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Abstract

Attaining optimal results in real-life scheduling is hin-
dered by a number of problems. One such problem is dy-
namics of scheduling environments with breaking-down
resources and hot orders coming during the schedule
execution. Traditional approach to react to unexpected
events occurring on the shop floor is generating a new
schedule from scratch. Complete rescheduling, how-
ever, may require excessive computation time. More-
over, the recovered schedule may deviate a lot from the
ongoing schedule. Some work has focused on tackling
these shortcomings, but none of the existing approaches
tries to substitute jobs that cannot be executed with a set
of alternative jobs. This paper describes the scheduling
model suitable for dealing with unforeseen events us-
ing the possibility of alternative processes and states the
future goals.

Introduction
Scheduling, the aim of which is to allocate scarce resources
to activities in order to optimize certain objectives, has been
frequently addressed in the past decades. Developing a de-
tailed schedule in manufacturing environment helps maintain
efficiency and control of operations.

In the real world, however, manufacturing systems face
uncertainty owing to unforeseen events occurring on the shop
floor. Machines break down, operations take longer than
anticipated, personnel do not perform as expected, urgent
orders arrive, others are canceled, etc. These disturbances
may bring inconsistencies into the ongoing schedule. If the
ongoing schedule becomes infeasible, the simple approach
is to collect the data from the shop floor when the disrup-
tion occurs and to generate a new schedule from scratch.
Because most of the scheduling problems are NP-hard, com-
plete rescheduling usually involves prohibitive computation
time and an excessive deviation of the recovered schedule
from the original schedule.

To avoid the problems of rescheduling from scratch, reac-
tive scheduling, which may be conceived as the continuous
correction of precomputed predictive schedules, is becoming
more and more important. Reactive scheduling is contradis-
tinguished from predictive scheduling mainly by its on-line
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nature and associated real-time execution requirements. The
schedule update must be accomplished before the running
schedule becomes invalid, and this time window may be
very short in complex scheduling environments.

Several novel sophisticated methods attempt to cope
with the shortcomings of complete rescheduling, e.g., by
rescheduling only the activities somehow affected by the
disturbance. To the best of our knowledge, however, none of
the existing approaches tries to replace some activities by a
set of alternative activities (using other available resources)
to achieve the same goal.

In this paper we propose a model suitable for development
of algorithms for modifying a schedule to accommodate dis-
turbances, such as a machine breakdown, using the possi-
bility of alternative processes, i.e., to re-plan the influenced
part of the schedule.

Related Work
The approaches how to tackle dynamics of the scheduling
environment can be divided basically into two branches ac-
cording to whether or not the predictive schedule is com-
puted before the execution starts (Vieira, Herrmann, and Lin
2003). If the predictive schedule is not computed beforehand
and individual activities are assigned to resources pursuant
to some so called dispatching rules during the execution, we
talk about completely reactive scheduling or on-line schedul-
ing. This strategy is suitable for very dynamic environments,
where it is not known in advance which activities it will be
necessary to process. On the other hand, it is obvious that
this approach hardly ever leads to an optimal or near-optimal
schedule.

If the schedule is crafted beforehand and then updated
during its execution, it is referred to as predictive-reactive
scheduling. When correcting the ongoing schedule in re-
sponse to changes within the environment, the aim is usually
to minimize the schedule modification. The motivation for
minimizing the alteration of the schedule is that every aber-
ration may lead to deterioration in the performance owing
to affecting other planning activities based upon the original
schedule. Similarity of two schedules may be formally de-
fined for example as a minimal perturbation problem (Barták,
Muller, and Rudová 2003).

There is an extensive literature on rescheduling (Ouelhadj
and Petrovic 2009; Raheja and Subramaniam 2002). First,



the heuristic-based approaches do not guarantee finding an
optimal solution, but they respond in a short time. The sim-
plest schedule-repair technique is the right shift rescheduling
(Abumaizar and Svestka 1997), which shifts the operations
globally to the right on the time axis in order to cope with
disruptions. This may lead to schedules of very bad quality.

Another simple heuristic is affected operation reschedul-
ing (Smith 1995), also referred to as partial schedule repair,
the essence of which is to reschedule only the operations
directly and indirectly affected by the disruption in order to
minimize the deviation from the initial schedule.

Better schedules to the detriment of computational effi-
ciency may be attained by using meta-heuristics such as
simulated annealing, genetic algorithms, tabu search, and it-
erative flattening search (Oddi et al. 2007). These high level
heuristics guide local search methods to escape from lo-
cal optima by occasional accepting worse solutions or by
generating better initial solutions for local probing in some
sophisticated way.

Some techniques from the field of artificial intelligence
and knowledge-based systems are also applied in reschedul-
ing, namely case-based reasoning (Cunningham and Smyth
1997), fuzzy logic (Ramkumar, Tamilarasi, and Devi 2011),
and neural networks (Jain and Meeran 1998). Another ap-
proach, which is rather an independent branch, is multi-agent
based architectures (Zhang et al. 2011). Multi-agent systems
seem to be the most promising approach, but the coordination
among the agents is hard to achieve.

The attempts to absorb certain amount of uncertainty based
on the past executions of schedules is considered in another
strategy, usually referred to as robust proactive scheduling.
One such example is a model and an algorithm generating a
predictive schedule of production workflows that is (proac-
tively) robust with regard to so called immediate events,
which include breakdown of a workstation and faulty ter-
mination of a workflow execution (Dulai and Werner-Stark
2015). The robustness is attained by shifting activities (tra-
ditional introducing or enlarging gaps on resources) based
on the probabilities of resource failures, which are estimated
according to previous experiences. The drawback of the al-
gorithm is the assumption that every resource failure is only
temporary, and the time for how long the resource is unavail-
able in case of its failure is known in advance.

While there is a great amount of work devoted to plan-
ning with time and resources and to integrating planning
and scheduling techniques, to the best of our knowledge,
there is no research carried out aiming at the possibility of
re-planning in the field of predictive-reactive scheduling.

Scheduling Model Description
The scheduling model we work with is taken from the
FlowOpt system (Barták et al. 2012), which contains a tool
for designing and editing manufacturing workflows. Work-
flow in general may be understood as a scheme of performing
some complex process, itemized into simpler processes and
relationships among them. Manufacturing workflow is then
an outline how to obtain a desired product.

In order to make editing of workflows easier, the work-
flows in our model match up the structure of Nested Tem-

Figure 1: An example of a workflow (Skalický 2011).

Figure 2: A decomposition tree for the workflow. The label
”ALT” beneath tasks stands for alternative decomposition;
the other decompositions are parallel. Activities are ellipse-
shaped.

poral Networks with Alternatives (Barták and Čepek 2007),
where the nodes of a network correspond to the tasks of a
workflow. The tasks decompose into other tasks, referred
to as their children. There are two types of decomposition:
parallel and alternative. The tasks that do not decompose
further (i.e., leaves) are called primitive tasks. The primitive
tasks correspond to activities (or operations) and are associ-
ated with some additional parameters, namely start, end, and
duration.

An example of a workflow and its decomposition tree are
depicted in Figures 1 and 2. It contains eight primitive tasks
(activities), three parallel tasks, and two alternative tasks.

The workflows as described define a number of feasible
processes. A process is a subset of tasks selected to be pro-
cessed. While a parallel task requires all its children to be
processed, an alternative task requires exactly one of its chil-
dren to be processed. If an arbitrary task is not in a process,
none of its offspring is in the process either. Hence, to en-
sure that an instance of a workflow is actually processed, its
root task has to be in the selected process. An example of a
process is depicted in Figure 3.

To introduce some restrictions in terms of occurrences of
tasks in the process and their time data, a pair of tasks can be
bound by a constraint. Temporal constraints include prece-
dences (one task has to be accomplished before the execution
of another task starts), and synchronizations (one task has to



Figure 3: The decomposition tree with a selected process.

start/end exactly when another task starts/ends). Logical con-
straints include implications (if one task is in the process, the
other task must be in the process too), equivalences (either
both tasks must be in the process or none of them can be in
the process), and mutual exclusions (at most one of the tasks
can be in the process).

In Figure 1, there is one equivalence constraint enforcing
that a tube and a rod are both either bought or made. The
other constraint (synchronization) ensures that the activities
”cutting tube” and ”cutting rod” start at the same time.

Besides these constraints added by a user, which are re-
ferred to as custom constraints, there are some implicit con-
straints arising from the hierarchical structure of tasks. For
example, the start time of a task equals the start time of its
earliest child, and the end time of the task equals the end
time of its latest child.

Activities are processed on resources. All resources are
unary, which means that each resource may perform no more
than one activity at a time. This limitation is often referred to
as a resource constraint and belongs to the mentioned implicit
constraints. Each activity is specified by a set of resources on
which the activity can be processed (resource group), and in
the resulting schedule, each activity in the selected process
must be allocated to exactly one resource (selected resource).

Note that workflow is only a guideline how to manufac-
ture a particular product. If a user wants n such products,
n instances of the corresponding workflow are inserted into
the model. An instance of a workflow is referred to as an
order. It contains some additional data, such as due date and
lateness penalty.

Finally, a resulting schedule is feasible if all custom as
well as implicit constraints are satisfied.

Scheduling Problem
Formally, schedule S is a triplet of three sets: Tasks,
Constraints, and Resources.

Tasks Tasks match up a forest structure. Therefore, every
task T either has a parent, i.e., ∃P ∈ Tasks : parent(T ) =
P , or is a root, i.e., parent(T ) = null.

• subtasks(T ) = {C ∈ Tasks | parent(C) = T}
• Roots = {R ∈ Tasks | parent(R) = null}

There are three types of tasks: parallel, alternative, and
primitive tasks.

• Tasks = Parallel ∪Alternative ∪ Primitive
• ∀T ∈ Parallel ∪Alternative : subtasks(T ) 6= ∅
• ∀T ∈ Primitive : subtasks(T ) = ∅

Let process P ⊆ Tasks be the set of tasks selected to
be processed. Making the process feasible introduces the
following constraints:

• T ∈ P ∩ Parallel : subtasks(T ) ⊆ P
• T ∈ P ∩Alternative : |subtasks(T ) ∩ P | = 1

• T /∈ P : subtasks(T ) ∩ P = ∅
Let Si and Ei denote the start time and end time, respec-

tively, of taskTi. Each activity corresponding to the primitive
task Ti is specified by the duration Di. Then the time data
are computed as follows:

• ∀Ti ∈ P ∩ Primitive : Si +Di = Ei

• ∀Ti ∈ P ∩ (Parallel ∪Alternative) :
Si = min{Sj | Tj ∈ subtasks(Ti) ∩ P}
Ei = max{Ej | Tj ∈ subtasks(Ti) ∩ P}

Constraints There are two basic types of constraints: tem-
poral, and logical. Temporal constraints restrict mutual po-
sition in time of two distinct activities. We take into con-
sideration precedence and synchronization constraints, the
semantics of which is as follows:

• (i→ j) : Ti, Tj ∈ P ⇒ Ei ≤ Sj

• (i ss j) : Ti, Tj ∈ P ⇒ Si = Sj

• (i se j) : Ti, Tj ∈ P ⇒ Si = Ej

• (i es j) : Ti, Tj ∈ P ⇒ Ei = Sj

• (i ee j) : Ti, Tj ∈ P ⇒ Ei = Ej

Logical constraints are of three types: implications, equiv-
alences, and mutexes. The semantics of the constraints is
such:

• (i⇒ j) : Ti ∈ P ⇒ Tj ∈ P
• (i⇔ j) : Ti ∈ P ⇔ Tj ∈ P
• (i mutex j) : Ti /∈ P ∨ Tj /∈ P

Resources Let T ∈ Primitive, then the set of re-
sources that may process the primitive task T is denoted
Resources(T ). The set Resources(T ) is often referred to
as a resource group.

Each activity to be processed needs to be allocated to
exactly one resource from its resource group. Let T ∈
Primitive, then a resource R ∈ Resources(T ) is selected
if resource R is scheduled to process the primitive task T ,
which we denote SelectedResource(T ) = R.

Each primitive task that is selected to the process P must
have a selected resource to make a schedule feasible. For-
mally:

∀T ∈ P ∩ Primitive : SelectedResource(T ) 6= null

All resources in a schedule are unary, which means that
they cannot execute more tasks simultaneously. Therefore,



in a feasible schedule for all selected primitive tasks Ti 6= Tj
the following holds:

SelectedResource(Ti) = SelectedResource(Tj)

⇒ Ei ≤ Sj ∨ Ej ≤ Si

Schedule
A schedule S (sometimes referred to as a resulting sched-
ule or a solution) is acquired by determining the set P ,
and allocating the primitive tasks from P in time and
on resources. Allocation in time means assigning particu-
lar values to the variables Si and Ei for each Ti ∈ P .
Allocation on resources means selecting a particular re-
source (SelectedResource(T )) from the resource group
(Resources(T )) of each task T ∈ P ∩ Primitive.

To make a schedule feasible, the allocation must be con-
ducted in such a way that all the mentioned constraints in the
problem are satisfied.

Rescheduling Problem
The problem we actually deal with is that we are given a
particular instance of the scheduling problem along with a
feasible schedule, and also with a change in the problem
specification. The aim is to find another schedule that is
feasible in terms of the new problem definition. The feasible
schedule we are given is referred to as an original schedule
or an ongoing schedule.

Formally, let R = (Pr0, Sch0, δ
+, δ−) be a rescheduling

problem, which is given by the original scheduling problem
Pr0, the original feasible schedule Sch0, elements δ+ to be
added to the problem Pr0, and elements δ− to be removed
from the problem Pr0. New scheduling problem Pr1 is then
Pr0 ∪ δ+ \ δ−. The task of the rescheduling problem R is
then to find a schedule Sch1 for problem Pr1, the quality
of which is measured with respect to the original schedule
Sch0.

The way the scheduling problem can be modified depends
on the disturbance. In case of a resource failure, we are
given a resource that cannot be used (from a certain time
point) while the set of orders remains unchanged, therefore
δ+ = ∅ and δ− is the broken down resource.

Another example is an urgent order arrival, which is a
disturbance where an order (a set of workflow instances) is
added into the model, and the aim is to update the ongoing
schedule in such a way that the added order is accomplished
as early as possible. In this case δ+ is the new order (including
constraints among new tasks) and δ− = ∅.

As explained in the introduction, regardless of what the
optimization objective of the original schedule is, it seems
to be wise to modify the schedule in such a way that the new
schedule is as similar to the original one as possible. For this
purpose we need to evaluate the modification distance.

LetPz denote the selected processP in the scheduleSchz ,
and Sz

i denote the start time of task Ti in schedule Schz .
Then, apart from computation time, we take into account the
following distance functions:

f0 = |{T ∈ P1 \ P0}|+ |{T ∈ P0 \ P1}|

f1 =
∑

Ti∈P0∩P1∩Primitive

|S1
i − S0

i |

f2 = |{Ti ∈ P0 ∩ P1 ∩ Primitive | S1
i 6= S0

i }|

f3 = max
Ti∈P0∩P1∩Primitive

|S1
i − S0

i |

In words, f0 is the number of different tasks in the sched-
ules, f1 measures the total sum of time shifts of activities, f2
counts the number of shifted activities, and f3 is the biggest
time shift of an activity. There are other conceivable distance
functions, but we concentrate on these ones.

Current Work
Our recent work (Barták and Vlk 2015) proposes two meth-
ods to handle a resource failure occurring on the shop floor
during the schedule execution. The first method, Right Shift
Affected, takes the activities that were to be processed on a
broken machine, reallocates them, and then it keeps repair-
ing violated constraints until it gets a feasible schedule. This
approach is suitable when it is desired to move as few ac-
tivities as possible, that is, minimizing the distance function
f2.

The second method, which is aimed at shifting activi-
ties by a short time distance regardless of the number of
moved activities (that is, minimizing the distance functions
f1 and f3), is called STN-recovery. The routine deallocates
a subset of activities and then it allocates the activities again
through integrating techniques from the field of constraint
programming, namely Conflict-Directed Backjumping with
Backmarking (Kondrak and Van Beek 1997). Before the al-
location process, the search space is suitably pruned based
on the values from the original schedule, which is another
thing that seems to be neglected in the related literature.

The shortcoming of both the algorithms is that they neglect
the possibility of alternative processes, which in practice
may lead to a schedule recovery at a blow. Moreover, if the
ongoing schedule is not recoverable, the algorithms are not
able to securely report it and terminate.

Future Plans
We are currently developing algorithms under the hierar-
chical model described, where, in response to unexpected
events, the intention is not only to modify the allocation of
activities of the selected process, but to replace tasks in the
process by other tasks that are not in the process, i.e., to
re-plan some (ideally the smallest necessary, hence the mo-
tivation for the distance function f0) subset of the schedule.

The first algorithm to try will work as follows. First, find
the feasible process from all the orders in the schedule top-
down, preferring the branches from the original schedule
whenever possible. Second, after the process is selected,
allocate activities from the process in time and on resources.
If the second step fails, go back to the first step. Iterate until
the schedule is found. For the second step, the crucial part
of the STN-recovery algorithm mentioned above may be
employed.



One natural improvement might be trying to allocate an
activity straightaway when the corresponding primitive task
is considered to be selected to the process. If the activity
is successfully allocated, the searching for the process pro-
ceeds, otherwise it backtracks for alternatives.

However, our main effort will be made towards updating
the schedule as locally as possible. If a resource suddenly
becomes unavailable, it may suffice to merely replace the
affected activities by alternatives that are just one level (one
task decomposition) from the affected activities. It follows
that the process should not be discarded and sought again
top-down as described above, but it should be explored in a
bottom-up fashion (from the primitive tasks upwards). The
main difficulty of this approach are the logical constraints
that must be propagated whenever the membership of a task
in the process is being flipped.

In further future, the target is to extend the model of Nested
Temporal Networks with Alternatives by recursion, and to
suggest algorithms for this model. The recursion will bring
the full power of planning, i.e., the possibility to generate
tasks according to a given target. The main inspiration comes
from the Hierarchical Task Networks (Nau et al. 2003). We
will try modeling problems by attribute grammars, where
modeling relations among attributes will be realized by con-
straint satisfaction problem rather than traditional semantic
rules (Barták 2016).
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