
Constructing Plan Trees for Simulated Penetration Testing

Dorin Shmaryahu
Information Systems Engineering

Ben Gurion University
Israel

Abstract

Penetration Testing (pentesting), where network admin-
istrators automatically attack their own network to iden-
tify and fix their vulnerabilities, has recently received
attention from the AI community. Smart algorithms that
can identify robust and efficient attack plans can imi-
tate human hackers better than simple protocols. Cur-
rent classical planning methods for pentesting model
poorly the real world, where the attacker has only partial
information concerning the network. On the other hand
POMDP-based approaches provide a strong model, but
fail to scale up to reasonable model sizes. In this paper
we offer a more realistic model of the problem, allowing
for partial observability and non-deterministic action ef-
fects, by modeling pentesting as a partially observable
contingent problem. We suggest several optimization
criteria, including worst case, best case, and fault toler-
ance. We experiment with benchmark networks, show-
ing contingent planning to scale up to large networks.

1 Introduction
Penetration testing (pentesting) is a popular technique for
identifying vulnerabilities in networks, by launching con-
trolled attacks (Burns et al. 2007). A successful, or even
a partially successful attack reveals weaknesses in the net-
work, and allows the network administrators to remedy these
weaknesses. Such attacks typically begin at one entrance
point, and advance from one machine to another, through the
network connections. For each attacked machine a series of
known exploits is attempted, based on the machine configu-
ration, until a successful exploit occurs. Then, this machine
is controlled by the attacker, who can launch new attacks on
connected machines. The attack continues until a machine
inside the secure network is controlled, at which point the
attacker can access data stored inside the secured network,
or damage the network.

In automated planning the goal of an agent is to produce
a plan to achieve specific goals, typically minimizing some
performance metric such as overall cost. There are many
variants of single agent automated planning problems, rang-
ing from fully observable, deterministic domains, to par-
tially observable, non-deterministic or stochastic domains.

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Automated planning was previously suggested as a tool for
conducting pentesting, exploring the two extreme cases — a
classical planning approach, where all actions are determin-
istic, and the entire network structure and machine configu-
ration are known, and a POMDP approach, where machine
configuration are unknown, but can be noisily sensed, and
action outcomes are stochastic.

The classical planning approach scales well for large net-
works, and has therefore been used in practice for pen-
testing. However, the simplifying assumptions of complete
knowledge and fully deterministic outcomes results in an
overly optimistic attacker point-of-view. It may well be that
a classical-planning attack has a significantly lower cost than
a real attack, identifying vulnerabilities that are unlikely to
be found and exploited by actual attackers.

The POMDP approach on the other hand, models the
problem better, and can be argued to be a valid representa-
tion of the real world. One can model the prior probabilities
of various configurations for each machine as a probability
distribution over possible states, known as a belief. Pinging
actions, designed to reveal configuration properties of ma-
chines are modeled as sensing actions, and a probability dis-
tribution can be defined for the possible failure in pinging a
machine. The success or failure of attempting an exploit over
a machine can be modeled as a stochastic effect of actions.

This approach, however, has two major weaknesses —
first, POMDP solvers do not scale to the required network
size and possible configurations. Second, a POMDP requires
accurate probability distributions for initial belief, sensing
accuracy, and action outcomes. In pentesting, as in many
other applications, it is unclear how the agent can reliably
obtain these distributions. In particular, how to identify an
accurate probability distribution over the possible OS for
the machines in the network? Prior work (Sarraute et al.)
has devised only a first over-simplifying model of ”software
updates”, which the authors admit themselves is not suitable
and may adversely affect the usefulness of the pentesting
result (”garbage in, garbage out”). One might consider re-
search into obtaining better distributions, e.g. by statistics
from data, but this is wide open, and in any case the scala-
bility weakness remains.

A possible simple approach to defining such probabili-
ties is to use a uniform distribution. However, a solution to a
POMDP defined using a uniform distribution can be arbitrar-

ily bad. Consider, for example, a case where there exists a
large set of configurations that are easy to penetrate, such as
a variety of old, unupdated operating systems. All these con-
figurations may be very rare in the network, yet still exist on
some machines, and are hence represented in the model. As-
suming a uniform distribution over possible configurations,
an attacker may believe that these vulnerable configurations
are as frequent as any other configuration, and may hence at-
tempt a long sequence of exploits which will work only for
these faulty configurations. In such a case, the performance
of the agent measured over the uniform POMDP, may be
arbitrarily far from its performance in practice.

As an intermediate model between classical planning and
POMDPs, MDP models of pentesting have been suggested
(Durkota et al. 2015; Hoffmann 2015). These somewhat
simplify the issue of obtaining the probabilities, now cor-
responding to ”success statistics” for exploits. Yet even this
data is not easy to come by in practice, and scalability may
still be problematic given that solving factored MDPs is no-
toriously hard (a thorough empirical investigation has yet to
be conducted).

In this paper we suggest another, different, intermediate
model between classical planning and POMDPs. We replace
the POMDP definition with partially observable contingent
planning, a qualitative model where probability distributions
are replaced with sets of possible configurations or action
effects (Albore et al. 2009; Muise et al. 2014; Komarnitsky
and Shani 2014). Solvers for this type of models scale better
than POMDP solvers, and can be used for more practical
networks. As these models require no probabilities, we avoid
the guesswork inherent in their specification.

Contingent planners attempt to find a plan tree (or graph),
where nodes are labeled by actions, and edges are labeled by
observations. This plan tree is a solution to the problem if all
leaves represent goal states. In pentesting, one is also inter-
ested in finding better attacks, i.e. in ranking the set of possi-
ble plan trees by some measurable quantity. For example, an
attacker may be interested in attacks that, at the worst case,
take no more than a certain amount of time. An important
research question is, hence, to define possible optimization
criteria for attack plan trees. Then, one must design algo-
rithms dedicated to these optimization criteria.

We focus here on the first question — possible optimiza-
tion criteria for ranking contingent plan trees. We suggest a
number of such criteria, including best and worst case, bud-
get constrained plans, and fault-tolerant planning (Domshlak
2001). We also consider deadends, which arise in pentesting
as some machine configurations cannot be penetrated, leav-
ing no opportunity to the attacker to reach its goal. We dis-
cuss how to define and compare contingent plans under such
unavoidable deadends.

We demonstrate empirically that different heuristics pro-
duce different plan trees, and that these plan trees can
be compared using our optimization criteria, to prefer on
heuristic over another. We leave the construction of optimal
and approximate contingent planners for future research.

2 Networks and Pentesting
We begin by providing a short background on pentesting.

We can model networks as directed graphs whose vertices
are a setM of machines, and edges representing connections
between pairs of m ∈ M . Like previous work in the area,
we assume below that the attacker knows the structure of the
network. But this assumption can be easily removed in our
approach. We can add sensing actions that test the outgoing
edges from a controlled host to identify its immediate neigh-
bors. From an optimization prespective, though, not know-
ing anything about the network structure, makes it difficult
to create smart attacks, and the attacker is forced to blindly
tread into the network. It might well be that some partial in-
formation concerning the network structure is known to the
attacker, while additional information must be sensed. We
leave discussion of interesting forms of partial knowledge to
future work.

Each machine in the network can have a different configu-
ration representing its hardware, operating system, installed
updates and service packs, installed software, and so forth.
The network configuration is the set of all machine configu-
rations in the network.

Machine configuration may be revealed using sensing
techniques. For example, if a certain series of 4 TCP re-
quests are sent at exact time intervals to a target machine,
the responses of the target machine vary between different
versions of Windows (Lyon 2009). In many cases several
different such methods must be combined to identify the op-
erating system. Sending such seemingly innocent requests
to a machine to identify its configuration is known as fin-
gerprinting. Not all the properties of a target machine can
be identified. For example, one may determine that a certain
machine runs Windows XP, but not which security update is
installed.

Many configurations have vulnerabilities that can be ex-
ploited to gain control over the machine, but these vulnera-
bilities vary between configurations. Thus, to control a ma-
chine, one first pings it to identify some configuration prop-
erties, and based on these properties attempts several appro-
priate exploits. As the attacker cannot fully observe the con-
figuration, these exploits may succeed, giving the attacker
full control of the target machine, or fail as some unde-
tectable configuration property made this exploit useless.

The objective of penetration testing (pentesting) is to gain
control over certain machines that possess critical content
in the network. We say that a machine m is controlled if it
has already been hacked into, and the attacker can use it to
fingerprint and attack other machines. A reached machinem
is connected to a controlled machine. All other machines are
not reached. We assume that the attacker starts controlling
the internet, and all machines that are directly connected to
the internet are reached.

We will use the following (small but real-life) situation as
an illustrative example (Sarraute et al.):
Example 2.1. The attacker has already hacked into a ma-
chine m′, and now wishes to attack a reached machine m.
The attacker may try one of two exploits: SA, the “Syman-
tec Rtvscan buffer overflow exploit”; and CAU, the “CA
Unicenter message queuing exploit”. SA targets a particu-
lar version of “Symantec Antivirus”, that usually listens on
port 2967. CAU targets a particular version of “CA Unicen-

ter”, that usually listens on port 6668. Both work only if
a protection mechanism called DEP (“Data Execution Pre-
vention”) is disabled. The attacker cannot directly observe
whether DEP is enabled or not.

If SA fails, then it is likely that CAU will fail as well
because DEP is enabled. Hence, upon observing the result
of the SA exploit, the attacker learns whether DEP is en-
abled. The attacker is then better off trying other exploits
else. Achieving such behavior requires the attack plan to
observe the outcomes of actions, and to react accordingly.
Classical planning which assumes perfect world knowledge
at planning time cannot model such behaviors.

3 Contingent Planning Model and Language
A contingent planning problem is a tuple <
P,Aact, Asense, φI , G >, where P is a set of proposi-
tions, Aact is a set of actuation actions, and Asense is a
set of sensing actions. An actuation action is defined by a
set of preconditions — propositions that must hold prior
to executing the actions, and effects — propositions that
hold after executing the action. Sensing actions also have
preconditions, but instead of effects they reveal the value
of a set of propositions. φI is a propositional formula
describing the set of initially possible states. G ⊂ P is a set
of goal propositions.

In our pentesting application, P contains propositions for
describing machine configuration, such as OS(mi, winxp),
denoting that machine mi runs the OS Windows XP. Sim-
ilarly, SW (mi, IIS) represents the existence of the soft-
ware IIS on machine mi. In addition, the proposition
controlling(mi) denotes that the attacker currently controls
mi, and the proposition hacl(mi,mj , p) denotes that ma-
chine mi is directly connected to machine mj through port
p.

The set Asense in our pentesting model represents the
set of possible queries that one machine can launch on
another, directly connected machine, pinging it for vari-
ous properties, such as its OS, software that runs on it,
and so forth. Each such sensing action requires as pre-
condition only that the machines will be connected, and
reveals the value of a specific property. In some cases
there are certain “groups” of operating systems, such as
Windows XP with varying service packs and updates in-
stalled. In this case we can allow one property for the group
(OS(mi, winxp)) and another property for the version, such
as (OSV ersion(mi, winxpsp1)) which may not be observ-
able by the attacker.

The set Aact in our pentesting model contains all the
possible exploits. We create an action ae,msource,mtarget

for each exploit e and a pair of directly connected ma-
chines msource, mtarget. If an exploit e is applicable only to
machines running Windows XP, then OS(mtarget, winxp)
would appear in the preconditions. Another precondition is
controlling(msource) denoting that the attacker must con-
trol msource before launching attacks from it. The effect of
the action can be controlling(mtarget), but we further al-
low the effect to depend on some hidden property p that
cannot be sensed. This is modeled by a conditional effect
〈p, controlling(mtarget)〉 denoting that if property p exists

on mtarget than following the action the attacker controls
mtarget.

Belief states in contingent planning are sets of pos-
sible states, and can often be compactly represented
by logic formulas. The initial belief formula φI rep-
resents the knowledge of the attacker over the pos-
sible configurations of each machine. For example
oneof(OS(mi, winxp), OS(mi, winnt4), OS(mi, win7))
states that the possible operating systems for machine mi

are Windows XP, Windows NT4, and Windows 7.
Like Sarraute et al., we assume no non-determinism, i.e.,

if all properties of a configuration are known, then we can
predict deterministically whether an exploit will succeed.
We do allow for non-observable properties, such as the ser-
vice pack installed for the specific operating system. We sup-
port actions for sensing whether an exploit has succeeded.
Hence, observing the result of an exploit action reveals in-
formation concerning these hidden properties.
Example 3.1. We illustrate the above ideas using a very
small example, written in a PDDL-like language for describ-
ing contingent problems (Albore et al. 2009).

We use propositions to describe the various properties of
the machines and the network. For example, the predicate
(hacl ?m1 ?m2) specifies whether machinem1 is connected
to machine m2, and the predicate (HostOS ?m ?o) specifies
whether machinem runs OS o. While in this simple example
we observe the specific OS, we could separate OS type and
edition (say, Windows NT4 is the type, while Server or En-
terprise is the edition). We can then allow different sensing
actions for type and edition, or allow only sensing of type
while edition cannot be directly sensed.

We define actions for pinging certain properties. For ex-
ample, the ping-os action:

(: a c t i o n ping−os
: p a r a m e t e r s (? s − h o s t ? t − h o s t ? o − os)
: p r e c o n d i t i o n (and (h a c l ? s ? t)

(c o n t r o l l i n g ? s r c)
(n o t (c o n t r o l l i n g ? t a r g e t))

: o b s e r v e (HostOS ? t a r g e t ? o)
)

allows an attacker that controls host s connected to an un-
controlled host t, to ping it to identify whether it’s OS is o.
We allow for a similar ping action for installed software.

The exploit action attempts to attack a machine exploiting
a specific vulnerability:

(: a c t i o n e x p l o i t
: p a r a m e t e r s (? s − h o s t ? t − h o s t ? o − os ?sw − sw ? v − vu ln)
: p r e c o n d i t i o n (and (h a c l ? s ? t)

(c o n t r o l l i n g ? s)
(n o t (c o n t r o l l i n g ? t))
(HostOS ? t ? o)
(HostSW ? t ? s)
(Match ? o ?sw ? v))

: e f f e c t (when (E x i s t V u l n ? v ? t) (c o n t r o l l i n g ? t))
)

The preconditions specify that the machines must be con-
nected, that the OS is o and the software sw is installed, and
that the vulnerability v which we intend to exploit matches
the specific OS and software.

The success of the exploit depends on whether the vul-
nerability exists on the target machine, which manifests
in the conditional effect. The attacker cannot directly ob-
serve whether a specific vulnerability exists, but can use the
CheckControl action to check whether the exploit has suc-
ceeded:
(: a c t i o n CheckCon t ro l

: p a r a m e t e r s (? s r c − h o s t ? t a r g e t − h o s t)
: p r e c o n d i t i o n (and (h a c l ? s r c ? t a r g e t ? p) (c o n t r o l l i n g ? s r c))
: o b s e r v e (c o n t r o l l i n g ? t a r g e t)

)

The initial state of the problem describes the knowledge
of the attacker prior to launching an attack:
(: i n i t
1 : (c o n t r o l l i n g i n t e r n e t)
2 : (h a c l i n t e r n e t h o s t 0)

(h a c l i n t e r n e t h o s t 1)
(h a c l h o s t 1 h o s t 2)
(h a c l h o s t 0 h o s t 2)
. . .

3 : (oneof (HostOS h o s t 0 winNT4ser) (HostOS h o s t 0 winNT4ent))
(oneof (HostOS h o s t 1 win7en t) (HostOS h o s t 1 winNT4ent))
. . .

4 : (oneof (HostSW h o s t 0 I I S 4) (HostSW h o s t 1 I I S 4))
. . .

5 : (Match winNT4ser I I S 4 vu ln1)
. . .

6 : (o r (E x i s t V u l n vu ln1 h o s t 0) (E x i s t V u l n vu ln2 h o s t 0))
. . .

)

We state that initially the attacker controls the “internet”
only (part 1). In this case the structure of the network is
known, described by the hacl statements (part 2). Then, we
describe which operating systems are possible for each of
the hosts (part 3). Below, we specify that either host0 or
host1 are running the software IIS (part 4). We describe
which vulnerability is relevant to a certain OS-software pair
(part 5), and then describe which vulnerabilities exit on the
various hosts (part 6).

The above specification may allow for a configuration
where no vulnerability exists on a host (machine) that
matches the host OS and software. Hence, none of the ex-
ploits will work for that specific host.

4 Plan Trees and Optimization Criteria
We now formally define solutions to a contingent planning
problem. We discuss deadends that arise in pentesting, and
then turn our attention to a discussion of optimization crite-
ria.

4.1 Contingent Plan Trees
A solution to a contingent planning problem is a plan tree,
where nodes are labeled by actions. A node labeled by an
actuation action will have only a single child, and a node la-
beled by an observation action will have multiple children,
and each outgoing edge to a child will be labeled by a pos-
sible observation.

An action a is applicable in belief state b, if for all s ∈ b,
s |= pre(a). The belief state b′ resulting from the execu-
tion of a in b is denoted a(b). We denote the execution of

a sequence of actions an1 =< a1, a2, ..., an > starting from
belief state b by an1 (b). Such an execution is valid if for all i,
ai is applicable in ai−11 (b).

Plan trees can often be represented more compactly as
plan graphs(Komarnitsky and Shani 2014; Muise et al.
2014), where certain branches are unified. This can lead to
a much more compact representation, and to scaling up to
larger domains. Still, for ease of exposition, we discuss be-
low plan trees rather than graphs.

In general contingent planning, a plan tree is a solution, if
every branch in the tree from the root to a leaf, labeled by ac-
tions an1 , an1 (bI) |= G. In pentesting, however, it may not be
possible to reach the goal in all cases, because there may be
network configurations from which the target machine sim-
ply cannot be reached. To cater for this, we need to permit
plan trees that contain dead-ends. We define a dead-end to
be a state from which there is no path to the goal, given any
future sequence of observations. That is, any plan tree start-
ing from a dead-end state would not reach the goal in any
of its branches. For example, a dead-end state arises if no
exploit is applicable for the goal machine. It is clearly advis-
able to stop the plan (the attack) at such states. On the other
hand, if a state is not a dead-end, then there still is a chance
to reach the target so the plan/attack should continue.

There is hence need to define contingent plans where
some of the branches may end in dead-ends. A simple so-
lution, customary in probabilistic models, is to introduce a
give-up action which allows to achieve the goal from any
state. Setting the cost of that action (its negative reward)
controls the extent to which the attacker will be persistent,
through the mechanism of expected cost/expected reward.

In a qualitative model like ours, it is not as clear what the
cost of giving up (effectively, of flagging a state as ”dead-
end” and disregarding it) should be. It may be possible to set
this cost high enough to force the plan to give up only on
dead-ends as defined above. But then, the contingent plan-
ner would effectively need to search all contingent plans not
giving up, before being able to give up even once.

We therefore employ here a different approach, allowing
the planner to give-up on s iff it can prove that s is a dead-
end. Such proofs can be lead by classical-planning dead-
end detection methods, like relaxation/abstraction heuristics,
adapted to our context by determinizing the sensing actions,
allowing the dead-end detector to choose the outcome. In
other words, we employ a sufficient criterion to detect dead-
end states, and we make the give-up action applicable only
on such states. As, beneath all dead-ends, eventually the pen-
test will run out of applicable actions, eventually every dead-
end will be detected and the give-up enabled.

In general, this definition would not be enough because
the planner could willfully choose to move into a dead-end,
thereby ”solving” the task by earning the right to give up.
This cannot happen, however, in the pentesting application,
as all dead-ends are unavoidable, in the following sense. Say
N is a node in our plan tree T , and denote by [N] those ini-
tial states from which the execution of T will reach N . If N
is a dead-end, then every I ∈ [N] is unsolvable, i.e., there
does not exist any sequence of Aact actions leading from I
to the goal. In other words, any dead-end the contingent plan

may encounter is, in the pentesting application, inherent in
the initial state. Matters change if we impose a budget limit
on the attack, in which case the dead-ends encountered de-
pend on which decisions are taken. We define an according
plan quality criterion as part of the next subsection.

4.2 Optimization Criteria for Contingent Plans
General contingent planning follows the satisfying planning
criterion, that is, one seeks any solution plan tree. It is possi-
ble, though, to consider cases where one plan tree is prefer-
able to another, and construct algorithms that seek better, or
even the best possible plan tree.

When we assume that the environment is modeled as a
POMDP, and we know all the probability distributions, an
obvious optimization criterion is the expected discounted
reward (or cost) from executing a plan tree in the environ-
ment, and can be estimated by running multiple trials and
computing the average discounted reward (ADR). In this pa-
per, however, we focus on cases where these distributions
are unknown. Without the specified distributions one cannot
accurately estimate expected reward. Any attempt to use a
different distribution, such as a uniform distribution, which
may be arbitrarily far from the true distribution, may result
in quality estimation that is arbitrarily far from reality.

We hence revert to other possible optimization criteria.
Perhaps the most trivial optimization criteria under unknown
probability distributions is the best case scenario, or the
worst case scenario. In the best case scenario we compare
plan trees based on the length of the shortest branch leading
to a goal state. In the worst case scenario we compare the
length of the longest branch leading to a goal state, prefer-
ring plan trees with shorter worst case branches. This may
be somewhat different than the naive definition of a worst
case, as a complete failure is obviously worse (less desir-
able) than a success after a lengthy sequence of actions. In
our case, as the deadends in the plan trees are unavoidable,
the naive worst case — a complete failure — is identical
in all plan trees. We thus choose to ignore branches ending
with deadends when considering worst case analysis.

While well defined, best and worst case optimization may
not be sufficiently expressive. A best case scenario is too op-
timistic, assuming that all attack attempts will be successful.
A worst case scenario is over pessimistic, assuming that all
attack attempts, but the last one, will fail. We would like to
define finer optimization criteria.

Budget Optimization One possible such criterion as-
sumes attacks on a budget — that is, the attacker is allowed
only a certain predefined number of actions (or total cost) in
a branch. When the budget runs out, the attacker is not al-
lowed any additional actions, and hence, a deadend occurs.
Setting a budget prior to attacking seems like a reasonable
requirement from an attacker. For example, if action costs
represent the time it takes for each action, the attacker may
wish to restrict attention only to attacks that require less than
a certain amount of time.

Now, given two plan trees that respect a given budget, we
can compare them on two possible criteria — the best case
scenario and the set of solved network configurations. The

worst case scenario is less interesting here as it will probably
be identical to the budget.

The set of network configurations where the attacker has
reached the goal under the budget is now interesting, be-
cause deadends induced by the budget may well be avoid-
able. That is, one can choose different attack plans, that may
lead to the goal faster and hence will result in less deadends.
However, simply counting the number of network configu-
rations for which the goal has been reached is undesirable
under our qualitative assumptions. For example, it may well
be that plan tree τ1 solves only for a single configuration c,
while another plan tree τ2 solves for all configurations but
c. Still, it may be that the (unknown) probability of c is 0.9,
making τ1 preferable to τ2. As we do not know these proba-
bilities, we cannot make such comparisons.

We can hence only declare plan tree τ1 to be better than
plan tree τ2 if the set of solved configurations ofτ1 is a strict
superset of the set of solved configurations of τ2. As contin-
gent planners typically maintain some type of belief over the
set of possible network configurations in each search node,
such computations are feasible. For example, if the belief is
maintained by a logic formula, as we do, then each goal leaf
g has a logic formula φg defining the belief at that leaf. We
can check whether∨

g∈G(τ1)

φg |=
∨

g∈G(τ2)

φg (1)

∨
g∈G(τ2)

φg 6|=
∨

g∈G(τ1)

φg (2)

where G(τ) is the set of goal leaves in plan tree τ .

Fault Tolerance Optimization Another possible opti-
mization is by extending the ideas of fault-tolerance plan-
ning to pentesting. In fault-tolerance planning (Domshlak
2001), assuming that certain actions may fail with some low
probability, a solution achieves the goal under the assump-
tion that no more than k failures will occur. The underlying
assumption is that the probability of more than k failures
is so small, that we can ignore it. A failure in our case can
be defined in one of two ways — either that we will ping
a machine for a given property (say, OS(mi, winxp)) and
receive a negative response. Alternatively, we may declare
a failure only when we attempt an exploit, and it fails to
achieve control of a machine (due to some unobserved prop-
erty).

With that view in mind, we can compare solution plan
trees, focusing only on branches that contain exactly k fail-
ures. As having no more than k failures is an optimistic as-
sumption, it is reasonable to check the worst case under this
optimistic assumption. That is, of the branches of the plan
tree that have the lowest probability that we care about, we
compare the longest branches. Looking at the best case —
the shortest branch when having no more than k failures, is
identical to the overall best case scenario, ignoring failures
all together.

A complementing approach assumes no less than k fail-
ures at each branch. This assumption is more appropriate
where the probability of failure is sufficiently large, such
that the probability of completing a task without any failure

is very low. In such cases, we again compare only branches
with exactly k branches, and as no less than k failures is a
pessimistic assumption, we compare the best case scenario
— the shortest branch with exactly k failures. Again, the
worst case is less interesting as it is identical to the overall
worst case.

5 Research plan
We now discuss the next steps on our research agenda. We
have four different designed items:

1. Improving the configuration of the network.

2. Getting real network data.

3. Finding additional heuristics.

4. Empirical validation.

5.1 Improving the Configuration of the Network

Currently we believe that we provide a stronger and more re-
alistic model of the problem than previous approaches, that
can scale up to reasonably sized networks. However, we con-
sider changing some of the possible configuration, making
the model even more realistic.

We intend to add OS families — generalizing the OS con-
figuration under the assumption that we can not sense a spe-
cific Os, but only a general category of an Os. As we explain
above, the sensing procedure for machine configuration is
known as fingerprinting. In the real world this process may
identify the OS family and not the specific one. For example,
if a certain machine runs Windows XP SP3, the observation
about the target machine OS may be Windows XP.

We can support hidden connections between machines
(sensing for connections). That way we eliminate the need
for planner knowledge over the hosts connection. We have
doubts about hiding those connection. Making the planner
work without previous knowledge will make all states and
action to seem equally valuable — choosing to attack one
machine is equivalent to choosing to attack another. For ex-
ample, our current heuristics choose to attack a machine that
is closest to the target machine, which cannot be done when
network connections are unknown.

5.2 Getting real network data

We are working on getting some real data network config-
uration using Nmap (Network Mapper) tool to gathering all
configuration data (OS, Softwares, connections and vulnera-
bilities) from existing network. The Nmap tool is a free and
open source utility for network discovery and security au-
diting. Nmap uses raw IP packets in novel ways to deter-
mine what hosts are available on the network, what applica-
tions those hosts are offering, what operating systems they
are running. First we need to run Nmap on a small network
showing there is no risk to execute it in a larger network,
and then hopefully we could run Nmap on the university
network.

5.3 Identifying Useful Heuristics
Our planning algorithm is a best first contingent planner. We
use a heuristic to determine which state and action to expand
next.

We are interested in generating a variety of plan trees,
given different heuristics. Currently, our planner supports
4 different heuristics. The first two heuristics, random and
LIFO are not useful as they cannot create attack graphs for
large networks. We will use them only as a baseline to show
that the other heuristics are better given the optimization cri-
teria. Our main goal is to develop new heuristics that will
be scalable to larger networks and will produce better plan
trees.

Random Heuristic This heuristic gives each state a ran-
dom heuristic value. It preform badly and is not scalable to
larger networks of more than 5 hosts. This heuristic will be
our baseline for comparing plans trees in small networks.

LIFO Heuristic A LIFO heuristic gives the highest value
to the last state. The last state to arrive is the next state the
planner will expand. This heuristic also preforms badly and
is not scalable to larger networks of more than 5 hosts.

Shortest Path Heuristic This heuristic chooses the next
host to attack among the reachable hosts closest to the goal
host. Attack actions for the chosen host are selected at ran-
dom. This heuristic is more scalable than the previous two,
handling networks with up to 16 hosts.

Shortest Path and Action Selection Heuristic We chose
the next host to attack from the hosts closest to the goal host.
When choosing actions, we first ping a host for its operating
system, and then we ping it only for software that, combined
with the observed OS, may have a vulnerability. If a possi-
ble vulnerability has been detected, we attempt an exploit,
followed by a sensing action to check if control was gained
over the attacked host. This simple heuristic, proves to be
highly effective for this application, and we manage to pro-
duce attack graphs for networks with 80 hosts and more.

5.4 Empirical Study
We now review the experiments that we want to conduct in
order to show the contribution of using contingent planning
for pentesting .We want to demonstrate that the criteria we
suggest can be used to differentiate between various plan
trees (graphs), helping us to select a better algorithm. First,
we will generate a number of networks of varying sizes us-
ing the generator of Hoffman and Steinmetz(Sarraute et al. ;
Steinmetz et al.).

We experiment with a simple greedy best first contingent
planner that uses a heuristic to determine which state and ac-
tion to expand next. In addition, we use a mechanism for de-
tecting repeated plan tree nodes, converting the plan tree into
a plan graph. We augment this algorithm with a domain spe-
cific deadend detection mechanism, checking whether there
is still a path from the attack source (“the internet”) to the
target host.

We will employ several domain specific heuristics (as we
explained above), that leverage the network graph. Generat-

ing several different plan graphs. We can compare the run-
time and scalabilty of the various heuristics.

We will run the heuristics over various network sizes. This
allows us to employ the optimal solution criteria to conclude
which plan is better. We can calculate the best and worst case
in the fault tolerance scenario, running the planner with dif-
ferent values of k and compare the best (shortest) and worst
(longest) path to goal. We will say that a plan graph ’A’ is
better than another plan graph ’B’ if in a given k failures the
longest path to the goal in ’A’ is shorter than the longest path
to goal in ’B’.

We also need to compare between the sets of initial states
where the goal can be reached in each plan graph. Let s(A)
be the set of states for which the goal can be reached in plan
graph A and s(B) to be the set of such states in plan graph
B. If s(B) ⊂ s(A) we can say that plan graph A is better
than plan graph B. Identifying the set of initial states for
which there is a solution, and comparing sets is not a trivial
problems, and we must identify efficient methods for doing
that.

References
Alexandre Albore, Héctor Palacios, and Hector Geffner. A
translation-based approach to contingent planning. In IJCAI
2009, Proceedings of the 21st International Joint Confer-
ence on Artificial Intelligence, Pasadena, California, USA,
July 11-17, 2009, pages 1623–1628, 2009.
Burns et al. Security Power Tools. O’Reilly Media, 2007.
Carmel Domshlak. Fault tolerant planning: Complexity and
compilation. volume 22, pages –, 2001.
Karel Durkota, Viliam Lisý, Branislav Bosanský, and
Christopher Kiekintveld. Optimal network security harden-
ing using attack graph games. In Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelli-
gence, IJCAI 2015, Buenos Aires, Argentina, July 25-31,
2015, pages 526–532, 2015.
Jörg Hoffmann. Simulated penetration testing: From ”di-
jkstra” to ”turing test++”. In Proceedings of the Twenty-
Fifth International Conference on Automated Planning and
Scheduling, ICAPS 2015, Jerusalem, Israel, June 7-11,
2015., pages 364–372, 2015.
Radimir Komarnitsky and Guy Shani. Computing contin-
gent plans using online replanning. In Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelligence,
July 27 -31, 2014, Québec City, Québec, Canada., pages
2322–2329, 2014.
Gordon Fyodor Lyon. Nmap network scanning: The official
Nmap project guide to network discovery and security scan-
ning. Insecure, 2009.
Christian J. Muise, Vaishak Belle, and Sheila A. McIl-
raith. Computing contingent plans via fully observable
non-deterministic planning. In Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence, July 27 -
31, 2014, Québec City, Québec, Canada., pages 2322–2329,
2014.
Carlos Sarraute, Olivier Buffet, and Jörg Hoffmann.

POMDPs make better hackers: Accounting for uncertainty
in penetration testing.
Marcel Steinmetz, Jörg Hoffmann, and Olivier Buffet. Re-
visiting goal probability analysis in probabilistic planning.

