
Dissertation Abstract

Emre Ökkeş Savaş
Supervisors: Maria Fox, Derek Long

Department of Informatics,
King’s College London, London, WC2R 2LS, UK

e-mail: okkes.savas@kcl.ac.uk

Abstract
This dissertation outlines the work I have done since the be-
ginning of my research degree. My research interest is in
constrained resource planning, where I am particularly inter-
ested in the applications of operations research techniques in
the task planning. Planning community has started to use op-
erations research tools in their work in recent years. I aim
to introduce new techniques to the task planning, which are
widely practiced in operations research. The contribution of
this paper is to present a generalisation of variables in the
planning domain. We consider all types of predefined vari-
ables and the duration to a new type, which we call control
parameters. We also describe the development of our new
planner POPCORN (Partial-Order Planning with Constrained
Real Numerics) that can reason with control parameters. We
present an example of how existing task planning benchmark
domains can be extended to develop enriched plans. We also
provide an example to demonstrate the robustness and appli-
cability of our approach.

1 Introduction
Integration of the temporal and metric fluents has become
a popular field of research in the task planning. Many
off-the-shelf planners (Della Penna et al. 2009; Fernández-
González, Karpas, and Williams 2015a; Bajada, Fox, and
Long 2015; Bryce et al. 2015; Piacentini et al. 2015) have
overcome challenges posed in hybrid systems with the help
of some optimisation tools. Finding the timestamps and the
durations of actions have been the major interest of such
planners, while the remainder dynamics of the real-world
problems are neglected. The duration of an action is the
only variable in PDDL domains, for which the planner has
the freedom to assign a value. However, there are numer-
ous time-independent dynamics in real-world problems. For
instance, the driver decides on the initial velocity of the ve-
hicle, the refuel amount before or during the journey. These
dynamics are assigned with a fixed value at the initial state
in PDDL problem instances, but the planner should not be
constrained with such discretised values. In this paper, we
present an approach to include variables other than the dura-
tion of the action in planning domains. We consider gener-
alising all sorts of variables into a new type, which we call
control parameters. We consider the duration of an action
as a special type of control parameter, where it plays an im-
portant role in the plan ordering.

(:durative-action refuel
:parameters (?v - vehicle ?l - location)
:control (?fuel - number)
:duration (= ?duration 10)
:condition (and

(at start (>= ?fuel 0))
(at start (<= ?fuel (fuel-max ?v)))
(at start (at ?v ?l))
(over all (at ?v ?l))
(at start (has-petrol-station ?l)))

:effect (at end
(increase (fuel-left ?v) ?fuel)))

Figure 1: Updated refuel action in Transport-numeric do-
main

Many state-of-the-art planners only find a sequence of the
time-stamped actions to reach a goal state. Additionally,
the use of control parameters enables a planner to make a
decision about the values of the variables predefined in the
planning domain. The planner can constrain the feasible re-
gion of a control parameter during the plan construction. We
can present a simple example here, based on the transport-
numeric domain, which is used as a benchmark domain in
the International Planning Competition in 20081. In this do-
main, trucks deliver packages from their initial locations to
the goal locations. The fuel level of trucks decreases as
trucks move from one location to another. The refuel
durative action fills the tanks of trucks to the full tank (a
fixed value), even if the truck only needs a small amount of
petrol to reach its goal location. It would be more realistic
if the planner does not assign a fixed numeric value to the
fuel level, but assigns a value that is sufficient to reach its
goal. This value can be constrained by numeric constraints
that are dynamically developed during planning. Figure 1
shows the updated version of the refuel action where
the refuel amount is taken as a control parameter: ?fuel,
where it is constrained within the real numeric region of [0,
(fuel-max ?v)] ((fuel-max ?v) state variable is
fixed with a constant value at the initial state).

In this paper we present our new planning system, POP-
CORN, that can reason with control parameters with the

1Original domain used in the competition can be obtained from
http://ipc08.icaps-conference.org/deterministic/domains.html

help of linear programming (LP). The implementation we
have so far focussed on linear constraints, however we will
extend this concept to a non-linear case in the future. POP-
CORN is built on POPF (Coles et al. 2010), so that the ex-
isting sophistication of a temporal planner is preserved. The
main objective of this paper is to describe the major steps
taken to develop our new planning system. The structure of
this paper is in the following order. We consider the related
work in the field in Section 2. We then provide a simple ex-
ample in Section 3 to use throughout the paper. We carry on
with the description of POPF planner, which constitutes the
basis of our implementation, in Section 2. We then describe
the required modifications to the existing problem formula-
tion, constructing linear program (LP), the heuristic guid-
ance, and the forward state space search. Finally, we pro-
vide the future work and the preliminary evaluation of our
approach.

2 Related Work
Early work exploring the use of the control parameters in
planning domain is considerably limited. Kongming plan-
ner (Li and Williams 2008) captures the interaction of the
dynamic continuous variables with flow tubes produced at
each action layer. The flow tubes contain control trajecto-
ries of the variables as the graph expands over time. It can
only handle problems with linear effects. In order to capture
the continuous dynamics of a problem, time is discretised
while the rate of change is taken as a variable. This con-
cept contrasts with COLIN (Coles et al. 2009) and POPF
planners, where the duration is taken as a variable, while the
rate of change remains constant. Kongming suffers from the
limitation of the number of happenings in the plan, so it fails
generating plans requiring long time horizons.

Enrique Fernández-González, Erez Karpas and Brian
Williams have recently studied the planning with contin-
uous control parameters (2015a). Their work has consid-
ered the main stages in the development of the Scotty plan-
ning system. The Scotty planner combines the flow tube
representation of the Kongming with the forward-chaining
search and the linear programming used in the COLIN plan-
ner. The flow tubes are used to capture continuous effects
with control parameters. It uses the forward search to over-
come the happening limitation of Kongming. The planner
finds a fixed plan, in which the planner assigns a value to the
control parameters at an early stage during planning, which
makes the plan invalid due to early-commitment. There-
fore, Scotty finds a flexible plan, in which it leaves the
decision of the values of control parameters to an exec-
utive during plan execution in order not to invalidate the
plan. On the other hand, the planner assigns values to the
timestamps of actions without any interaction with an ex-
ecutive. In addition, Scotty does not support discrete nu-
meric change (Fernández-González, Karpas, and Williams
2015b). Our planner, however, makes a decision for the val-
ues of control parameters without any human interaction,
and it delays the valuation of these parameters, including
?duration and the timestamps of actions, until a decision
is forced by the planner.

3 A Motivating Example
We now present a simple example to introduce the control
parameters. Suppose that we are planning to go to a pub.
Initially, we are at home and have only £2 in our pocket. We
aim to be at the pub with £20 in our pocket and to have al-
ready bought snacks on the way to the pub. Intuitively we
would withdraw sufficient cash to buy snacks and to have
£20 at the pub. We would not want to withdraw more or less
cash than required when at the cash point. There are three
ATM machines at the cash point. Each machine has a lim-
ited balance available that can be withdrawn ((balance
?m)), and minimum withdrawal amount is £3. Actions of
this domain and the initial/goal states are given in Figure 3
and 2, respectively. In addition, Figure 2 shows the met-
ric objective of the problem that plays an important role in
the valuation of the control parameter ?cash . The lan-
guage we use is a modified version of PDDL 2.1 to encode
control parameters. We list all control parameters except
?duration in a new line, :control(), in a durative ac-
tion.

(:init (at person1 home)
(canbuy person1 store)
(canwithdraw person1 cashpoint)
(available)
(located atm1 cashpoint)
(located atm2 cashpoint)
(= (inpocket person1) 2)
(= (balance atm1) 50)
(= (balance atm2) 100)
(= (balance atm3) 150))

(:goal (and (>= (inpocket person1) 20)
(gotsnacks person1) (at person1 pub))
(:metric minimize (inpocket person1)))

Figure 2: The initial state of the cash point problem.

In this example, the amount of cash we want to withdraw,
?cash, depends on which actions we apply after visiting
the cash point. Early assignment of the value of a control
parameter may lead to generate poor plans. For instance,
assigning a value to ?cash before buying snacks would re-
sult in visiting the cash point twice. Therefore, the deci-
sion of withdrawal amount should be made at a later stage
in the plan (or eventually, at the end of the plan). POP-
CORN builds up all the linear constraints acting upon the
control parameter ?cash until the end of the plan. Then,
the planner calls the linear program to optimize all variables,
i.e. ?cash, subject to the metric objective of the problem.
Since the metric objective is to minimize inpocket state
variable in this example, the planner chooses the minimum
bound of this variable as its value.

4 Background
Temporal and numeric planning has been emerged together
with the help of linear programming. Numeric and tempo-
ral constraints are handled separately in the early instances
of temporal planners (Coles et al. 2008). Integration of the

(:durative-action WithdrawCash
:parameters (?p - person ?a - location
?m - machine)
:control (?cash - number)
:duration (= ?duration 2)
:condition (and (over all (at ?p ?a))

(at start (>= ?cash 3))
(at start (<= ?cash (balance ?m)))
(at start (canwithdraw ?p ?a))
(at start (located ?m ?a)))

:effect (and
(at start (decrease (balance ?m) ?cash))
(at end (increase (inpocket ?p) ?cash))))

(:durative-action BuySnacks
:parameters (?p - person ?a - location)
:duration (= ?duration 1)
:condition (and (at start (at ?p ?a))

(over all (at ?p ?a))
(at start (>= (inpocket ?p) 5))
(at start (canbuy ?p ?a)))

:effect (and (at start (not (available)))
(at end (decrease (inpocket ?p) 3))
(at end (gotsnacks ?p))))

Figure 3: Main actions of the cash point domain.

temporal and numeric constraints together made it possible
to handle continuous numeric change, in which the value of
a state variable can depend on the timestamp and the dura-
tion of the action (Coles et al. 2012). In order to implement
temporal-numeric planning with control parameters we built
our planning system on the POPF planner, which can already
handle this integration. In general, the state representation
of a temporal-numeric planning problem can be shown by a
tuple S = 〈F, V,Q, P,C〉, where:

F is the set of propositions that are true in the current state
S.

V is the vector of values of the numeric state variables. De-
pending on the length of a state S, the state variable V
varies within V min and V max due to linear continuous
numeric effects.

Q is a list of actions, which are started but not yet finished.
P is the plan to reach the current state S.
C is a list of temporal constraints accumulated over the

steps in P.

In addition to the state representation given above, POPF
includes further elements2 to support partial-order planning.
The partial-order mechanism simply minimises the order-
ing constraints to avoid early-commitment during forward
search in order to achieve flexible plans. The temporal con-
straints are added as they are needed to meet the precon-
ditions of actions in a possible plan.The existing partial-
order mechanism of POPF helps POPCORN to avoid early-
commitment of assigning values to the control parameters.
As discussed in Section 3, the early-commitment in the val-
uation may lead to generate poor plans.

2Full list of partial ordering extensions to state representation for
propositional and numeric case can be found in (Coles et al. 2010)

LP Temporal and Numeric Scheduling
The POPF planner inherits the use of linear programming
from the COLIN planner. It uses the LP to check the tem-
poral and the numeric consistency of a state. The state vari-
ables that capture discrete/continuous numeric change along
the trajectory of the plan are defined as follows:
Each vi ∈ Vi records the value of each state variable v just
before the step i. Similarly, each v′i ∈ V ′

i records the value
of a state variable v immediately after the step i. For in-
stance, a state variable v can have a discrete instantaneous
numeric change at a step i. In this case, v′i = vi + c con-
straint, where vi is increased by the numeric value of c at
the step i, is added to the LP in order to record this change.
Table 1 shows the constraints and variables created to record
numeric changes over the control parameter. bali and inpi
represents the (balance ?m) and (inpocket ?p) state vari-
ables at step i, respectively.

Plan Action LP Variable [lb, ub] Constraints
Withdraw cash [3, inf] cash ≥ 3

(start) [0,50] cash ≤ bal0
bal0 [50,50] bal0
bal′0 [0,47] = bal0 − cash

Withdraw cash [3,50] cash
(end) inp1 [2,2] inp1

inp′1 [5,52] inp1 + cash
BuySnacks inp2 = inp′1

(start) inp′2 [5,52] ≥ 5
BuySnacks inp3 [5,52] = inp′2

(end) inp′3 [2,49] = inp3 − 3

Table 1: Variables and constraints acting upon ?cash pa-
rameter, that are collected from the initial state to reach the
goal state. [lb, ub] represents the upper and lower bound
limits of the variables at a state.

The use of LP makes it possible to record numeric change
between steps. This change can be considered as a contin-
uous change, because the time elapsed between steps is a
variable. In this case, v′i+1 = v′i + δvi(stepi+1 − stepi) is
added to the LP that records the continuous linear numeric
change between consecutive steps. stepi is the timestamp
LP variable of step i, while δvi represents the gradient of
continuous change on v at step i. The value of a state vari-
able v depends on time elapsed before the next action is ex-
ecuted. We can then say the value of state variable v varies
between lower (vmin ∈ V min) and upper (vmax ∈ V max)
bounds, which are required to check state validity when the
action is still executing. In order to compute these bounds,
additional variables, vnow and stepnow, are added to the LP
to check the state validity. Figure 4 shows the relationship
discussed between temporal, numeric variables encoded into
the LP.

5 Planning with Control Parameters
The main distinction between POPF and POPCORN plan-
ners is that POPCORN can reason with variables other than
the duration in planning. We consider all variables avail-
able in the planning domain as control parameters. This is

Figure 4: Schematic representation of the relationship be-
tween numeric state variable, V , and timestamp variable that
are encoded in LP. Vnow is used to compute upper-lower
bounds of V during continuous linear numeric change.

achieved by extending the existing machineries of the POPF.
We consider the details of each component in their related
subsections. In summary, we extend the existing problem
definition to capture the control parameters defined in ac-
tions. We define the additional constraints and variables
added to the LP based on the numeric preconditions and ef-
fects. We provide the modifications made to the existing
heuristic approach of POPF and analyse the effects of the
control parameters to the search space.We use the cash point
example to enumerate elements discussed in the related sub-
sections.

Problem Definition
Many state-of-the-art temporal planners make a decision
only about which actions to apply, and when to apply these
actions. Our new planner can additionally make a deci-
sion about the values of the predefined numeric variables,
which are constrained with linear constraints in the linear
program. Slightly different than the existing state represen-
tation of POPF, the new state representation for temporal-
numeric planning with control parameters problem can be
shown by a tuple S = 〈F, V,Q, P,D,L〉, where:

F is the set of propositions that are true in the current state
S.

V is the vector of values of the numeric state variables. De-
pending on the length of a state S, the state variable V
varies within V min and V max due to continuous or con-
trol parameter numeric effects.

Q is a list of actions, in which actions started but not yet
finished.

P is the plan to reach the current state S.
D is a list of all control parameters available, including the
?duration variable in durative actions, in the planning
domain, where each d ∈ D is a tuple 〈op, i, num〉:
• op is the identifier of instantiated action,
• i is the index of the step in the plan,
• num is the unique identifier of each d ∈ D,
where the corresponding control parameter(s) are added.
The unique identifier, num, of duration variable is identi-
cal in every durative action, since there is only one dura-
tion variable defined in an action.

L is a list of constraints that encapsulates discrete numeric
change with the control parameters over the steps in
P, where each l ∈ L of the form minControl(d) ≤
d ≤ maxControl(d). The value of d lies within
a range of values constrained by minControl(d) and
maxControl(d). These bounds on d are determined from
the numeric preconditions of the action on d. If there is
not any numeric precondition in d defined, the range of
d is set to [0, inf]. We restrict our definition of d to be
a positive real number in order to avoid modeling errors
due to sign convention in the domain.

Checking Plan Consistency with LP
In this section we consider additional variables and con-
straints added to the LP to support control parameters. Be-
fore we begin the formulation, it is worthwhile mentioning
the main characteristic of control parameters within an ac-
tion instance. The control parameter is a local variable,
whose scope is limited to the action it is defined. It can be
carried out through the plan with the numeric state variables.
The following equation gives the relationship between these
state variables v, and control parameters.

In general form, where step k is the current state:

vi+1 = vval +

num∑
n=0

δwi,ndi,n (1)

where,
• di,n is the nth control parameter defined in the action op

applied to the plan at stepi.
• vval is the variable that contains the most recent numeric

value of v prior to v is affected by the control parameter
d. If there is no discrete numeric effect on v at stepi, the
value of vval is equal to vi

• δwi,n is the total gradient of the nth control parameter
acting upon v.

• vi+1 is the value of the numeric state variable immediately
after the discrete control parameter effect acting on v
Temporal and numeric constraints are added to the LP to

confirm that the plan to reach a state S can be scheduled.
In our new planner POPCORN, the constraints with control
parameters are used to check whether there is a feasible
range of values of the control parameter that can satisfy the
plan to reach state S. In order to capture these constraints,
the following constraints below are added to the LP.
• Any numeric precondition that is given in the form:
〈v, sgn, w·v+k.(di,n) + c〉, s.t. sgn ∈ {≤, <,=,≥, >}
〈di,n, sgn, v〉, s.t. sgn ∈ {≤, <,≥, >}
〈di,n, sgn, c〉, s.t. sgn ∈ {≤, <,≥, >}

• Any numeric effect that is in the form:
〈v, sgn, w·v+k.(d) + c〉, s.t. sgn ∈ {+=,-=,=};
c, k ∈ R

are added as constraints over V to the LP. If the constructed
LP with these constraints is not solvable, then the state S is
pruned from the search space, and the planner backtracks to
look for a state, in which the LP has a feasible solution. Our
approach isolates the nonlinear interaction between a control
parameter and a temporal variable. The LP is inadequate to

check state consistency for nonlinear states. We are working
on addressing this with the help of an appropriate nonlinear
solver.

Temporal-Numeric State-Space Search
Duration of an action in a durative action may not be
fixed, and it can be determined by either the values
of metric fluents: i.e. (<= ?duration (v ?p)),
or it is constrained within a range of values (Coles
et al. 2009), i.e. (and (>= ?duration 10) (<
?duration 50)). Likewise, the value of control pa-
rameter defined in an action is not fixed, but it can be con-
strained within some interval. Similar logic applies to the
numeric state variables that have ever had a discrete control
parameter dependent change. The value of a state variable
is constrained within a range of values, [vmin, vmax], that
the planner has the freedom to choose. Figure 5 shows the
differences between discrete, continuous, and discrete con-
trol parameter changes acting upon state variable v. Suppose
that state variable v is affected by discrete numeric changes
at step1 and step4, linear continuous change between step2
and step3, and discrete change with control parameter at
step3. v can take at any numeric value within dashed area.

Figure 5: Schematic representation of numeric state vari-
able, v, affected by discrete, continuous, discrete control
parameter numeric change over steps 0 to 5. Shaded area
shows the feasible region of values of v that can be assigned
by calling linear program. ?d is a control parameter with a
value of d lies within range of [dmin, dmax]. a, b, c ∈ R.

The existence of control parameters generate a complex
branching choice in the search space, while there remains
a finite set of action choices available in the search space.
Then we can say the width of the search tree remains the
same, while the depth of the search tree dramatically in-
creases after a control parameter effect. Figure 6 illustrates
this effect in the search space for our cash point example.
(inpocket += ?cash) effect produces infinitely many states,
because the value of ?cash is not yet assigned. However,
if our implementation is forced to branch over this infinite
space, it avoids this by leaving the choice to the LP con-
straint space. avoids this by leaving the decision to the LP
constraint space.

Figure 6: Schematic representation of the search space
where there is a control parameter effect. The nodes rep-
resent the state reached, and the edges represent the action
applied to reach the next state. The graphs in black boxes
represent the LP constraint space, which is used to avoid
complex branching choice.

Modifications to The Temporal RPG Heuristic
The Metric Relaxed Planning Graph (Hoffmann 2003)
heuristic has been widely used in the numeric planning over
the last decade. POPF planner uses a heuristic, Temporal
RPG, to guide the planner in the search space towards the
goal. The Temporal RPG (TRPG) heuristic is a modified
version of the Metric RPG. The main difference between
two heuristics is the timestamps associated to each action
and fact layer in TRPG.

Our modification to the existing temporal RPG heuristic
of POPF is to make an optimistic assumption: If an action a
has a control parameter effect on a variable v, then the con-
trol parameter is relaxed to whichever minControl(d) or
maxControl(d) gives the largest(smallest) effect. In case
the minControl(d) and/or maxControl(d) depend on a
the value of a state variable (i.e: (<= ?cash (balance
?m))), then the heuristic calls the LP, which only contains
the time-independent numeric constraints of the action, to
precompute the bounds for the heuristic before extracting a
relaxed plan. For instance, in the reachability analysis, the
following LP constructed to find the upper bound of ?cash:

Maximise: ?cash
Subject to:
bal0 = 50
?cash ≥ 3
?cash− bal0 ≥ −inf
?cash− bal0 ≤ 0
?cash+ bal′0 − bal0 = 0
inp0 = 2
inp′0 − inp0−?cash = 0

6 Evaluation
In this section we present the preliminary results of our im-
plementation. Since the existing planners that reason about
control parameters are not available online, we compare
the capability of our implementation with our base planner.
However, POPF can not run at all on the cash point problem
if we do not provide a fixed withdrawal value. Therefore,
we fix the withdrawal value, ?cash, at £10 for running the
experiments with POPF. Regardless of the value we fix the
withdrawal value to, the POPF will always generate longer
plans. The POPCORN does not require any fixed value, so
it is able to solve the problem for any value of (inpocket
?p) within the bounds defined.

We compared the performance of POPF and POP-
CORN in problems, where the goal (>= (inpocket
person1) 500) incrementally increases to (>=
(inpocket person1) 950) in every problem in-
stance. We observe lengthy plans produced by POPF due
to repetitive WithdrawCash actions. Table 2 shows
the results of this evaluation. This preliminary evaluation
shows that our approach dramatically decreases the number
of states evaluated and the plan length produced by our
based planner. POPF is not able to produce plans for
(>= (inpocket person1) 900) problem instances,
because it runs out of memory.

States Evaluated Plan Length
inpocket≥ POPF POPCORN POPF POPCORN
500 508 457 57 10
550 2089 142 62 10
600 2248 484 67 12
650 3892 484 72 12
700 7461 484 77 12
750 14143 1430 82 13
800 8750 1430 87 13
850 32341 1430 92 13
900 – 4366 – 14
950 – 4366 – 14

Table 2: Number of states evaluated and plan length evalu-
ation of POPF and POPCORN planners, where inpocket
goal is discretised for POPF.

7 Future Work
I consider finalising the implementation of POPCORN pre-
sented in this paper, and extend its capability by implement-
ing a nonlinear solver to solve problems requiring nonlinear
numeric change. In order to achieve this, I will initially iden-
tify which nonlinear solver is sufficient to use in planning.
Then, I will explore the required modifications to implement
this solver within our existing planning system. Another fu-
ture work I want to work on is about managing the prefer-
ences of objectives defined in the domain. I plan to use Goal-
Programming approach to minimise the penalty costs for the
multi-objective planning domains. The minimised penalty
cost can be used to get guidence in the search space as a
tie-breaking factor (where the timespan of plan options are

equal). Finally, I consider extending the generalisation of the
control parameters with non-numeric object variables. As
mentioned in Section 1, the planner is initially constrained
with discretised assignments, for which the planner actually
should have freedom to choose. This approach can be im-
plemented for objects defined in planning problem.

8 Conclusion
Physical and logical properties of the real-world examples
require multiple numeric variables to create realistic plan-
ning models. In this paper we provide the preliminary work
of our implementation to handle control parameters in the
planning domain. We generalise the use of all parameters to
a new type to fully integrate temporal and numeric planning.
At this stage we identified the necessary modifications to the
existing mechanism of our base planning system.

References
Bajada, J.; Fox, M.; and Long, D. 2015. Temporal planning
with semantic attachment of non-linear monotonic continuous be-
haviours. In Proceedings of the 24th International Conference on
Artificial Intelligence, 1523–1529. AAAI Press.
Bryce, D.; Gao, S.; Musliner, D.; and Goldman, R. 2015. Smt-
based nonlinear pddl+ planning. In Proceedings of the Twenty
Nineth Conference on Artificial Intelligence (AAAI-15). AAAI
Press.
Coles, A. I.; Fox, M.; Long, D.; and Smith, A. J. 2008. Planning
with problems requiring temporal coordination. In Proceedings of
the Twenty-Third AAAI Conference on Artificial Intelligence (AAAI
08).
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2009. Temporal
planning in domains with linear processes. In Twenty-First Inter-
national Joint Conference on Artificial Intelligence (IJCAI). AAAI
Press.
Coles, A.; Coles, A.; Fox, M.; and Long, D. 2010. Forward-
Chaining Partial-Order Planning. In Proc. Int. Conf. on Automated
Planning and Scheduling (ICAPS), 42–49.
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2012. Colin: Plan-
ning with continuous linear numeric change. Journal of Artificial
Intelligence Research 1–96.
Della Penna, G.; Magazzeni, D.; Mercorio, F.; and Intrigila, B.
2009. Upmurphi: a tool for universal planning on pddl+ prob-
lems. In Nineteenth International Conference on Automated Plan-
ning and Scheduling.
Fernández-González, E.; Karpas, E.; and Williams, B. C. 2015a.
Mixed discrete-continuous heuristic generative planning based on
flow tubes. In Twenty-Fourth International Joint Conference on
Artificial Intelligence.
Fernández-González, E.; Karpas, E.; and Williams, B. C. 2015b.
Mixed discrete-continuous heuristic generative planning based on
flow tubes. In Proceedings of the 3rd Workshop on Planning and
Robotics (PlanRob-15), 106–115.
Hoffmann, J. 2003. The metric-ff planning system: Translat-
ing“ignoring delete lists”to numeric state variables. Journal of Ar-
tificial Intelligence Research 291–341.
Li, H. X., and Williams, B. C. 2008. Generative planning for hybrid
systems based on flow tubes. In Int. Conf. on Automated Planning
and Scheduling (ICAPS), 206–213.
Piacentini, C.; Alimisis, V.; Fox, M.; and Long, D. 2015. An ex-
tension of metric temporal planning with application to ac voltage
control. Artificial Intelligence 229:210–245.

