
Planning with PDDL3.0 Preferences by Compilation into STRIPS with Action
Costs

Percassi Francesco
University of Brescia

Department of Information Engineering
f.percassi@unibs.it

Abstract

The research community has sought to extend the clas-
sical planning problem following two strategies. The
first one follows a top-down approach consisting in
the development of solvers that support a more general
class of problems; the second one follows a bottom-up
approach consists in extending the applicability range
of current classical planners. A possible interesting ap-
proach consists in compiling the new features offered
by recent extension of planning language into a sim-
pler target language such as STRIPS or ADL. PDDL
3.0, the official language in 2006 fifth IPC, introduced
state-trajectory constraints and preferences in order to
better characterize the solution quality. In this work I
present a compilation schema, inspired by some previ-
ous works, for traslating a STRIPS problem enriched
with all kind of PDDL 3.0 preferences into an equiva-
lent STRIPS problem with action cost.

Introduction and background
Given a problem described by an action domain, an intial
state and a description of goal state, the aim of classic plan-
ning paradigm is finding a sequence of actions that can trans-
form, if they are performed, the initial state into the target
state. It is possible to distinguish which solution is prefer-
able among the set of possible solutions evaluating the plan
cost as the number of its actions. This approach has been
extended to the minimal plan cost evaluated as the sum of
the cost assigned to each contained action. A more sophisti-
cated recent approach for characterizing when a solution is
better than others is based on the notion of preference, which
are properties that a plan has to satisfy to increase its qual-
ity. Planning with preferences concerns the generation of
plans for problems involving soft goal or soft state-trajectory
constraints, called preference in PDDL 3.0 (Gerevini et al.
2009), which are preferable to satisfy, but that they are not
necessary to hold in a valid plan.

In PDDL 3.0 has been proposed some new features in or-
der to increase the expressive power about the quality so-
lution specification. The new introduced constructs include
soft state-trajectory constraints, which are constraints that

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

should be satisfied in the state trajectory to increase the qual-
ity plan, and soft problem goal. An approach to assign a pri-
ority to each preference (hereafter we indicate indistinctly
a soft goal or a soft state-trajectory as preference) consists
into penalizing their violation with a real value that is used
to decrease the plan metric.
In PDDL 3.0 the following class of preferences can be ex-
pressed:
• always, which requires that a condition should hold in ev-

ery reached state; this kind of preferences is very useful
to express safety or maintenance conditions;

• sometime-before, which requires that a condition Ψ has
become true before a second condition Φ becomes true;

• sometime, which requires that a condition becomes true at
least once in the state trajectory of the plan;

• at-most-once, which requires that a condition becomes
true at-most-once once in the state trajectory of the plan;

• soft goal.
This work describes a compilation scheme which is an

extension of what proposed in (Ceriani and Gerevini 2015)
where only always preference and soft goal are considered.

STRIPS+ with preferences
A STRIPS+ problem is a tuple 〈F, I,O,G, c〉 where
〈F, I,O,G〉 is a STRIPS problem and c is a function that
maps each o ∈ O to a non-negative real number. The cost
of a plan π is defined as c(π) =

∑|π|−1
i=0 c(ai), where c(ai)

represents the cost of the i-th action ai in π and |π| is the
plan lenght. Without loss of generality, we will assume that
the condition of a preference Pi is expressed in conjuctive
normal form, for example Pi = p1∧p2∧...∧pn, where each
pj with j ∈ [1, ..., n] is a clause of Pi formed by literals
over the problem fluents. We write π |=typ Pi to indicate
that plan π satisfies a typ preference Pi where typ indicate
its type among {a, sb, st, amo, sg} which abbreviating
always, sometime-before, sometime, at-most-once and soft
goal.

Definition 1 A STRIPS+ problem with preferences is a tu-
ple 〈F, I,O,G,P, c, u〉 where:
• 〈F, I,O,G, c〉 is a STRIPS+ problem;

• P = {AP∪SBP∪STP∪AMOP∪SG} is the set of the
preferences of Π where AP , SBP , STP , AMOP and
SG contain respectively always, sometime-before, some-
time, at-most-once and soft goal prefences;

• u is an utility function mapping each P ∈ P to a value in
R+

0

In the following the class of STRIPS+ with a set of prefer-
ences is indicated with STRIPS+P.

Definition 2 Let Π be a STRIPS+P problem with a set of
different kind of preference P . The utility u(π) of a plan
π solving Π is the difference between the total amount of
utility of the preferences by the plan and its cost u(π) =∑
P∈P:π|=typ(P)P

u(P) − c(π) where typ is a function that
map each P ∈ P to the respective type, i.e. typ : P →
{a, sb, st, amo, sg}

A plan π with utility u(π) for a STRIPS+P problem is
optimal when there is no plan π′ such that u(π′) > u(π).
The definitions below are introduced to simplify the notation
in the discussion.

Definition 3 Given a preference clause p = l1∨l2∨...ln, the
set L(p) = {l1, l2, ..., ln} is the equivalent set-based defini-
tion of p and L(p) = {¬l1,¬l2, ...,¬ln} is the literal com-
plement set of L(p).

Definition 4 Given an operator o ∈ O of a STRIPS+P
problem, Z(o) is the set of literal defined as: Z(o) =
(prec(o) \ {p | ¬p ∈ eff(o)−}) ∪ eff(o)+ ∪ eff(o)−.
Note that set Z(o) represents the literals certainly true in
the state resulting from the application of operator o.

Preferences and Class of Operators
In our compilation scheme of a STRIPS+P problem we have
to distinguish, for each kind of preference, different class of
operators that are specified in the following definitions. This
distinction is important in order to specialize the operators
compilation based on how they interact with the preferences
of the problem.

Definition 5 Given an operator o and CNF formula Φ of
a preference P of a STRIPS+P problem, we say that o can
make true Φ if:

• there is at least a clause ϕ of Φ such that L(ϕ)∩Z(o) 6= ∅
and L(ϕ) 6⊆ prec(o); we indicate the set of clause which
satisfy this condition as C(o,Φ); the complementary set
of the remaining clauses is defined as C(o,Φ) = {ϕ ∈
Φ | ϕ 6∈ C(o,Φ)}

• for each clause ϕ 6∈ C(o,Φ)⇒ L(ϕ) 6⊆ Z(o).

The first condition in Definition 5 requires that exists at least
a clause of the formula which contains some literals that be-
come certainly true in the state resulting from the execution
of o and that this clause is not true in the state where o is ap-
plied. The second condition requires that the other clauses
of the formula, which are not contained in C(o,Φ), are not
falsified in the resulting state from the application of o.

Always
An always preference has the following PDDL syntax
(always Φ) where the formula Φ has to hold in each reached
state of the plan.

Definition 6 Given an operator o and an always preference
P = (always Φ) of a STRIPS+P problem, o is a violation
of P if there is a clause φ of Φ such that:
L(p) ⊆ Z(o) ∧ L(p) 6⊆ prec(o).

If an operator violates a preference, the preference is un-
satisfied independently from the state resulting from the ap-
plication of the operator.

Definition 7 Given an operator o and a always preference
P of a STRIPS+P problem, o is a threat of P if it is not a
violation and there exists a clause p of P such that:
L(p) ∩ Z(o) 6= ∅ ∧ L(p) ∩ Z(o) = ∅ ∧ L(p) 6⊆ prec(o)

A clause p of P satisfying the condition of the defini-
tion above is a threatened clause of P . A threatened pref-
erence (clause) may be falsified by an operator depending
on the state where the operator is applied. The expression
L(p) 6⊆ prec(o) in Defintion 5-6-7 is necessary to avoids
that an operator o is considered a violation/threat when its
precondition is already violated in the state where it is ap-
plied. The set of always preferences of Π which are threat-
ened/violated by the operator o are denoted respectively
Tag(o) and Vag(o).

Definition 8 Given an operator o and a always preference
P of a STRIPS+P problem, o is a safe for P if:

• for all clauses p of P ,L(p)∩Z(o) 6= ∅ orL(p)∩Z(o) = ∅
holds;

• there exists a clause p such that L(p) ⊆ prec(o).

Sometime-Before
A sometime-before constraint has the following PDDL syn-
tax (sometime-before Φ Ψ), which in the following we ab-
breviate with 〈Φ,Ψ〉. The meaning of 〈Φ,Ψ〉 is that if Φ is
true in a state s then Ψ must have been true in state before s.

Definition 9 Given an operator o and a sometime-before
preference P = 〈Φ,Ψ〉 of a STRIPS+P problem, o is a po-
tential support for P if o can make Ψ true.

An operator that satisfied Definition 9 is a potential support
because its behaviour respect to the interested preference de-
pends by the state where o is applied and consequently from
the resulting state. We can distinguish two situations:

• if formula Ψ of P does not become true in the resulting
state, then o is a neutral operator;

• if P is not violated in the state s where o is applied and
the formula Ψ of P becomes true in the resulting state,
then o is a real support operator.

The compilation scheme must take account of both these
possibilities.

Definition 10 Given an operator o and a sometime-before
preference P = 〈Φ,Ψ〉 of a STRIPS+P problem, o is a po-
tential threat for P if o could make true Φ.

Similarly to definition 9 also in this case the potential threat
defines its behavior in correspondence of the consequences
of its application. We distinguish the following situations:

• if formula Ψ of P does not become true in the resulting
state, then o is a neutral operator;

• if formula Ψ of P becomes true in the resulting state and
the formula Φ has become true at least once in a earlier
state, than s is neutral otherwise if the formula Φ has
never become true, then o is a violation.

The set of sometime-before preferences of Π which are
potentially threatned/supported by the operator o are de-
noted respectively with Tsb(o) and Ssb(o).

Sometime
A sometime preference has the following PDDL syntax
(sometime Φ) where the formula Φ has to become true at
least once state in the plan state trajectory.

Definition 11 Given an operator o and a sometime prefer-
ence P = (sometime Φ) of a STRIPS+P problem, o is a
potential satisfying operator for P if o can make true Φ.
If an operator o can not make true Φ then the operator is
neutral for P .

The set of sometime preferences of Π which are potentially
satisfied by the operator o are denoted with Sst(o).

At-most-once
An at-most-once preference has the following PDDL syntax
(at −most − once Φ) where the formula Φ has to become
true at most once in the plan state trajectory.

Definition 12 Given an operator o and an at-most-once
preference P = (at−most−once Φ) of a STRIPS+P prob-
lem, o is a potential threat operator for P if o could make
true Φ.

We distinguish the following situations:

• if Φ has never become true in states earlier than the state s
where o is applied and Φ becomes true in the state result-
ing from the application of o in s, then the corrispondent
compiled operator o′ has to take account this fact, other-
wise, if Φ has become true in a earlier state, then o is a
violation;

• if Φ does not become true in the state resulting from the
application of o, then o is a neutral operator.

The set of at-most-once preferences of Π which are poten-
tially threatned by the operator o are denoted with Tamo(o).

Compilation intro STRIPS+
Definition 13 If an operator o ∈ O is safe for every always
preference in P and neutral for everey sometime-before, at-
most-once and sometime preference in P then we say that o
is neutral for the problem Π and we write this property with
neutral(o). The set containing all the neutral operators for
Π is defined as N(Π) = {o ∈ O | neutral(o)}.

Definition 14 Given an operator o ∈ O of a STRIPS+P
problem Π I(op) is the following set: {Ta(o) ∪ Tsb(o) ∪
Ssb(o) ∪ Tamo(o) ∪ Sst(o)} which contains all the prefer-
ences p ∈ P of Π which are affected by the execution of
o.

Given a STRIPS+P problem, an equivalent STRIPS+
problem can be derived by translation which has some
similarities to what proposed by Keyder and Geffner for
soft goals but also significant difference. The scheme
proposed by Keyder and Geffner is considerable simpler
than ours because it does not to consider the interaction
between actions and preferences such as threats, supports
and violations. In order to simplify the compilation scheme
we don’t consider the compilation of soft goals because
it can be easily added using the same method of Keyder
and Geffner. Moreover we assume that every always and
sometime-before preference is satisfied in the problem
initial state I .

Given a STRIPS+P problem Π = 〈F, I,O,G, P, c, u〉,
the compiled STRIPS+ problem of Π is Π′ =
〈F,′ I ′, O′, G′, P ′, c′〉 with:

• F = F ′ ∪ Va,sb,st,amo ∪ D ∪ C ∪ C ′ ∪
{normal-mode, end-mode, pause};

• I ′ = I ∪ C ′st ∪ Vst ∪ {normal-mode};
• G′ = G ∪ C ′;
• O′ = {collect(st), forgo(st) | st ∈ ST ⊆ P}∪{end}∪
Ocomp

• c′(o) =


u(st) if ifo = forgo(st), st ∈ ST
c(o) if o ∈ N(Π)
ctv(o) if o 6∈ N(Π)
0 otherwise

where:

• Va,sb,st,amo = ∪ki=1{Pi-violated}, k = |P |;
• D = ∪ni=1{Pi-doneo1 , ..., Pi-donem} where n = |O|

and m = |I(o)|;
• C ′st = {ST ′i | STi ∈ ST ⊆ P} and C ′st = {ST ′i |
STi ∈ ST ⊆ P}

• Vst ⊆ Va,sb,st,amo;
• collect(STi) = 〈{end-mode,¬STi-violated, ST ′i},
{ST ′,¬ST ′}〉

• forgo(STi) = 〈{end-mode, STi-violated, ST ′i},
{ST ′,¬ST ′}〉

• end = 〈{normal-mode,¬pause},
{end-mode, normal-mode}〉

• Ocomp = Oneutral ∪Ochained ∪Oviolation
• Oneutral = {〈pre(o) ∪
{normal-mode,¬pause}, eff(o)}〉 | o ∈ O ∧ o ∈
N(Π);

• Ochained and Oviolation are the compiled operators sets
generated by the transformation schema applied to the op-
erators of Π that threaten, violate or interact with at least a

preference of Π. An operator o ∈ O is compiled through
the compilation schema if |I(o)| > 0; the compiled op-
erators ochained of the non-neutral operators are defined
as:

⋃
o∈O,o6∈N(Π)

chain(o) where chain(o) is a function de-

fined further down;
• ctv(o) is the cost of an operator o 6∈ N(Π).

For each sometime preference ST , the transformation of
Π into Π′ adds a dummy hard goal ST ′ to Π′ which can
be achieved in two ways: with action collect(ST), that has
a cost 0 but requires that ST is satisfied, or with action
forgo(ST), that has a cost equal to utility of ST and can be
performed when ST is unsatisfied in sn. Note that the orig-
inal initial state I is extended with the Vst set, which con-
tains, for each ST ∈ STS ⊆ P , a literal is-violated-ST
stating that ST is violated until a o ∈ Sst(o) satisfies the as-
sociated formula. For each sometime preference exactly one
of {collect(ST), forgo(ST)} appears in the plan.
This approach is not used for every other kind of preference,
except sometime, whose violation is catched by the model
during planning and not at the end of the planning.

The compilation schema
Each operator o such that |I(o)| > 0, or equivalently
o 6∈ N(Π), is compiled into a set of new operators.
The set of the m preferences affected by o is I(o) =
{P1, ..., Pm}. Then o is compiled into a set of operators
chain(o) = {Θ(o, P1), ...,Θ(o, Pm)} where each Θ(o, Pi)
for i ∈ [1, ...,m] is a set of operators, called stage, re-
lated to an affected preference Pi ∈ I(o). The definition
of each stage Θ(o, Pi) depends on the kind of preference
typ(Pi) and the value of i. Furthermore the stage set are
built in order to execute the following operators sequence
ωchain(o) = 〈o′P1

, ..., o′Pm
〉 where o′Pi

, with i ∈ [1, ...m], is
selected from the i-th set Θ(o, Pi).

Given a not-neutral operator o of Π, the set of the
compiled operators related to o for Π′, called chain for o, is
defined as:

chain(o) =
⋃

pi∈I(o),i∈[1,...,|I(o)|]
Θ(o, pi)

This set is called chain because the operators in each
stage are built in order to force the sequential execution of
ωchain(o).

In this presentation I provide the detailed descripion for
the compilation of an operator o that affects the i-th at-most-
once preference in I(o).

Definition 15 The compilation-method for the translation
of a non-neutral operators o that affect the i-th at-most-
once preference Pi = (at-most-once ai) where ai =

∧
j

aij

(where aij is a clause) of I(o) is:

• if i = 1 (init stage):
prec(oa1) = prec(o) ∪ {¬pause,¬is-violated-a1,
¬seen-a1} ∪

{⋃
a1j∈C(o,ai)

a1j

}
eff(oa1) = {pause, seen-a1, a1-doneo}

prec(oa1) = prec(o) ∪ {¬pause,¬is-violated-a1,
seen-a1} ∪

{⋃
a1j∈C(o,a1) a1j

}
eff(oa1) = {pause, is-violated-a1, a1-doneo}

prec(oa1) = prec(o) ∪ {¬pause,¬is-violated-a1} ∪
¬
{∧

a1j ∈ C(o, ai)a1j

}
eff(oa1) = {pause, a1-doneo}

prec
(
oa1

)
= prec(o) ∪ {¬pause, is-violated-a1}

eff
(
oa1

)
= {pause, a1-doneo}

• if 1 < i < m = |I(o)| (middle stage):
prec(oai) = {pause,¬is-violated-ai,
¬seen-ai, ai−1-doneo} ∪

{⋃
aij∈C(o,ai)

aij
}

eff(oai) = {pause, seen-ai,¬ai−1-doneo, ai-doneo}

prec(oai) = {pause,¬is-violated-ai,
seen-ai, ai−1-doneo} ∪

{⋃
aij∈C(o,ai)

aij
}

eff(oai) = {pause, is-violated-ai,¬ai−1-doneo, ai-doneo}

prec(oai) = {pause,¬is-violated-ai, ai−1-doneo} ∪
¬
{∧

aij ∈ C(o, ai)aij
}

eff(oai) = {pause,¬ai−1-doneo, ai-doneo}

prec
(
oai

)
= {pause, is-violated-ai, ai−1-doneo}

eff
(
oai

)
= {pause, ai−1-doneo,¬ai−1-doneo, ai-doneo}

• if i = m (final stage):
prec(oam) = {pause,¬is-violated-am,
¬seen-am, am−1-doneo} ∪

{⋃
amj∈C(o,am) amj

}
eff(oam) = eff(o) ∪
{¬pause, seen-am,¬am−1-doneo }

prec(oam) = {pause,¬is-violated-am,
seen-am, am−1-doneo} ∪

{⋃
amj∈C(o,am) amj

}
eff(oam) = eff(o) ∪
{¬pause, is-violated-am,¬am−1-doneo }

prec(oam) = {pause,¬is-violated-am, am−1-doneo}∪
¬
{∧

amj ∈ C(o, am)amj
}

eff(oam) = eff(o) ∪
{¬pause,¬am−1-doneo }

prec
(
oam

)
= {pause, is-violated-am, am−1-doneo}

eff
(
oam

)
= eff(o) ∪

{¬pause, am−1-doneo,¬am−1-doneo }

In accordance with Definition 12 the i-th stage
θamo(o, Pi) providing the following possible choices:

• oai is a neutral operator for Pi which asserting that the
related formula ai has been seen for the first time;

• oai is a violation of Pi because the related formula ai has
been true in a previous state;

• oai is a neutral operator for Pi because it does not make
ai true;

• oai is a neutral operator for Pi because it has already been
violated in a previous state.

Conclusion
In my first years of PhD, I have worked on the compilation of
PDDL 3.0 preferences into STRIPS with action costs. As a
base I started from two works of (Keyder and Geffner 2009),
for the compilation of soft goal, and (Ceriani and Gerevini
2015) for the compilation of always goal. I have developed a
new compilative scheme for three type of preference which
were not considered in the previous work. All the propose
compilative methods have been implemented and prelim-
inary experiments show that the investigated approach is
competitive in terms of performance with other existing ap-
proaches to planning preferences.

References
Ceriani, L., and Gerevini, A. E. 2015. Planning with always
preferences by compilation into strips with action costs. In
Eighth Annual Symposium on Combinatorial Search.
Gerevini, A. E.; Haslum, P.; Long, D.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic planning in the fifth inter-
national planning competition: Pddl3 and experimental eval-
uation of the planners. Artificial Intelligence 173(5):619–
668.
Keyder, E., and Geffner, H. 2009. Soft goals can be com-
piled away. Journal of Artificial Intelligence Research 547–
556.

