
Learning Static Constraints for Domain Modeling from Training Plans

Rabia Jilani
School of Computing and Engineering

University of Huddersfield
United Kingdom

Introduction
AI Planning is a pivotal task that has to be performed by every
autonomous system. The automated planning (AP) commu-
nity has demonstrated a need to uplift planning systems from
toy problems to capture more complex domains that closely
reflect real life applications (e.g. planning space missions,
fire extinction ion management and operation of underwater
vehicle) - a way to satisfy the aims of Autonomic systems.
Generally, AP techniques require correct description of the
planning task. These descriptions include the action model
that can be executed in the environment, the state of the
objects in the environment and the goal to accomplish.

Domain models encode the knowledge of the domains in
terms of actions that can be executed and relevant properties.
In centralized approach, this domain could be represented as
a knowledge base and automated logical reasoning could be
used to determine acts. Specifying operator descriptions by
hand for planning domain models is time consuming, error
prone and still a challenge for the AI planning community.

The domain model acquisition problem has mainly been
tackled by exploiting two approaches. On the one hand,
knowledge engineering tools for planning have been intro-
duced over time, for supporting human experts in modelling
the knowledge. Two particular examples are itSIMPLE (Va-
quero et al. 2007) and GIPO (Simpson, Kitchin, and Mc-
Cluskey 2007). A review of the state of the art is provided by
Shah et al. (Shah et al. 2013). Recently, also crowdsourcing
has been exploited for acquiring planning domain models
(Zhuo 2015). On the other hand, a number of techniques are
currently available for automatic domain model acquisition;
they rely on example data for deriving domain models. Sig-
nificant differences can be found in terms of the quantity and
quality of the required inputs.

Our research concerns the area of automated acquisition
of full or partial domain model from one or more examples
of action sequences within the domain under study. The aim
is to enhance the LOCM system and to extend the method
of Learning Domain Models for AI Planning Engines via
Plan Traces first published in ICAPS 2009 by Cresswell, Mc-
Cluskey and West (Cresswell, McCluskey, and West 2013a).
This method is unique in that it requires no prior knowledge;
however it can produce a complete domain model from train-
ing data i.e. plan traces. As compared to LOCM, other sys-
tems require more input assistance. ARMS (Yang, Wu, and

Jiang 2007), for example, is a system that learns the domain
model in addition to domain constraints and invariants. It
makes use of background information as input e.g. predicate
definitions of initial and goal states. Similarly SLAF (Shahaf
and Amir 2006) learns action schema but also requires def-
initions of fluents and a partial observation of intermediate
states as input. For a detailed overview, the interested reader
is referred to (Jilani et al. 2014).

The main drawback of LOCM is that it does not produce
static knowledge, and its model lacks certain expressive fea-
tures. A key aspect of research presented in this abstract
is to enhance the technique with the capacity to generate
static knowledge. A test and focus for this research is to
make LOCM able to learn static relationships in fully auto-
matic way in addition to dynamic relationships which LOCM
already learn. As per our knowledge, no domain learning
system has previously been developed with the aim to learn
merely from a set of action traces.

Research contributions include (i) a development of new
approach to effectively identify static relations for a wide
range of problems, by exploiting graph analysis; using a two
staged domain enhancement process that first learn missing
static facts for action model and then embed those facts in the
partial domain model to get working PDDL domain model
(ii) Rule extraction from both optimal and suboptimal plan
traces (iii) A useful debugging tool for improving existing
models, which can indicate hidden static relations helpful
for pruning the search space (iv) Combined with LOCM,
ASCoL can be a useful tool to produce benchmark domains
(v) Identification of basic categories of Static facts and its
impact on heuristic learning systems.

Learning Problem Definition

Domain-independent planning systems require that domain
constraints and invariants are specified as part of the input
domain model. In AI Planning, the generated plan is correct
provided the constraints of the world in which the agent is
operating are satisfied. Specifying operator descriptions by
hand for planning domain models that also require domain
specific constraints is time consuming, error prone and still a
challenge for the AI planning community.



LOCM
The LOCM systems perform automated generation of the dy-
namic aspects of a planning domain model, i.e. changes in the
state of the world occurring due to action execution, by con-
sidering a set of plan traces, only. A plan trace is a sequence
of actions that when applied in an initial state, reach the de-
sired goals. No additional knowledge about initial, goal or
intermediate states is needed by LOCM. In comparison with
other systems, LOCM approach require a minimal amount of
information; other systems also require at least partial state
information.

LOCM is based on the assumption that the output domain
model can be represented in an object-centred representa-
tion (Cresswell, McCluskey, and West 2013b). Using an
object-centred representation, LOCM outputs a set of pa-
rameterized Finite State Machines (FSMs) where each FSM
represents the behaviour of each object in the learnt action
schema. Such FSMs are then exploited in order to identify
pre- and post-conditions of the domain operators. Although
LOCM requires no background information, it usually re-
quires many plan traces for synthesizing meaningful domain
models. Moreover, LOCM is not able to automatically iden-
tify and encode static predicates.

One drawback of the LOCM process is that it can induce
only a partial domain model which represents the dynamic
aspects of objects and dose not identify and encode static
aspects. Static aspects can be seen as relations that appear
in the preconditions of operators only, and not in the effects.
Therefore, static facts never change in the world, but are
essential for modelling the correct action execution. This is
problematic since most domains require static predicates to
both restrict the number of possible actions and correctly
encode real-world constraints. This is the case in well-known
benchmark domains like Driverlog, in which static predicates
represent the connections of roads; the level of floors in
Miconic, or the fixed stacking relationships between specific
cards in Freecell. Any missing static relations are manually
introduced into the domain models provided by the LOCM
systems. LOCM manually declares this information in the
following form:

Static(connected(L1, L2), Drive(L1, L2)).

The above mentioned Prolog code line is added manually
to the input training data file to make it a part of the output
domain model manually. The fact in the first argument of
static is added as a precondition of the action in the second
operator argument of static, where shared variable names
provide the binding between the action and its precondition.

ASCoL
We enhance the output domain model of the LOCM system to
capture static domain constraints from the same set of input
training plans as used by LOCM to learn dynamic aspects of
the world. In this research, a new framework ASCoL (Auto-
mated Static Constraint Learner) has been presented, to make
constraint acquisition more efficient, by observing a set of
training plan traces. Most systems that learn constraints au-
tomatically do so by analysing the operators of the planning

sequence task(1, [unstack(b8, b9),
stack(b8, b10), pick-up(b7), stack(b7,
b8), unstack(b9, b1), put-down(b9),
unstack(b1, b3), stack(b1, b9),
unstack(b3, b2), stack(b3, b6),
pick-up(b5), stack(b5, b3), unstack(b7,
b8), stack(b7, b2), unstack(b8, b10),
stack(b8, b7), pick-up(b10), stack(b10,
b5)], , ).

Figure 1: An example of a blocksworld plan formatted as
required by LOCM.

world. The ASCoL system discovers static constraints by
analysing plan traces for correlations in the data. To do this
the algorithm analyses the complete set of input plan traces,
based on a predefined set of constraints, and deduces facts
from it. It then augment components of the LOCM generated
domain with enriched static constraints.

We define the learning problem that ASCoL addresses
as follows. Given the knowledge about parameter types (T),
operators’ dynamic definition and predicates (fluents) in the
form of a PDDL representation of a partial domain model
induced by LOCM, and a set of plan traces (P), how can we
automatically identify the static relation predicates that are
needed by operators’ preconditions? We base our approach
on the assumption that the input plan traces contain tacit
knowledge about constraints validation/acquisition. Based
on that assumption, we can draw correlations in the data by
pattern discovery in the training input only.

Specifically, the input to the static constraints learning
algorithm ASCoL is specified as a tuple (P, T), where P is a
set of plan traces (goal directed or random walk) and T is a set
of types of action arguments in P which ASCoL parses from
LOCM output. ASCoL does not require dynamic knowledge
of the domain generated by LOCM. ASCoL accepts input
plans (plan traces) in the same text-based format supported
by LOCM i.e. a training sequence of N actions in order of
occurrence, which all have the form:

Ai(Oi1, ..., Oij) for i = 1, ..., N

Where A is the action name and O is the actionâs object name.
Each action (A) in the plan is stated as a name and a list of
arguments. In each action (Ai), there are j arguments where
each argument is an object (O) of the problem.

Each plan trace is a sequence of actions ( Figure 1) in the
order of occurrence to satisfy some goal, where each action in
the sequence contains the name of the action and objects that
are affected by that action execution. Input plan traces do not
include any initial, goal or intermediate states or constraints.
Static constraints are to be learnt by the system.

The objective is to learn a complete set of static precon-
ditions, and embed them into the correct operators in the
LOCM-learnt output to enrich the domain with this required
static knowledge. We formally define the correctness of the
learnt static knowledge by comparison with benchmark do-
mains from past IPCs.



Figure 2: Input Output Structure of ASCoL.

The output for a learning problem is a constraint repos-
itory R in PDDL representation that stores all admissible
constraints on the arguments of each action A in plan traces
P. We assume that input plan traces are noise free while the
input domain file at least contains type information for all
those operators that the algorithm aims to enhance. Figure 2
shows the general structure of ASCoL in terms of its inputs
and outputs.

ASCoL works as a separate unit from LOCM in that
LOCM first produces a domain model using a set of plan
traces as input. The same LOCM generated domain model,
along with the same set of input plan traces, will then be fed to
ASCoL to first anticipate the required set of constraints, anal-
yse plan traces and then learn constraints. Finally, it embeds
these constraints into the correct operators in the LOCM-
learnt output to enrich the domain with this additional static
knowledge.

Providing domain constraints to the planning engine may
help the planning system in the quick and efficient pruning
of the search tree. We aim to capture two major kinds of
constraints: domain specific and domain independent con-
straints. By domain specific we mean the static knowledge
that is strictly associated with a domain and is not found as a
general example, e.g. the fixed relationships between specific
cards in Freecell. Domain independent constraints describe
the static knowledge that is generally associated with almost
all domains in one way or another; non-equality constraints
and link constraints for example.

The ASCoL Methodology
We now briefly present the ASCoL tool that has been devel-
oped for identifying useful static relations. The process steps
can be summarised as follows:

1. Read the partial domain model (induced by LOCM) and
the plan traces.

2. Identify, for all operators, all the pairs of arguments involv-
ing the same object types.

3. For each of the pairs, generate a directed graph by consid-
ering the objects involved in the matching actions from the
plan traces.

4. Analyse the directed graphs for linearity and extract hidden
static relations between arguments.

5. Run inequality check.

6. Return the extended domain model that includes the iden-
tified static relations.

The main information available for ASCoL comes from
the input plan traces. As a first control, we remove from the
plan traces all the actions that refer to operators that do not
contain at least two arguments of the same type.

Even though, theoretically, static relations can hold be-
tween objects of different types, they mostly arise between
same-typed objects. This is the case in transport domains,
where static relations define connections between locations.
Moreover, considering only same-typed object pairs can re-
duce the computational time required for identifying relations.
It is also worth noting that, in most of the cases where static
relations involve objects of different types, this is due to a
non-optimal modelling process. Furthermore, such relations
can be easily identified by naively checking the objects in-
volved in actions; whenever some objects of different type
always appear together, they are likely to be statically related.

Types of Static Facts
We describe different kinds of static facts that we came across
whilst experimenting with a variety of domains and modelling
strategies. We broadly divide static relations into six differ-
ent types depending upon the structure of knowledge they
contain:

1. Locations Map: facts used for representing an underly-
ing map of connected locations. Relations of this kind
are mentioned as adjacent, link, next, path
or connected in the domains including TPP, Zenotravel,
Storage, Logistics, Mprime, Spanner, Gripper, Trucks and
Gold-miner.

2. Level of Specific Object: parameter objects include vary-
ing levels of goods, fuel, space and time depending on
the scenario of the domain. Domains that mention such
static facts include Mprime, Barman, Trucks, TPP and
ZenoTravel.

3. Unordered Sequence: ascending or descending sequence
of objects but not in any specific flow. The best example
is the sequence of floors in the Miconic domain, where
a person can board from any floor and can depart on any
other floor (up or down).

4. Ordered Sequence: mentioned as successor, next
and link in different domains including specifically Free-
cell and other card game domains. Here, such static facts
allow the sequential arrangement of cards in card stacks
among columns, reserve cells and home cells.

5. Compound Relations: static relations –usually exploited
in the encoding of card games– that express two inde-
pendent static relations in terms of one, i.e can-stack
(card1 card2). The intuition behind this is the con-
ventional stacking rule based on card suit and rank
order. But this can be decomposed into two separate
static facts that can then fulfil our criteria of graph anal-
ysis, i.e can-stack-rank(rcard1 rcard2) and
can-stack-suit(scard1 scard2).



6. Non-equality: the best example for these kinds of static
facts are Ferry domain and other general transportation
domains where two location objects of travel (obviously
of the same type) should be unique.

For a better understanding of the complexity of the learning
problem faced by ASCoL, we created metrics to learn the
amount of input plans and types of plans (goal and random
walk) required to effectively learn these static facts. The same
set of planning instances have been used for generating both
goal-oriented (GO) and random walk (RW) traces. The later
have been created by using a Java-based tool able to parse a
given domain model and problem and generate subsequent
valid traces of a given length. Clearly, such traces usually
do not reach the goal required by the planning instance, but
usually provide richer information in terms of the number of
transitions for different types of static facts when compared
to the goal-oriented plan sequences. Goal-oriented solutions
are generally expensive in that a tool or a planner is needed
to generate a large enough number of correct plans to be
used by the system, but they can also provide useful heuristic
information.

Experimental Evaluation
Remarkable results have been achieved in complex domains,
with regards to the number of static relations. We considered
fifteen different domain models, taken either from IPCs1 or
from the FF domain collection (FFd)2.

We selected domains that are encoded using different mod-
elling strategies, and their operators include more than one
argument per object type. Table 1 shows the results of the
experimental analysis. A detailed interpretation of results can
be found in the recent AI*IA publication (Jilani et al. 2015).
All domains but Gripper, Logistics and Hanoi, exploit static
relations. Input plans of these domains have been generated
by using the Metric-FF planner (Hoffmann 2003) on ran-
domly generated problems, sharing the same objects. ASCoL
has been implemented in Java, and run on a Core 2 Duo/8GB
processor. CPU-time usage of the ASCoL is in the range of
35-320 (ms) for each domain.

Considering a classification terminology, we can divide the
relations identified by ASCoL in to four classes: true positive,
true negative, false positive and false negative.

True positive These are correctly identified static relations.
Relations identified by ASCoL are almost always static
relations which are included in the original domain models.

True negative Dynamic relations that are (correctly) not
encoded as static relations. ASCoL did not identify a static
relation between arguments that are actually connected by
a dynamic relation in any of the considered domains.

False positive It indicates additional relations that actually
do not exist in benchmark domains. In some domains AS-
CoL infers one or two additional relations that are not
included in the original domain model. From a Knowledge
Engineering point of view, and considering the fact that

1http://ipc.icaps-conference.org/
2https://fai.cs.uni-saarland.de/hoffmann/ff-domains.html

Domain # Ops # SR LSR ASR CPU-time
TPP 4 7 7 0 171
Zenotravel 5 4 6 2 109
Miconic 4 2 2 0 143
Storage 5 5 5 0 175
Freecell 10 19 13 0 320
Hanoi 1 0 1 1 140
Logistics 6 0 1 1 98
Driverlog 6 2 2 0 35
Mprime 4 7 7 0 190
Spanner 3 1 1 0 144
Gripper 3 0 1 1 10
Ferry 3 1 2 1 130
Barman 12 3 3 0 158
Gold-miner 7 3 1 0 128
Trucks 4 3 3 0 158

Table 1: Overall results on considered domains. For each
original domain, the number of operators (# Ops), and the
total number of static relations (# SR) are presented. ASCoL
results are shown in terms of the number of identified/learnt
static relationships (LSR) and number of additional static
relations provided (ASR) that were not included in the orig-
inal domain model. Such relations do not compromise the
solvability of problems, but prune the search space. The last
column shows the CPU-time in milliseconds for finding static
facts for each domain

such additional preconditions do not reduce the solvability
of problems, such inferred relations can add value to the
original model in terms of effectiveness of plan genera-
tion. This is the empirical finding limited to the domains
considered for experimentation.

False negative Facts that exist and system dose not identify
them. In Freecell and Gold-miner domains ASCoL does
not identify all of the static relations.

Table 2 shows, for each considered domain, the percent-
ages of true positive (negative) and false positive (negative)
relations identified by ASCoL.

The ability of ASCoL to correctly identify static relations,
that should be included as preconditions of specific operators,
depends on the number of times the particular operator ap-
pears in the provided plan traces. The higher the number of
instances of the operator in the plan, the higher the probabil-
ity that ASCoL will correctly identify all the static relations.
We now discuss some of the most interesting results.

Conclusion and Future Goals
Intelligent agents solving problems in the real-world require
domain models containing widespread knowledge of the
world. Synthesising operator descriptions and domain spe-
cific constraints by hand for AI planning domain models is
time-intense, error-prone and challenging. To alleviate this,
automatic domain model acquisition techniques have been
introduced. For example, the LOCM system requires as input
some plan traces only, and is effectively able to automatically



Domain TP TN FP FN
TPP 100.0 100.0 0.0 0.0
Zenotravel 100.0 66.6 33.3 0.0
Miconic 100.0 100.0 0.0 0.0
Storage 100.0 100.0 0.0 0.0
Freecell 70.0 100 0.0 30.0
Hanoi 100.0 0.0 100.0 0.0
Logistics 100.0 0.0 100.0 0.0
Driverlog 100.0 100.0 0.0 0.0
Mprime 100.0 100.0 0.0 0.0
Spanner 100.0 100.0 0.0 0.0
Gripper 100.0 0.0 100.0 0.0
Ferry 100.0 50.0 50.0 0.0
Barman 100.0 100.0 0.0 0.0
Gold-miner 33.3 100.0 0.0 66.6
Trucks 100.0 100.0 0.0 0.0

Table 2: For each considered domain, the percentage of true
positive (TP), true negative (TN), false positive (FP) and false
negative (FN) static relations identified by ASCoL.

encode the dynamic part of the domain model. However, the
static part of the domain, i.e., the underlying structure of
the domain that can not be dynamically changed, but that
affects the way in which actions can be performed â is usually
missed, since it can hardly be derived by observing transitions
only.

In this research we briefly present ASCoL, a tool that
exploits graph analysis for automatically identifying static
relations, in order to enhance planning domain models. AS-
CoL has been evaluated on domain models generated by
LOCM for the international planning competition, and has
been shown to be effective.

We are considering several paths for future work. Grant,
in (Grant 2010), discusses the limitations of using plan traces
as the source of input information. ASCoL faces similar dif-
ficulties as the only input source to verify constraints are
sequences of plans. We are also interested in extending our
approach for considering static relations that involve more
than two arguments In particular, we aim to extend the ap-
proach for merging graphs of different couples of arguments.
Finally, we plan to identify heuristics for extracting useful
information also from acyclic graphs.
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