
Planning with Flexible Timelines in the Real World

Alessandro Umbrico, Marta Cialdea Mayer
University Roma TRE, Italy

alessandro.umbrico@uniroma3.it

Andrea Orlandini
CNR - National Research Council of Italy

Institute of Cognitive Science and Technology

Abstract

Planning is a core field of Artificial Intelligence since its be-
ginnings. Broadly speaking, planning techniques aim at pro-
viding artificial agents with the capability to autonomously
solve ”complex” problems. Several planning techniques have
been introduced in the literature that employ different ap-
proaches for modeling and solving planning problems.
My PhD research activities concern timeline-based approach
to planning. Timeline-based planning is a particular Tempo-
ral Planning paradigm which has been successfully applied to
solve real-world problems. Despite it practical success there
is not a shared view of this planning approach. There are sev-
eral timeline-based frameworks that have been introduced in
the literature each of which applies its own interpretation of
timelines, timeline-based plans and planning domains.
In this regard the objective of my PhD is to analyze the
features of the different existing timeline-based systems and
to provide a complete characterization of timeline-based ap-
proach by providing a semantics for the related planning con-
cepts, defining a methodology to model domains and prob-
lems and by defining domain independent heuristics and de-
velop a suited timeline-based planning framework, called
EPSL.

Introduction
Timeline-based planning has been introduced in early 90s
(Muscettola 1994), it takes inspiration from the classical
control theory. It models a complex system by identify-
ing a set of relevant features that must be controlled over
time. This approach has been successfully applied in several
real-world contexts (especially in space applications) thanks
to take into account the temporal aspects of the problem.
Several planning frameworks have been developed for the
synthesis of timeline-based P&S applications, e.g. EUROPA
(Barreiro et al. 2012), ASPEN (Chien et al. 2010), APSI-TRF
(Cesta et al. 2009) or IXTET (Laborie and Ghallab 1995).

Despite its practical success, there is a lack of formaliza-
tion of timeline-based planning related concepts. There is
not a uniform and shared view of concepts like timelines,
timeline-based plans, domains and problems. Every frame-
work applies its own interpretation of timeline-based plan-
ning. This results in different ways of considering timeline-

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

based problems and also, different ways of modeling and
solving such problems.

In this context, my PhD research goal is to characterize
timeline-based planning approach from different point of
views and develop a suited planning framework, called EPSL
- the Extensible Planning and Scheduling Library. Namely,
we aim at understanding timeline-based planning by provid-
ing an acceptable semantics for the related planning con-
cepts, defining a methodology to model and solve problems
by means of timelines.

The following sections introduce timeline-based planning
approach by exploiting the formalization we have proposed
in some recent works (Cialdea Mayer, Orlandini, and Um-
brico 2015; 2014) and the EPSL planning framework that
I’m currently developing. Later sections describe an in-
teresting application of EPSL (and the timeline-based ap-
proach) to a manufacturing real-world context for the de-
velopment of a knowledge-based control module (KBCL -
the Knowledge-Based Control Loop). In particular, this ap-
plication gave an important contribution for the definition of
a hierarchical modeling approach for timeline-based plan-
ning and a domain independent heuristic that we have im-
plemented and tested in the EPSL framework.

Finally we briefly present some ongoing works on the
comparison of our ”vision” of timeline-based planning and
EPSL with EUROPA which is one of the most known
timeline-based software environment in the literature.

Timeline-based Planning Approach
The main result concerning the formalization of timeline-
based planning approach is represented by our work
(Cialdea Mayer, Orlandini, and Umbrico 2015). The key
contribution of this work, which builds and extends previ-
ous works (Cialdea Mayer, Orlandini, and Umbrico 2014),
is to provide a formal stand-alone definition of the main con-
cepts of timeline-based planning and the relative controlla-
bility properties, independently from the concrete structure
exploited to represent timelines.

The importance of this feature is due to the fact that
representing a flexible timeline-based plan as a temporal
network entails a sort of simplification of the associated
plan structure, thus causing a loss of information on the
causal/temporal ”dependencies” among its components. In-
deed, such information can be useful for planning engines

(for instance to define suited heuristics as we’ll see in the
next sections) and in general, for supporting a more detailed
analysis of the relevant features enclosing in the generated
plans.

The timeline-based approach pursues the idea that plan-
ning and scheduling for controlling complex physical sys-
tems consists of the synthesis of desired temporal behaviors
(i.e. timelines). Thus, a planning domain is modeled as a set
of features with an associated set of temporal functions on a
finite set of values.

The time-varying features of the domain can be modeled
by means of multi-valued state variables. The possible evo-
lutions of these features are described by some causal laws
and limited by domain constraints. These are specified in a
domain specification. A timeline-based planner must find a
sequence of decisions that brings the timelines into a final
desired set, satisfying the domain specification and goals.
Thus, a domain specification must provide the set of causal
and temporal constraints that specify which value transitions
are allowed for the state variables, and the minimal and max-
imal duration of each valued interval.

State variables A state variable models a particular fea-
ture of the domain that must be controlled over time. For-
mally it is characterized by four components: the set V of
values representing the possible state or actions the feature
can assume or perform over time; a function T mapping
each value v ∈ V to the set of values that are allowed to
follow v; a function γ tagging each value v ∈ V with infor-
mation about its controllability; a function D setting upper
and lower bounds on the duration of each value of the vari-
able. In particular, the controllability tagging fucntion γ tags
each value v ∈ V as controllable γ(v) = c or not γ(v) = u.
If a value v is controllable it means that the planner (or the
executor of the plan) can decide the actual duration of the
value. If a value v is uncontrollable, instead, the planner
can decide its start time but the planner cannot decide its
end time. Namely, the planner cannot make any hypothesis
about the actual duration of uncontrollable values during the
solving process.

Synchronization rules A domain specification must pro-
vide global constraints that coordinate the temporal behav-
iors of the state variables. Such relations are specified by
means of synchronization rules that constrain values of dif-
ferent state variables. Namely, synchronization rules specify
how the domain features must behave in order to perform
some complex tasks.

Formally, a synchronization rule is an expression of the
form:

a0[x0 = v0]→ ∃ a1[x1 = v1] . . . an[xn = vn] .C
where (i) a0, . . . , an are distinct token variables; (ii) for all
i = 0, . . . , n, xi is a state variable and vi ∈ values(xi); and
(iii) C is a positive boolean formula where only the token
variables a0, . . . , an occur.

Token variables represents particular instances of values
of the domain state variables. It is important to point out

that the use of token variables allows to specify multiple in-
stances of the same value of a state variable in the right-hand
part of a synchronization rule. The left-hand part of the syn-
chronization rule, a0[x0 = v0], is called the trigger of the
rule and represents the value the rule can be applied to.

Timelines A timeline represents the temporal evolution of
a system component up to a given time (the horizon). It is
made up of a sequence of valued intervals, called tokens,
each of which represents a time slot in which the variable
assumes a given value. It is important to point out that,
when planning with timelines, time flexibility is taken into
account by allowing token durations to range within given
bounds. A token for a variable x = (V, T, γ,D) is com-
pletely described by representing its start and end ”times”
with temporal intervals as follows:

xi = (v, [e, e′], [d, d′], γ(v))

Thus a timeline FTLx is a for a state variable x =
(V, T, γ,D) is a finite sequence of tokens of the form:

FTLx = x1 = (v1, [e1, e
′
1], [d1, d

′
1], γ(v1)), ..., xk =

(vk, [ek, e
′
k], [dk, d

′
k], γvk)

It is important to point out that once a token xi is embed-
ded in a timeline, the time interval to which its start points
belongs can be easily computed by considering the end time
of the previous token, start time(xi+1) = end time(xi)
(where the start time of the first token x0 is [0, 0]).

A scheduled timeline is a particular case where each token
has a fixed end time [t, t]. A schedule of a timeline FTLx

is essentially obtained from FTLx by narrowing down to
singleton (i.e. time points) the end times of the tokens. The
schedule of a token corresponds to one of the valued inter-
vals it represents which is obtained by choosing an exact end
point in the allowed interval without changing its duration
bounds. In this regards, a scheduled timeline is a sequence
of scheduled tokens that satisfy their duration bounds.

Flexible plans The main component of a flexible plan is a
set of timelines representing different sets of scheduled ones.
It may be the case that not every scheduled timelines satisfy
the synchronization rules of the domain. In order to guar-
antee that every set of scheduled timelines represented by a
given flexible plan π (i.e. the different ways of executing π)
is valid with respect to the underlying planning domain, the
plan has to be equipped with additional information about
the temporal relations that have to hold in order to satisfy
the synchronization rules of the domain. Namely, the rep-
resentation of a flexible plan must also include information
about the relations that must hold between tokens in order to
satisfy the synchronization rules of the planning domain.

In general, a flexible plan includes a set of temporal con-
straints (R) on tokens π = (FTL,R). When there are dif-
ferent ways to satisfy a synchronization rule by the same
set FTL of flexible timelines, there are also different (valid)
flexible plans with the same set of timelines FTL; each of
them represents a different way to satisfy synchronizations.

framework EPSL. In particular we aim at characterizing qualities of plans generated us-
ing different planner configurations. It is also interesting to evaluate relations among
the defined metrics as, in some cases, metrics may be in contrast. This means that it is
not possible to obtain a plan with the maximum level of all desired qualities but that the
planner must be carefully configured in order to obtain the desired balance among all
desired qualities

4 Extensible Planning and Scheduling Library

EPSL [12] is a layered framework built on top of APSI-TRF1 [7]. It aims at defining a
flexible software environment for supporting the design and development of timeline-
based applications. The key point of EPSL flexibility is its interpretation of a planner as
a “modular” solver which combines together several elements to carry out its solving
process.

Modeling)Layer).)APSI.TRF)

EPSL)framework)

Engine) Heuris>cs)Search)

Applica>on)

Microkernel)

Fig. 1. EPSL Architectural Overview

Figure 1 describes the main architectural elements of the architecture of EPSL. The
Modeling layer provides EPSL with timeline-based representation capabilities to model
a planning domain in terms of timelines, state variables, synchronizations and manage
flexible plans. The Microkernel layer is the key element which provides the framework
with the needed flexibility to “dynamically” integrate new elements into the framework.
It is responsible to manage the lifecycle of the solving process and the elements com-
posing the application instances (i.e. the planners). The Search layer and the Heuristics
layer are the elements responsible for managing strategies and heuristics that can be
used during the solving process.

1 APSI-TRF is a software framework developed for the European Space Agency by the Planning
and Scheduling Technology Laboratory at CNR (in Rome, Italy).

Figure 1: EPSL architecture

The Extensible Planning and Scheduling
Library

Timeline-based applications, typically, are strictly related to
the specific domain they have been designed for. It is hard
to exploit ”past experience” in order to adapt already devel-
oped applications to different context with different features.
Thus, it is usually start developing new applications from
scratch.

In this regard, the EPSL (the Extensible Planning
and Scheduling Library) (Umbrico, Orlandini, and
Cialdea Mayer 2015) is a layered software framework (built
on top of APSI-TRF (Cesta and Fratini 2008)) which aims
at defining a flexible software environment for supporting
the design and development of timeline-based applications.
The key point of EPSL is its interpretation of a planner as a
modular solver which combines together several elements
to carry out its solving process.

Figure 1 shows the main architectural elements of the
EPSL architecture. In particular, the Engine Layer is the ar-
chitectural element responsible for managing the portfolio
of algorithms (called resolves) a planner can use to actually
solve timeline-based problems. The higher is the number of
available resolver the higher is the solving capability of the
framework. Indeed, the solving process of an EPSL-based
planner consists of a plan refinement procedure which iter-
atively refines the plan by solving ”undesired” conditions,
called flaws. A flaw represents a particular condition which
threats the completion or the consistency of the current plan
(e.g. a planning goal). Every resolver is responsible for
detecting and solving a particular type of flaw. The set of
available resolvers determines what an EPSL-based planner
can actually do to solve a problem. Similarly, the Heuristic
Layer is the architectural element responsible for managing
the set of available criteria an EPSL-based planner can use
to select flaws when solving.

Thus, the EPSL solving approach can be ”easily” adapted
to the particular problem to address by changing the set of
resolvers and heuristics the planner can use (i.e. the planner
configuration). As a matter of fact, the particular strategy
or heuristics applied can strongly affect the behavior and the
performance of a planner.

Knowledge-Based Control Loop
The KBCL is a knowledge-based control module developed
within the GECKO project I have collaborated to during my
PhD. The reader may refer to several works (Stefano et al.
to appear; Borgo et al. 2015; 2014a; Carpanzano et al. 2015;
Borgo et al. 2014b) for a detailed description of the approach
and the specific application context.

The key direction of the GECKO project has been to en-
dow the control architecture of an agent with a knowledge
reasoning mechanism capable of representing the actual ca-
pabilities of the related agent. Thus we made a tight integra-
tion between knowledge representation techniques with and
timeline-based planning by exploiting the EPSL framework.

In general, a plan-based controller can endow an agent
with the deliberative capabilities needed to autonomously
perform complex tasks. In particular contexts like the RTS
(Reconfigurable Transportation System) of the manufac-
turing case study we have considered within the GECKO
project, the dynamic nature of the system we want to control
does not guarantee a continuous control process capable to
face all the particular situations/configurations.

Indeed, the specific capabilities of a Transportation Mod-
ule (TM) of the RTS can be affected by many factors, e.g.
a partial failure of the internal elements or a reconfiguration
of an RTS plant (see cited works for further details). Thus
it is not always possible to to design a plan-based controller
which is able to efficiently handle all these situations. The
higher is the complexity of the planning domain the higher
is the time needed to synthesize the plans.

Our proposed solution was to ”extend” the control loop of
an agent with a knowledge-reasoning mechanism capable of
representing its actual capabilities. In this way, it is possi-
ble to simplify the planning model specification by consid-
ering only the actual capabilities of the agent (e.g. a TM of
the RTS) to control. In particular, the knowledge reasoning
mechanism allows to realize a continuous control process by
dynamically synthesizing the timeline-based planning mod-
del every time a change in the capabilities of the agent (i.e.
the TM) occurs.

Delibera(ve	 Controller	

2. MODEL GEN.

Mechatronic	 Module/Controller	

Diagnosis	 Module	

Planning	 Framework	

Planner	

Planning	
Problem	 Planning	

Domain	

3. PLAN

Execu6ve	 System	

1. SETUP 5. RECONF

4. EXEC

Knowledge	 Manager	

Ru
le
-‐b
as
ed

	 	
In
fe
re
nc
e	
En

gi
ne

	

Rules	

Knowledge	 Base	

Contexts Taxonomy of
Function

Figure 2: The KBCL module architecture

Figure 2 shows the extended control loop which results

from the integration of two ”big boxes”. The Knowledge
Manager which contains the knowledge about the agent to
control, and the Deliberative Controller which represents
the ”classical” plan-based control architecture where EPSL
is integrated in an execution environment for the synthesis
and execution of timeline-based plans.

The ontological approach The Knowledge Manager of
Figure 2 relies on a suited ontology which captures the gen-
eral knowledge of the manufacturing environment. The on-
tology contains (i) a context-based classification of the infor-
mation about the agent and production environment, and (ii)
a taxonomy of function which classifies the set of functions a
generic agent can perform in a manufacturing environment.

The Knowledge Manager exploits the ontology to build
and manage the Knowledge Base (KB) of the specific agent
(i.e. TM) to control. In particular the context-based ap-
proach classifies information according to three contexts that
characterize the agent from three different point of views.
The internal context characterizes the internal structure of
the agent and its components. The local context character-
izes environment in terms of other agents or elements of the
production environment the agent must interact with. The
global context contains information of interest for all the
agent composing the shop floor, e.g. the type of product
to work or information about the performance of the factory.

The KBCL in action The management of the KB, the gen-
eration of the planning domain and the continous monitor-
ing of the information concerning the actual status of the
agent (and its environment) are complex activities that must
be properly managed by the KBCL process at runtime. In
this regard the KBCL is composed by the following phases
(depicted in Figure 2: (i) the setup phase; (ii) the model gen-
eration phase; (iii) the plan and execution phase; (iv) the
reconfiguration phase.

Broadly speaking, the setup phase generates the KB of
the agent by processing the raw data received by the agent
(a TM in the GECKO project) through the Diagnosis Mod-
ule of Figure 2. The resulting KB completely describes the
agent to control in terms of its structure, its capabilities and
the related production environment. The model generation
phase exploits the KB of the agent to automatically generate
the timeline-based planning domain needed by the Deliber-
ative Controller to actually control the device.

When the planning model has been generated the plan and
execution phase starts. The KBCL process behaves like a
classical plan-based controller during this phase. However,
whenever a structural changes occurs in the agent or its en-
vironment e.g. a failure of an internal component or a fail-
ure of a collaboratore of the shop floor, the reconfiguration
phase starts. The reconfiguration phase determines a new
iteration of the KBCL cycle and a new version of the KB
and a new version of the timeline-based planning model are
generated.

A Hierarchy-based Modeling Appraoch
When applying timeline-based approach usually, we must
control an ”artificial agent” able to perform some complex
tasks in a specific working environment e.g. a TM of the
GECKO project. In order to provide a suited timeline-based
model it is necessary to capture all the features, the opera-
tional and temporal constraints that characterize a specific
domain. In this regards, exploiting the context-base analysis
described in the previous section to characterize the knowl-
edge about the functional capabilities of an agent, the mod-
eling approach we propose, follows a functional decomposi-
tion of the domain by identifying three relevant types of state
variables. They are (i) the functional variables, (ii) primitive
variables and (iii) external variables (see (Umbrico, Orlan-
dini, and Cialdea Mayer 2015) for further details).

A functional variable provides a logical representation of
the agent in terms of the high-level task the agent can per-
form, notwithstanding its internal composition. A primi-
tive variable models a specific physical/logical component
of the system. Values of such a variable correspond to con-
crete state/actions the related element is actually able to as-
sume/perform over time. Finally, an external variable pro-
vides a logical view of an element whose behavior is not un-
der the control of the system but affect the execution of its
functionalities. Such a variable models conditions that must
hold in order to successfully perform internal activities.

Synchronization rules specify constraints between differ-
ent variables of the planning domain. These rules allow to
further constrain the behaviors of the domain state variables
in order to safely realize complex tasks. In this regard, given
the described modeling approach, synchronization rules can
be used to specify how the high-level functionalities (i.e. the
values of the functional state variables) are implemented by
the agent. A synchronization rule specifies the set of primi-
tive and/or external values and the needed temporal relations
that allow the agent to successfully perform the related high-
level function (i.e. the functional value the synchronization
applies to).

IdleTM-Channel

Channel
F-L

Channel
F-LChannel

F-R

Channel
Cross1-B

Conveyor-1

Idle

Channel
F-Cross1

Channel
Down-Up

Cross1

Idle

Channel
Up-Down

Channel
Up-R

Conveyor-2

Idle

Channel
Up-L

contains

contains

before

contains

before

Available

Neighbor-F

Not
Available

during

Available

Neighbor-L

Not
Available

during

FUNCTIONAL VARIABLES

PRIMITIVE VARIABLES

EXTERNAL VARIABLES

Figure 3: A planning domain example

Figure 3 shows an example of a planning domain obtained
by applying the modeling approach described to a Trans-
portation Module (TM) of the manufacturing plant in the

GECKO project. The functional state variable TM-Channel
models the transportation tasks the module is able to per-
form (e.g. Channel-F-B, Channel-R-L). The primitive state
variables model the internal component of the TM in terms
of the operations they can perform (e.g. a conveyor of the
module is able to move a pallet between two internal posi-
tion of the module). The external state variables model the
status of other agents (i.e. other TMs) of the plant the TM
must cooperate with.

Finally the read arrows of Figure 3 models constraints
among values of the state variables that must be satisfied
to perform the tasks. Specifically, the constraints describe
the way the TM can implement the possible transportation
tasks. E.g. the TM performs a ”Channel-F-R” by moving
the pallet from position ”F” to position ”Cross1” by means
of ”Conveyor-1”. Then the ”Cross1” moves the pallet from
position ”down” to position ”up”. Finally, the ”Conveyor-2”
moves the pallet from position ”up” to position ”L”.

A domain-independent heuristic It is possible to observe
that a synchronization rule basically, represent a dependency
between two or more variables and their timelines. Thus,
given a timeline A and a timeline B, a synchronization rule
SA,B from a token x ∈ A to a token y ∈ B implies a depen-
dency between these timelines. Namely, tokens on timeline
B are subject to tokens on timeline A.

the hierarchy level of B. If no path in the DG connects B to A, then A is at a higher
level in the hierarchy than B (i.e. timeline A is more independent than timeline B).
Conversely if A is connected to B and vice-versa in the DG (i.e. a cycle is detected) then
timelines A and B have the same hierarchical level, and they are said to be hierarchically
equivalent. For instance the hierarchy extracted from the DG in Figure 2 is A � C �
B � D.

Usually planning domain specifications that follow a hierarchical modeling ap-
proach (like the approach described in [11]), generate a non-flat hierarchy of timelines
(and sometimes even an acyclic DG).

A"

B"

C"

D"

SA,B"SA,C"

SC,B" SB,D"

SC,D"

SB,D

A

B

C

D

SA,B'

SA,C'

SC,B'

SC,D'

(a) (b)

Fig. 2. From Synchronization rules to Dependecy Graph: (a) domain timelines and synchroniza-
tion rules; (b) the dependency graph resulting from synchronization rules between timelines

The HFS exploits this hierarchy to define a flaw hierarchy feature and characterize
the independency degree of plan flaws. The idea is to solve first “independent” flaws,
i.e. flaws belonging to the top most timeline in the hierarchy (e.g. flaws on timeline A
w.r.t. Figure 2), in order to simplify the resolution of “dependent” flaws. In addition to
the hierarchy feature, HFS uses a flaw type feature to define a structure for the solving
process and the flaw degree feature to characterize the criticality of a flaw (similarly to
the fail first principle in constraint satisfaction problems).

The HFS selects the best flaw to solve next by combining together all the features
described above as a pipeline of filters:

�0(⇡)
fh�! �1(⇡)

ft�! �2(⇡)
fd�! �3(⇡) ! �⇤ 2 �3(⇡)

where fh filters plan flaws according to the flaw hierarchy feature (i.e. it returns
only the subset of flaws belonging to the most independent timeline of the hierarchy),
ft filters flaws according to the flaw type feature and fd filters flaws according to the
flaw degree feature. Then, given a set of flaws of a plan �0(⇡) every filter extracts
the subset of the relevant flaws according to the related feature. The pipeline resulting
set �3(⇡) ✓ �0(⇡) is composed by flaws representing equivalent choices from the
heuristic point of view, so HFS randomly select the “best” one to solve next �⇤ 2 �3(⇡).

Dependency Graph

hierarchy: A < C < B < D

Figure 4: Extracting hierarchy from synchronizations

Given this assumption, it is possible to build a dependency
graph (DG) among timelines by analyzing synchronization
rules. Figure 4 shows a set of timelines with synchroniza-
tion rules and the resulting dependency graph. The nodes of
the graph represent timelines (or state variables) and edges
represent dependecies between them (i.e. at least a synchro-
nization rule between tokens of the related timelines exists).

Given the DG, it is possible to extract the hierarchy of
the domain. An edge from a node A to a node B in the DG
represents a dependency between timeline A and timeline B.
Consequently, the hierarchy level of timeline A is not lower
than the hierarchy level of timeline B. If not path in the DG
connectsB toA (i.e. no cycle is detected) then the hierarchy
level of A is higher than the hierarchy level of B. Thus if
the DG contains a cycle among two or more nodes then the
related timelines have the same hierarchy level and they are
said to be hierarchically equivalent.

In this regard, the heuristic we have defined exploits hier-
archy information to assign ”priority” to the flaws detected

during the solving process. The work (Umbrico, Orlan-
dini, and Cialdea Mayer 2015) shows some promising re-
sults concerning the application of this heuristic to improve
the solving capabilities of EPSL-based planners. In partic-
ular, the heuristic can be represented as a pipeline of filters
that extract the most promising flaws to solve first as follows:

Φ0(π)
fh−→ Φ1(π)

ft−→ Φ2(π)
fd−→ Φ3(π)→ φ∗ ∈ Φ3(π)

Given a partial plan π with an initial set of flaws Φ0(π),
each filter f of the pipeline extract the subset of flaws to
solve according to a particular criteria. The first filter fh ap-
plies the hierarchy by selecting the flaws that belong to the
most independent timelines (i.e. the timeline with the high-
est hierarchy level). The flaws composing the last set rep-
resent equivalent choices from the hierarchy point of view.
Thus the planner can randomly selects one of these flaws to
solve φ∗ ∈ Φ3(π).

Ongoing Works
Currently we are making a comparison of EPSL framework
with EUROPA which is one of the most known timeline-
based planning framework in the literature. In particular our
comparison aims at taking into account different aspects of
the planning frameworks and not only their performances.
Namely, our goal is to make a deep analysis of thedifferent
approaches to timeline-based planning by considering their
modeling capabilities, their expressiveness and their solving
capabilities, in order to create a shared understanding of the
meaning of both timelines and timeline-based plans.

In particular, we are taking into account two real world
scenarios by defining the ROVER and the NEPTUS planning
domains. Indeed, the selected domains represent two inter-
esting real-world applications that are particularly relevant
from the point of view of a plan-based control system. The
core of both problems is to model and control a complex
system which is able to perform some operations in a spe-
cific environment. The plan-based controller must provide
the agent with the deliberative capabilities to autonomously
synthesize and schedule the sequences of activities needed
to perform high-level tasks.

The ROVER planning domain has been extracted from the
scenario described on the EUROPA’s web site concerning an
autonomous exploration rover. This scenario represents a
typical and well known application context in AI. It is rel-
evant because it represents a classical single agent control
scenario concerning the capability to provide a robotic de-
vice with autonomy in order to perform some complex tasks.

Similarly, the NEPTUS planning domain has been ex-
tracted from a real-world application senario, described in
(Chrpa et al. 2015), where a number of AUVs must gather
data about some known underwater phenomena. The prob-
lem of controlling an AUV may seem similar to the problem
of controlling an autonomous exploration rover. However
we have selected this domain for the coordination aspect in-
volved. Indeed, in this context, the point is not just to control
a single agent, but to safely coordinate several agents (i.e.
the AUVs) in order to perform the tasks.

Initial results show relevant difference concerning their
modeling approaches w.r.t. the structure of a timeline-based

planning domain, the type of elements the frameworks can
model and the way a user must specify constraints to ob-
tain the desired behavior of the system. Moreover there are
also relevant differences concerning their interpretation of
timeline-based plans and planning solutions.

Moreover I’m currently extending the EPSL planning
framework by introducing the capabilities of modeling and
reasoning about the temporal uncertainty of a planning do-
main. Thus, following the proposed formalization the plan-
ning framework must be able to model activities whose ac-
tual duration cannot be decided by the planner.

References
Barreiro, J.; Boyce, M.; Do, M.; Frank, J.; Iatauro, M.;
Kichkaylo, T.; Morris, P.; Ong, J.; Remolina, E.; Smith, T.;
and Smith, D. 2012. EUROPA: A Platform for AI Planning,
Scheduling, Constraint Programming, and Optimization. In
ICKEPS 2012: the 4th Int. Competition on Knowledge En-
gineering for Planning and Scheduling.
Borgo, S.; Cesta, A.; Orlandini, A.; Rasconi, R.; Suri-
ano, M.; and Umbrico, A. 2014a. Towards a cooperative
knowledge-based control architecture for a reconfigurable
manufacturing plant. In 19th IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA
2014). IEEE.
Borgo, S.; Cesta, A.; Orlandini, A.; Rasconi, R.; Suriano,
M.; and Umbrico, A. 2014b. A cooperative model-based
control agent for a reconfigurable manufacturing plant. In
ICAPS-14, PlanRob - The 2nd ICAPS Workshop on Plan-
ning and Robotics.
Borgo, S.; Cesta, A.; Orlandini, A.; and Umbrico, A. 2015.
An ontology-based domain representation for plan-based
controllers in a reconfigurable manufacturing system. In The
Twenty-Eighth International Flairs Conference.
Carpanzano, E.; Cesta, A.; Orlandini, A.; Rasconi, R.; Suri-
ano, M.; Umbrico, A.; and Valente, A. 2015. Design and
implementation of a distributed part-routing algorithm for
reconfigurable transportation systems. International Jour-
nal of Computer Integrated Manufacturing 1–18.
Cesta, A., and Fratini, S. 2008. The Timeline Representa-
tion Framework as a Planning and Scheduling Software De-
velopment Environment. In PlanSIG-08. Proc. of the 27th
Workshop of the UK Planning and Scheduling Special Inter-
est Group, Edinburgh, UK, December 11-12.
Cesta, A.; Cortellessa, G.; Fratini, S.; and Oddi, A. 2009.
Developing an End-to-End Planning Application from a
Timeline Representation Framework. In IAAI-09. Proc.
of the 21st Innovative Application of Artificial Intelligence
Conference, Pasadena, CA, USA.
Chien, S.; Tran, D.; Rabideau, G.; Schaffer, S.; Mandl,
D.; and Frye, S. 2010. Timeline-Based Space Operations
Scheduling with External Constraints. In ICAPS-10. Proc.
of the 20th Int. Conf. on Automated Planning and Schedul-
ing.
Chrpa, L.; Pinto, J.; Ribeiro, M. A.; Py, F.; Sousa, J.; and
Rajan, K. 2015. On mixed-initiative planning and control for
autonomous underwater vehicles. In Intelligent Robots and

Systems (IROS), 2015 IEEE/RSJ International Conference
on, 1685–1690.
Cialdea Mayer, M.; Orlandini, A.; and Umbrico, A. 2014.
A formal account of planning with flexible timelines. In The
21st International Symposium on Temporal Representation
and Reasoning (TIME), 37–46. IEEE.
Cialdea Mayer, M.; Orlandini, A.; and Umbrico, A. 2015.
Planning and execution with flexible timelines: a formal ac-
count. Acta Informatica 1–32.
Laborie, P., and Ghallab, M. 1995. Ixtet: an integrated
approach for plan generation and scheduling. In Emerg-
ing Technologies and Factory Automation, 1995. ETFA ’95,
Proceedings., 1995 INRIA/IEEE Symposium on, volume 1,
485–495 vol.1.
Muscettola, N. 1994. HSTS: Integrating Planning and
Scheduling. In Zweben, M. and Fox, M.S., ed., Intelligent
Scheduling. Morgan Kauffmann.
Stefano, B.; Amedeo, C.; Andrea, O.; and Alessandro, U. to
appear. A planning-based architecture for a reconfigurable
manufacturing system. In The 26th International Confer-
ence on Automated Planning and Scheduling.
Umbrico, A.; Orlandini, A.; and Cialdea Mayer, M.
2015. Enriching a temporal planner with resources and a
hierarchy-based heuristic. In AI*IA 2015, Advances in Ar-
tificial Intelligence. Springer International Publishing. 410–
423.

