ..., N (5)

pi − pj + 1 ≤ (N − 1)(1− xi,j), ∀ i, j = 2, ..., N (6)

Eqn. 1 attempts to maximize a dual-objective of POI pop-
ularity and user interests on all POIs in the recommended
tour itinerary, and η controls the emphasis given to either
POI popularity or user interests. Constraints 2 to 6 ensures
that: (i) the itinerary starts and ends at POI 1 and N , re-
spectively (Constraint 2); (ii) all POIs in the itinerary are
connected and no POIs are re-visited (Constraint 3); (iii) the
total time taken to visit all POIs in the itinerary is within
the time budget B, based on a function Cost(px, py) that is
computed from both a personalized POI visit duration and
travelling time between POIs (Constraint 4); (iv) there are
no sub-tours (separate self-looping tours) in the proposed
solution, based on the sub-tour elimination constraint pro-
posed in (Miller, Tucker, and Zemlin 1960) for the Travel-
ling Salesman Problem (Constraints 5 and 6). We then pro-
ceed to solve this tour recommendation problem as an in-
teger programming problem and for this purpose, we used
the lpsolve linear programming package (Berkelaar, Eik-
land, and Notebaert 2004).

117

2.3 Tour Recommendation for Individual Tourist
In the first year of my PhD, we focused our research on per-
sonalized tour recommendation for individual tourists (RQ
1). In this research area, there has been various works
that aim to recommend interest-based tours based on the
Generalized Maximum Coverage problem (Brilhante et al.
2015) and using a combination of topic and Markov mod-
els (Kurashima et al. 2013). We built upon these earlier
works by exploring an intuitive model of user interests based
on POI visit time and recommending tour itineraries with a
mandatory visit category. Our contributions include:

Tour Recommendation with Personalized POIs and Visit
Duration. In (Lim et al. 2015b), we proposed the PERS-
TOUR algorithm for recommending personalized tours with
POIs and visit duration based on POI popularity and time-
based user interests. This algorithm models POI popularity
based on POI visit count, and time-based user interests using
a tourist’s total visit duration at POIs of a certain category,
relative to that of an average tourist. Our intuition is that a
tourist is more interested in a POI category if he/she spends
more time at POIs of this category. For determining tourist
POI visit duration, we utilize the geo-tagged photos taken
by a user and calculate their POI visit duration based on the
time difference between the first and last photo taken at a
specific POI. Based on measures of tour popularity, tourist
interest, recall, precision and F1-score, experimental results
show that our PERSTOUR algorithm is able to recommend
POIs and visit durations that more accurately reflect tourists’
real-life visits, compared to various greedy-based baselines.
For more information on this work, please refer to (Lim et
al. 2015b).

Customized Tour Recommendation with Mandatory
Categories. In (Lim 2015), we proposed the TOUR-
RECINT algorithm for recommending customized tours with
a mandatory POI category based on tourist interests. This
algorithm optimizes a variant of the Orienteering prob-
lem (Tsiligirides 1984; Vansteenwegen, Souffriau, and Oud-
heusden 2011), with a time/distance budget, starting POI,
destination POI and mandatory POI category. We defined
this mandatory POI category as the most frequently visited
POI category based on a tourist’s visit history. Thereafter,
we solve this variant of the Orienteering problem as an inte-
ger programming problem. Using a ground truth of real-life
POI visits by tourists (based on their geo-tagged photos),
experimental results show that TOURRECINT out-perform
various baselines, in terms of precision, recall and F1-score.
For more information on this work, please refer to (Lim
2015).

2.4 Tour Recommendation for Groups of Tourists
In the second year of my PhD, we proceeded to investi-
gate customized tour recommendation for groups of tourists
(RQ 2). While there is extensive literature on group rec-
ommendation of top-k items (Boratto and Carta 2011) and
tour recommendation for individual tourist (Gavalas et al.
2014), there is limited work on tour recommendation for
groups of tourists. For works that explore tour recommen-
dation for groups (Garcia, Sebastia, and Onaindia 2011;

Ardissono et al. 2003; Jameson, Baldes, and Kleinbauer
2003), they focus more on the group recommendation aspect
and do not consider the assignment of tour guides to lead
these tour groups. Similarly, many of these works assume
that the tourist groupings and interest preferences are ex-
plicitly provided. As part of RQ 2, we aim to study tour rec-
ommendation for groups as a more holistic problem, which
includes grouping tourists with diverse interest preferences,
recommending tour itineraries and assigning tour guides to
these groups. Our contributions include:

Group Tour Recommendation with Tour Guide Assign-
ment.4 In (Lim et al. 2016), we introduced the Group
Tour Recommendation (GROUPTOURREC) problem, which
involves recommending tours that best satisfy the interest
preferences of groups of tourists, where each tour group is
subsequently led by a tour guide. To solve this GROUP-
TOURREC problem, we proposed an approach for recom-
mending group tours that aims to: (i) determine tourist inter-
ests based on past POI visits, and cluster tourists with sim-
ilar interests into a group; (ii) recommend tours to groups
based on a variant of the Orienteering problem that con-
siders both group interests and POI popularity; and (iii)
assigns tour guides with the appropriate expertise to lead
each tour, using an integer programming approach. In ad-
dition, this problem is also technically challenging due to
its NP-hard complexity. As such, we use greedy-based ap-
proaches and integer programming to solve for smaller sub-
problems of tourists grouping, POI recommendation and
tour guides assignment, as part of the group tour recom-
mendation problem. Based on various measures of group in-
terest similarity, total/maximum/minimum tour interests and
total tour guide expertise, results show that our proposed ap-
proach out-performs various baselines, including standard
tour packages offered by real-life tour agencies. For more
information on this work, please refer to (Lim et al. 2016).

Detecting Location-centric Communities. In (Lim et al.
2015a), we investigated a complementary problem of de-
tecting communities of users that frequently visit or reside
in similar locations. In this work, we proposed the use of
Social-Spatial-Temporal (SST) links, which are traditional
social/friendship links between users augmented with spa-
tial and temporal information, e.g., visited the same place
within a certain time-frame. Using standard community
detection algorithms (such as the Louvain (Blondel et al.
2008), Infomap (Rosvall and Bergstrom 2008) and Label-
Prop (Raghavan, Albert, and Kumara 2007) algorithms) on
these SST links, we were able to detect location-centric
communities comprising users who exhibit strong similari-
ties in terms of the places they visit and reside in. In another
related work (Lim and Datta 2016), we also observed that
user communities with similar interests are more likely to
reside in the same locality. In the future, we intend to extend
this work to determine if users are travelling alone or as a
group, and accordingly recommend tour that are appropri-

4This work (Lim et al. 2016) will also be presented at the 26th
International Conference on Automated Planning and Scheduling
(ICAPS’16).

118

ate for individuals and groups. For more information on this
work, please refer to (Lim et al. 2015a).

3 Future Research Plan
For the remaining of my PhD, we aim to work on tour rec-
ommendation strategies that benefit the tourist population as
a whole (RQ 3) and we intend to work on the following:

Game-theoretic Approaches to Tour Recommendation.
Traditionally, tour recommendation algorithms aim to pro-
pose tours that maximize the personal profit of individual
tourists. One limitation of this approach is that while the in-
dividual tourist benefits, the entire tourist population could
potentially “lose” (e.g., everyone going to the most popular
POI but ends up overcrowding and creating long queues at
that POI, leading to a poor tour experience for most people).
To address this problem, we intend to adopt a game theoretic
approach to tour recommendations where we model POI
“crowdedness” as a common utility and derive equilibrium
strategies to recommend tours that will benefit all tourists as
a whole. Potential applications of this work would be in op-
timizing for queuing times at attractions/rides in theme parks
and preventing over-crowding at exhibits within museums.
For example, instead of recommending the most popular at-
traction in a theme park to all visitors and increasing the
queuing times, we may want to recommend some less popu-
lar attractions that have shorter queuing times to a subset of
visitors.

4 Conclusion
In summary, we introduced the general problem of tour rec-
ommendation, and discussed in greater detail, the specific
problems of recommending tours for individual travellers
and groups of tourists, along with the consideration of their
unique interest preferences. We then described our various
contributions in the general area of tour recommendation,
which include the following:

• Proposing the PERSTOUR algorithm for recommending
personalized tours with POIs and visit duration based on
POI popularity and time-based user interests (Lim et al.
2015b).

• Proposing the TOURRECINT algorithm for recommend-
ing customized tours with a mandatory POI category
based on user interests, i.e., the most frequently visited
POI category (Lim 2015).

• Introducing the GROUPTOURREC problem and propos-
ing an approach to cluster tourists with similar interests
into groups, recommend tours based on group interest
preferences and POI popularity, and assign tour guides to
lead these groups (Lim et al. 2016).

• Developing an approach for detecting location-centric
communities using SST links, which are traditional
friendship links augmented with spatial and temporal in-
formation (Lim et al. 2015a).

Using a Flickr dataset of tourist visits to POIs in multi-
ple cities, we compare our proposed algorithms against var-
ious baselines using evaluation metrics such as precision,
recall, F1-score, user interest scores, POI popularity scores,
and others. Experimental results show that our proposed al-
gorithms out-perform their respective baselines in terms of
these metrics, across all cities. We refer readers to the re-
spective papers (listed above) for a more detailed discussion
on these results.

As part of future work, we also described our plans to
adopt a game theoretic approach to tour recommendation.
For this work, we aim to model POI “crowdedness” as a
common utility and implement equilibrium strategies to rec-
ommend tours that minimize over-crowding at POIs for the
tourist population as a whole.

5 Acknowledgments
National ICT Australia (NICTA) is funded by the Aus-
tralian Government through the Department of Communica-
tions and the Australian Research Council through the ICT
Centre of Excellence Program. The author thanks Shanika
Karunasekera, Christopher Leckie and Jeffrey Chan for their
useful comments and discussions.

References
Amer-Yahia, S.; Roy, S. B.; Chawlat, A.; Das, G.; and Yu,
C. 2009. Group recommendation: Semantics and efficiency.
In Proceedings of the 35th International Conference on Very
Large Data Bases (VLDB’09), 754–765.
Ardissono, L.; Goy, A.; Petrone, G.; Segnan, M.; and
Torasso, P. 2003. Intrigue: personalized recommendation
of tourist attractions for desktop and hand held devices. Ap-
plied Artificial Intelligence 17(8-9):687–714.
Berkelaar, M.; Eikland, K.; and Notebaert, P. 2004. lpsolve:
Open source (mixed-integer) linear programming system.
http://lpsolve.sourceforge.net/.
Blondel, V. D.; Guillaume, J.-L.; Lambiotte, R.; and Lefeb-
vre, E. 2008. Fast unfolding of communities in large net-
works. Journal of Statistical Mechanics: Theory and Exper-
iment 2008(10):P10008.
Boratto, L., and Carta, S. 2011. State-of-the-art in group
recommendation and new approaches for automatic iden-
tification of groups. In Information Retrieval and Mining
in Distributed Environments, 1–20. Springer Berlin Heidel-
berg.
Brilhante, I.; Macedo, J. A.; Nardini, F. M.; Perego, R.;
and Renso, C. 2013. Where shall we go today? Planning
touristic tours with TripBuilder. In Proceedings of the 22nd
ACM International Conference on Information and Knowl-
edge Management (CIKM’13), 757–762.
Brilhante, I.; Macedo, J. A.; Nardini, F. M.; Perego, R.; and
Renso, C. 2014. TripBuilder: A tool for recommending
sightseeing tours. In Proceedings of the 36th European Con-
ference on Information Retrieval (ECIR’14), 771–774.
Brilhante, I. R.; Macedo, J. A.; Nardini, F. M.; Perego,
R.; and Renso, C. 2015. On planning sightseeing tours

119

with TripBuilder. Information Processing & Management
51(2):1–15.
Castillo, L.; Armengol, E.; Onaindı́a, E.; Sebastiá, L.;
González-Boticario, J.; Rodrı́guez, A.; Fernández, S.; Arias,
J. D.; and Borrajo, D. 2008. SAMAP: An user-oriented
adaptive system for planning tourist visits. Expert Systems
with Applications 34(2):1318–1332.
Chen, C.; Zhang, D.; Guo, B.; Ma, X.; Pan, G.; and Wu,
Z. 2015. TripPlanner: Personalized trip planning leveraging
heterogeneous crowdsourced digital footprints. IEEE Trans-
actions on Intelligent Transportation Systems 16(3):1259–
1273.
Choudhury, M. D.; Feldman, M.; Amer-Yahia, S.; Golbandi,
N.; Lempel, R.; and Yu, C. 2010. Automatic construction of
travel itineraries using social breadcrumbs. In Proceedings
of the 21st ACM Conference on Hypertext and Hypermedia
(HT’10), 35–44.
Cohen, R., and Katzir, L. 2008. The generalized max-
imum coverage problem. Information Processing Letters
108(1):15–22.
Garcia, I.; Sebastia, L.; Onaindia, E.; and Guzman, C.
2009. A group recommender system for tourist activities.
In Proceedings of the 10th International Conference on E-
Commerce and Web Technologies (EC-WEB’09), 26–37.
Garcia, I.; Sebastia, L.; and Onaindia, E. 2011. On the
design of individual and group recommender systems for
tourism. Expert Systems with Applications 38(6):7683–
7692.
Gavalas, D.; Konstantopoulos, C.; Mastakas, K.; and
Pantziou, G. 2014. A survey on algorithmic approaches for
solving tourist trip design problems. Journal of Heuristics
20(3):291–328.
Gionis, A.; Lappas, T.; Pelechrinis, K.; and Terzi, E. 2014.
Customized tour recommendations in urban areas. In Pro-
ceedings of the 7th ACM International Conference on Web
search and Data Mining (WSDM’14), 313–322.
Hu, L.; Cao, J.; Xu, G.; Cao, L.; Gu, Z.; and Cao, W. 2014.
Deep modeling of group preferences for group-based recom-
mendation. In Proceedings of the Twenty-Eighth AAAI Con-
ference on Artificial Intelligence (AAAI’14), 1861–1867.
Jameson, A.; Baldes, S.; and Kleinbauer, T. 2003. En-
hancing mutual awareness in group recommender systems.
In Proceedings of the IJCAI Workshop on Intelligent Tech-
niques for Web Personalization.
Kurashima, T.; Iwata, T.; Irie, G.; and Fujimura, K. 2010.
Travel route recommendation using geotags in photo shar-
ing sites. In Proceedings of the 19th ACM International
Conference on Information and Knowledge Management
(CIKM’10), 579–588.
Kurashima, T.; Iwata, T.; Irie, G.; and Fujimura, K.
2013. Travel route recommendation using geotagged pho-
tos. Knowledge and Information Systems 37(1):37–60.
Lim, K. H., and Datta, A. 2016. An interaction-based ap-
proach to detecting highly interactive twitter communities
using tweeting links. In Web Intelligence, volume 14, num-
ber 1. IOS Press.

Lim, K. H.; Chan, J.; Leckie, C.; and Karunasekera, S.
2015a. Detecting location-centric communities using social-
spatial links with temporal constraints. In Proceedings
of the 37th European Conference on Information Retrieval
(ECIR’15), 489–494.
Lim, K. H.; Chan, J.; Leckie, C.; and Karunasekera, S.
2015b. Personalized tour recommendation based on user in-
terests and points of interest visit durations. In Proceedings
of the Twenty-Fourth International Joint Conference on Ar-
tificial Intelligence (IJCAI’15), 1778–1784.
Lim, K. H.; Chan, J.; Leckie, C.; and Karunasekera, S. 2016.
Towards next generation touring: Personalized group tours.
In Proceedings of the 26th International Conference on Au-
tomated Planning and Scheduling (ICAPS’16).
Lim, K. H. 2015. Recommending tours and places-of-
interest based on user interests from geo-tagged photos. In
Proceedings of the 2015 SIGMOD PhD Symposium (SIG-
MOD’15), 33–38.
Miller, C. E.; Tucker, A. W.; and Zemlin, R. A. 1960. Integer
programming formulation of traveling salesman problems.
Journal of the ACM 7(4):326–329.
Raghavan, U. N.; Albert, R.; and Kumara, S. 2007. Near lin-
ear time algorithm to detect community structures in large-
scale networks. Physical Review E 76(3):036106.
Refanidis, I.; Emmanouilidis, C.; Sakellariou, I.; Alexiadis,
A.; Koutsiamanis, R.-A.; Agnantis, K.; Tasidou, A.; Kokko-
ras, F.; and Efraimidis, P. S. 2014. myVisitPlanner GR:
Personalized itinerary planning system for tourism. In Pro-
ceedings of the 8th Hellenic Conference on Artificial Intelli-
gence (SETN’14), 615–629.
Rosvall, M., and Bergstrom, C. T. 2008. Maps of ran-
dom walks on complex networks reveal community struc-
ture. Proceedings of the National Academy of Science
105(4):1118–1123.
Sebastia, L.; Garcia, I.; Onaindia, E.; and Guzman, C. 2009.
e-Tourism: a tourist recommendation and planning applica-
tion. International Journal on Artificial Intelligence Tools
18(5):717–738.
Sinnott, R. W. 1984. Virtues of the Haversine. Sky and
Telescope 68(158).
Thomee, B.; Shamma, D. A.; Friedland, G.; Elizalde, B.; Ni,
K.; Poland, D.; Borth, D.; and Li, L.-J. 2016. YFCC100M:
The new data in multimedia research. Communications of
the ACM 59(2):64–73.
Tsiligirides, T. 1984. Heuristic methods applied to orienteer-
ing. J. of the Operational Research Society 35(9):797–809.
UNWTO. 2015. United Nations World Tourism
Organization (UNWTO) annual report 2014.
http://www2.unwto.org/annual-reports.
Vansteenwegen, P.; Souffriau, W.; and Oudheusden, D. V.
2011. The orienteering problem: A survey. European Jour-
nal of Operational Research 209(1):1–10.
Yahoo! Webscope. 2014. Yahoo! Flickr Cre-
ative Commons 100M dataset (YFCC-100M).
http://webscope.sandbox.yahoo.com/catalog.php?datatype
=i&did=67.

120

Constructing Plan Trees for Simulated Penetration Testing

Dorin Shmaryahu
Information Systems Engineering

Ben Gurion University
Israel

Abstract

Penetration Testing (pentesting), where network admin-
istrators automatically attack their own network to iden-
tify and fix their vulnerabilities, has recently received
attention from the AI community. Smart algorithms that
can identify robust and efficient attack plans can imi-
tate human hackers better than simple protocols. Cur-
rent classical planning methods for pentesting model
poorly the real world, where the attacker has only partial
information concerning the network. On the other hand
POMDP-based approaches provide a strong model, but
fail to scale up to reasonable model sizes. In this paper
we offer a more realistic model of the problem, allowing
for partial observability and non-deterministic action ef-
fects, by modeling pentesting as a partially observable
contingent problem. We suggest several optimization
criteria, including worst case, best case, and fault toler-
ance. We experiment with benchmark networks, show-
ing contingent planning to scale up to large networks.

1 Introduction
Penetration testing (pentesting) is a popular technique for
identifying vulnerabilities in networks, by launching con-
trolled attacks (Burns et al. 2007). A successful, or even
a partially successful attack reveals weaknesses in the net-
work, and allows the network administrators to remedy these
weaknesses. Such attacks typically begin at one entrance
point, and advance from one machine to another, through the
network connections. For each attacked machine a series of
known exploits is attempted, based on the machine configu-
ration, until a successful exploit occurs. Then, this machine
is controlled by the attacker, who can launch new attacks on
connected machines. The attack continues until a machine
inside the secure network is controlled, at which point the
attacker can access data stored inside the secured network,
or damage the network.

In automated planning the goal of an agent is to produce
a plan to achieve specific goals, typically minimizing some
performance metric such as overall cost. There are many
variants of single agent automated planning problems, rang-
ing from fully observable, deterministic domains, to par-
tially observable, non-deterministic or stochastic domains.

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Automated planning was previously suggested as a tool for
conducting pentesting, exploring the two extreme cases — a
classical planning approach, where all actions are determin-
istic, and the entire network structure and machine configu-
ration are known, and a POMDP approach, where machine
configuration are unknown, but can be noisily sensed, and
action outcomes are stochastic.

The classical planning approach scales well for large net-
works, and has therefore been used in practice for pen-
testing. However, the simplifying assumptions of complete
knowledge and fully deterministic outcomes results in an
overly optimistic attacker point-of-view. It may well be that
a classical-planning attack has a significantly lower cost than
a real attack, identifying vulnerabilities that are unlikely to
be found and exploited by actual attackers.

The POMDP approach on the other hand, models the
problem better, and can be argued to be a valid representa-
tion of the real world. One can model the prior probabilities
of various configurations for each machine as a probability
distribution over possible states, known as a belief. Pinging
actions, designed to reveal configuration properties of ma-
chines are modeled as sensing actions, and a probability dis-
tribution can be defined for the possible failure in pinging a
machine. The success or failure of attempting an exploit over
a machine can be modeled as a stochastic effect of actions.

This approach, however, has two major weaknesses —
first, POMDP solvers do not scale to the required network
size and possible configurations. Second, a POMDP requires
accurate probability distributions for initial belief, sensing
accuracy, and action outcomes. In pentesting, as in many
other applications, it is unclear how the agent can reliably
obtain these distributions. In particular, how to identify an
accurate probability distribution over the possible OS for
the machines in the network? Prior work (Sarraute et al.)
has devised only a first over-simplifying model of ”software
updates”, which the authors admit themselves is not suitable
and may adversely affect the usefulness of the pentesting
result (”garbage in, garbage out”). One might consider re-
search into obtaining better distributions, e.g. by statistics
from data, but this is wide open, and in any case the scala-
bility weakness remains.

A possible simple approach to defining such probabili-
ties is to use a uniform distribution. However, a solution to a
POMDP defined using a uniform distribution can be arbitrar-

121

ily bad. Consider, for example, a case where there exists a
large set of configurations that are easy to penetrate, such as
a variety of old, unupdated operating systems. All these con-
figurations may be very rare in the network, yet still exist on
some machines, and are hence represented in the model. As-
suming a uniform distribution over possible configurations,
an attacker may believe that these vulnerable configurations
are as frequent as any other configuration, and may hence at-
tempt a long sequence of exploits which will work only for
these faulty configurations. In such a case, the performance
of the agent measured over the uniform POMDP, may be
arbitrarily far from its performance in practice.

As an intermediate model between classical planning and
POMDPs, MDP models of pentesting have been suggested
(Durkota et al. 2015; Hoffmann 2015). These somewhat
simplify the issue of obtaining the probabilities, now cor-
responding to ”success statistics” for exploits. Yet even this
data is not easy to come by in practice, and scalability may
still be problematic given that solving factored MDPs is no-
toriously hard (a thorough empirical investigation has yet to
be conducted).

In this paper we suggest another, different, intermediate
model between classical planning and POMDPs. We replace
the POMDP definition with partially observable contingent
planning, a qualitative model where probability distributions
are replaced with sets of possible configurations or action
effects (Albore et al. 2009; Muise et al. 2014; Komarnitsky
and Shani 2014). Solvers for this type of models scale better
than POMDP solvers, and can be used for more practical
networks. As these models require no probabilities, we avoid
the guesswork inherent in their specification.

Contingent planners attempt to find a plan tree (or graph),
where nodes are labeled by actions, and edges are labeled by
observations. This plan tree is a solution to the problem if all
leaves represent goal states. In pentesting, one is also inter-
ested in finding better attacks, i.e. in ranking the set of possi-
ble plan trees by some measurable quantity. For example, an
attacker may be interested in attacks that, at the worst case,
take no more than a certain amount of time. An important
research question is, hence, to define possible optimization
criteria for attack plan trees. Then, one must design algo-
rithms dedicated to these optimization criteria.

We focus here on the first question — possible optimiza-
tion criteria for ranking contingent plan trees. We suggest a
number of such criteria, including best and worst case, bud-
get constrained plans, and fault-tolerant planning (Domshlak
2001). We also consider deadends, which arise in pentesting
as some machine configurations cannot be penetrated, leav-
ing no opportunity to the attacker to reach its goal. We dis-
cuss how to define and compare contingent plans under such
unavoidable deadends.

We demonstrate empirically that different heuristics pro-
duce different plan trees, and that these plan trees can
be compared using our optimization criteria, to prefer on
heuristic over another. We leave the construction of optimal
and approximate contingent planners for future research.

2 Networks and Pentesting
We begin by providing a short background on pentesting.

We can model networks as directed graphs whose vertices
are a setM of machines, and edges representing connections
between pairs of m ∈ M . Like previous work in the area,
we assume below that the attacker knows the structure of the
network. But this assumption can be easily removed in our
approach. We can add sensing actions that test the outgoing
edges from a controlled host to identify its immediate neigh-
bors. From an optimization prespective, though, not know-
ing anything about the network structure, makes it difficult
to create smart attacks, and the attacker is forced to blindly
tread into the network. It might well be that some partial in-
formation concerning the network structure is known to the
attacker, while additional information must be sensed. We
leave discussion of interesting forms of partial knowledge to
future work.

Each machine in the network can have a different configu-
ration representing its hardware, operating system, installed
updates and service packs, installed software, and so forth.
The network configuration is the set of all machine configu-
rations in the network.

Machine configuration may be revealed using sensing
techniques. For example, if a certain series of 4 TCP re-
quests are sent at exact time intervals to a target machine,
the responses of the target machine vary between different
versions of Windows (Lyon 2009). In many cases several
different such methods must be combined to identify the op-
erating system. Sending such seemingly innocent requests
to a machine to identify its configuration is known as fin-
gerprinting. Not all the properties of a target machine can
be identified. For example, one may determine that a certain
machine runs Windows XP, but not which security update is
installed.

Many configurations have vulnerabilities that can be ex-
ploited to gain control over the machine, but these vulnera-
bilities vary between configurations. Thus, to control a ma-
chine, one first pings it to identify some configuration prop-
erties, and based on these properties attempts several appro-
priate exploits. As the attacker cannot fully observe the con-
figuration, these exploits may succeed, giving the attacker
full control of the target machine, or fail as some unde-
tectable configuration property made this exploit useless.

The objective of penetration testing (pentesting) is to gain
control over certain machines that possess critical content
in the network. We say that a machine m is controlled if it
has already been hacked into, and the attacker can use it to
fingerprint and attack other machines. A reached machinem
is connected to a controlled machine. All other machines are
not reached. We assume that the attacker starts controlling
the internet, and all machines that are directly connected to
the internet are reached.

We will use the following (small but real-life) situation as
an illustrative example (Sarraute et al.):
Example 2.1. The attacker has already hacked into a ma-
chine m′, and now wishes to attack a reached machine m.
The attacker may try one of two exploits: SA, the “Syman-
tec Rtvscan buffer overflow exploit”; and CAU, the “CA
Unicenter message queuing exploit”. SA targets a particu-
lar version of “Symantec Antivirus”, that usually listens on
port 2967. CAU targets a particular version of “CA Unicen-

122

ter”, that usually listens on port 6668. Both work only if
a protection mechanism called DEP (“Data Execution Pre-
vention”) is disabled. The attacker cannot directly observe
whether DEP is enabled or not.

If SA fails, then it is likely that CAU will fail as well
because DEP is enabled. Hence, upon observing the result
of the SA exploit, the attacker learns whether DEP is en-
abled. The attacker is then better off trying other exploits
else. Achieving such behavior requires the attack plan to
observe the outcomes of actions, and to react accordingly.
Classical planning which assumes perfect world knowledge
at planning time cannot model such behaviors.

3 Contingent Planning Model and Language
A contingent planning problem is a tuple <
P,Aact, Asense, φI , G >, where P is a set of proposi-
tions, Aact is a set of actuation actions, and Asense is a
set of sensing actions. An actuation action is defined by a
set of preconditions — propositions that must hold prior
to executing the actions, and effects — propositions that
hold after executing the action. Sensing actions also have
preconditions, but instead of effects they reveal the value
of a set of propositions. φI is a propositional formula
describing the set of initially possible states. G ⊂ P is a set
of goal propositions.

In our pentesting application, P contains propositions for
describing machine configuration, such as OS(mi, winxp),
denoting that machine mi runs the OS Windows XP. Sim-
ilarly, SW (mi, IIS) represents the existence of the soft-
ware IIS on machine mi. In addition, the proposition
controlling(mi) denotes that the attacker currently controls
mi, and the proposition hacl(mi,mj , p) denotes that ma-
chine mi is directly connected to machine mj through port
p.

The set Asense in our pentesting model represents the
set of possible queries that one machine can launch on
another, directly connected machine, pinging it for vari-
ous properties, such as its OS, software that runs on it,
and so forth. Each such sensing action requires as pre-
condition only that the machines will be connected, and
reveals the value of a specific property. In some cases
there are certain “groups” of operating systems, such as
Windows XP with varying service packs and updates in-
stalled. In this case we can allow one property for the group
(OS(mi, winxp)) and another property for the version, such
as (OSV ersion(mi, winxpsp1)) which may not be observ-
able by the attacker.

The set Aact in our pentesting model contains all the
possible exploits. We create an action ae,msource,mtarget

for each exploit e and a pair of directly connected ma-
chines msource, mtarget. If an exploit e is applicable only to
machines running Windows XP, then OS(mtarget, winxp)
would appear in the preconditions. Another precondition is
controlling(msource) denoting that the attacker must con-
trol msource before launching attacks from it. The effect of
the action can be controlling(mtarget), but we further al-
low the effect to depend on some hidden property p that
cannot be sensed. This is modeled by a conditional effect
〈p, controlling(mtarget)〉 denoting that if property p exists

on mtarget than following the action the attacker controls
mtarget.

Belief states in contingent planning are sets of pos-
sible states, and can often be compactly represented
by logic formulas. The initial belief formula φI rep-
resents the knowledge of the attacker over the pos-
sible configurations of each machine. For example
oneof(OS(mi, winxp), OS(mi, winnt4), OS(mi, win7))
states that the possible operating systems for machine mi

are Windows XP, Windows NT4, and Windows 7.
Like Sarraute et al., we assume no non-determinism, i.e.,

if all properties of a configuration are known, then we can
predict deterministically whether an exploit will succeed.
We do allow for non-observable properties, such as the ser-
vice pack installed for the specific operating system. We sup-
port actions for sensing whether an exploit has succeeded.
Hence, observing the result of an exploit action reveals in-
formation concerning these hidden properties.
Example 3.1. We illustrate the above ideas using a very
small example, written in a PDDL-like language for describ-
ing contingent problems (Albore et al. 2009).

We use propositions to describe the various properties of
the machines and the network. For example, the predicate
(hacl ?m1 ?m2) specifies whether machinem1 is connected
to machine m2, and the predicate (HostOS ?m ?o) specifies
whether machinem runs OS o. While in this simple example
we observe the specific OS, we could separate OS type and
edition (say, Windows NT4 is the type, while Server or En-
terprise is the edition). We can then allow different sensing
actions for type and edition, or allow only sensing of type
while edition cannot be directly sensed.

We define actions for pinging certain properties. For ex-
ample, the ping-os action:

(: a c t i o n ping−os
: p a r a m e t e r s (? s − h o s t ? t − h o s t ? o − os)
: p r e c o n d i t i o n (and (h a c l ? s ? t)

(c o n t r o l l i n g ? s r c)
(n o t (c o n t r o l l i n g ? t a r g e t))

: o b s e r v e (HostOS ? t a r g e t ? o)
)

allows an attacker that controls host s connected to an un-
controlled host t, to ping it to identify whether it’s OS is o.
We allow for a similar ping action for installed software.

The exploit action attempts to attack a machine exploiting
a specific vulnerability:

(: a c t i o n e x p l o i t
: p a r a m e t e r s (? s − h o s t ? t − h o s t ? o − os ?sw − sw ? v − vu ln)
: p r e c o n d i t i o n (and (h a c l ? s ? t)

(c o n t r o l l i n g ? s)
(n o t (c o n t r o l l i n g ? t))
(HostOS ? t ? o)
(HostSW ? t ? s)
(Match ? o ?sw ? v))

: e f f e c t (when (E x i s t V u l n ? v ? t) (c o n t r o l l i n g ? t))
)

The preconditions specify that the machines must be con-
nected, that the OS is o and the software sw is installed, and
that the vulnerability v which we intend to exploit matches
the specific OS and software.

123

The success of the exploit depends on whether the vul-
nerability exists on the target machine, which manifests
in the conditional effect. The attacker cannot directly ob-
serve whether a specific vulnerability exists, but can use the
CheckControl action to check whether the exploit has suc-
ceeded:
(: a c t i o n CheckCon t ro l

: p a r a m e t e r s (? s r c − h o s t ? t a r g e t − h o s t)
: p r e c o n d i t i o n (and (h a c l ? s r c ? t a r g e t ? p) (c o n t r o l l i n g ? s r c))
: o b s e r v e (c o n t r o l l i n g ? t a r g e t)

)

The initial state of the problem describes the knowledge
of the attacker prior to launching an attack:
(: i n i t
1 : (c o n t r o l l i n g i n t e r n e t)
2 : (h a c l i n t e r n e t h o s t 0)

(h a c l i n t e r n e t h o s t 1)
(h a c l h o s t 1 h o s t 2)
(h a c l h o s t 0 h o s t 2)
. . .

3 : (oneof (HostOS h o s t 0 winNT4ser) (HostOS h o s t 0 winNT4ent))
(oneof (HostOS h o s t 1 win7en t) (HostOS h o s t 1 winNT4ent))
. . .

4 : (oneof (HostSW h o s t 0 I I S 4) (HostSW h o s t 1 I I S 4))
. . .

5 : (Match winNT4ser I I S 4 vu ln1)
. . .

6 : (o r (E x i s t V u l n vu ln1 h o s t 0) (E x i s t V u l n vu ln2 h o s t 0))
. . .

)

We state that initially the attacker controls the “internet”
only (part 1). In this case the structure of the network is
known, described by the hacl statements (part 2). Then, we
describe which operating systems are possible for each of
the hosts (part 3). Below, we specify that either host0 or
host1 are running the software IIS (part 4). We describe
which vulnerability is relevant to a certain OS-software pair
(part 5), and then describe which vulnerabilities exit on the
various hosts (part 6).

The above specification may allow for a configuration
where no vulnerability exists on a host (machine) that
matches the host OS and software. Hence, none of the ex-
ploits will work for that specific host.

4 Plan Trees and Optimization Criteria
We now formally define solutions to a contingent planning
problem. We discuss deadends that arise in pentesting, and
then turn our attention to a discussion of optimization crite-
ria.

4.1 Contingent Plan Trees
A solution to a contingent planning problem is a plan tree,
where nodes are labeled by actions. A node labeled by an
actuation action will have only a single child, and a node la-
beled by an observation action will have multiple children,
and each outgoing edge to a child will be labeled by a pos-
sible observation.

An action a is applicable in belief state b, if for all s ∈ b,
s |= pre(a). The belief state b′ resulting from the execu-
tion of a in b is denoted a(b). We denote the execution of

a sequence of actions an1 =< a1, a2, ..., an > starting from
belief state b by an1 (b). Such an execution is valid if for all i,
ai is applicable in ai−11 (b).

Plan trees can often be represented more compactly as
plan graphs(Komarnitsky and Shani 2014; Muise et al.
2014), where certain branches are unified. This can lead to
a much more compact representation, and to scaling up to
larger domains. Still, for ease of exposition, we discuss be-
low plan trees rather than graphs.

In general contingent planning, a plan tree is a solution, if
every branch in the tree from the root to a leaf, labeled by ac-
tions an1 , an1 (bI) |= G. In pentesting, however, it may not be
possible to reach the goal in all cases, because there may be
network configurations from which the target machine sim-
ply cannot be reached. To cater for this, we need to permit
plan trees that contain dead-ends. We define a dead-end to
be a state from which there is no path to the goal, given any
future sequence of observations. That is, any plan tree start-
ing from a dead-end state would not reach the goal in any
of its branches. For example, a dead-end state arises if no
exploit is applicable for the goal machine. It is clearly advis-
able to stop the plan (the attack) at such states. On the other
hand, if a state is not a dead-end, then there still is a chance
to reach the target so the plan/attack should continue.

There is hence need to define contingent plans where
some of the branches may end in dead-ends. A simple so-
lution, customary in probabilistic models, is to introduce a
give-up action which allows to achieve the goal from any
state. Setting the cost of that action (its negative reward)
controls the extent to which the attacker will be persistent,
through the mechanism of expected cost/expected reward.

In a qualitative model like ours, it is not as clear what the
cost of giving up (effectively, of flagging a state as ”dead-
end” and disregarding it) should be. It may be possible to set
this cost high enough to force the plan to give up only on
dead-ends as defined above. But then, the contingent plan-
ner would effectively need to search all contingent plans not
giving up, before being able to give up even once.

We therefore employ here a different approach, allowing
the planner to give-up on s iff it can prove that s is a dead-
end. Such proofs can be lead by classical-planning dead-
end detection methods, like relaxation/abstraction heuristics,
adapted to our context by determinizing the sensing actions,
allowing the dead-end detector to choose the outcome. In
other words, we employ a sufficient criterion to detect dead-
end states, and we make the give-up action applicable only
on such states. As, beneath all dead-ends, eventually the pen-
test will run out of applicable actions, eventually every dead-
end will be detected and the give-up enabled.

In general, this definition would not be enough because
the planner could willfully choose to move into a dead-end,
thereby ”solving” the task by earning the right to give up.
This cannot happen, however, in the pentesting application,
as all dead-ends are unavoidable, in the following sense. Say
N is a node in our plan tree T , and denote by [N] those ini-
tial states from which the execution of T will reach N . If N
is a dead-end, then every I ∈ [N] is unsolvable, i.e., there
does not exist any sequence of Aact actions leading from I
to the goal. In other words, any dead-end the contingent plan

124

may encounter is, in the pentesting application, inherent in
the initial state. Matters change if we impose a budget limit
on the attack, in which case the dead-ends encountered de-
pend on which decisions are taken. We define an according
plan quality criterion as part of the next subsection.

4.2 Optimization Criteria for Contingent Plans
General contingent planning follows the satisfying planning
criterion, that is, one seeks any solution plan tree. It is possi-
ble, though, to consider cases where one plan tree is prefer-
able to another, and construct algorithms that seek better, or
even the best possible plan tree.

When we assume that the environment is modeled as a
POMDP, and we know all the probability distributions, an
obvious optimization criterion is the expected discounted
reward (or cost) from executing a plan tree in the environ-
ment, and can be estimated by running multiple trials and
computing the average discounted reward (ADR). In this pa-
per, however, we focus on cases where these distributions
are unknown. Without the specified distributions one cannot
accurately estimate expected reward. Any attempt to use a
different distribution, such as a uniform distribution, which
may be arbitrarily far from the true distribution, may result
in quality estimation that is arbitrarily far from reality.

We hence revert to other possible optimization criteria.
Perhaps the most trivial optimization criteria under unknown
probability distributions is the best case scenario, or the
worst case scenario. In the best case scenario we compare
plan trees based on the length of the shortest branch leading
to a goal state. In the worst case scenario we compare the
length of the longest branch leading to a goal state, prefer-
ring plan trees with shorter worst case branches. This may
be somewhat different than the naive definition of a worst
case, as a complete failure is obviously worse (less desir-
able) than a success after a lengthy sequence of actions. In
our case, as the deadends in the plan trees are unavoidable,
the naive worst case — a complete failure — is identical
in all plan trees. We thus choose to ignore branches ending
with deadends when considering worst case analysis.

While well defined, best and worst case optimization may
not be sufficiently expressive. A best case scenario is too op-
timistic, assuming that all attack attempts will be successful.
A worst case scenario is over pessimistic, assuming that all
attack attempts, but the last one, will fail. We would like to
define finer optimization criteria.

Budget Optimization One possible such criterion as-
sumes attacks on a budget — that is, the attacker is allowed
only a certain predefined number of actions (or total cost) in
a branch. When the budget runs out, the attacker is not al-
lowed any additional actions, and hence, a deadend occurs.
Setting a budget prior to attacking seems like a reasonable
requirement from an attacker. For example, if action costs
represent the time it takes for each action, the attacker may
wish to restrict attention only to attacks that require less than
a certain amount of time.

Now, given two plan trees that respect a given budget, we
can compare them on two possible criteria — the best case
scenario and the set of solved network configurations. The

worst case scenario is less interesting here as it will probably
be identical to the budget.

The set of network configurations where the attacker has
reached the goal under the budget is now interesting, be-
cause deadends induced by the budget may well be avoid-
able. That is, one can choose different attack plans, that may
lead to the goal faster and hence will result in less deadends.
However, simply counting the number of network configu-
rations for which the goal has been reached is undesirable
under our qualitative assumptions. For example, it may well
be that plan tree τ1 solves only for a single configuration c,
while another plan tree τ2 solves for all configurations but
c. Still, it may be that the (unknown) probability of c is 0.9,
making τ1 preferable to τ2. As we do not know these proba-
bilities, we cannot make such comparisons.

We can hence only declare plan tree τ1 to be better than
plan tree τ2 if the set of solved configurations ofτ1 is a strict
superset of the set of solved configurations of τ2. As contin-
gent planners typically maintain some type of belief over the
set of possible network configurations in each search node,
such computations are feasible. For example, if the belief is
maintained by a logic formula, as we do, then each goal leaf
g has a logic formula φg defining the belief at that leaf. We
can check whether∨

g∈G(τ1)

φg |=
∨

g∈G(τ2)

φg (1)

∨

g∈G(τ2)

φg 6|=
∨

g∈G(τ1)

φg (2)

where G(τ) is the set of goal leaves in plan tree τ .

Fault Tolerance Optimization Another possible opti-
mization is by extending the ideas of fault-tolerance plan-
ning to pentesting. In fault-tolerance planning (Domshlak
2001), assuming that certain actions may fail with some low
probability, a solution achieves the goal under the assump-
tion that no more than k failures will occur. The underlying
assumption is that the probability of more than k failures
is so small, that we can ignore it. A failure in our case can
be defined in one of two ways — either that we will ping
a machine for a given property (say, OS(mi, winxp)) and
receive a negative response. Alternatively, we may declare
a failure only when we attempt an exploit, and it fails to
achieve control of a machine (due to some unobserved prop-
erty).

With that view in mind, we can compare solution plan
trees, focusing only on branches that contain exactly k fail-
ures. As having no more than k failures is an optimistic as-
sumption, it is reasonable to check the worst case under this
optimistic assumption. That is, of the branches of the plan
tree that have the lowest probability that we care about, we
compare the longest branches. Looking at the best case —
the shortest branch when having no more than k failures, is
identical to the overall best case scenario, ignoring failures
all together.

A complementing approach assumes no less than k fail-
ures at each branch. This assumption is more appropriate
where the probability of failure is sufficiently large, such
that the probability of completing a task without any failure

125

is very low. In such cases, we again compare only branches
with exactly k branches, and as no less than k failures is a
pessimistic assumption, we compare the best case scenario
— the shortest branch with exactly k failures. Again, the
worst case is less interesting as it is identical to the overall
worst case.

5 Research plan
We now discuss the next steps on our research agenda. We
have four different designed items:

1. Improving the configuration of the network.

2. Getting real network data.

3. Finding additional heuristics.

4. Empirical validation.

5.1 Improving the Configuration of the Network

Currently we believe that we provide a stronger and more re-
alistic model of the problem than previous approaches, that
can scale up to reasonably sized networks. However, we con-
sider changing some of the possible configuration, making
the model even more realistic.

We intend to add OS families — generalizing the OS con-
figuration under the assumption that we can not sense a spe-
cific Os, but only a general category of an Os. As we explain
above, the sensing procedure for machine configuration is
known as fingerprinting. In the real world this process may
identify the OS family and not the specific one. For example,
if a certain machine runs Windows XP SP3, the observation
about the target machine OS may be Windows XP.

We can support hidden connections between machines
(sensing for connections). That way we eliminate the need
for planner knowledge over the hosts connection. We have
doubts about hiding those connection. Making the planner
work without previous knowledge will make all states and
action to seem equally valuable — choosing to attack one
machine is equivalent to choosing to attack another. For ex-
ample, our current heuristics choose to attack a machine that
is closest to the target machine, which cannot be done when
network connections are unknown.

5.2 Getting real network data

We are working on getting some real data network config-
uration using Nmap (Network Mapper) tool to gathering all
configuration data (OS, Softwares, connections and vulnera-
bilities) from existing network. The Nmap tool is a free and
open source utility for network discovery and security au-
diting. Nmap uses raw IP packets in novel ways to deter-
mine what hosts are available on the network, what applica-
tions those hosts are offering, what operating systems they
are running. First we need to run Nmap on a small network
showing there is no risk to execute it in a larger network,
and then hopefully we could run Nmap on the university
network.

5.3 Identifying Useful Heuristics
Our planning algorithm is a best first contingent planner. We
use a heuristic to determine which state and action to expand
next.

We are interested in generating a variety of plan trees,
given different heuristics. Currently, our planner supports
4 different heuristics. The first two heuristics, random and
LIFO are not useful as they cannot create attack graphs for
large networks. We will use them only as a baseline to show
that the other heuristics are better given the optimization cri-
teria. Our main goal is to develop new heuristics that will
be scalable to larger networks and will produce better plan
trees.

Random Heuristic This heuristic gives each state a ran-
dom heuristic value. It preform badly and is not scalable to
larger networks of more than 5 hosts. This heuristic will be
our baseline for comparing plans trees in small networks.

LIFO Heuristic A LIFO heuristic gives the highest value
to the last state. The last state to arrive is the next state the
planner will expand. This heuristic also preforms badly and
is not scalable to larger networks of more than 5 hosts.

Shortest Path Heuristic This heuristic chooses the next
host to attack among the reachable hosts closest to the goal
host. Attack actions for the chosen host are selected at ran-
dom. This heuristic is more scalable than the previous two,
handling networks with up to 16 hosts.

Shortest Path and Action Selection Heuristic We chose
the next host to attack from the hosts closest to the goal host.
When choosing actions, we first ping a host for its operating
system, and then we ping it only for software that, combined
with the observed OS, may have a vulnerability. If a possi-
ble vulnerability has been detected, we attempt an exploit,
followed by a sensing action to check if control was gained
over the attacked host. This simple heuristic, proves to be
highly effective for this application, and we manage to pro-
duce attack graphs for networks with 80 hosts and more.

5.4 Empirical Study
We now review the experiments that we want to conduct in
order to show the contribution of using contingent planning
for pentesting .We want to demonstrate that the criteria we
suggest can be used to differentiate between various plan
trees (graphs), helping us to select a better algorithm. First,
we will generate a number of networks of varying sizes us-
ing the generator of Hoffman and Steinmetz(Sarraute et al. ;
Steinmetz et al.).

We experiment with a simple greedy best first contingent
planner that uses a heuristic to determine which state and ac-
tion to expand next. In addition, we use a mechanism for de-
tecting repeated plan tree nodes, converting the plan tree into
a plan graph. We augment this algorithm with a domain spe-
cific deadend detection mechanism, checking whether there
is still a path from the attack source (“the internet”) to the
target host.

We will employ several domain specific heuristics (as we
explained above), that leverage the network graph. Generat-

126

ing several different plan graphs. We can compare the run-
time and scalabilty of the various heuristics.

We will run the heuristics over various network sizes. This
allows us to employ the optimal solution criteria to conclude
which plan is better. We can calculate the best and worst case
in the fault tolerance scenario, running the planner with dif-
ferent values of k and compare the best (shortest) and worst
(longest) path to goal. We will say that a plan graph ’A’ is
better than another plan graph ’B’ if in a given k failures the
longest path to the goal in ’A’ is shorter than the longest path
to goal in ’B’.

We also need to compare between the sets of initial states
where the goal can be reached in each plan graph. Let s(A)
be the set of states for which the goal can be reached in plan
graph A and s(B) to be the set of such states in plan graph
B. If s(B) ⊂ s(A) we can say that plan graph A is better
than plan graph B. Identifying the set of initial states for
which there is a solution, and comparing sets is not a trivial
problems, and we must identify efficient methods for doing
that.

References
Alexandre Albore, Héctor Palacios, and Hector Geffner. A
translation-based approach to contingent planning. In IJCAI
2009, Proceedings of the 21st International Joint Confer-
ence on Artificial Intelligence, Pasadena, California, USA,
July 11-17, 2009, pages 1623–1628, 2009.
Burns et al. Security Power Tools. O’Reilly Media, 2007.
Carmel Domshlak. Fault tolerant planning: Complexity and
compilation. volume 22, pages –, 2001.
Karel Durkota, Viliam Lisý, Branislav Bosanský, and
Christopher Kiekintveld. Optimal network security harden-
ing using attack graph games. In Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelli-
gence, IJCAI 2015, Buenos Aires, Argentina, July 25-31,
2015, pages 526–532, 2015.
Jörg Hoffmann. Simulated penetration testing: From ”di-
jkstra” to ”turing test++”. In Proceedings of the Twenty-
Fifth International Conference on Automated Planning and
Scheduling, ICAPS 2015, Jerusalem, Israel, June 7-11,
2015., pages 364–372, 2015.
Radimir Komarnitsky and Guy Shani. Computing contin-
gent plans using online replanning. In Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelligence,
July 27 -31, 2014, Québec City, Québec, Canada., pages
2322–2329, 2014.
Gordon Fyodor Lyon. Nmap network scanning: The official
Nmap project guide to network discovery and security scan-
ning. Insecure, 2009.
Christian J. Muise, Vaishak Belle, and Sheila A. McIl-
raith. Computing contingent plans via fully observable
non-deterministic planning. In Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence, July 27 -
31, 2014, Québec City, Québec, Canada., pages 2322–2329,
2014.
Carlos Sarraute, Olivier Buffet, and Jörg Hoffmann.

POMDPs make better hackers: Accounting for uncertainty
in penetration testing.
Marcel Steinmetz, Jörg Hoffmann, and Olivier Buffet. Re-
visiting goal probability analysis in probabilistic planning.

127

Optimization Approaches to Multi-robot Planning and Scheduling

Kyle E. C. Booth
Department of Mechanical & Industrial Engineering

University of Toronto, Toronto, Ontario, Canada
kbooth@mie.utoronto.ca

The study and use of multi-robot teams has become more
prevalent within academia and industry as the capability and
autonomy of these systems continues to improve (Arai, Pag-
ello, and Parker 2002). With high levels of progress already
made concerning the control of individual robots, the ac-
knowledged advantages of multi-robot systems (MRS) has
resulted in considerable research attention in the last couple
of decades in efforts to build more efficient systems for their
coordination (Gerkey and Matarić 2004). These advantages
include resolving more complex tasks, increasing the speed
at which tasks can be completed, and enhancing the level
of system reliability and redundancy present within single-
robot solutions (Yan, Jouandeau, and Cherif 2013).

This thesis, though in early stages of development, con-
cerns the field of study within MRS known as multi-robot
task allocation (MRTA) (Gerkey and Matarić 2004). Specif-
ically, it proposes to investigate the integration of tech-
niques from the optimization literature, namely mixed-
integer and constraint programming, within architectures for
MRTA. This research area aims to solve multi-robot coordi-
nation problems pertaining to task distribution to robot re-
sources and the temporal scheduling of tasks on such re-
sources. These problems have a wide variety of real-world
applications including planetary exploration (Mataric and
Sukhatme 2001), airport and harbor transhipment (Alami et
al. 1998), and emergency response (Østergård, Matarić, and
Sukhatme 2001).

Multi-robot Task Allocation
Given a team of cooperating robots, a set of tasks that need
to be completed, and a problem-specific cost function, the
most fundamental instance of MRTA involves determining
a mapping of tasks to robots such that the cost function is
minimized. Indeed, when the number of robots and tasks
are equal and the mapping is one-to-one, the problem can
be represented by the classical linear assignment problem,
solvable in O(n3) time with a modificiation of the Hungar-
ian method (Kuhn 1955). However, MRTA problems of-
ten contain more complex objective functions or the need
for tasks to be allocated and scheduled on available re-
sources. In such cases, the underlying problem frequently
becomes provably NP-Hard, taking on the form of other
classical problems within the combinatorial optimization lit-
erature such as the Multiple Traveling Salesman Problem

(m-TSP) (Papadimitriou 1977). Moreover, the presence of
complex constraints (e.g. precedence relationships) between
tasks within and across robot schedules further contributes
to the difficulty of solving such problems. These time-
extended allocation problems with task-dependencies (Ko-
rsah, Stentz, and Dias 2013) are often approached with so-
phisticated heuristic techniques that sacrifice solution opti-
mality in favour of faster convergence.

Existing Approaches
Early efforts to develop solutions for MRTA include iterated
assignment architectures such as ALLIANCE (Parker 1998)
and M+ (Botelho and Alami 1999). These architectures
employ dispatch-style algorithms where single tasks are as-
signed and executed before subsequent allocations are made.
Various decentralized and fully-distributed techniques have
also been proposed for these problems, notably the market-
based (Dias et al. 2006) and auction-based (Gerkey and
Matari 2002) methods developed within the robotics com-
munity. More recently, there have been efforts to use linear
and mixed-integer programming (MIP) techniques from the
operations research (OR) community to solve MRTA prob-
lems (Korsah et al. 2012), largely due to attractive bounds on
solution quality, though these methods have not been fully
exploited as of yet. Constraint programming (CP) has been
proposed as a suitable candidate approach for these prob-
lems (Van Hentenryck and Saraswat 1996), however, the ap-
plication of CP to multi-robot task planning and scheduling
has been, to the best of our knowledge, limited.

Research Focus
The first component of our ongoing research focuses on the
development and application of optimization-based methods
to solve single and multi-robot task planning problems. We
investigate the use of MIP and CP techniques to produce
high-quality robot task plans that yield provable bounds on
solution quality. The suitability of these ‘model-and-solve’
techniques is computationally assessed, and methods for im-
proving algorithm performance through specialized mod-
eling (e.g., symmetry breaking constraints, auxiliary vari-
ables) and search manipulation (e.g., branching rules, vari-
able and value ordering heuristics) are implemented. As part
of our future research we plan to develop more specialized

128

algorithms based on hybrid approaches, incorporating con-
cepts from the OR, CP, and AI communities to further en-
hance performance. We also aim to study the use of our
optimization-based methods for plan repair and replanning,
algorithm extensions that look to address real-world uncer-
tainty associated with MRTA applications.

The second component of our research explores the inte-
gration of these optimization-based techniques within real-
world robot architectures, combining environmental percep-
tion, achieved through on-board sensors, with our task plan-
ning system to achieve truly autonomous decision-making.
Within this integration, the task planning methods developed
contribute as a high-level mission planner for the system, al-
locating tasks to each robot team member as well as speci-
fying when and where such tasks should be executed. These
integration efforts are realized using the open source Robot
Operating System (ROS) (Quigley et al. 2009), which en-
ables the effective management of communication among
individual robot subsystems or between multiple robots. In
this architecture, we use peer-to-peer communication graph
renderings where nodes represent individual subsystems or
robots and arcs represent connections between them. Using
ROS-specific implementation details such as messages and
topics, we are able to effectively facilitate system commu-
nication. Communication is used to coordinate individual
robot function, inform the system of changes within the en-
vironment, as well as deliver task allocations and commands
to the various robot resources. We validate the utility of
our methods using both simulated environments and testing
on physical robots. For simulated experimentation, we use
ROS Visualization software to model the robots and high-
level task planner. These experiments are primarily aimed
at improving the performance of our task planning meth-
ods. Physical robot implementation validates the real-world
function of our task planner as well as important lower-level
systems including autonomous navigation, path-planning,
and object detection. For these tests we use OpenSlam’s
(openslam.org) GMapping to create our environment map
via simultaneous localization and mapping (SLAM).

Research efforts thus far have shown promise through our
work on a single-robot task scheduling problem involving
a socially-assistive robot facilitating human-robot interac-
tions (HRI) within a retirement home (Booth et al. 2016).
The problem involves reasoning about disjoint time win-
dows, robot travel times, intra-schedule task dependencies,
and robot energy levels. For the problem studied, CP has
been shown to be the dominant technology, finding high-
quality solutions in much shorter runtimes than both MIP
and temporal planning techniques. This optimization-based
approach is integrated on the social robot Tangy, using the
ROS architecture as previously described. The integration
is tested experimentally on a number of realistic scenarios,
demonstrating its physical utility as a viable robot task plan-
ning alternative. As a natural progression to our work, re-
search efforts are underway to extend this work to multi-
robot variants of the problem.

Conclusion
We explore the use of optimization-based methods for multi-
robot task allocation (MRTA) problems. Our contributions
and ongoing research consist of two components: i) algo-
rithmic development, and ii) system integration and testing.

For the first component, we investigate the use of ‘off-the-
shelf’ applications of mixed-integer programming (MIP)
and constraint programming (CP), as well as look into en-
hancing these approaches through specialized modeling,
search manipulation, and hybridization. In the second
component, we work towards integrating our planning and
scheduling algorithms within a functioning robot architec-
ture, using the Robot Operating System (ROS) to facilitate
system communication. We test our methods using simu-
lated environments, achieved with ROS Vizulization soft-
ware, and validate their utility with implementation on phys-
ical robot systems. In future research, we plan to explore al-
gorithmic extensions that incorporate replanning events and
plan repair in efforts to address the uncertainty associated
with real-world problems.

References
Alami, R.; Fleury, S.; Herrb, M.; Ingrand, F.; and Robert,
F. 1998. Multi-robot cooperation in the martha project.
Robotics & Automation Magazine, IEEE 5(1):36–47.
Arai, T.; Pagello, E.; and Parker, L. E. 2002. Editorial:
Advances in multi-robot systems. IEEE Transactions on
robotics and automation 18(5):655–661.
Booth, K. E.; Tran, T. T.; Nejat, G.; and Beck, J. C. 2016.
Mixed-integer and constraint programming techniques for
mobile robot task planning. Robotics and Automation Let-
ters, IEEE 1(1):500–507.
Botelho, S. C., and Alami, R. 1999. M+: a scheme
for multi-robot cooperation through negotiated task alloca-
tion and achievement. In Robotics and Automation, 1999.
Proceedings. 1999 IEEE International Conference on, vol-
ume 2, 1234–1239. IEEE.
Dias, M. B.; Zlot, R.; Kalra, N.; and Stentz, A. 2006.
Market-based multirobot coordination: A survey and anal-
ysis. Proceedings of the IEEE 94(7):1257–1270.
Gerkey, B. P., and Matari, M. J. 2002. Sold!: Auction meth-
ods for multirobot coordination. Robotics and Automation,
IEEE Transactions on 18(5):758–768.
Gerkey, B. P., and Matarić, M. J. 2004. A formal analysis
and taxonomy of task allocation in multi-robot systems. The
International Journal of Robotics Research 23(9):939–954.
Korsah, G. A.; Kannan, B.; Browning, B.; Stentz, A.; and
Dias, M. B. 2012. xbots: An approach to generating and
executing optimal multi-robot plans with cross-schedule de-
pendencies. In Robotics and Automation (ICRA), 2012 IEEE
International Conference on, 115–122. IEEE.
Korsah, G. A.; Stentz, A.; and Dias, M. B. 2013. A compre-
hensive taxonomy for multi-robot task allocation. The Inter-
national Journal of Robotics Research 32(12):1495–1512.
Kuhn, H. W. 1955. The hungarian method for the assign-
ment problem. Naval research logistics quarterly 2(1-2):83–
97.

129

Mataric, M. J., and Sukhatme, G. S. 2001. Task-allocation
and coordination of multiple robots for planetary explo-
ration. In In Proceedings of the 10th International Confer-
ence on Advanced Robotics. Citeseer.
Østergård, E. H.; Matarić, M. J.; and Sukhatme, G. S.
2001. Distributed multi-robot task allocation for emergency
handling. In Intelligent Robots and Systems, 2001. Pro-
ceedings. 2001 IEEE/RSJ International Conference on, vol-
ume 2, 821–826. IEEE.
Papadimitriou, C. H. 1977. The euclidean travelling sales-
man problem is np-complete. Theoretical Computer Science
4(3):237–244.
Parker, L. E. 1998. Alliance: An architecture for fault toler-

ant multirobot cooperation. Robotics and Automation, IEEE
Transactions on 14(2):220–240.
Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.;
Leibs, J.; Wheeler, R.; and Ng, A. Y. 2009. Ros: an open-
source robot operating system. In ICRA workshop on open
source software, volume 3, 5.
Van Hentenryck, P., and Saraswat, V. 1996. Strategic direc-
tions in constraint programming. ACM Computing Surveys
(CSUR) 28(4):701–726.
Yan, Z.; Jouandeau, N.; and Cherif, A. A. 2013. A sur-
vey and analysis of multi-robot coordination. International
Journal of Advanced Robotic Systems 10.

130

Session 6

Knowledge Engineering and Applications

131

Learning Static Constraints for Domain Modeling from Training Plans

Rabia Jilani
School of Computing and Engineering

University of Huddersfield
United Kingdom

Introduction
AI Planning is a pivotal task that has to be performed by every
autonomous system. The automated planning (AP) commu-
nity has demonstrated a need to uplift planning systems from
toy problems to capture more complex domains that closely
reflect real life applications (e.g. planning space missions,
fire extinction ion management and operation of underwater
vehicle) - a way to satisfy the aims of Autonomic systems.
Generally, AP techniques require correct description of the
planning task. These descriptions include the action model
that can be executed in the environment, the state of the
objects in the environment and the goal to accomplish.

Domain models encode the knowledge of the domains in
terms of actions that can be executed and relevant properties.
In centralized approach, this domain could be represented as
a knowledge base and automated logical reasoning could be
used to determine acts. Specifying operator descriptions by
hand for planning domain models is time consuming, error
prone and still a challenge for the AI planning community.

The domain model acquisition problem has mainly been
tackled by exploiting two approaches. On the one hand,
knowledge engineering tools for planning have been intro-
duced over time, for supporting human experts in modelling
the knowledge. Two particular examples are itSIMPLE (Va-
quero et al. 2007) and GIPO (Simpson, Kitchin, and Mc-
Cluskey 2007). A review of the state of the art is provided by
Shah et al. (Shah et al. 2013). Recently, also crowdsourcing
has been exploited for acquiring planning domain models
(Zhuo 2015). On the other hand, a number of techniques are
currently available for automatic domain model acquisition;
they rely on example data for deriving domain models. Sig-
nificant differences can be found in terms of the quantity and
quality of the required inputs.

Our research concerns the area of automated acquisition
of full or partial domain model from one or more examples
of action sequences within the domain under study. The aim
is to enhance the LOCM system and to extend the method
of Learning Domain Models for AI Planning Engines via
Plan Traces first published in ICAPS 2009 by Cresswell, Mc-
Cluskey and West (Cresswell, McCluskey, and West 2013a).
This method is unique in that it requires no prior knowledge;
however it can produce a complete domain model from train-
ing data i.e. plan traces. As compared to LOCM, other sys-
tems require more input assistance. ARMS (Yang, Wu, and

Jiang 2007), for example, is a system that learns the domain
model in addition to domain constraints and invariants. It
makes use of background information as input e.g. predicate
definitions of initial and goal states. Similarly SLAF (Shahaf
and Amir 2006) learns action schema but also requires def-
initions of fluents and a partial observation of intermediate
states as input. For a detailed overview, the interested reader
is referred to (Jilani et al. 2014).

The main drawback of LOCM is that it does not produce
static knowledge, and its model lacks certain expressive fea-
tures. A key aspect of research presented in this abstract
is to enhance the technique with the capacity to generate
static knowledge. A test and focus for this research is to
make LOCM able to learn static relationships in fully auto-
matic way in addition to dynamic relationships which LOCM
already learn. As per our knowledge, no domain learning
system has previously been developed with the aim to learn
merely from a set of action traces.

Research contributions include (i) a development of new
approach to effectively identify static relations for a wide
range of problems, by exploiting graph analysis; using a two
staged domain enhancement process that first learn missing
static facts for action model and then embed those facts in the
partial domain model to get working PDDL domain model
(ii) Rule extraction from both optimal and suboptimal plan
traces (iii) A useful debugging tool for improving existing
models, which can indicate hidden static relations helpful
for pruning the search space (iv) Combined with LOCM,
ASCoL can be a useful tool to produce benchmark domains
(v) Identification of basic categories of Static facts and its
impact on heuristic learning systems.

Learning Problem Definition

Domain-independent planning systems require that domain
constraints and invariants are specified as part of the input
domain model. In AI Planning, the generated plan is correct
provided the constraints of the world in which the agent is
operating are satisfied. Specifying operator descriptions by
hand for planning domain models that also require domain
specific constraints is time consuming, error prone and still a
challenge for the AI planning community.

132

LOCM
The LOCM systems perform automated generation of the dy-
namic aspects of a planning domain model, i.e. changes in the
state of the world occurring due to action execution, by con-
sidering a set of plan traces, only. A plan trace is a sequence
of actions that when applied in an initial state, reach the de-
sired goals. No additional knowledge about initial, goal or
intermediate states is needed by LOCM. In comparison with
other systems, LOCM approach require a minimal amount of
information; other systems also require at least partial state
information.

LOCM is based on the assumption that the output domain
model can be represented in an object-centred representa-
tion (Cresswell, McCluskey, and West 2013b). Using an
object-centred representation, LOCM outputs a set of pa-
rameterized Finite State Machines (FSMs) where each FSM
represents the behaviour of each object in the learnt action
schema. Such FSMs are then exploited in order to identify
pre- and post-conditions of the domain operators. Although
LOCM requires no background information, it usually re-
quires many plan traces for synthesizing meaningful domain
models. Moreover, LOCM is not able to automatically iden-
tify and encode static predicates.

One drawback of the LOCM process is that it can induce
only a partial domain model which represents the dynamic
aspects of objects and dose not identify and encode static
aspects. Static aspects can be seen as relations that appear
in the preconditions of operators only, and not in the effects.
Therefore, static facts never change in the world, but are
essential for modelling the correct action execution. This is
problematic since most domains require static predicates to
both restrict the number of possible actions and correctly
encode real-world constraints. This is the case in well-known
benchmark domains like Driverlog, in which static predicates
represent the connections of roads; the level of floors in
Miconic, or the fixed stacking relationships between specific
cards in Freecell. Any missing static relations are manually
introduced into the domain models provided by the LOCM
systems. LOCM manually declares this information in the
following form:

Static(connected(L1, L2), Drive(L1, L2)).

The above mentioned Prolog code line is added manually
to the input training data file to make it a part of the output
domain model manually. The fact in the first argument of
static is added as a precondition of the action in the second
operator argument of static, where shared variable names
provide the binding between the action and its precondition.

ASCoL
We enhance the output domain model of the LOCM system to
capture static domain constraints from the same set of input
training plans as used by LOCM to learn dynamic aspects of
the world. In this research, a new framework ASCoL (Auto-
mated Static Constraint Learner) has been presented, to make
constraint acquisition more efficient, by observing a set of
training plan traces. Most systems that learn constraints au-
tomatically do so by analysing the operators of the planning

sequence task(1, [unstack(b8, b9),
stack(b8, b10), pick-up(b7), stack(b7,
b8), unstack(b9, b1), put-down(b9),
unstack(b1, b3), stack(b1, b9),
unstack(b3, b2), stack(b3, b6),
pick-up(b5), stack(b5, b3), unstack(b7,
b8), stack(b7, b2), unstack(b8, b10),
stack(b8, b7), pick-up(b10), stack(b10,
b5)], ,).

Figure 1: An example of a blocksworld plan formatted as
required by LOCM.

world. The ASCoL system discovers static constraints by
analysing plan traces for correlations in the data. To do this
the algorithm analyses the complete set of input plan traces,
based on a predefined set of constraints, and deduces facts
from it. It then augment components of the LOCM generated
domain with enriched static constraints.

We define the learning problem that ASCoL addresses
as follows. Given the knowledge about parameter types (T),
operators’ dynamic definition and predicates (fluents) in the
form of a PDDL representation of a partial domain model
induced by LOCM, and a set of plan traces (P), how can we
automatically identify the static relation predicates that are
needed by operators’ preconditions? We base our approach
on the assumption that the input plan traces contain tacit
knowledge about constraints validation/acquisition. Based
on that assumption, we can draw correlations in the data by
pattern discovery in the training input only.

Specifically, the input to the static constraints learning
algorithm ASCoL is specified as a tuple (P, T), where P is a
set of plan traces (goal directed or random walk) and T is a set
of types of action arguments in P which ASCoL parses from
LOCM output. ASCoL does not require dynamic knowledge
of the domain generated by LOCM. ASCoL accepts input
plans (plan traces) in the same text-based format supported
by LOCM i.e. a training sequence of N actions in order of
occurrence, which all have the form:

Ai(Oi1, ..., Oij) for i = 1, ..., N

Where A is the action name and O is the actionâs object name.
Each action (A) in the plan is stated as a name and a list of
arguments. In each action (Ai), there are j arguments where
each argument is an object (O) of the problem.

Each plan trace is a sequence of actions (Figure 1) in the
order of occurrence to satisfy some goal, where each action in
the sequence contains the name of the action and objects that
are affected by that action execution. Input plan traces do not
include any initial, goal or intermediate states or constraints.
Static constraints are to be learnt by the system.

The objective is to learn a complete set of static precon-
ditions, and embed them into the correct operators in the
LOCM-learnt output to enrich the domain with this required
static knowledge. We formally define the correctness of the
learnt static knowledge by comparison with benchmark do-
mains from past IPCs.

133

Figure 2: Input Output Structure of ASCoL.

The output for a learning problem is a constraint repos-
itory R in PDDL representation that stores all admissible
constraints on the arguments of each action A in plan traces
P. We assume that input plan traces are noise free while the
input domain file at least contains type information for all
those operators that the algorithm aims to enhance. Figure 2
shows the general structure of ASCoL in terms of its inputs
and outputs.

ASCoL works as a separate unit from LOCM in that
LOCM first produces a domain model using a set of plan
traces as input. The same LOCM generated domain model,
along with the same set of input plan traces, will then be fed to
ASCoL to first anticipate the required set of constraints, anal-
yse plan traces and then learn constraints. Finally, it embeds
these constraints into the correct operators in the LOCM-
learnt output to enrich the domain with this additional static
knowledge.

Providing domain constraints to the planning engine may
help the planning system in the quick and efficient pruning
of the search tree. We aim to capture two major kinds of
constraints: domain specific and domain independent con-
straints. By domain specific we mean the static knowledge
that is strictly associated with a domain and is not found as a
general example, e.g. the fixed relationships between specific
cards in Freecell. Domain independent constraints describe
the static knowledge that is generally associated with almost
all domains in one way or another; non-equality constraints
and link constraints for example.

The ASCoL Methodology
We now briefly present the ASCoL tool that has been devel-
oped for identifying useful static relations. The process steps
can be summarised as follows:

1. Read the partial domain model (induced by LOCM) and
the plan traces.

2. Identify, for all operators, all the pairs of arguments involv-
ing the same object types.

3. For each of the pairs, generate a directed graph by consid-
ering the objects involved in the matching actions from the
plan traces.

4. Analyse the directed graphs for linearity and extract hidden
static relations between arguments.

5. Run inequality check.

6. Return the extended domain model that includes the iden-
tified static relations.

The main information available for ASCoL comes from
the input plan traces. As a first control, we remove from the
plan traces all the actions that refer to operators that do not
contain at least two arguments of the same type.

Even though, theoretically, static relations can hold be-
tween objects of different types, they mostly arise between
same-typed objects. This is the case in transport domains,
where static relations define connections between locations.
Moreover, considering only same-typed object pairs can re-
duce the computational time required for identifying relations.
It is also worth noting that, in most of the cases where static
relations involve objects of different types, this is due to a
non-optimal modelling process. Furthermore, such relations
can be easily identified by naively checking the objects in-
volved in actions; whenever some objects of different type
always appear together, they are likely to be statically related.

Types of Static Facts
We describe different kinds of static facts that we came across
whilst experimenting with a variety of domains and modelling
strategies. We broadly divide static relations into six differ-
ent types depending upon the structure of knowledge they
contain:

1. Locations Map: facts used for representing an underly-
ing map of connected locations. Relations of this kind
are mentioned as adjacent, link, next, path
or connected in the domains including TPP, Zenotravel,
Storage, Logistics, Mprime, Spanner, Gripper, Trucks and
Gold-miner.

2. Level of Specific Object: parameter objects include vary-
ing levels of goods, fuel, space and time depending on
the scenario of the domain. Domains that mention such
static facts include Mprime, Barman, Trucks, TPP and
ZenoTravel.

3. Unordered Sequence: ascending or descending sequence
of objects but not in any specific flow. The best example
is the sequence of floors in the Miconic domain, where
a person can board from any floor and can depart on any
other floor (up or down).

4. Ordered Sequence: mentioned as successor, next
and link in different domains including specifically Free-
cell and other card game domains. Here, such static facts
allow the sequential arrangement of cards in card stacks
among columns, reserve cells and home cells.

5. Compound Relations: static relations –usually exploited
in the encoding of card games– that express two inde-
pendent static relations in terms of one, i.e can-stack
(card1 card2). The intuition behind this is the con-
ventional stacking rule based on card suit and rank
order. But this can be decomposed into two separate
static facts that can then fulfil our criteria of graph anal-
ysis, i.e can-stack-rank(rcard1 rcard2) and
can-stack-suit(scard1 scard2).

134

6. Non-equality: the best example for these kinds of static
facts are Ferry domain and other general transportation
domains where two location objects of travel (obviously
of the same type) should be unique.

For a better understanding of the complexity of the learning
problem faced by ASCoL, we created metrics to learn the
amount of input plans and types of plans (goal and random
walk) required to effectively learn these static facts. The same
set of planning instances have been used for generating both
goal-oriented (GO) and random walk (RW) traces. The later
have been created by using a Java-based tool able to parse a
given domain model and problem and generate subsequent
valid traces of a given length. Clearly, such traces usually
do not reach the goal required by the planning instance, but
usually provide richer information in terms of the number of
transitions for different types of static facts when compared
to the goal-oriented plan sequences. Goal-oriented solutions
are generally expensive in that a tool or a planner is needed
to generate a large enough number of correct plans to be
used by the system, but they can also provide useful heuristic
information.

Experimental Evaluation
Remarkable results have been achieved in complex domains,
with regards to the number of static relations. We considered
fifteen different domain models, taken either from IPCs1 or
from the FF domain collection (FFd)2.

We selected domains that are encoded using different mod-
elling strategies, and their operators include more than one
argument per object type. Table 1 shows the results of the
experimental analysis. A detailed interpretation of results can
be found in the recent AI*IA publication (Jilani et al. 2015).
All domains but Gripper, Logistics and Hanoi, exploit static
relations. Input plans of these domains have been generated
by using the Metric-FF planner (Hoffmann 2003) on ran-
domly generated problems, sharing the same objects. ASCoL
has been implemented in Java, and run on a Core 2 Duo/8GB
processor. CPU-time usage of the ASCoL is in the range of
35-320 (ms) for each domain.

Considering a classification terminology, we can divide the
relations identified by ASCoL in to four classes: true positive,
true negative, false positive and false negative.

True positive These are correctly identified static relations.
Relations identified by ASCoL are almost always static
relations which are included in the original domain models.

True negative Dynamic relations that are (correctly) not
encoded as static relations. ASCoL did not identify a static
relation between arguments that are actually connected by
a dynamic relation in any of the considered domains.

False positive It indicates additional relations that actually
do not exist in benchmark domains. In some domains AS-
CoL infers one or two additional relations that are not
included in the original domain model. From a Knowledge
Engineering point of view, and considering the fact that

1http://ipc.icaps-conference.org/
2https://fai.cs.uni-saarland.de/hoffmann/ff-domains.html

Domain # Ops # SR LSR ASR CPU-time
TPP 4 7 7 0 171
Zenotravel 5 4 6 2 109
Miconic 4 2 2 0 143
Storage 5 5 5 0 175
Freecell 10 19 13 0 320
Hanoi 1 0 1 1 140
Logistics 6 0 1 1 98
Driverlog 6 2 2 0 35
Mprime 4 7 7 0 190
Spanner 3 1 1 0 144
Gripper 3 0 1 1 10
Ferry 3 1 2 1 130
Barman 12 3 3 0 158
Gold-miner 7 3 1 0 128
Trucks 4 3 3 0 158

Table 1: Overall results on considered domains. For each
original domain, the number of operators (# Ops), and the
total number of static relations (# SR) are presented. ASCoL
results are shown in terms of the number of identified/learnt
static relationships (LSR) and number of additional static
relations provided (ASR) that were not included in the orig-
inal domain model. Such relations do not compromise the
solvability of problems, but prune the search space. The last
column shows the CPU-time in milliseconds for finding static
facts for each domain

such additional preconditions do not reduce the solvability
of problems, such inferred relations can add value to the
original model in terms of effectiveness of plan genera-
tion. This is the empirical finding limited to the domains
considered for experimentation.

False negative Facts that exist and system dose not identify
them. In Freecell and Gold-miner domains ASCoL does
not identify all of the static relations.

Table 2 shows, for each considered domain, the percent-
ages of true positive (negative) and false positive (negative)
relations identified by ASCoL.

The ability of ASCoL to correctly identify static relations,
that should be included as preconditions of specific operators,
depends on the number of times the particular operator ap-
pears in the provided plan traces. The higher the number of
instances of the operator in the plan, the higher the probabil-
ity that ASCoL will correctly identify all the static relations.
We now discuss some of the most interesting results.

Conclusion and Future Goals
Intelligent agents solving problems in the real-world require
domain models containing widespread knowledge of the
world. Synthesising operator descriptions and domain spe-
cific constraints by hand for AI planning domain models is
time-intense, error-prone and challenging. To alleviate this,
automatic domain model acquisition techniques have been
introduced. For example, the LOCM system requires as input
some plan traces only, and is effectively able to automatically

135

Domain TP TN FP FN
TPP 100.0 100.0 0.0 0.0
Zenotravel 100.0 66.6 33.3 0.0
Miconic 100.0 100.0 0.0 0.0
Storage 100.0 100.0 0.0 0.0
Freecell 70.0 100 0.0 30.0
Hanoi 100.0 0.0 100.0 0.0
Logistics 100.0 0.0 100.0 0.0
Driverlog 100.0 100.0 0.0 0.0
Mprime 100.0 100.0 0.0 0.0
Spanner 100.0 100.0 0.0 0.0
Gripper 100.0 0.0 100.0 0.0
Ferry 100.0 50.0 50.0 0.0
Barman 100.0 100.0 0.0 0.0
Gold-miner 33.3 100.0 0.0 66.6
Trucks 100.0 100.0 0.0 0.0

Table 2: For each considered domain, the percentage of true
positive (TP), true negative (TN), false positive (FP) and false
negative (FN) static relations identified by ASCoL.

encode the dynamic part of the domain model. However, the
static part of the domain, i.e., the underlying structure of
the domain that can not be dynamically changed, but that
affects the way in which actions can be performed â is usually
missed, since it can hardly be derived by observing transitions
only.

In this research we briefly present ASCoL, a tool that
exploits graph analysis for automatically identifying static
relations, in order to enhance planning domain models. AS-
CoL has been evaluated on domain models generated by
LOCM for the international planning competition, and has
been shown to be effective.

We are considering several paths for future work. Grant,
in (Grant 2010), discusses the limitations of using plan traces
as the source of input information. ASCoL faces similar dif-
ficulties as the only input source to verify constraints are
sequences of plans. We are also interested in extending our
approach for considering static relations that involve more
than two arguments In particular, we aim to extend the ap-
proach for merging graphs of different couples of arguments.
Finally, we plan to identify heuristics for extracting useful
information also from acyclic graphs.

References
Cresswell, S. N.; McCluskey, T. L.; and West, M. M. 2013a.
Acquiring planning domain models using LOCM. The Knowl-
edge Engineering Review 28(02):195–213.
Cresswell, S. N.; McCluskey, T. L.; and West, M. M. 2013b.
Acquiring planning domain models using locm. The Knowl-
edge Engineering Review 28(02):195–213.
Grant, T. 2010. Identifying Domain Invariants from an
Object-Relationship Model. PlanSIG2010 57.
Hoffmann, J. 2003. The Metric-FF Planning System: Trans-
lating “Ignoring Delete Lists” to Numeric State Variables.
20:291–341.

Jilani, R.; Crampton, A.; Kitchin, D. E.; and Vallati, M. 2014.
Automated Knowledge Engineering Tools in Planning: State-
of-the-art and Future Challenges. In The Knowledge Engi-
neering for Planning and Scheduling workshop (KEPS).
Jilani, R.; Kitchen, D.; Crampton, A.; and Vallati, M. 2015.
Learning static constraints for domain modeling from training
plans. In the 14th Conference of the Italian Association for
Artificial Intelligence (AI* IA 2015), 31.
Shah, M.; Chrpa, L.; Jimoh, F.; Kitchin, D.; McCluskey, T.;
Parkinson, S.; and Vallati, M. 2013. Knowledge engineering
tools in planning: State-of-the-art and future challenges. In
Proceedings of the Workshop on Knowledge Engineering for
Planning and Scheduling.
Shahaf, D., and Amir, E. 2006. Learning partially observable
action schemas. In Proceedings of the national conference
on artificial intelligence (AAAI).
Simpson, R. M.; Kitchin, D. E.; and McCluskey, T. 2007.
Planning domain definition using gipo. The Knowledge En-
gineering Review 22(02):117–134.
Vaquero, T. S.; Romero, V.; Tonidandel, F.; and Silva, J. R.
2007. itSIMPLE 2.0: An Integrated Tool for Designing Plan-
ning Domains. In Proceedings of the International Con-
ference on Automated Planning and Scheduling (ICAPS),
336–343.
Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action mod-
els from plan examples using weighted max-sat. Artificial
Intelligence 171(2):107–143.
Zhuo, H. H. 2015. Crowdsourced Action-Model Acquisition
for Planning. In Proceedings of the AAAI Conference on
Artificial Intelligence.

136

Using GORE method for Requirement Engineering of Planning & Scheduling

Javier Martnez Silva
Department of Mechatronics Engineering

University of São Paulo, São Paulo, Brazil,
Professor Morais, 2231

Abstract

The growing interest in the automated planning com-
munity seeks for new and better results for real applica-
tions. Requirements’ analysis is a key issue over design
and needs to be enhanced to fit users and stakeholder ex-
pectations. Such scenario make the researchers to focus
on Knowledge Engineering (KE) applied in elicitation
of planning problems and domains - mainly the early
stage of the process. This proposal introduces the ap-
plying of GORE method for Engineering Requirement
of planing domain modeling.

Introduction
The Knowledge Engineering for planning automated col-
lects contributions of crucial works of researchers such as
Prof. Thomas Lee McCluskey, who since the early 90s be-
gan to publish papers in this field (McCluskey and Porteous
1993). Researching in design process for building knowl-
edge models in real fields with high quality and reliability
(McCluskey 2002), and the study of requirement engineer-
ing methods applied with existing automated planning tech-
niques are key objectives of this field (Vaquero et al. 2013).

In this scope, O-Plan was one of precursor tool in acquisi-
tion and modeling knowledge of planning on an tasks-driven
approach. Most recent distribution is a web service, which is
used in a wide range of dependent-domain applications (Tate
and Dalton 2003).

SIPE involves an ACT (Myers and Wilkins 1997) ap-
proach, in which a system is able to give response to events
in real time by performing a best possible action. Modeling
of all knowledge required to generate plan is possible while
external events are occurring.

Both, O-Plan and SIPE planners are predecessors for
GIPO, one of the planners registered in literature with
mechanisms for acquiring and modeling knowledge of
independent-domain applications (Simpson et al. 2001). It
address to the syntactic and semantic verification of models,
improving the performance of planners; the import and ex-
port from domain definitions to PDDL format; integration
of planning algorithms jointly with its execution and simu-
lation provides a friendly environment for users. Graphical

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

representation of dynamic objects through state machines
(Simpson 2005) (Simpson 2007) is allowed since version III.

ItSIMPLE is another tool based an object-oriented ap-
proach helping to designers achieve a detailed model of the
domain (Vaquero et al. 2007). The must relevant contribu-
tion is the use of Unified Modeling Language (UML) pro-
viding diagrams such as use cases, classes, state machines,
time and objects. Classes, properties, relationships and con-
straints are defined in the class diagram, thus are modeling
static characteristics of the domain.

Table 1 shows PDDL as domain modeling language by
the most of the tools.

Tools Domain model
DISCOPLAN PDDL

EUROPA Action Notation Modeling Language

GIPO PDDL

FlowOpt Work-Flow Modeling

itSIMPLE UML

JABBAH Business Process Management Notation

ModPlan PDDL

VIZ Non-Standard graphical diagrams

Figure 1: Main tools and its approach for modeling problem
domain

EUROPA (Extensible Universal Remote Operations Plan-
ning Architecture) (Barreiro et al. 2012) was designed to
support planning for complex systems, such as spacecraft
and rovers, combining two abstractions: Constraints Satis-
faction Problems and networks for modeling Simple Tempo-
ral Problems. Domain of real problems is modeled by struc-
tures called Objects with ANML (Action Notation Model-
ing Language) as input language on a strategy state / activity
(Smith, Frank, and Cushing 2008).

FlowOpt model processes over a workflow approach sim-
plified guiding users to create correct models (Bartak and
Cepek 2008); JABBAH combines modeling using BPMN
language (Business Process Management Notation) with a
workflow approach (Gonzalez 2009); and finally VIZ with
a graphic language simple non-standard for describing the
planning areas. All these tools enable translation of domain

137

models to standard PDDL language (Vodrazka and Chrpa
2010).

Even PDDL being the must used language, PLEXIL
(Plan Execution Interchange Language) is another language
which is originally developed as a collaborative effort be-
tween NASA researchers and Carnegie Mellon University,
for plans representation on real or simulated systems, in
robotics, automation of operations in human habitats and
systems involving intelligent software agents.(Biatek et al.
2014).

Of all these tools, itSIMPLE was the first to introduce re-
quirement engineering techniques applied to planning prob-
lems (Vaquero and Silva 2009): requirements and relevant
knowledge of the different viewpoints involved are repre-
sented by the diagram of use cases, a semi-formal represen-
tation of the UML language (OMG 2005).

GORE methods
Goal-Oriented Requirement Engineering (GORE) is a sub-
area of Requirement Engineering (RE), which addresses us-
ing of goals for eliciting, elaborating, structuring, specify-
ing, analyzing, negotiating, documenting, and modifying re-
quirements (Van Lamsweerde 2000).

In the literature are registers a wide number of goal def-
initions: Goals as high level objectives of business, organi-
zation or system; they capture the reasons why a system is
needed and guide decisions in various levels within the en-
terprise (Potts, Takahashi, and Antón 1994). A goal is a con-
dition or state which engaging issues of the world achieved
by an agent (Van Lamsweerde 2000)(Yu, Dubois, and My-
lopoulos 1995). According to (Lamsweerde 2004) a goal is a
prescriptive statement declaring the purpose of some (exist-
ing or to-be) systems whose satisfaction generally emerged
from collaboration between agents with some responsibil-
ity over the system. These goals guide requirement elabo-
ration process resulting in the definition of domain-specific
requirements.

Goals cover different kinds of concerns: functional con-
cerns associated with services to be requested, and non-
functional concerns with quality of service (safety, security,
accuracy, performance, and so forth) (Chung et al. 2012).
Also goal issues are defined in Artificial Intelligence field -
specifically in classical planning & scheduling problem in
which solution is a sequence of actions (plan) that end in
a state entailing some goal previously defined (Russell and
Norvig 2010).

GBRAM [Bib19], I* framework (Potts, Takahashi, and
Antón 1994), NFR (Chung et al. 2000), KAOS (Van Lam-
sweerde 2001), Goal/Strategy Map (Bider et al. 2005), GLR
(Grigorev and Kirilenko 2013) are some methods based on
GORE. Of these, KAOS and I* are the most cited.

KAOS method
KAOS approach is an goal-oriented implementation of
GORE method which involves a rich set of formal analy-
sis techniques based on Linear Time Logic (LTL). Indeed,
KAOS stands for Keep All Objectives Satisfied(Lamsweerde
2009), describing a multi-paradigm framework that com-

bines different levels of reasoning: semi-formal, for mod-
eling and structuring goals; and formal, based in the linear
time logic formalism. Therefore, KAOS combines a seman-
tic net of basic concepts such as assumptions, operations, ob-
jects and agents, with linear time logic(Lamsweerde 2009).

Basically, KAOS is a goal-driven elaboration method that
provides a specification language for capturing WHY, WHO
and WHEN aspects in addition to the usual WHAT require-
ments.

Graphically, goals are represented in KAOS diagram by
parallelograms, while requirement borders are drawn in bold
line and agents are represented by hexagons as in Fig.2,
goal diagram for block world problem (Russell and Norvig
2010).

Ach[A final configuration is reached when
a block initial configuration was defined]

Ach[A block is
pickup]

Ach[A block is
stacked]

Ach[A block is
put down]

Ach[A block is
unstacked]

Robot

Figure 2: Goal Diagram of simple block world

I* method
I* method is a conceptual modeling technique for model-
ing and reasoning organizational environments and their in-
formation systems introduced by (Yu 1994). Strategic De-
pendency and Strategic Rationale models are key models
of I* approach. Strategic Dependency model describes re-
lationships of dependency among various agents over orga-
nizational environment. Strategic Rationale model describes
stakeholders’ concerns and viewpoints over the system and
environment.

Fig.3 shows Strategic Dependency diagram of the same
block problem. Analyzing of this model, shows how ac-
tors are key strategic into I* for representing motivations,
intents and rationale behind actions to achieve goals. Next,
we comparing both approaches with focus on modeling non
functional requirements (NFR); understanding a boundary
between system and it environment; modeling of objects in-
volved in knowledge domain and actor’s concerns.

KAOS versus I*
NFR in KAOS are mainly treated as goals and I* models as
soft-goals which allowing for qualitative reasoning. Same
mission of goal model in KAOS, help to clarify a boundary
between a software-to-be and its environment. This model
is organized in a tree where leaves are assignable to sin-
gle agents (software or human). If leaves are assigned to the
software-to-be, model as a requirement and if is assigned to
environment agent is an assumption, respectively.

Objects related with knowledge domain can be modeled
through of one of KAOS diagrams: Object Diagram. In I*

138

Achieve a final configuration when a
block initial configuration was defined

Pickup a
block

Stack a
block

Put down a
block

Unstack
a block

Pickup Stack
Put

Down Unstack

Block

Robot

Figure 3: Strategic Dependency Diagram of simple block
World

are represented by resources as dependence between agents.
Fig.4 shows Object Diagram from goals modeled in Goal

Diagram.

Block

 clear : Boolean

on

Table

 available : Boolean

onTable

Robot

holding

 pickUp(r : Robot, b : Block, t : Table)
 putDown(r: Robot, b : Block, t : Table)
 stack(r : Robot, a : Block, b : Block, t : Table)
 unStack(r : Robot, a : Block, b : Block, t : Table)

Figure 4: Object Diagram of simple block world

Another advantage of KAOS method is its potentiality of
express to behavioral goals a formal representation in Linear
Time Logic (LTL) formalism:

Goal Achieve A block is stacked
Def. Formal ∀(a, b : Block)

[stacked(a, b)→ ♦(On(a, b),
b.clear = false)]

Where goals are expressed formally as:

C ⇒ ΘT

C is the current condition, T is the target condition and Θ
is one of the LTL operators represented in Table1.

These operators can be quantified by a time stamp d , so
that♦d means eventually in the future before deadline d, and
�d means always in the future up to deadline d.

Table 1: Temporal Logic Operators
Operator Description
© In the next state
♦ Eventually in the future
� Always in the future

GORE for planning & scheduling

A key challenge aims to modeling the planning & schedul-
ing problems features through requirements using formal
methods - even for medium and large problems - with a
schematic language, a first stage of eventual verification and
validation from initial models to a consistent model transfer-
able to automatic planners in a later stage.

Our proposal is to provide a clear process for design early
stage in which modeling of requirements is a systematic
process using GORE method, considering time constraints
(such as the duration of sub-processes) and methods for re-
quirement analysis using Petri nets, guaranteeing a consis-
tent input to the automated planners.

Fig.5 provides an overview of steps to follow on the de-
sign of planning problem proposed by (Vaquero et al. 2013).

R
eq

ui
re

m
en

t
sp

ec
if

ic
at

io
n

K
no

w
le

dg
e

m
od

el
in

g

M
od

el

an
al

ys
is

M
od

el

pr
ep

ar
at

io
n

Pl
an

/S
ch

ed
ul

e
Sy

nt
he

si
s

Pl
an

/S
ch

ed
ul

e
an

al
ys

is
 a

nd

po
st

-d
es

ig
n

PDDL

XML

Petri Nets

GORE

Figure 5: How is added GORE methods over early design
phases of planning problems proposed by (Vaquero et al.
2013)

Over these phases, we propose GORE for requirement
specification and knowledge modeling stages, and Petri Net
formalism in the later stage to modeling and analyzing op-
erations associated to certain goals. XML is proposed for
parsing and as starting point in obtaining of PNML(XML
alternative for Petri nets).

Improving the design of problems in planning &
scheduling- specifically on the early steps of elicitation and
analysis of requirements- using GORE (Goal Oriented Re-
quirement Engineering) will provide a comparison study - in
terms of formalization - with other approaches as UML.

139

References
Barreiro, J.; Boyce, M.; Do, M.; Frank, J.; Iatauro, M.;
Kichkaylo, T.; Morris, P.; Ong, J.; Remolina, E.; Smith, T.;
et al. 2012. Europa: A platform for ai planning, schedul-
ing, constraint programming, and optimization. In Proceed-
ings of the 22nd International Conference on Automated
Planning & Scheduling (ICAPS-12)–The 4th International
Competition on Knowledge Engineering for Planning and
Scheduling.
Bartak, R., and Cepek, O. 2008. Nested precedence net-
works with alternatives: Recognition, tractability, and mod-
els. Artificial Intelligence: Methodology, Systems, and Ap-
plications 235–246.
Biatek, J.; Whalen, M. W.; Heimdahl, M. P.; Rayadurgam,
S.; and Lowry, M. R. 2014. Analysis and testing of plexil
plans. In Proceedings of the 2nd FME Workshop on Formal
Methods in Software Engineering, 52–58. ACM.
Bider, I.; Johannesson, P.; Nurcan, S.; Etien, A.; Kaabi, R.;
Zoukar, I.; and Rolland, C. 2005. A strategy driven business
process modelling approach. Business Process Management
Journal 11(6):628–649.
Chung, L.; Nixon, B.; Yu, E.; and Mylopoulos, J. 2000. Nfr
in software engineering.
Chung, L.; Nixon, B. A.; Yu, E.; and Mylopoulos, J. 2012.
Non-functional requirements in software engineering, vol-
ume 5. Springer Science & Business Media.
Gonzalez, A. 2009. JABBAH: A Java application frame-
work for the translation between business process models
and HTN. Association for the Advancement of Artificial In-
telligence 28–37.
Grigorev, S., and Kirilenko, I. 2013. Glr-based abstract pars-
ing. In Proceedings of the 9th Central & Eastern European
Software Engineering Conference in Russia, 5. ACM.
Lamsweerde, A. V. 2004. Elaborating security require-
ments by construction of intentional anti-models. Proceed-
ings. 26th International Conference on Software Engineer-
ing (May):148–157.
Lamsweerde, A. v. 2009. Requirements Engineering: From
System Goals to UML Models to Software Specifications,
volume I. Wiley.
McCluskey, L., and Porteous, J. M. 1993. Two Complemen-
tary Techniques in Knowledge Compilation for Planning. In
Proceedings of the 3rd International Workshop on Knowl-
edge Compilation and Speedup Learning.
McCluskey, L. 2002. Knowledge Engineering: Issues for
the AI Planning Community. Proceedings of the AIPS-2002
Workshop on Knowledge Engineering Tools and Techniques
for AI Planning, Toulouse, France.
Myers, K. L., and Wilkins, D. E. 1997. The Act Formalism.
SRI International Artificial Intelligence Center.
OMG. 2005. UML 2.0 OCL Specification.
Potts, C.; Takahashi, K.; and Antón, A. I. 1994. Inquiry-
based requirements analysis. IEEE software (2):21–32.
Russell, S., and Norvig, P. 2010. Artificial Intelligence. A
Modern Approach. Pearson Education, Inc, third edit edi-
tion.

Simpson, R.; McCluskey, L.; Zhao, W.; S, A. R.; and Do-
niat, C. 2001. GIPO: an integrated graphical tool to support
knowledge engineering in AI planning. Proceedings in Eu-
ropean Conference on Planning (ECP-2001).
Simpson, R. M. 2005. Gipo graphical interface for plan-
ning with objects. International Competition on Knowledge
Engineering for Planning and Scheduling 34–41.
Simpson, R. 2007. Structural domain definition using GIPO
IV. In Proc. 2nd Int. Competition on Knowledge Engineer-
ing for Planning and Scheduling 3(Hoffmann).
Smith, D.; Frank, J.; and Cushing, W. 2008. The anml lan-
guage. Proceedings of ICAPS-08.
Tate, A., and Dalton, J. 2003. O-Plan: a Common Lisp
planning web service. Proceedings of the International Lisp
Conference.
Van Lamsweerde, A. 2000. Requirements engineering in
the year 00: a research perspective. In Proceedings of the
22nd international conference on Software engineering, 5–
19. ACM.
Van Lamsweerde, A. 2001. Goal-oriented requirements
engineering: A guided tour. In Requirements Engineering,
2001. Proceedings. Fifth IEEE International Symposium on,
249–262. IEEE.
Vaquero, T. S., and Silva, R. 2009. From Requirements and
Analysis to PDDL in itSIMPLE3.0. Proceedings of the
Vaquero, T.; Romero, V.; Tonidandel, F.; and Silva, R. 2007.
itSIMPLE 2.0: An Integrated Tool for Designing Planning
Domains.
Vaquero, T. S.; Beck, J. C.; McCluskey, L.; and Silva, R.
2013. Knowledge Engineering for Planning & Scheduling:
Tools and Methods. 1:1–15.
Vodrazka, J., and Chrpa, L. 2010. Visual design of plan-
ning domains. In: Proceedings of ICAPS 2010 workshop on
Scheduling and Knowledge Engineering for Planning and
Scheduling (KEPS) 2–3.
Yu, E.; Dubois, E.; and Mylopoulos, J. 1995. From or-
ganization models to system requirements. a cooperating
agents approach. In in: 3rd Intl. Conf. on Cooperative Inf.
Sys.(CoopIS-95. Citeseer.
Yu, E. 1994. Modeling strategic actor relationships for pro-
cess reengineering. Ph.D. Dissertation, PhD Thesis, Univer-
sity of Toronto.

140

Critical Constrained Planning and an Application to Network Penetration Testing

Marcel Steinmetz
Saarland University

Saarbrücken, Germany
{steinmetz}@cs.uni-saarland.de

Abstract

Critical constrained planning is a very interesting, though also
very under explored class of classical, as well as probabilis-
tic, planning. In a broad view, constraints allow to limit the
space of solutions to solutions that satisfy certain kinds of
conditions. In this work, we are going to develop techniques
that are in particular suited to solve critical constrained plan-
ning instances. Automated, and semi automated network pen-
etration testing has gotten a rise in attention in the previous
decade due to the growing size of todays networks: it is not
possible anymore to manually check reasonably sized net-
works for security threats. Planning overall, and in particu-
lar critical constrained planning appears to be a very fruitful
direction in this area, although many of the previous works
lack of either an accurate representation of the problem, or
they lack of scalability. In this work, we will continue on
Hoffmann’s (2015) taxonomy model, and we will identify
tractable fragments of, and we will develop efficient methods
to solving the variant classes of network penetration testing.

Introduction
Critical constrained planning problems impose additional
hard requirements on the solutions of the problem. We will
in particular focus on resource constrained planning prob-
lems (Nakhost et al. 2012), so problems that contain some
sorts of consumable resources (time, money, . . .) that can-
not, or only sparsely, be refilled. Although there are many
works that consider problems facing resource consumption
(e. g., (Koehler 1998), (Haslum and Geffner 2001)), only a
very few consider the case of a limited resources that keeps
decreasing as the system progresses (e. g., (Nakhost et al.
2012), (Hoffmann et al. 2007), (Gerevini et al. 2008)). Re-
source constrained planning problems model a bunch of in-
teresting real world applications. For instance, when mod-
eling time as resource, then typically this resource cannot
be reset. Other examples are a fixed money budget, or space
agents with disconnected (or inactive) power supply. Even
though resource constrained planning problems are only a
subclass of general resource planning problems, they of-
fer many challenges that make resource constrained plan-
ning on its own very interesting. In general, due to the non-
increasing structure of the resource, the planner has to plan

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

far ahead in order to not run out of resources before reach-
ing the goal. Nakhost et al. have shown that with growing
resource constrainedness, current state of the art methods
are getting more and more trouble solving these problems
(Nakhost et al. 2012). Our work will be focusing around
the following observation: a typical phenomenon in resource
constrained planning problems is the high density of dead
end states – as the search progresses, more and more so-
lutions are ruled out. Thus, dead end detection will be an
important key to solve these kinds of problems efficiently.

On the other hand, automated network penetration test-
ing (Arce and McGraw 2004), an apriori completely unre-
lated area to critical constrained planning, will constitute
the second major part of our work. Due to the growing size
of today’s networks, it is getting harder (and in medium to
large company networks even impossible) to identify secu-
rity threats by hand. Rather, companies are using automated,
and semi automated tools to analyse vulnerabilities of their
networks. Using planning to simulate attacks to networks
is a very promising future direction in (semi-) automated
network security testing. A company called CoreSecurity
(http://www.coresecurity.com/) is already commercially us-
ing a planner inside one of their tools to generate possible
attack plans that are provided to an human security officer
to guide the attention to particular, possible security threat-
ening, regions of the network (Lucangeli et al. 2010). One
problem of this approach is that it requires a global and exact
model of the network, including all the network host config-
urations. In practice, this is clearly impossible to get and to
maintain. Ideally, the model should start with minimal pos-
sible knowledge about the network and host configurations.
This idea was followed by Sarraute et al. in their design of
network penetration testing as solving POMDPs (Sarraute et
al. 2011; Sarraute et al. 2012). Unfortunately, solving such
POMDP models is only feasible for a very small number of
hosts (Sarraute et al. 2012), and thus does not scale to real
world networks. In this work we will continue with Hoff-
mann’s work on finding feasible, yet realistic models of pen-
etration testing (Hoffmann 2015). One very typical aspect of
probabilistic models of penetration testing is that the proba-
bility of reaching a goal state will be low. In other words, the
probability of reaching dead ends will be very high. So, dead
end detection will play an important role to solve penetration
testing problems efficiently, as well.

141

Learning to Recognize Dead Ends
Current state of the art heuristic search based planning ap-
proaches do not really consider the problem of dead end de-
tection specifically. Rather, they make use of the artifact that
when using a safe heuristic function h, whenever h(s) =∞,
then s is a dead end. If a state s is identified as dead end, it
is not further considered in search (we say that s is pruned).
Recently, a few works have been published on the topic of
detecting planning problem unsolvability (e. g., (Bäckström
et al. 2013; Hoffmann et al. 2014)). Although these tech-
niques are designed to prove the unsolvability of a planning
task, they still can be used in solvable problems: we can use
them in order to identify dead ends during the search. This
can lead to a significant performance advantage in problems
where the number of dead ends abound (Steinmetz and Hoff-
mann 2016). However, these unsolvability heuristics are typ-
ically computed in a preprocessing step. In our work we will
follow a completely different direction. Instead of comput-
ing a data structure detecting dead ends before the search,
we make use of the information becoming available during
the search in order to constantly refine our dead end identi-
fier, and thus detecting more dead ends.

Observe that the search itself gives proofs of dead ends
while exploring the state space (Steinmetz and Hoffmann
2016). Whenever a state s is encountered in an open, closed
list search so that each state of the search space that can be
reached through s, and s itself are closed, then we know
that s must be a dead end. Given this information and ad-
ditionally u(s) < ∞, for an unsolvability heuristic u, we
can refine u so that s becomes recognized under u (provided
that there is a refinement algorithm for u that supports this).
After this refinement, u might generalize to other, not yet
seen, dead ends as well. For u = hC (Keyder et al. 2014;
Hoffmann and Fickert 2015), this generalization happened
in a large scale in the three available resource constrained
benchmark domains (NoMystery, Rovers, and TPP) (Stein-
metz and Hoffmann 2016). In those experiments, the search
space reduction is tremendous. The geometric mean is
around two orders of magnitude, and the reduction goes even
up to 5 orders of magnitude. However, as the size of the
set of atomic conjunctions C is continuously growing, the
computation of hC is getting computationally more com-
plex the more dead ends are being learned. To really benefit
from the search space reduction, one has to reduce the num-
ber of calls to hC . To prefilter the calls to hC , we extract a
clause φ so that for all t with t 6|= φ it is hC(t) = ∞, af-
ter each time when we have evaluated hC on a state s and
hC(s) = ∞. Inspired by SixthSense (Kolobov et al. 2012),
we compute φ based on greedily minimizing φ = ¬s while
keeping hC(s) = ∞. This already works pretty well, up to
98% (in the geometric mean) of the dead ends recognized
by hC could be filtered through these conjunctions.

In future work, we have to address open questions in three
different parts of the approach: (1) search algorithm, (2)
hC dead end detection, and (3) finding other unsolvability
heuristics u that can be used in the framework. (1) Our cur-
rent experiments have shown that only very few dead ends
are learned when running optimal search (A∗ (Hart et al.
1968)) instead of a depth first exploration of the state space.

The intuitive reason is that the farer the distance to the ini-
tial state, the higher is the chance of finding dead ends, and
thus the more can we learn. In contrast, in A∗, the explo-
ration is biased towards the initial state, meaning that fewer
dead ends become known, and thus we can learn less. This
brings up the question, how can we learn more dead ends
while preserving the optimality of the search? One possi-
bly promising direction might be to use IDA∗(Korf 1985)
instead. What about an anytime search algorithm, such as
heuristic depth first search (Bonet and Geffner 2006)?

In (2), we distinguish between (a) the hC heuristic itself,
and (b) learning clauses based on hC . Because hC is getting
so expensive to compute in the long term (learning many
dead ends), there might be room for improvements in the
conjunction selection algorithm. Choosing different sets of
conjunctions during the refinement has a direct effect on the
detection of previously unrecognized dead ends. In our cur-
rent implementation, we try to greedily minimize the size of
each single conjunction that is selected during refinement.
Can we choose the set of conjunctions differently so that the
number of selected conjunctions becomes smaller than be-
fore while recognizing at least as many dead ends? Or does
it even make sense to construct larger sets of conjunctions C,
e. g.because the |C| by number of detected dead ends ratio
becomes smaller? A way towards answering these questions
is to identify the value of a conjunction, i. e., in how many
detected dead ends s does the conjunction play a role in ob-
taining hC(s) =∞. But how do we find the value of a con-
junction efficiently? Another idea, borrowed from the SAT
community (Goldberg and Novikov 2002), do we actually
need all conjunctions ever added to the set of atomic con-
junctions C? Or can we forget some of the conjunctions after
a while? Another issue of our current refinement algorithm
is that it only allows to refine the set of atomic conjunctions
on states s if all of their successor states are already recog-
nized. This in particular makes it hard to use hC learning
additional to other dead end identifiers.

Regarding (2b), recall that the clauses are checked be-
fore hC is evaluated, and hC is only evaluated if non of
the clauses matched. As previously mentioned, actually al-
most all dead ends are identified through the clauses, i. e.,
hC is barely evaluated on dead ends. So, why evaluating hC

at all? It turns out that when just using clauses to identify
dead ends, one performs significantly worse than when ad-
ditionally evaluating hC . The reason for this is simple: by al-
ways skipping the evaluation of hC , we do not learn enough
clauses to cover all the recognized dead ends. Can we select
when to evaluate hC , or when to stop evaluating hC? Or is it
even possible to learn multiple clauses at once that cover all
recognized dead ends, and thus getting rid of the evaluation
of hC completely?

(3) Our current results are all based on hC . However, there
might be also other heuristic functions that allow a refine-
ment during search and which might perform equally well,
or even better.

Last but not least, can we generalize this approach to a less
strict definition of dead ends: can we learn to identify states
whose only (possible) solution is via one of its ancestors?

142

Network Penetration Testing
We will be investigating the different classes of Hoffmann’s
taxonomy models (Hoffmann 2015), and we will design ef-
ficient methods to solve them. In short, the planning model
simulates an attacker whose goal is to get access to sensitive
parts of the network. We will mainly focus on probabilis-
tic models as these allow to easily encode partial knowledge
about the network, and even allow to express exploits that
are of stochastic nature (e. g., buffer overflow attacks). The
optimization criterion that we are looking at is maximizing
the probability of reaching the goal as the typical question
in network security is how likely it is that an attacker gets
access to sensitive areas of the network. Since finding opti-
mal solutions in MDPs (POMDPs) is notoriously hard, we
will also consider weaker objectives: finding attack policies
that succeed with at least θ probability, or finding policies
whose success probability differs from the optimal policy
by at most δ (Steinmetz et al. 2016).

First experiments show that solving even these highly re-
strictive classes of probabilistic planning models is only fea-
sible for small networks (Steinmetz et al. 2016). Due to
the large number of dead ends, blindly instantiated heuris-
tic search algorithms perform similar to state space exhaus-
tive methods (VI) – as opposed to other domains where
blindly initialized heuristic search algorithms generally per-
form much stronger than VI.

Unfortunately, we cannot make use of admissible heuris-
tic functions simply because none exist. Thus, finding ad-
missible heuristic functions for goal probability is one of
our main research questions. The common approach to find
admissible heuristic functions is to identify tractable frag-
ments, i. e., fragments that allow to compute the exact goal
probability in polynomial time.

Besides finding heuristic functions, we can improve the
efficiency of heuristic search algorithms (as well as VI)
through several state space reduction techniques. Such tech-
niques have already been used successfully in classical plan-
ning (Pochter et al. 2011; Hall et al. 2013; Wehrle and
Helmert 2012). In particular partial order reduction seems
to be a very promising direction in network penetration test-
ing: usually the search can select the next host to attack out
of a large set of network hosts. However, the order in which
they are attacked does not matter with respect to the proba-
bility of reaching a goal state – though, the search will still
enumerate all possible permutations (an artifact of the apply-
once constraint).

Finally, budget constrained network penetration testing is
an interesting problem, both, from a practical as well as the-
oretical view point. It is relevant to network penetration test-
ing in practice because one does not always want to con-
sider all attack policies, but rather only those that can be ex-
ecuted in for example a reasonable amount of time, respec-
tively by using a reasonable amount of money. This problem
leads us again to the first question: how to learn to recognize
dead ends during search? However, now, we are no longer
considering search in a deterministic state space, but rather
search in a probabilistic state space. So, can we general-
ize the methods developed for critical constrained (classical)
planning to probabilistic problems as well?

References
Arce, I.; and McGraw, G. 2004. Why attacking systems is
a good idea. IEEE Computer Society - Security & Privacy
Magazine 2(4)

Bäckström, C.; Jonsson, P.; and Ståhlberg, S. 2013. Fast de-
tection of unsolvable planning instances using local consis-
tency. In Proc. SoCS13.

Bonet, B.; Geffner, H. 2006. Learning Depth-First Search: A
Unified Approach to Heuristic Search in Deterministic and
Non-Deterministic Settings, and Its Application to MDPs.
In Proc. ICAPS’06.

Gerevini, Alfonso E.; Alessandro Saetti; and Ivan Serina.
2008. An approach to efficient planning with numerical flu-
ents and multi-criteria plan quality. Artificial Intelligence
172.8 (2008): 899-944.

Goldberg, E.; and Novikov, Y. 2002. BerkMin: a fast and
robust SAT- solver. In Design, Automation and Testing in
Europe Conference, 142149, March 2002.

Hall, D. L. W.; Cohen, A.; Burkett, D.; Klein, D. 2013.
Faster Optimal Planning with Partial-Order Pruning. In
Proc. ICAPS’13.

Hart, P. E.; Nilsson N. J.; Raphael B. 1968. A formal basis
for the heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics SSC-4(2),
100-107.

Haslum, P.; and Geffner, H. 2001. Heuristic planning with
time and resources. In Proc. ECP01, 121132.

Hoffmann, J.; Kautz, H.; Gomes, C.; and Selman, B. 2007.
SAT encodings of state-space reachability problems in nu-
meric domains. In Proc. IJCAI07, 19181923.

Hoffmann, J.; Kissmann, P.; and Torralba, A. 2014. “Dis-
tance”? Who Cares? Tailoring Merge-and-Shrink Heuristics
to Detect Unsolvability, Proceedings of the 21st European
Conference on Artificial Intelligence (ECAI’14), Prague,
Czech Republic, August 2014.

Hoffmann, J.; and Fickert, M. 2015. Explicit Conjunctions
w/o Compilation: Computing hFF(ΠC) in Polynomial Time.
In Proc. ICAPS’15.

Hoffmann, J. 2015. Simulated Penetration Testing: From
”Dijkstra” to ”Turing Test++”. Invited paper in Proceeding
ICAPS’15.

Nakhost, H.; Hoffmann, J.; Müller, M. 2012. Resource-
Constrained Planning: A Monte Carlo Random Walk Ap-
proach. In Proc. ICAPS’12.

Keyder, E.; Hoffmann, J.; and Haslum, P. 2014. Improv-
ing delete relaxation heuristics through explicitly repre-
sented conjunctions. Journal of Artificial Intelligence Re-
search 50:487533.

Koehler, J. 1998. Planning under resource constraints. In
Proc. ECAI98, 489493.

Kolobov, A.; Mausam; and Weld, D. S. 2012. Discovering
hidden structure in factored MDPs. Artificial Intelligence
189:1947.

143

Korf, R. E. 1985. Depth-first Iterative-Deepening: An Op-
timal Admissible Tree Search. Artificial Intelligence 27,
97–109.
Lucangeli, J.; Sarraute, C.; and Richarte, G. 2010. Attack
planning in the real world. In Workshop on Intelligent Secu-
rity (SecArt 2010).
Pochter, N.; Zohar, A.; Rosenschein, J. S. 2011. Exploit-
ing Problem Symmetries in State-Based Planners. In Proc.
AAAI’11.
Sarraute, C.; Buffet, O.; and Hoffmann, J. 2011. Penetration
testing == POMDP solving? In SecArt11.
Sarraute, C.; Buffet, O.; and Hoffmann, J. 2012. POMDPs
make better hackers: Accounting for uncertainty in penetra-
tion testing. In AAAI12.
Steinmetz, M.; and Hoffmann, J. 2016. Towards Clause
Learning State Space Search: Learning to Recognize Dead
Ends. In Proc. AAAI’16.
Steinmetz, M.; and Hoffmann, J.; and Buffet, O. 2016. Re-
visiting Goal Probability Analysis in Probabilistic Planning.
In Proc. ICAPS’16.
Wehrle, M.; Helmert, M. 2012. About Partial Order Reduc-
tion in Planning and Computer Aided Verification. In Proc.
ICAPS’12.

144

Human-Robot Communication in Automated Planning

Aleck MacNally
amacnally@student.unimelb.edu.au

University of Melbourne
Parkville VIC 3010

Abstract
With the continued integration of artificial intelligence and
robotics into human society the need for human-aware and
human-in-the-loop planning becomes ever more prominent.
So far research has been conducted which addresses acting
in a human world to achieve joint or independent goals or to
assist humans in completing their own goals. However, lit-
tle research has been published that pertains to human-robot
communication whilst planning. A robot’s ability to commu-
nicate efficiently and effectively with humans will allow the
robot to be more useful to the human, in that the human may
extract necessary information, or understand the actions that
the robot may perform, as well as making the robot more ef-
ficient at achieving its own goals. With these benefits in mind
this doctoral research will address when, why and how infor-
mation is conveyed to humans by robots during planning s
well as integrating into the planning process an ongoing ne-
gotiation between a human and the planner (a robot)

Introduction
Human-robot interaction presents unique challenges in the
area of Automated Planning. Research into such problems
as producing safe and predictable plans, inferring a human’s
goals from their actions and robot-human communication is
on-going.

It is important when dealing with any form of human-
robot interaction and human-aware planning that we under-
stand the scenario between the robot and the human (Shah et
al. 2011; Talamadupula et al. 2014; Chakraborti et al. 2015a;
Levine and Williams 2014). These scenarios can be catego-
rized as follows:
• The human is omnipotent
• The robot is omnipotent
• The robot and human plan separately but for a joint goal
• The robot and human plan separately for independent

goals but must interact due simply to being in the same
environment.

• The robot may adjust their goals to assist humans
The manner in which the challenge of communicating be-

tween humans and robots is addressed, will differ depend-
ing on which scenario the system is in. For instance when

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the human is omnipotent no information needs to go from
the robot to the human. Whereas when humans and robots
must work together to achieve a joint goal the communi-
cation may include negotiations with the human to produce
joint plans which are less costly than working independently.

This doctoral research will address communication in two
different areas of human-robot interaction. The first area is
the communication of plans and goals to a human. This is
important both when humans and robots work independently
as well as when they share a joint goal. The second area
of research is in negotiations between humans and robots,
which is important when robots and humans work toward a
joint goal.

Related Work
Shah et al. implemented the CHASKi executive which fo-
cused on a joint goal in a human-robot team. The research
took inspiration from human-human interaction and used
communication in a limited way to indicate when each agent
was committing to a subtask or had completed one. CHASKI
also allowed humans to issue requests to the robot.

Chakraborti et al. implemented a system which used the
idea of resource profiles which temporally tracked the usage
of specific resources. They constrained their resulting plan to
minimize the overlap between these profiles. In this frame-
work agents were able to negotiate for resources when there
was no feasible plan. Similarly, negotiations were addressed
by Karpas et al. who introduced temporal uncertainty to the
PIKE executive (Levine and Williams 2014) by negotiating
with the user to relax temporal constraints.

Unhelkar and Shah put forward CONTACT, a system
handling multi-agent settings that decides whether an agent
should communicate information based upon a reward sys-
tem and an approximate idea of what is known by all other
agents in the system.

Implicit human-robot communication has been studied by
Zhang, Zhuo, and Kambhampati who used Machine Learn-
ing techniques to label the degree of ”social acceptability”
of plans

Human-Robot Communication
In this extended abstract two aspects of human-robot com-
munication will be addressed. First, the communication of a

145

robots plans to the humans involved in the system. Without
loss of generality, goals shared between humans and robots
can be deemed to be independent. Second, the use of com-
munication to negotiate between humans and robots, which
will directly relate to humans and robots completing joint
goals.

Communicating Plans
As robots become more prevalent in human society it will
become necessary to ensure that they act in a manner which
is understandable and predictable to the humans with whom
they are cohabiting (Alterovitz, Koenig, and Likhachev
2014). To this end it is important that a plan which may
seem strange to a human is explained properly by the robot
agent. Stubbs, Wettergreen, and Hinds underlined this need
when they found that humans working with robots were less
productive when the autonomy of the robots was increased
and their ’common ground’ (shared knowledge) decreased.
This introduces three challenges: which plans require expla-
nation, when is an agent allowed to communicate their plan
and what does an agent communicate when communicating
a plan?

The first question follows from the assumption that a
robot communicating all their plans to a human would be-
come a nuisance. Therefore it is necessary that only plans
which require explanation be explained. Once the robot has
selected a plan to explain, this explanation must be heard
and must not overlap any communication currently occur-
ring and must also not happen when the human is complet-
ing a task which requires concentration such as driving. This
is covered by the second question. The last question ad-
dresses how much information is necessary to convey to a
human agents once a plan is to be explained. It is assumed
that the optimal amount of information required to fully ex-
plain the plan to the human is the minimal amount, relating
to the assumption from the first question.

Determining whether to communicate a goal It is im-
portant that a robot’s goals are not ambiguous. This means
that a human should be able to infer a robot’s goals from
its actions. To that end it is considered preferable to have a
robot which acts obviously toward a single goal.

In many cases the nature of the environment and model
of the robot result in plans which are optimal yet ambigu-
ous. This ambiguity is formalised in the concept of the worst
case distinctiveness (wcd). The wcd represents the size of
the largest shared prefix of two or more optimal plans lead-
ing to different goals (Keren, Gal, and Karpas 2014). The
larger the wcd, the larger the ambiguity inherent in the en-
vironment and robot’s model. When the wcd of the model is
too large it is necessary for the robot to communicate their
goal to the human.

The idea of our approach is that a human is watching a
robot, but not attempting to achieve any goals of its own.
The human uses goal recognition as set out by Ramirez and
Geffner in order to infer the goal of the robot. The robot uses
the wcd of the system to determine if the human will infer
its goals correctly or if it will need to communicate its goals.
We formalize this idea below.

The robot is given a planning problem Π =<
F, I,A,G >, and has a set G of the possible goals, where
G ∈ G. The human in this case has knowledge of G as well
as Π except for G. The human will not plan itself but will
reason using goal recognition. Using the framework pub-
lished by Keren, Gal, and Karpas it is possible to find the
worst-case distinctiveness (wcd) of the problem. It is put for-
ward that if the wcd > α, then for any plan π the robot must
communicate G to the human, otherwise G is deemed obvi-
ous enough to the human from π. The quantity α is yet to be
established.

A more computationally intensive solution to this prob-
lem is that as we know the current goal of the robot, G, we
can calculate:

wcdG = max
G′∈G,G′ 6=G

wcd(Π, {G,G′})

where wcd(Π, {G,G′}) refers to the wcd of the problem
with the possible goal set consisting of just G and G′. The
wcdG represents the worst case distinctiveness between each
goal and G. The wcdG has wcd as an upper-bound, so this
method will never force the robot to communicate more than
in the above method. UsingwcdG instead ofwcdwill reduce
the amount of times that a robot will have to communicate
with the human, however, it will require the robot to perform
O(|G|) calculations of a wcd.

To improve upon this idea it would be advantageous to
model the human belief in the goal of the robot as well as
the human’s own goals. Doing this would allow one to rea-
son more accurately as to when the human might need the
knowledge about what goal the robot is pursuing in order to
pursue their own goals.

Determining whether to communicate a plan Given a
situation in which the human has knowledge of the goals
of the robot, it is preferable that a plan which is to be ex-
ecuted is predictable and familiar to the human. If it is not
predictable or familiar, the plan must be communicated. En-
suring this will make robots more trustworthy to humans.
The degree to which a given plan is surprising will be de-
termined by combining in some suitable way the wcd mea-
sures for every sub-goal achieved by the plan. This will be
addressed in future research.

Determining when an agent should communicate Once
a robot has found it necessary to communicate a plan due
to either the ambiguity in the robots goals or in its plan,
the problem becomes determining when to communicate the
plan. In particular in problems which relate to communicat-
ing over a channel which is being used by multiple agents
and is affected by external sources. Assuming an axiomati-
zation of communication actions over a channel as well as
the ability to observe the state of the channel, this problem
can be modeled as an MDP in which the state of the channel
is modeled as observations and an agent can choose to com-
municate with respect to these observations. this idea will be
explored in further research.

The second problem in this section is making sure that
a communication action does not interrupt a critical hu-
man task. Such task are those which would jeopardize the

146

safety of humans if they were interrupted such as driving or
surgery. A simple solution to this problem is to have a hu-
man action which locks communication and a human action
which unlocks communication. A second solution is to use
a temporal multi-agent planner with mutual exclusion be-
tween actions which require concentration and robot com-
munication actions. This topic will also be addressed in fu-
ture research.

Determining the minimum amount of information to
communicate The last question which will be addressed
in this section is ”how much information in a robots plan
needs to be communicated?”. A robot’s goals will consist
of a conjunction of logical statements. When these goals are
created by a human they can be named easily, and then this
name can be produced when it is determined that the goal is
to be communicated. In the case where a robots goals are au-
tomatically generated such as in (Chakraborti et al. 2015a),
the information within these goals must be summarized in a
way which is human understandable. This is equally true for
a plan which needs to be communicated.

A possible scheme for determining which actions of a
plan need to be communicated to a human is described next.
Given that a robot has an optimal plan π for a goal G, where
the human has knowledge of G, we suggest that the optimal
amount of information that needs to be communicated is the
minimal subsequence πm ⊂ π (that is minimal in length not
cost) which will render P (G|πm) = 1. It is assumed that
if from this πm the human can calculate that the goal is G
than, even if the plan is not human-intuitive, it is understood
by the human. This will be addressed in future research.

Negotiating

Negotiations between humans and robots has already been
attempted in various ways such as in Talamadupula et al.
where negotiations were made over resources and in Karpas
et al. where time was negotiated with. In this section we uti-
lize the idea of negotiation to allow a problem to be solved
by a joint human-robot team where the model of the robot
is known but the model of the human is not. Using this idea
the robot constructs a partial model of the human throughout
the negotiations.

The idea of this approach is that an agent must solve a
problem optimally and use the assistance of a human with
a fixed communication penalty rate. To this end the agent
assumes that the human may achieve any fact and after each
iteration of communication, the robot updates the model of
the human and then re-plans until there is a satisfying plan
that both the human and robot agree is possible.

For a classical planning problem Π =< F, I,A,G >,
where A is the robot’s action set, we compile the model of
the human into the robots model by augmenting it as fol-
lows. Let us consider the initial planning problem for the
first iteration: Π′ =< F, I,A0, G >, where:

A0 = A ∪ {afh, a
¬f
h |f ∈ F}

where afh is an action with:

• prec(afh) = {¬f}
• add(afh) = {f}
• del(afh) = ∅
• cost = λ×∑

a∈A cost(a)

Where a¬fh is defined similarly. afh encodes the assumption
that the human h can make f true. With these additional
actions the robot can achieve all facts in the problem. The
λ is a constant which encodes a fixed penalty for asking for
help. A high λ would produce and scenario where the robot
is expected to work on its own and to only seek help when it
could not find a satisfying plan. If it is intended that the robot
and human coordinate more than λ should be set lower.

Following the initial stage of planning the robot presents
the human with the actions that she must complete (if there
are any). She may then do one of two things: accept the plan
as it is or negotiate with the robot. If she accepts then the
problem is solved. If she chooses to negotiate, she presents
the robot with additional knowledge about her model. For
instance she may say that she cannot complete afh but can
complete afh′ where afh′ is equal to afh with a different cost.
She could also provide the robot with her entire set of ac-
tions if she chose to. With this framework the human may
give as little or as much information to the robot as the hu-
man wishes. When the human has decided what information
she is going to impart to the robot, she places the actions
she cannot complete inAimposs

j , this would include afh from
the example above, and all the actions she can complete in
Aposs

j , which would include afh′, where j is the current it-
eration of negotiation. The robot’s action set is updated as
follows:

Aj = {Aj−1 \Aimposs
j } ∪Aposs

j

The robot will then re-plan with the new set of actions Aj

and negotiate until the human accepts the plan, or the robot
cannot find a plan.

It is important to note that with this approach the model of
what the human can do is not required. The robot assumes
that the human can do anything and each turn the robot up-
dates its understanding of the human’s model with partial
information given to it by the human

This approach will produce an optimal plan for the robot
and for what the robot believes the human can do, however
without a complete model for what the human can do an
optimal plan for both agents cannot be found.

Conclusion
This extended abstract addressed two areas of communica-
tion between humans and robots. The first was the problem
of communicating plans and goals to humans either in the
same environment or to those completing the same goals.
This involved three distinct challenges which were which
plans and goals should a robot communicate, when should a
robot communicate them and how much information was re-
quired to communicate a goal or plan? A solution to the first

147

question was put forward which involved the computation
of the worst case distinctiveness of the system (Keren, Gal,
and Karpas 2014). The second area of research in this paper
addresses negotiation. A scheme for negotiations between a
robot and human was put forward which involved compiling
a partial human action model and a planning problem into a
classical planning problem which was then solved. The solu-
tion was presented to the human and then the partial human
model was update. This process continues until a solution is
found.

References
Alterovitz, R.; Koenig, S.; and Likhachev, M. 2014. Robot
planning in the real world: research challenges and opportu-
nities. National Science Foundation.
Chakraborti, T.; Briggs, G.; Talamadupula, K.; Zhang, Y.;
Scheutz, M.; Smith, D.; and Kambhampati, S. 2015a. Plan-
ning for serendipity. Intelligent Robots and Systems (IROS)
5300–5306.
Chakraborti, T.; Zhang, Y.; Smith, D.; and Kambhampati, S.
2015b. Planning with stochastic resource profiles: An appli-
cation to human-robot cohabitation. International Confer-
ence on Automated Planning and Scheduling (ICAPS).
Karpas, E.; Levine, S. J.; Yu, P.; and Williams, B. C. 2015.
Robust execution of plans for human-robot teams. Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS) 342–346.
Keren, S.; Gal, A.; and Karpas, E. 2014. Goal recognition
design. International Conference on Automated Planning
and Scheduling (ICAPS).
Levine, S. J., and Williams, B. C. 2014. Concurrent plan
recognition and execution for human-robot teams. Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS).
Ramirez, M., and Geffner, H. 2009. Plan recognition as
planning. International Joint Conference on Artificial Intel-
ligence (IJCAI) 1778–1783.
Shah, J.; Wiken, J.; Williams, B.; and Breazeal, C. 2011.
Improved human-robot team performance using chaski, a
human-inspired plan execution system. Proceedings of the
6th international conference on Human-robot interaction
29–36.
Stubbs, K.; Wettergreen, D.; and Hinds, P. H. 2007. Au-
tonomy and common ground in human-robot interaction: A
field study. Intelligent Systems, IEEE 22(2):42–50.
Talamadupula, K.; Briggs, G.; Chakraborti, T.; Scheutz, M.;
and Kambhampati, S. 2014. Coordination in human-robot
teams using mental modeling and plan recognition. Intelli-
gent Robots and Systems (IROS) 2957–2962.
Unhelkar, V. V., and Shah, J. A. 2016. Contact: Deciding
to communicate during time-critical collaborative tasks in
unknown, deterministic domains. Association for the Ad-
vancement of Artificial Intelligence (AAAI).
Zhang, Y.; Zhuo, H. H.; and Kambhampati, S. 2015. Plan
explainability and predictability for cobots. arXiv preprint
arXiv:1511.08158.

148

	Heuristic Search and Applications
	Multi Agent Planning & Plan Execution
	Temporal Planning
	Planning and Scheduling
	Planning under Uncertainty and Applications
	Knowledge Engineering and Applications

