
Using GORE method for Requirement Engineering of Planning & Scheduling

Javier Martnez Silva
Department of Mechatronics Engineering

University of São Paulo, São Paulo, Brazil,
Professor Morais, 2231

Abstract

The growing interest in the automated planning com-
munity seeks for new and better results for real applica-
tions. Requirements’ analysis is a key issue over design
and needs to be enhanced to fit users and stakeholder ex-
pectations. Such scenario make the researchers to focus
on Knowledge Engineering (KE) applied in elicitation
of planning problems and domains - mainly the early
stage of the process. This proposal introduces the ap-
plying of GORE method for Engineering Requirement
of planing domain modeling.

Introduction
The Knowledge Engineering for planning automated col-
lects contributions of crucial works of researchers such as
Prof. Thomas Lee McCluskey, who since the early 90s be-
gan to publish papers in this field (McCluskey and Porteous
1993). Researching in design process for building knowl-
edge models in real fields with high quality and reliability
(McCluskey 2002), and the study of requirement engineer-
ing methods applied with existing automated planning tech-
niques are key objectives of this field (Vaquero et al. 2013).

In this scope, O-Plan was one of precursor tool in acquisi-
tion and modeling knowledge of planning on an tasks-driven
approach. Most recent distribution is a web service, which is
used in a wide range of dependent-domain applications (Tate
and Dalton 2003).

SIPE involves an ACT (Myers and Wilkins 1997) ap-
proach, in which a system is able to give response to events
in real time by performing a best possible action. Modeling
of all knowledge required to generate plan is possible while
external events are occurring.

Both, O-Plan and SIPE planners are predecessors for
GIPO, one of the planners registered in literature with
mechanisms for acquiring and modeling knowledge of
independent-domain applications (Simpson et al. 2001). It
address to the syntactic and semantic verification of models,
improving the performance of planners; the import and ex-
port from domain definitions to PDDL format; integration
of planning algorithms jointly with its execution and simu-
lation provides a friendly environment for users. Graphical

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

representation of dynamic objects through state machines
(Simpson 2005) (Simpson 2007) is allowed since version III.

ItSIMPLE is another tool based an object-oriented ap-
proach helping to designers achieve a detailed model of the
domain (Vaquero et al. 2007). The must relevant contribu-
tion is the use of Unified Modeling Language (UML) pro-
viding diagrams such as use cases, classes, state machines,
time and objects. Classes, properties, relationships and con-
straints are defined in the class diagram, thus are modeling
static characteristics of the domain.

Table 1 shows PDDL as domain modeling language by
the most of the tools.

Tools Domain model
DISCOPLAN PDDL

EUROPA Action Notation Modeling Language

GIPO PDDL

FlowOpt Work-Flow Modeling

itSIMPLE UML

JABBAH Business Process Management Notation

ModPlan PDDL

VIZ Non-Standard graphical diagrams

Figure 1: Main tools and its approach for modeling problem
domain

EUROPA (Extensible Universal Remote Operations Plan-
ning Architecture) (Barreiro et al. 2012) was designed to
support planning for complex systems, such as spacecraft
and rovers, combining two abstractions: Constraints Satis-
faction Problems and networks for modeling Simple Tempo-
ral Problems. Domain of real problems is modeled by struc-
tures called Objects with ANML (Action Notation Model-
ing Language) as input language on a strategy state / activity
(Smith, Frank, and Cushing 2008).

FlowOpt model processes over a workflow approach sim-
plified guiding users to create correct models (Bartak and
Cepek 2008); JABBAH combines modeling using BPMN
language (Business Process Management Notation) with a
workflow approach (Gonzalez 2009); and finally VIZ with
a graphic language simple non-standard for describing the
planning areas. All these tools enable translation of domain

models to standard PDDL language (Vodrazka and Chrpa
2010).

Even PDDL being the must used language, PLEXIL
(Plan Execution Interchange Language) is another language
which is originally developed as a collaborative effort be-
tween NASA researchers and Carnegie Mellon University,
for plans representation on real or simulated systems, in
robotics, automation of operations in human habitats and
systems involving intelligent software agents.(Biatek et al.
2014).

Of all these tools, itSIMPLE was the first to introduce re-
quirement engineering techniques applied to planning prob-
lems (Vaquero and Silva 2009): requirements and relevant
knowledge of the different viewpoints involved are repre-
sented by the diagram of use cases, a semi-formal represen-
tation of the UML language (OMG 2005).

GORE methods
Goal-Oriented Requirement Engineering (GORE) is a sub-
area of Requirement Engineering (RE), which addresses us-
ing of goals for eliciting, elaborating, structuring, specify-
ing, analyzing, negotiating, documenting, and modifying re-
quirements (Van Lamsweerde 2000).

In the literature are registers a wide number of goal def-
initions: Goals as high level objectives of business, organi-
zation or system; they capture the reasons why a system is
needed and guide decisions in various levels within the en-
terprise (Potts, Takahashi, and Antón 1994). A goal is a con-
dition or state which engaging issues of the world achieved
by an agent (Van Lamsweerde 2000)(Yu, Dubois, and My-
lopoulos 1995). According to (Lamsweerde 2004) a goal is a
prescriptive statement declaring the purpose of some (exist-
ing or to-be) systems whose satisfaction generally emerged
from collaboration between agents with some responsibil-
ity over the system. These goals guide requirement elabo-
ration process resulting in the definition of domain-specific
requirements.

Goals cover different kinds of concerns: functional con-
cerns associated with services to be requested, and non-
functional concerns with quality of service (safety, security,
accuracy, performance, and so forth) (Chung et al. 2012).
Also goal issues are defined in Artificial Intelligence field -
specifically in classical planning & scheduling problem in
which solution is a sequence of actions (plan) that end in
a state entailing some goal previously defined (Russell and
Norvig 2010).

GBRAM [Bib19], I* framework (Potts, Takahashi, and
Antón 1994), NFR (Chung et al. 2000), KAOS (Van Lam-
sweerde 2001), Goal/Strategy Map (Bider et al. 2005), GLR
(Grigorev and Kirilenko 2013) are some methods based on
GORE. Of these, KAOS and I* are the most cited.

KAOS method
KAOS approach is an goal-oriented implementation of
GORE method which involves a rich set of formal analy-
sis techniques based on Linear Time Logic (LTL). Indeed,
KAOS stands for Keep All Objectives Satisfied(Lamsweerde
2009), describing a multi-paradigm framework that com-

bines different levels of reasoning: semi-formal, for mod-
eling and structuring goals; and formal, based in the linear
time logic formalism. Therefore, KAOS combines a seman-
tic net of basic concepts such as assumptions, operations, ob-
jects and agents, with linear time logic(Lamsweerde 2009).

Basically, KAOS is a goal-driven elaboration method that
provides a specification language for capturing WHY, WHO
and WHEN aspects in addition to the usual WHAT require-
ments.

Graphically, goals are represented in KAOS diagram by
parallelograms, while requirement borders are drawn in bold
line and agents are represented by hexagons as in Fig.2,
goal diagram for block world problem (Russell and Norvig
2010).

Ach[A final configuration is reached when
a block initial configuration was defined]

Ach[A block is
pickup]

Ach[A block is
stacked]

Ach[A block is
put down]

Ach[A block is
unstacked]

Robot

Figure 2: Goal Diagram of simple block world

I* method
I* method is a conceptual modeling technique for model-
ing and reasoning organizational environments and their in-
formation systems introduced by (Yu 1994). Strategic De-
pendency and Strategic Rationale models are key models
of I* approach. Strategic Dependency model describes re-
lationships of dependency among various agents over orga-
nizational environment. Strategic Rationale model describes
stakeholders’ concerns and viewpoints over the system and
environment.

Fig.3 shows Strategic Dependency diagram of the same
block problem. Analyzing of this model, shows how ac-
tors are key strategic into I* for representing motivations,
intents and rationale behind actions to achieve goals. Next,
we comparing both approaches with focus on modeling non
functional requirements (NFR); understanding a boundary
between system and it environment; modeling of objects in-
volved in knowledge domain and actor’s concerns.

KAOS versus I*
NFR in KAOS are mainly treated as goals and I* models as
soft-goals which allowing for qualitative reasoning. Same
mission of goal model in KAOS, help to clarify a boundary
between a software-to-be and its environment. This model
is organized in a tree where leaves are assignable to sin-
gle agents (software or human). If leaves are assigned to the
software-to-be, model as a requirement and if is assigned to
environment agent is an assumption, respectively.

Objects related with knowledge domain can be modeled
through of one of KAOS diagrams: Object Diagram. In I*

Achieve a final configuration when a
block initial configuration was defined

Pickup a
block

Stack a
block

Put down a
block

Unstack
a block

Pickup Stack
Put

Down Unstack

Block

Robot

Figure 3: Strategic Dependency Diagram of simple block
World

are represented by resources as dependence between agents.
Fig.4 shows Object Diagram from goals modeled in Goal

Diagram.

Block

 clear : Boolean

on

Table

 available : Boolean

onTable

Robot

holding

 pickUp(r : Robot, b : Block, t : Table)
 putDown(r: Robot, b : Block, t : Table)
 stack(r : Robot, a : Block, b : Block, t : Table)
 unStack(r : Robot, a : Block, b : Block, t : Table)

Figure 4: Object Diagram of simple block world

Another advantage of KAOS method is its potentiality of
express to behavioral goals a formal representation in Linear
Time Logic (LTL) formalism:

Goal Achieve A block is stacked
Def. Formal ∀(a, b : Block)

[stacked(a, b)→ ♦(On(a, b),
b.clear = false)]

Where goals are expressed formally as:

C ⇒ ΘT

C is the current condition, T is the target condition and Θ
is one of the LTL operators represented in Table1.

These operators can be quantified by a time stamp d , so
that♦d means eventually in the future before deadline d, and
�d means always in the future up to deadline d.

Table 1: Temporal Logic Operators
Operator Description
© In the next state
♦ Eventually in the future
� Always in the future

GORE for planning & scheduling

A key challenge aims to modeling the planning & schedul-
ing problems features through requirements using formal
methods - even for medium and large problems - with a
schematic language, a first stage of eventual verification and
validation from initial models to a consistent model transfer-
able to automatic planners in a later stage.

Our proposal is to provide a clear process for design early
stage in which modeling of requirements is a systematic
process using GORE method, considering time constraints
(such as the duration of sub-processes) and methods for re-
quirement analysis using Petri nets, guaranteeing a consis-
tent input to the automated planners.

Fig.5 provides an overview of steps to follow on the de-
sign of planning problem proposed by (Vaquero et al. 2013).

R
eq

ui
re

m
en

t
sp

ec
if

ic
at

io
n

K
no

w
le

dg
e

m
od

el
in

g

M
od

el

an
al

ys
is

M
od

el

pr
ep

ar
at

io
n

Pl
an

/S
ch

ed
ul

e
Sy

nt
he

si
s

Pl
an

/S
ch

ed
ul

e
an

al
ys

is
 a

nd

po
st

-d
es

ig
n

PDDL

XML

Petri Nets

GORE

Figure 5: How is added GORE methods over early design
phases of planning problems proposed by (Vaquero et al.
2013)

Over these phases, we propose GORE for requirement
specification and knowledge modeling stages, and Petri Net
formalism in the later stage to modeling and analyzing op-
erations associated to certain goals. XML is proposed for
parsing and as starting point in obtaining of PNML(XML
alternative for Petri nets).

Improving the design of problems in planning &
scheduling- specifically on the early steps of elicitation and
analysis of requirements- using GORE (Goal Oriented Re-
quirement Engineering) will provide a comparison study - in
terms of formalization - with other approaches as UML.

References
Barreiro, J.; Boyce, M.; Do, M.; Frank, J.; Iatauro, M.;
Kichkaylo, T.; Morris, P.; Ong, J.; Remolina, E.; Smith, T.;
et al. 2012. Europa: A platform for ai planning, schedul-
ing, constraint programming, and optimization. In Proceed-
ings of the 22nd International Conference on Automated
Planning & Scheduling (ICAPS-12)–The 4th International
Competition on Knowledge Engineering for Planning and
Scheduling.
Bartak, R., and Cepek, O. 2008. Nested precedence net-
works with alternatives: Recognition, tractability, and mod-
els. Artificial Intelligence: Methodology, Systems, and Ap-
plications 235–246.
Biatek, J.; Whalen, M. W.; Heimdahl, M. P.; Rayadurgam,
S.; and Lowry, M. R. 2014. Analysis and testing of plexil
plans. In Proceedings of the 2nd FME Workshop on Formal
Methods in Software Engineering, 52–58. ACM.
Bider, I.; Johannesson, P.; Nurcan, S.; Etien, A.; Kaabi, R.;
Zoukar, I.; and Rolland, C. 2005. A strategy driven business
process modelling approach. Business Process Management
Journal 11(6):628–649.
Chung, L.; Nixon, B.; Yu, E.; and Mylopoulos, J. 2000. Nfr
in software engineering.
Chung, L.; Nixon, B. A.; Yu, E.; and Mylopoulos, J. 2012.
Non-functional requirements in software engineering, vol-
ume 5. Springer Science & Business Media.
Gonzalez, A. 2009. JABBAH: A Java application frame-
work for the translation between business process models
and HTN. Association for the Advancement of Artificial In-
telligence 28–37.
Grigorev, S., and Kirilenko, I. 2013. Glr-based abstract pars-
ing. In Proceedings of the 9th Central & Eastern European
Software Engineering Conference in Russia, 5. ACM.
Lamsweerde, A. V. 2004. Elaborating security require-
ments by construction of intentional anti-models. Proceed-
ings. 26th International Conference on Software Engineer-
ing (May):148–157.
Lamsweerde, A. v. 2009. Requirements Engineering: From
System Goals to UML Models to Software Specifications,
volume I. Wiley.
McCluskey, L., and Porteous, J. M. 1993. Two Complemen-
tary Techniques in Knowledge Compilation for Planning. In
Proceedings of the 3rd International Workshop on Knowl-
edge Compilation and Speedup Learning.
McCluskey, L. 2002. Knowledge Engineering: Issues for
the AI Planning Community. Proceedings of the AIPS-2002
Workshop on Knowledge Engineering Tools and Techniques
for AI Planning, Toulouse, France.
Myers, K. L., and Wilkins, D. E. 1997. The Act Formalism.
SRI International Artificial Intelligence Center.
OMG. 2005. UML 2.0 OCL Specification.
Potts, C.; Takahashi, K.; and Antón, A. I. 1994. Inquiry-
based requirements analysis. IEEE software (2):21–32.
Russell, S., and Norvig, P. 2010. Artificial Intelligence. A
Modern Approach. Pearson Education, Inc, third edit edi-
tion.

Simpson, R.; McCluskey, L.; Zhao, W.; S, A. R.; and Do-
niat, C. 2001. GIPO: an integrated graphical tool to support
knowledge engineering in AI planning. Proceedings in Eu-
ropean Conference on Planning (ECP-2001).
Simpson, R. M. 2005. Gipo graphical interface for plan-
ning with objects. International Competition on Knowledge
Engineering for Planning and Scheduling 34–41.
Simpson, R. 2007. Structural domain definition using GIPO
IV. In Proc. 2nd Int. Competition on Knowledge Engineer-
ing for Planning and Scheduling 3(Hoffmann).
Smith, D.; Frank, J.; and Cushing, W. 2008. The anml lan-
guage. Proceedings of ICAPS-08.
Tate, A., and Dalton, J. 2003. O-Plan: a Common Lisp
planning web service. Proceedings of the International Lisp
Conference.
Van Lamsweerde, A. 2000. Requirements engineering in
the year 00: a research perspective. In Proceedings of the
22nd international conference on Software engineering, 5–
19. ACM.
Van Lamsweerde, A. 2001. Goal-oriented requirements
engineering: A guided tour. In Requirements Engineering,
2001. Proceedings. Fifth IEEE International Symposium on,
249–262. IEEE.
Vaquero, T. S., and Silva, R. 2009. From Requirements and
Analysis to PDDL in itSIMPLE3.0. Proceedings of the
Vaquero, T.; Romero, V.; Tonidandel, F.; and Silva, R. 2007.
itSIMPLE 2.0: An Integrated Tool for Designing Planning
Domains.
Vaquero, T. S.; Beck, J. C.; McCluskey, L.; and Silva, R.
2013. Knowledge Engineering for Planning & Scheduling:
Tools and Methods. 1:1–15.
Vodrazka, J., and Chrpa, L. 2010. Visual design of plan-
ning domains. In: Proceedings of ICAPS 2010 workshop on
Scheduling and Knowledge Engineering for Planning and
Scheduling (KEPS) 2–3.
Yu, E.; Dubois, E.; and Mylopoulos, J. 1995. From or-
ganization models to system requirements. a cooperating
agents approach. In in: 3rd Intl. Conf. on Cooperative Inf.
Sys.(CoopIS-95. Citeseer.
Yu, E. 1994. Modeling strategic actor relationships for pro-
cess reengineering. Ph.D. Dissertation, PhD Thesis, Univer-
sity of Toronto.

