
Extended Abstract:
Risk-Sensitive Planning with Dynamic Uncertainty

Liana Marinescu
Department of Informatics, King’s College London

liana.marinescu@kcl.ac.uk

Publications produced
To cite the heuristic described in this paper, please refer to:

Heuristic Guidance for Forward-Chaining Planning with
Numeric Uncertainty (Marinescu and Coles 2016).

1 Introduction
Many compelling applications of planning arise from sce-
narios that are inherently uncertain. In some cases it is possi-
ble to adequately capture the dynamics of the world without
modeling uncertainty, and thus to employ classical planning
techniques. However, in many other cases it is impossible
to ignore uncertainty without hindering the planner’s knowl-
edge about the world, and hence obtaining sub-par solutions.

Our research on uncertainty so far is twofold:

• Improving heuristic guidance for problems with numeric
uncertainty, by including relevant probabilistic informa-
tion in the heuristic (with a negligible computational
cost).

• Extending prior work on building a policy offline for
problems with nondeterministic action outcomes (Muise,
McIlraith, and Beck 2012), by allowing it to support con-
tinuous numeric uncertainty.

The first contribution is focused on finding plans for
models where there is uncertainty in the outcomes of nu-
meric effects (each governed by a continuous probability
distribution). The task is to find a plan where all the pre-
conditions are met, and the goals are reached, with some
confidence θ. This paradigm has been explored by pre-
vious work, e.g. (Beaudry, Kabanza, and Michaud 2010;
Coles 2012); our first contribution is in providing effective
heuristic guidance in such a setting.

The second contribution – extending prior work on propo-
sitional uncertainty to numeric uncertainty – revolves around
offline planning. The task is to build a policy offline for
models where action outcomes have a set of discrete, non-
deterministic effects. The class of propositional problems
has been addressed by Muise (Muise, McIlraith, and Beck
2012), but numeric uncertainty still remain a challenge. We
have extended one of the basic mechanics of policy-building
– that of regression (applying an action ”backwards” in a
state, to obtain a sufficient predecessor state) – from the
propositional case, to the case of independently distributed
Gaussian numeric uncertainty.

2 Background: Continuous Uncertainty on
Actions’ Outcomes

To begin with, we build on the state-progression semantics
of the planner RTU (Beaudry, Kabanza, and Michaud 2010).
Actions have propositional and numeric preconditions and
effects, as in classical numeric planning, but the numeric ef-
fects have outcomes that are drawn from probability distri-
butions. We say that each effect is of the form 〈v op D(v)〉
where op ∈ {+=,=} and D is a (possibly deterministic)
probability distribution that governs the range of outcomes
of the effect. For example:

• 〈battery += N (−10, 22)〉 – decrease battery by an
amount with mean 10 and standard deviation 2.

• 〈coal += N (15, 32)〉 – increase coal by an amount with
mean 15 and standard deviation 3.

• 〈position error = N (0, 12)〉 – reset the position error to
0 with standard deviation 1 (e.g. after calibration).

In addition to this, we have a confidence level θ ∈ [0.5, 1):
because numeric effects have uncertain outcomes, we need
to prescribe how certain we must be that each numeric con-
dition is satisfied.

A Bayesian network (BN) is used to define the belief of
each v, and as actions are applied, the network is updated
with additional variables. In a state Si, for each vj ∈ v, a
variable vji is associated with the belief of v. If an action
a is applied, leading to a state Si+1, then for each numeric
effect 〈vj op D(v)〉, two random variables are added to
the network. The first of these, Dj

i+1, represents D(v). The
second, vji+1, is associated with the belief of v in Si+1, and
it is determined by either:

• vji+1 = vji +Dj
i+1, if op is +=;

• vji+1 = Dj
i+1, if op is =.

The BN is key to determining whether a plan meets the
required confidence level θ. An action a is applicable in a
state Si if Pre(a) is satisfied. A sequential (linear) solution
is a sequence of steps [a0, .., an], implying a state trajectory
[I, S0, .., Sn]. We use the BN to ensure that with P ≥ θ, in a
given execution of the plan, each action’s preconditions are
met and Sn satisfies any hard goals.

The state progression formalism of Beaudry et al was
adopted and extended by Coles (2012) as the basis of an



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1

median

offset

(1-θ)'th
%ile

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-4 -3 -2 -1 0 1 2 3 4

median

offset

(1-θ)'th
%ile

Figure 1: Possible probability distributions: Arbitrary (left)
and Gaussian (right).

over-subscription planning approach. A forward-chaining
planner following these semantics was used to find a single
plan, onto which branches were added by making additional
calls to the planner. A range of other approaches have been
adopted for planning under uncertainty, such as those based
on the use of Markov Decision Processes, e.g. (Meuleau et
al. 2009; Mausam and Weld 2008; Rachelson et al. 2008);
these approaches are particularly useful when a policy needs
to be found. As our first contribution is on the heuristic in-
side a forward-chaining planner, our focus will be on plan-
ning under the semantics of RTU described above.

3 Heuristic Guidance for Forward-Chaining
Planning with Numeric Uncertainty

3.1 Relaxing Numeric Uncertainty
In deterministic forward-chaining numeric planning, one
way to guide search is the Metric Relaxed Planning Graph
(RPG) heuristic (Hoffmann 2003). This performs a forward
reachability analysis that estimates the number of actions
needed to reach goals by relaxing the effects of actions. For
numeric state variables, this amounts to estimating reachable
bounds on the values of variables, by optimistically assum-
ing that increase effects only increase the upper bound, and
decrease effects only decrease the lower bound.

When working with RTU’s semantics, Coles (2012)
adapted this to assume for heuristic purposes that each vari-
able takes its median value. From Jensen’s inequality, we
know that if θ ≥ 0.5, this is guaranteed to be a relaxation.
However, as θ becomes large, it also means the heuristic is
increasingly unrealistic: a numeric condition might be true
assuming variables take their median values; but not when
accounting for the uncertainty in their values. In this section,
we will present two strategies that improve on this:

• we incorporate the shape of the distribution on variables’
values in the heuristic evaluation, rather than discarding it
and using the median;

• for Gaussian distributions, we explicitly track the uncer-
tainty of variables in the relaxed planning graph.

Heuristic Guidance with Monotonically Worsening Un-
certainty Uncertainty can affect problems in two ways: it
either gets worse monotonically (error accumulates and no
action can rectify it); or it may be purposefully corrected
(there may be actions that reduce the error, such as recharg-
ing batteries to a fixed value, or visiting a precise weighing
station).

We first discuss the case of monotonically worsening un-
certainty. Outside the heuristic, each precondition is of the
form w.v ≥ c, and a Monte Carlo simulation is used to
estimate the probability distribution of w.v. Using this dis-
tribution, we can test whether the condition is satisfied with
probability θ, i.e. whether the (1 − θ)’th percentile of w.v
is ≥ c. We represent this percentile as follows:

p1−θ(w.v) = median(w.v)− offsetθ(w.v)

In effect, offsetθ is the margin of error that must be toler-
ated, for the precondition to be true with probability θ. We
illustrate the intuition behind this margin in Figure 1. The
condition itself can then be rewritten:

median(w.v) ≥ c+ offsetθ(w.v) (1)

We define that uncertainty is monotonically increasing if
offsetθ can never decrease. In this case, it is still a relax-
ation to use the offset values when determining which pre-
conditions are true in the heuristic – the only way to make
the condition true would be to apply actions that affect the
values of v, as no actions that decrease offsetθ exist.

An illustrative example would be an autonomous car with
a certain amount of fuel, which is used gradually until it runs
out; refueling is not possible. The activities performed by
the car (e.g. start engine, accelerate, stand still, park) each
require fuel, but the amount varies non-deterministically. As
the plan is constructed, uncertainty and hence offsetθ accu-
mulates monotonically. We can thus heuristically evaluate a
state by assuming offsetθ is constant, and takes its current
value; this is guaranteed to be a relaxation, as offsetθ can
never become smaller.

Heuristic Guidance with Gaussian Uncertainty So far,
we explained how to incorporate distributions on the left-
hand side of preconditions (w.v) into heuristic computa-
tion, by using the offsetθ value to capture uncertainty in-
formation. The relaxation holds when error accumulates and
cannot be lowered. However, problems may contain actions
such as recharge-batteries or visit-weigh-station, which re-
duce uncertainty.

The challenge in these sorts of problems is to ensure the
heuristic remains a relaxation. This is possible in a useful
subset of domains, where the uncertainty is due to indepen-
dent Gaussian-distributed effects on variables, and therefore
has an analytic form. We can utilize this form and extend the
Metric RPG to additionally track the variance on each vari-
able, σ2(v). The expansion phase, building the RPG, pro-
ceeds as follows:

• For each variable v ∈ v, we track the upper and lower
bound on its median value. In the first RPG layer, these
are equal to the value of v in the current state S. We ad-
ditionally track σ2(v), the variance on v. In the first RPG
layer, this is the value according to the BN for S.

• In a regular RPG, if a numeric effect is applied that in-
creases (decreases) some v ∈ v, the upper (resp. lower)
bound on v at the next fact layer is updated accordingly.
Now, additionally, if a numeric effect decreases σ2(v), the
lower bound on σ2(v) at the next fact layer is decreased1.
1Effects increasing σ2(v) are ignored. If θ ≥ 0.5, adding more



Algorithm 1: RPG Solution Extraction
Data: RPG , a relaxed planning graph
Result: p, a relaxed plan
last ← last layer index in RPG ;1
goals[last ]← G (i.e. the problem goals);2
for l ∈ [last ..0] do for (w.v ≥ c) ∈ goals[l] do3

prev ← max value of w.v in layer l-1;4

prev σ2 ← min value of σ2(w.v) in layer l-1;5

prev offsetθ ← prev σ.Φ−1(θ);6
if prev ≥ c+ prev offsetθ then7

add (w.v ≥ c) to goals[l-1]; continue;8

for (w.v) ∈ w.v where w 6= 0 do9
Choose actions from l-1 that increase (w.v);10
Add them to the relaxed plan and subtract their11
effects from c;
if prev ≥ c+ prev offsetθ then break;12

if prev ≥ c+ prev offsetθ then13
add (w.v ≥ c) to goals[l-1]; continue;14

max offset ← prev − c;15

max σ2 ← (max offset/Φ−1(θ))2;16

add (−σ2(w.v) ≥ −max σ2) to goals[l];17
add (w.v ≥ prev) to goals[l-1];18

• To decide which actions are applicable in each layer, we
take variance into account when checking precondition
satisfaction, as follows. For a precondition of the general
form w.v ≥ c, we can use the additive properties of Gaus-
sians to compute the variance of w.v:

σ2(w.v) =
∑

w.v∈w.v
w2.σ2(v)

We obtain the offset using the Gaussian quantile function:
offsetθ(w.v) = σ(w.v).Φ−1(θ)

Hence, from Equation 1, the precondition becomes:
median(w.v) ≥ c+ σ(w.v).Φ−1(θ)

This gives us everything we need to build an RPG. We
can be confident that the offsetθ values used are relaxations,
because smaller values of variance result in smaller values
of the Gaussian quantile function Φ−1; and the semantics of
the RPG guarantee we will underestimate variance.

The next step is to extract a relaxed plan from the RPG;
we illustrate this in Algorithm 1. The first thing to note is
on lines 5 and 6, where we compute the offsetθ necessary
for the condition to be met. Actions are then chosen in the
standard way to attempt to meet the precondition, given this
value of offsetθ. Then, if line 13 is reached and the precon-
dition is still not true, it must mean that a decrease in vari-
ance caused it to become true at layer l (having been false at
layer l-1). We now need to choose actions that decrease vari-
ance enough to achieve this. On line 15, we work out what
offsetθ needs to be reduced to in order to make the precon-
dition true; we then compute its corresponding variance on

uncertainty never contributes towards preconditions becoming true,
so it suffices to track only the smallest reachable values of variance.

line 16. This variance can then be used to construct a new
condition to be satisfied at this layer: this causes actions to
be added to the relaxed plan in order to reduce variance on a
later iteration of the loop.

As a result of the algorithm described above, the relaxed
plan now contains uncertainty-reducing actions. This makes
for a better-informed heuristic, which is able to provide im-
proved guidance and dead-end detection to the search, as
will be demonstrated in the following section.

3.2 Evaluating the new Heuristic
We evaluate on three domains: Rovers and AUV from (Coles
2012); and a variant of TPP from (Gerevini et al. 2009). In
Rovers, the activities of a planetary rover are constrained
by battery usage, which has Gaussian uncertainty, and the
battery can only be recharged at certain locations. In TPP,
the domain is modified to model the acquisition of suffi-
cient amounts of bulk materials (e.g. coal), and trucks can
visit weighing stations at some suppliers to top up or shed
excess load, which reduces uncertainty. AUV is an over-
subscription problem where the activities of an underwater
vehicle must be planned with a strict bound on total time
taken, and with normally distributed activity durations. Tests
were performed on 3.5GHz Core i5 machines with a limit of
4GB of memory and 1800s of CPU time.

Overall, the new heuristic leads to faster planner perfor-
mance; the time-to-solve scatterplots look the same as the
nodes-generated scatterplots in Figure 2. The extra compu-
tational work (tracking variances etc.) does not adversely af-
fect the time taken to heuristically evaluate a state. Thus,
because significantly fewer states need to be evaluated, and
state evaluation times are comparable, the performance of
the planner is significantly better.

For the Rovers domain (Figure 2a), most striking are the
points on the far right of the graph – these indicate prob-
lems that were previously unsolvable but can now be solved.
In part, this is because the new heuristic is able to recog-
nize many more states as being dead ends, because it does
not disregard uncertainty on the battery level when evaluat-
ing preconditions. In contrast, by ignoring uncertainty, the
old relaxed plans relied on moving somewhere to recharge,
even though in reality uncertainty made it impossible for that
move action to be applied. The new heuristic often avoids
this pitfall by accounting for uncertainty to a greater extent.

In TPP (Figure 2b), all the problems could be solved by
both the old and the new heuristic. However, by not ac-
counting for uncertainty, the old heuristic can reach states
in which the relaxed plan does not need to buy any more
of any goods. In these states, the heuristic value is 0. As
acquiring additional goods requires combinations of travel
and buy actions, a substantial amount of search must be per-
formed with no effective heuristic guidance. Unlike Rovers,
there are no dead ends due to these travel actions, so this
blind search will succeed, but is very time consuming – in
problems furthest from the line y = x, the majority of nodes
evaluated have an old heuristic value of 0.

AUV is an over-subscription problem: search reports a so-
lution plan every time it finds one that solves more goals
than the best so far. We are hence interested in the search



10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
1

10
2

10
3

10
4

10
5

10
1

10
2

10
3

10
4

10
5

101

102

103

104

101 102 103 104

2nd Solution

3rd Solution

4th Solution

(a) Rovers (b) TPP (c) AUV
Figure 2: Nodes generated to solve problems in the three evaluation domains. Axes are logarithmic, comparing prior work (X
axis) with the new heuristic (Y axis). The Two-Tailed Wilcoxon Signed-Rank Test confirms results are significant to P ≥ 0.95.

effort to find progressively better solutions. Figure 2c com-
pares the nodes generated by each configuration to find the
2nd, 3rd and 4th solutions. (These correspond to satisfying
1, 2, and 3 goals respectively.) The relaxed plans produced
by the old heuristic, by ignoring uncertainty, more often use
actions that there is actually no time to complete. Disregard-
ing uncertainty is less of an impediment than in Rovers and
TPP, as there is no scope for planning actions that reduce un-
certainty (unlike battery charge or goods purchased, actions
cannot create more time). Nonetheless, the new heuristic is
generally able to find better solutions more quickly. If left to
run for long enough, search with the old heuristic will tend
to find solutions as good as search with the new heuristic,
but loses out earlier in the search.

As a concluding remark for our results, we note that so far
we assumed θ = 0.99. At θ = 0.8, the improvements from
using the new heuristic are still noticeable, but not as sub-
stantial. By θ = 0.6, which is close to the median (θ = 0.5),
there is no statistically significant difference between the
two, as uncertainty has only a modest effect on the heuris-
tic, or indeed search itself. This confirms that our heuristic
meets our headline aim of being able to better guide the plan-
ner when the consequences of uncertainty bear a significant
effect upon what is a reasonable solution plan.

4 Background: Discrete Uncertainty on
Actions’ Outcomes

The next step in our research on uncertainty revolves around
problems with discrete non-deterministic action outcomes.
In order to reason about discrete non-determinism, we use
actions that have a precondition (as in the deterministic
case), but instead of having a single effects list, they have
several. Applying an action will nondeterministically trig-
ger one of these. We assume states are fully observable – we
can observe what effects an action had. A solution to prob-
lems containing such actions can be represented by using a
policy – a set of rules that dictates what should be done in
each state.

Since action outcomes are discretely different, a policy
may need to branch out and apply different actions in the

different states reached. A weak plan corresponds to a sin-
gle trajectory of actions that leads from the initial state to
a goal state, assuming it is possible to choose which action
outcome occurs at each point. Weak plans can be found us-
ing a deterministic planner given as input the all outcomes
determinisation (Yoon, Fern, and Givan 2007) – the repre-
sentation of an action with discrete outcomes as a set of
actions having identical preconditions but different lists of
effects (one list corresponding to each discrete outcome).

Muise et al. (2012) present an approach where, by repeat-
edly invoking a deterministic planner to find weak plans, it is
possible to incrementally build a policy. Key to the success
of their approach is exploiting relevance – by regressing the
goal through a weak plan step-by-step, they determine which
facts at each point are relevant to plan success.

Regression begins from the goals, which here are a set
of propositions, ps ′. Regressing ps ′ through an action A,
with preconditions pre(A) and add effects add(A) yields a
partial state ps where:

ps = (ps ′ \ add(A)) ∪ pre(A)

A policy can then be built from these pairs, each 〈ps, A〉.
If executing the policy reaches a state where S � ps , then A
is applied. Otherwise, if there is no such match, the planner
is invoked from S, producing another weak plan which is
added to the policy in this way. Policy building terminates
when ∃〈ps, A〉.S � ps for all states S reachable from the
initial state, via the action choices indicated by the policy.

One caveat of this process is that it must be restarted
if a dead-end state D is reached. If this happens, Muise
et al. record forbidden state–action pairs: D is regressed
through all actions [a0..an] that could lead to it, yielding
states [S0..Sn]; then each 〈S0, a0〉 is forbidden, as applying
ai in Si would reach D once again. To improve generality,
each state Si is generalised – a greedy algorithm is used to
remove facts that do not affect whether Si is a dead-end.

The policy produced by this process, overall, is a strong
cyclic plan: it will always reach the goals, if the goals can
be reached. The work has since been developed to support
conditional effects (Muise, McIlraith, and Belle 2014) and
sensing actions (Muise, Belle, and McIlraith 2014), which



are interesting avenues we hope to look at in the future. For
now, we concern ourselves with extending this well-defined
propositional formalism to incorporate continuous numeric
uncertainty.

5 Building Policies Offline for Continuous
and Discrete Uncertainty

5.1 Allowing Numeric Uncertainty in Action
Effects

As detailed in Section 3, we have a planner kernel that is ca-
pable of supporting actions with continuous numeric uncer-
tainty. Additionally, as detailed in Section 4, Muise et al.’s
work on offline policy-building currently supports proposi-
tional effects. It is therefore a natural step to use our plan-
ner to extend their work to numeric effects, thus allowing a
richer set of problems to be tackled.

Furthermore, as we will describe below, extending previ-
ous work in this manner provides more than just the ability
to build policies with numeric effects. It retains and gener-
alises the mechanics we defined previously for dealing with
numeric uncertainty. This greatly increases the level of re-
alism that problems can reflect, as continuous uncertainty
(e.g. will we step 10 metres or 10.5 metres?) can now func-
tion alongside discrete uncertainty (e.g. will we step forward
or will we blow a fuse?).

5.2 Representing Partial States with Numeric
Constraints

The approach of Muise et al. targets problems with propo-
sitional constraints. In their case, partial states can be intu-
itively defined as containing only a subset of propositional
constraints (e.g. the full state {at-home, have-package, is-
birthday} satisfies the partial state {at-home}). We extend
this intuition to numeric constraints: if a full state contains
the constraints {battery=15, altitude=40}, then this can sat-
isfy a partial state {battery ≥ 10}. But, we must addition-
ally take care to account for any variance on the value of
battery at this point.

We first define a representation of a constraint that in-
cludes an explicit record of any variance that needs to apply
to it. For a constraint w.v ≥ c we record a constraint tuple
〈ft , c, vt , av〉 where:
• ft are the formula terms, initially the weighted-sum of

variables, w.v.
• c is the right-hand-side constant, initially c.
• vt are variance terms. These are initially
{〈w0, σ

2(v0), 0〉..〈wn, σ2(vn), 0〉} for eachwi.vi ∈ w.v.
• av is an accumulated variance value, initially 0.

Performing regression is akin to applying an action “back-
wards” in a state, to obtain the sufficient conditions for that
action application to have resulted in that state. If a con-
straintC is regressed through a numeric effect v+=w′.v′+e,
where w.v ∈ ft , the resulting constraint C ′ is:

ft ′ = ft + w.(w′.v′)
c′ = c − w.e

vt ′ = vt
av ′ = av

Regressing through the effect v = w′.v′ + e gives:
ft ′ = ft − w.v + w.(w′.v′)
c′ = c − w.e

vt ′ = vt
av ′ = av

Effects on variance also affect the variance portions of
constraints. If σ2(v) is changed by an effect σ2(v)+=e then
for any constraint with an element 〈w, σ2(v), k〉 ∈ vt , vt ′

is identical modulo k being increased by e. For the ef-
fect σ2(v) = e, then for any constraint with an element
〈w, σ2(v), k〉 ∈ vt , vt ′ is identical modulo this element be-
ing removed, and av ′ = av + e.w2. Conceptually, after re-
gressing through this effect assigning variance a fixed value,
any earlier effects on variance are moot: it suffices to trans-
fer the newly assigned (and weighted) amount to the accu-
mulated variance.

To determine if a state S satisfies a constraint C with con-
fidence θ, we define the Gaussian distribution with mean ft
(taking values of variables from S), and with variance:

av +
∑

〈w,σ2(v),k〉∈vt

w2.(S[σ2(v)] + k)

Then, if the 1 − θ’th percentile of this Gaussian is ≥ c,
we say S satisfies C. Effectively, the condition must be true
allowing for the variance in S, and any in the condition it-
self. This is a slight departure from checking preconditions
on actions as described in Sections 2 and 3, where the only
variance to account for was that in S. Here, the constraints
denote preconditions that must be true later in the weak plan,
so the variance within the constraint tracks the impact of ef-
fects on variance between S and when the precondition must
in fact hold.

5.3 Handling Dead Ends
Muise et al. introduced a particularly insightful contribution
concerning dead ends. As mentioned in Section 4, their idea
is to mark partial state–action pairs as forbidden if they lead
to a dead end. Whenever a new dead end is found while
building the policy, its corresponding partial state–action
pair (i.e. the pair that would lead to that dead end) is gen-
erated via one step of regression, and stored in the forbidden
list. The policy is then deleted, and policy building restarted
with this new information at hand.

We build our extension along the same lines. As we are
performing numeric planning, our states are split into two
parts: logical and numeric. The former can be handled ex-
actly as by Muise et al.: regressed through the logical ef-
fects of the action. For the latter, for each variable value v=k
in the state, following the representation set out in Section
5.2 we build pairs of tuples 〈v, k, {}, 0〉, 〈−v,−k, {}, 0〉.
(Note this equally applies to variance-tracking variables –
which are first-class citizens and appear as state variables
along with the others.) These numeric constraints are then
regressed through the numeric effects of the action.

To generalise these dead-ends, we again look at the log-
ical and numeric parts of the state. For the logical, the ap-
proach of Muise et al. based on the RPG heuristic can be
used: in Section 3, we fortuitously described exactly the sort



of RPG heuristic that would be needed to support this. For
the numeric case, if static analysis reveals that larger/smaller
values of a variable are better in terms of satisfying condi-
tions, then we need only keep one constraint tuple, not a pair.
Simply, for a dead-end state where v=k, if we know larger
values of v are better, we only need record 〈−v,−k, {}, 0〉
(which is analogous to v ≤ k), as any state with this value
of v or worse is going to be a dead end.

5.4 Preliminary Observations
So far, we have conducted some preliminary tests on a
modified version of the rovers domain, extended to better
model the distribution of energy usage when moving. Rather
than assuming this can be adequately captured by a single
Gaussian-distributed variable, there is a pessimistic outcome
with high energy usage corresponding to a failure mode of
the rover; and an optimistic outcome corresponding to an
unusually clear path. This leads to a policy being built that
considers what to do for each of these outcomes.

It is clear at this point that the power of partial states seen
in the propositional case, is also being seen in the numeric
case. If a pessimistic navigate outcome occurs, then the pol-
icy does not need to branch if there is still enough power left;
i.e. the resulting state still satisfies the relevant partial state.
Even if branching does occur (i.e. the planner needed to be
invoked to find another weak plan) the recharge actions have
an interesting effect. As these recharge the battery and clear
the variance on its value, there are no restrictions on battery
charge in the partial state before them. Thus, even if the pol-
icy splits into distinct branches, these often later merge.

Generalising dead-ends for numeric resources also has a
beneficial effect: in plain English, the dead-ends seen can
generally be interpreted as ‘if the rover is in this location,
with only this much battery charge, or too much variance
on battery charge, then applying this action will lead to a
dead-end’. These situations arise when the rover would be
unable to reach somewhere it can recharge and then resume
operations. When restarting policy building, the dead-ends
found are effective in pruning unsuitable action choices from
search.

6 Future work
So far we have successfully improved heuristic guidance
in problems with numeric uncertainty. We are also well
into providing an extension to propositional offline policy-
building, allowing it to work in problems with numeric ac-
tion effects. The next stage consists of finalising this exten-
sion, and conducting a detailed evaluation.

We will also allow our planner to accept domains where
there is non-Gaussian uncertainty. For this, we would gener-
alise the techniques we already implemented and tested, in
order to make the transition from Gaussian probability dis-
tributions to arbitrary probability distributions. This would
considerably broaden the spectrum of problems the planner
will be able to solve. In particular, we intend to incorporate
Bayesian Network techniques to support non-Gaussian un-
certainty, and adapt regression and probabilistic dead ends
for this type of uncertainty.

The next promising avenue to explore afterwards would
be to apply our technique to a “planning in the loop” set-
ting, with the scope for adjusting the probability distribu-
tions of action outcomes based on experience gathered from
plan execution so far. As a practical case study, we plan to
test our approach on an autonomous robotic platform operat-
ing in a dynamic environment. A concrete example would be
a quadcopter conducting a rescue mission inside a building
that is still collapsing, or seeking out an outdoor waypoint
amongst vegetation or foliage. The success of practical test-
ing would indicate the programme of work has had its de-
sired outcomes: developing planning approaches that func-
tion well with more realistic world dynamics, and broaden-
ing the spectrum of possible applications of planning.

References
Beaudry, E.; Kabanza, F.; and Michaud, F. 2010. Planning
with Concurrency under Resources and Time Uncertainty.
In Proceedings of ECAI.
Coles, A. J. 2012. Opportunistic Branched Plans to Max-
imise Utility in the Presence of Resource Uncertainty. In
Proceedings of ECAI.
Gerevini, A.; Long, D.; Haslum, P.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic Planning in the Fifth In-
ternational Planning Competition: PDDL3 and Experimen-
tal Evaluation of the Planners. Artificial Intelligence.
Hoffmann, J. 2003. The Metric-FF Planning System: Trans-
lating Ignoring Delete Lists to Numeric State Variables.
Journal of Artificial Intelligence Research 20.
Marinescu, L., and Coles, A. 2016. Heuristic guidance
for forward-chaining planning with numeric uncertainty. In
Proceedings of ICAPS.
Mausam, and Weld, D. S. 2008. Planning with Durative
Actions in Stochastic Domains. Journal of Artificial Intelli-
gence Research 31.
Meuleau, N.; Benazera, E.; Brafman, R. I.; Hansen, E. A.;
and Mausam. 2009. A Heuristic Search Approach to Plan-
ning with Continuous Resources in Stochastic Domains.
Journal of Artificial Intelligence Research 34.
Muise, C.; Belle, V.; and McIlraith, S. 2014. Comput-
ing contingent plans via fully observable non-deterministic
planning. In Proceedings of AAAI.
Muise, C.; McIlraith, S.; and Beck, J. 2012. Improved non-
deterministic planning by exploiting state relevance. In Pro-
ceedings of ICAPS.
Muise, C.; McIlraith, S.; and Belle, V. 2014. Non-
deterministic planning with conditional effects. In Proceed-
ings of ICAPS.
Rachelson, E.; Quesnel, G.; Garcia, F.; and Fabiani, P.
2008. A Simulation-Based Approach for Solving Tempo-
ral Markov Problems. In Proceedings of ECAI.
Yoon, S.; Fern, A.; and Givan, R. 2007. FF-Replan: A base-
line for probabilistic planning. In Proceedings of ICAPS.


