
Critical Constrained Planning and an Application to Network Penetration Testing

Marcel Steinmetz
Saarland University

Saarbrücken, Germany
{steinmetz}@cs.uni-saarland.de

Abstract

Critical constrained planning is a very interesting, though also
very under explored class of classical, as well as probabilis-
tic, planning. In a broad view, constraints allow to limit the
space of solutions to solutions that satisfy certain kinds of
conditions. In this work, we are going to develop techniques
that are in particular suited to solve critical constrained plan-
ning instances. Automated, and semi automated network pen-
etration testing has gotten a rise in attention in the previous
decade due to the growing size of todays networks: it is not
possible anymore to manually check reasonably sized net-
works for security threats. Planning overall, and in particu-
lar critical constrained planning appears to be a very fruitful
direction in this area, although many of the previous works
lack of either an accurate representation of the problem, or
they lack of scalability. In this work, we will continue on
Hoffmann’s (2015) taxonomy model, and we will identify
tractable fragments of, and we will develop efficient methods
to solving the variant classes of network penetration testing.

Introduction
Critical constrained planning problems impose additional
hard requirements on the solutions of the problem. We will
in particular focus on resource constrained planning prob-
lems (Nakhost et al. 2012), so problems that contain some
sorts of consumable resources (time, money, . . .) that can-
not, or only sparsely, be refilled. Although there are many
works that consider problems facing resource consumption
(e. g., (Koehler 1998), (Haslum and Geffner 2001)), only a
very few consider the case of a limited resources that keeps
decreasing as the system progresses (e. g., (Nakhost et al.
2012), (Hoffmann et al. 2007), (Gerevini et al. 2008)). Re-
source constrained planning problems model a bunch of in-
teresting real world applications. For instance, when mod-
eling time as resource, then typically this resource cannot
be reset. Other examples are a fixed money budget, or space
agents with disconnected (or inactive) power supply. Even
though resource constrained planning problems are only a
subclass of general resource planning problems, they of-
fer many challenges that make resource constrained plan-
ning on its own very interesting. In general, due to the non-
increasing structure of the resource, the planner has to plan

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

far ahead in order to not run out of resources before reach-
ing the goal. Nakhost et al. have shown that with growing
resource constrainedness, current state of the art methods
are getting more and more trouble solving these problems
(Nakhost et al. 2012). Our work will be focusing around
the following observation: a typical phenomenon in resource
constrained planning problems is the high density of dead
end states – as the search progresses, more and more so-
lutions are ruled out. Thus, dead end detection will be an
important key to solve these kinds of problems efficiently.

On the other hand, automated network penetration test-
ing (Arce and McGraw 2004), an apriori completely unre-
lated area to critical constrained planning, will constitute
the second major part of our work. Due to the growing size
of today’s networks, it is getting harder (and in medium to
large company networks even impossible) to identify secu-
rity threats by hand. Rather, companies are using automated,
and semi automated tools to analyse vulnerabilities of their
networks. Using planning to simulate attacks to networks
is a very promising future direction in (semi-) automated
network security testing. A company called CoreSecurity
(http://www.coresecurity.com/) is already commercially us-
ing a planner inside one of their tools to generate possible
attack plans that are provided to an human security officer
to guide the attention to particular, possible security threat-
ening, regions of the network (Lucangeli et al. 2010). One
problem of this approach is that it requires a global and exact
model of the network, including all the network host config-
urations. In practice, this is clearly impossible to get and to
maintain. Ideally, the model should start with minimal pos-
sible knowledge about the network and host configurations.
This idea was followed by Sarraute et al. in their design of
network penetration testing as solving POMDPs (Sarraute et
al. 2011; Sarraute et al. 2012). Unfortunately, solving such
POMDP models is only feasible for a very small number of
hosts (Sarraute et al. 2012), and thus does not scale to real
world networks. In this work we will continue with Hoff-
mann’s work on finding feasible, yet realistic models of pen-
etration testing (Hoffmann 2015). One very typical aspect of
probabilistic models of penetration testing is that the proba-
bility of reaching a goal state will be low. In other words, the
probability of reaching dead ends will be very high. So, dead
end detection will play an important role to solve penetration
testing problems efficiently, as well.

Learning to Recognize Dead Ends
Current state of the art heuristic search based planning ap-
proaches do not really consider the problem of dead end de-
tection specifically. Rather, they make use of the artifact that
when using a safe heuristic function h, whenever h(s) = ∞,
then s is a dead end. If a state s is identified as dead end, it
is not further considered in search (we say that s is pruned).
Recently, a few works have been published on the topic of
detecting planning problem unsolvability (e. g., (Bäckström
et al. 2013; Hoffmann et al. 2014)). Although these tech-
niques are designed to prove the unsolvability of a planning
task, they still can be used in solvable problems: we can use
them in order to identify dead ends during the search. This
can lead to a significant performance advantage in problems
where the number of dead ends abound (Steinmetz and Hoff-
mann 2016). However, these unsolvability heuristics are typ-
ically computed in a preprocessing step. In our work we will
follow a completely different direction. Instead of comput-
ing a data structure detecting dead ends before the search,
we make use of the information becoming available during
the search in order to constantly refine our dead end identi-
fier, and thus detecting more dead ends.

Observe that the search itself gives proofs of dead ends
while exploring the state space (Steinmetz and Hoffmann
2016). Whenever a state s is encountered in an open, closed
list search so that each state of the search space that can be
reached through s, and s itself are closed, then we know
that s must be a dead end. Given this information and ad-
ditionally u(s) < ∞, for an unsolvability heuristic u, we
can refine u so that s becomes recognized under u (provided
that there is a refinement algorithm for u that supports this).
After this refinement, u might generalize to other, not yet
seen, dead ends as well. For u = hC (Keyder et al. 2014;
Hoffmann and Fickert 2015), this generalization happened
in a large scale in the three available resource constrained
benchmark domains (NoMystery, Rovers, and TPP) (Stein-
metz and Hoffmann 2016). In those experiments, the search
space reduction is tremendous. The geometric mean is
around two orders of magnitude, and the reduction goes even
up to 5 orders of magnitude. However, as the size of the
set of atomic conjunctions C is continuously growing, the
computation of hC is getting computationally more com-
plex the more dead ends are being learned. To really benefit
from the search space reduction, one has to reduce the num-
ber of calls to hC . To prefilter the calls to hC , we extract a
clause φ so that for all t with t 6|= φ it is hC(t) = ∞, af-
ter each time when we have evaluated hC on a state s and
hC(s) = ∞. Inspired by SixthSense (Kolobov et al. 2012),
we compute φ based on greedily minimizing φ = ¬s while
keeping hC(s) = ∞. This already works pretty well, up to
98% (in the geometric mean) of the dead ends recognized
by hC could be filtered through these conjunctions.

In future work, we have to address open questions in three
different parts of the approach: (1) search algorithm, (2)
hC dead end detection, and (3) finding other unsolvability
heuristics u that can be used in the framework. (1) Our cur-
rent experiments have shown that only very few dead ends
are learned when running optimal search (A∗ (Hart et al.
1968)) instead of a depth first exploration of the state space.

The intuitive reason is that the farer the distance to the ini-
tial state, the higher is the chance of finding dead ends, and
thus the more can we learn. In contrast, in A∗, the explo-
ration is biased towards the initial state, meaning that fewer
dead ends become known, and thus we can learn less. This
brings up the question, how can we learn more dead ends
while preserving the optimality of the search? One possi-
bly promising direction might be to use IDA∗(Korf 1985)
instead. What about an anytime search algorithm, such as
heuristic depth first search (Bonet and Geffner 2006)?

In (2), we distinguish between (a) the hC heuristic itself,
and (b) learning clauses based on hC . Because hC is getting
so expensive to compute in the long term (learning many
dead ends), there might be room for improvements in the
conjunction selection algorithm. Choosing different sets of
conjunctions during the refinement has a direct effect on the
detection of previously unrecognized dead ends. In our cur-
rent implementation, we try to greedily minimize the size of
each single conjunction that is selected during refinement.
Can we choose the set of conjunctions differently so that the
number of selected conjunctions becomes smaller than be-
fore while recognizing at least as many dead ends? Or does
it even make sense to construct larger sets of conjunctions C,
e. g.because the |C| by number of detected dead ends ratio
becomes smaller? A way towards answering these questions
is to identify the value of a conjunction, i. e., in how many
detected dead ends s does the conjunction play a role in ob-
taining hC(s) = ∞. But how do we find the value of a con-
junction efficiently? Another idea, borrowed from the SAT
community (Goldberg and Novikov 2002), do we actually
need all conjunctions ever added to the set of atomic con-
junctions C? Or can we forget some of the conjunctions after
a while? Another issue of our current refinement algorithm
is that it only allows to refine the set of atomic conjunctions
on states s if all of their successor states are already recog-
nized. This in particular makes it hard to use hC learning
additional to other dead end identifiers.

Regarding (2b), recall that the clauses are checked be-
fore hC is evaluated, and hC is only evaluated if non of
the clauses matched. As previously mentioned, actually al-
most all dead ends are identified through the clauses, i. e.,
hC is barely evaluated on dead ends. So, why evaluating hC

at all? It turns out that when just using clauses to identify
dead ends, one performs significantly worse than when ad-
ditionally evaluating hC . The reason for this is simple: by al-
ways skipping the evaluation of hC , we do not learn enough
clauses to cover all the recognized dead ends. Can we select
when to evaluate hC , or when to stop evaluating hC? Or is it
even possible to learn multiple clauses at once that cover all
recognized dead ends, and thus getting rid of the evaluation
of hC completely?

(3) Our current results are all based on hC . However, there
might be also other heuristic functions that allow a refine-
ment during search and which might perform equally well,
or even better.

Last but not least, can we generalize this approach to a less
strict definition of dead ends: can we learn to identify states
whose only (possible) solution is via one of its ancestors?

Network Penetration Testing
We will be investigating the different classes of Hoffmann’s
taxonomy models (Hoffmann 2015), and we will design ef-
ficient methods to solve them. In short, the planning model
simulates an attacker whose goal is to get access to sensitive
parts of the network. We will mainly focus on probabilis-
tic models as these allow to easily encode partial knowledge
about the network, and even allow to express exploits that
are of stochastic nature (e. g., buffer overflow attacks). The
optimization criterion that we are looking at is maximizing
the probability of reaching the goal as the typical question
in network security is how likely it is that an attacker gets
access to sensitive areas of the network. Since finding opti-
mal solutions in MDPs (POMDPs) is notoriously hard, we
will also consider weaker objectives: finding attack policies
that succeed with at least θ probability, or finding policies
whose success probability differs from the optimal policy
by at most δ (Steinmetz et al. 2016).

First experiments show that solving even these highly re-
strictive classes of probabilistic planning models is only fea-
sible for small networks (Steinmetz et al. 2016). Due to
the large number of dead ends, blindly instantiated heuris-
tic search algorithms perform similar to state space exhaus-
tive methods (VI) – as opposed to other domains where
blindly initialized heuristic search algorithms generally per-
form much stronger than VI.

Unfortunately, we cannot make use of admissible heuris-
tic functions simply because none exist. Thus, finding ad-
missible heuristic functions for goal probability is one of
our main research questions. The common approach to find
admissible heuristic functions is to identify tractable frag-
ments, i. e., fragments that allow to compute the exact goal
probability in polynomial time.

Besides finding heuristic functions, we can improve the
efficiency of heuristic search algorithms (as well as VI)
through several state space reduction techniques. Such tech-
niques have already been used successfully in classical plan-
ning (Pochter et al. 2011; Hall et al. 2013; Wehrle and
Helmert 2012). In particular partial order reduction seems
to be a very promising direction in network penetration test-
ing: usually the search can select the next host to attack out
of a large set of network hosts. However, the order in which
they are attacked does not matter with respect to the proba-
bility of reaching a goal state – though, the search will still
enumerate all possible permutations (an artifact of the apply-
once constraint).

Finally, budget constrained network penetration testing is
an interesting problem, both, from a practical as well as the-
oretical view point. It is relevant to network penetration test-
ing in practice because one does not always want to con-
sider all attack policies, but rather only those that can be ex-
ecuted in for example a reasonable amount of time, respec-
tively by using a reasonable amount of money. This problem
leads us again to the first question: how to learn to recognize
dead ends during search? However, now, we are no longer
considering search in a deterministic state space, but rather
search in a probabilistic state space. So, can we general-
ize the methods developed for critical constrained (classical)
planning to probabilistic problems as well?

References
Arce, I.; and McGraw, G. 2004. Why attacking systems is
a good idea. IEEE Computer Society - Security & Privacy
Magazine 2(4)

Bäckström, C.; Jonsson, P.; and Ståhlberg, S. 2013. Fast de-
tection of unsolvable planning instances using local consis-
tency. In Proc. SoCS13.

Bonet, B.; Geffner, H. 2006. Learning Depth-First Search: A
Unified Approach to Heuristic Search in Deterministic and
Non-Deterministic Settings, and Its Application to MDPs.
In Proc. ICAPS’06.

Gerevini, Alfonso E.; Alessandro Saetti; and Ivan Serina.
2008. An approach to efficient planning with numerical flu-
ents and multi-criteria plan quality. Artificial Intelligence
172.8 (2008): 899-944.

Goldberg, E.; and Novikov, Y. 2002. BerkMin: a fast and
robust SAT- solver. In Design, Automation and Testing in
Europe Conference, 142149, March 2002.

Hall, D. L. W.; Cohen, A.; Burkett, D.; Klein, D. 2013.
Faster Optimal Planning with Partial-Order Pruning. In
Proc. ICAPS’13.

Hart, P. E.; Nilsson N. J.; Raphael B. 1968. A formal basis
for the heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics SSC-4(2),
100-107.

Haslum, P.; and Geffner, H. 2001. Heuristic planning with
time and resources. In Proc. ECP01, 121132.

Hoffmann, J.; Kautz, H.; Gomes, C.; and Selman, B. 2007.
SAT encodings of state-space reachability problems in nu-
meric domains. In Proc. IJCAI07, 19181923.

Hoffmann, J.; Kissmann, P.; and Torralba, A. 2014. “Dis-
tance”? Who Cares? Tailoring Merge-and-Shrink Heuristics
to Detect Unsolvability, Proceedings of the 21st European
Conference on Artificial Intelligence (ECAI’14), Prague,
Czech Republic, August 2014.

Hoffmann, J.; and Fickert, M. 2015. Explicit Conjunctions
w/o Compilation: Computing hFF(ΠC) in Polynomial Time.
In Proc. ICAPS’15.

Hoffmann, J. 2015. Simulated Penetration Testing: From
”Dijkstra” to ”Turing Test++”. Invited paper in Proceeding
ICAPS’15.

Nakhost, H.; Hoffmann, J.; Müller, M. 2012. Resource-
Constrained Planning: A Monte Carlo Random Walk Ap-
proach. In Proc. ICAPS’12.

Keyder, E.; Hoffmann, J.; and Haslum, P. 2014. Improv-
ing delete relaxation heuristics through explicitly repre-
sented conjunctions. Journal of Artificial Intelligence Re-
search 50:487533.

Koehler, J. 1998. Planning under resource constraints. In
Proc. ECAI98, 489493.

Kolobov, A.; Mausam; and Weld, D. S. 2012. Discovering
hidden structure in factored MDPs. Artificial Intelligence
189:1947.

Korf, R. E. 1985. Depth-first Iterative-Deepening: An Op-
timal Admissible Tree Search. Artificial Intelligence 27,
97–109.
Lucangeli, J.; Sarraute, C.; and Richarte, G. 2010. Attack
planning in the real world. In Workshop on Intelligent Secu-
rity (SecArt 2010).
Pochter, N.; Zohar, A.; Rosenschein, J. S. 2011. Exploit-
ing Problem Symmetries in State-Based Planners. In Proc.
AAAI’11.
Sarraute, C.; Buffet, O.; and Hoffmann, J. 2011. Penetration
testing == POMDP solving? In SecArt11.
Sarraute, C.; Buffet, O.; and Hoffmann, J. 2012. POMDPs
make better hackers: Accounting for uncertainty in penetra-
tion testing. In AAAI12.
Steinmetz, M.; and Hoffmann, J. 2016. Towards Clause
Learning State Space Search: Learning to Recognize Dead
Ends. In Proc. AAAI’16.
Steinmetz, M.; and Hoffmann, J.; and Buffet, O. 2016. Re-
visiting Goal Probability Analysis in Probabilistic Planning.
In Proc. ICAPS’16.
Wehrle, M.; Helmert, M. 2012. About Partial Order Reduc-
tion in Planning and Computer Aided Verification. In Proc.
ICAPS’12.

