
Decoupled State Space Search – Dissertation Abstract

Daniel Gnad
Saarland University

Saarbrücken, Germany
gnad@cs.uni-saarland.de

Abstract

Decoupled State Space Search is a recent approach to ex-
ploiting problem structure in classical planning. The partic-
ular structure needed is a star topology, with a single cen-
ter component interacting with multiple leaf components.
All interaction of the leaves with the rest of the problem
has to be via the center. Given this kind of problem decom-
position, we have showed that search on this reformulated
state space can be exponentially more efficient than standard
search. However, there do also exist cases in which decoupled
search has to spend exponentially more effort to solve a task.
We want to tackle this issue by combining decoupled search
with different known search enhancement techniques, such
as partial-order reduction, symmetry reduction, or dominance
pruning. Presumably, these can be nicely combined with our
new approach, such that we can prevent the exponential blow-
up. Decoupled search is not restricted to classical planning,
though. Its principles apply to all kinds of (heuristic) search
problems, like, e. g., in Model Checking.

Introduction
In classical planning, heuristic search is a popular approach
to solve a variety of input problems. The solution of such a
planning task takes the form of a path, i. e., a sequence of
transitions that lead from a given start state to a state satis-
fying certain goal conditions. To find such a path, (possibly
huge) deterministic transition system, the task’s state space,
need to be explored. Inherent in this way of finding solutions
to planning problems is the issue of state space explosion.
We propose decoupled state space search (Gnad and Hoff-
mann 2015; Gnad et al. 2015) to solve this problem. Decou-
pled search can be seen as a form of factored planning (e. g.,
(Amir and Engelhardt 2003; Brafman and Domshlak 2006;
2008; 2013; Fabre et al. 2010)) , that restricts the interaction
between the factors to take the form of a star, with a single
center factor that interacts with multiple leaf factors. All in-
teraction of a leaf with another factor has to be via the center.
Hereby, decoupled search exploits a kind of conditional in-
dependence between the leaves – given a fixed center path
πC , compliant leaf paths can be scheduled independently
along πC . This allows for an efficient search and solution
reconstruction, since complex cross-factor dependencies do
not have to be resolved, which can make other factored plan-
ning approaches infeasible in practice. In our experiments,

we observed that the decoupled state space, oftentimes is
exponentially smaller than the standard state space.

There is also bad news, however. Although in most of
our experiments we see an exponential reduction of the state
space size under decoupled search, the state space can also
get exponentially larger. This is so because of the special
structure of the leaves, that “remember” the center path lead-
ing to the current decoupled state. Thus, when reaching the
same state via different paths, decoupled search treats all
these states as if they were different, leading to the blow-up.
One possible means to circumvent this issue are dominance
pruning methods. The simple method employed by (Gnad
and Hoffmann 2015) already suffices to guarantee that the
decoupled state space – which in principle can grow to infi-
nite size – stays finite. Future work is going to derive more
elaborate pruning methods that are more effective in reduc-
ing the size of the decoupled state space; the eventual goal
being to upper bound its size by that of the standard state
space.

Besides, many search enhancement techniques that have
been proposed for standard state space search can probably
also be deployed in the decoupled setting. Prominent topics
in standard search are for example partial-order reduction,
or symmetry, and dominance pruning.

Further more, although our theoretical framework allows
for general star-shape factorings, in practice we only use
fork and inverted-fork like structures. One of the reasons
why we stuck to this is the complexity of computing general
star factorings. Even if the only objective is the maximiza-
tion of the number of leaf factors, obtaining such a factoring
is NP-hard.

The rest of this work is organized as follows. The next
chapter gives a brief summary of the relevant definitions of
decoupled search as provided by (Gnad and Hoffmann 2015;
Gnad et al. 2015). The reader familiar with decoupled search
is invited to skip this chapter and proceed to Future Work,
which introduces several lines of future research. We con-
clude with a brief summary.

Decoupled Search
Background
Our prior work has introduced Decoupled Search using a
finite-domain state variable formalization of planning (e. g.

(Bäckström and Nebel 1995; Helmert 2006)). A finite-
domain representation planning task, short FDR task, is a
quadruple Π = 〈V,A, I,G〉. V is a set of state variables,
where each v ∈ V is associated with a finite domain D(v).
We identify (partial) variable assignments with sets of vari-
able/value pairs. A complete assignment to V is a state.
I is the initial state, and the goal G is a partial assign-
ment to V . A is a finite set of actions. Each action a ∈ A
is a triple 〈pre(a), eff(a), cost(a)〉 where the precondition
pre(a) and effect eff(a) are partial assignments to V , and
cost(a) ∈ R0+ is the action’s non-negative cost.

For a partial assignment p, V(p) ⊆ V denotes the sub-
set of state variables instantiated by p. For any V ′ ⊆ V(p),
by p[V ′] we denote the assignment to V ′ made by p. An
action a is applicable in a state s if pre(a) ⊆ s, i. e., if
s[v] = pre(a)[v] for all v ∈ V(pre(a)). Applying a in s
changes the value of each v ∈ V(eff(a)) to eff(a)[v], and
leaves s unchanged elsewhere; the outcome state is denoted
s[[a]]. We also use this notation for partial states p: by p[[a]]
we denote the assignment over-writing p with eff(a) where
both p and eff(a) are defined. The outcome state of apply-
ing a sequence of (respectively applicable) actions is de-
noted s[[〈a1, . . . , an〉]]. A plan for Π is an action sequence
s.t.G ⊆ I[[〈a1, . . . , an〉]]. The plan is optimal if its summed-
up cost is minimal among all plans for Π.

To define factorings, we need the notion of the causal
graph (e. g. (Knoblock 1994; Jonsson and Bäckström 1995;
Brafman and Domshlak 2003; Helmert 2006)) using the
commonly employed definition in the FDR context, where
the causal graph CG is a directed graph over vertices V ,
with an arc from v to v′, which we denote (v → v′),
if v 6= v′ and there exists an action a ∈ A such that
(v, v′) ∈ [V(eff(a))∪V(pre(a))]×V(eff(a)). In words, the
causal graph captures precondition-effect as well as effect-
effect dependencies, as result from the action descriptions.
A simple intuition is that, whenever (v → v′) is an arc in
CG, changing the value of v′ may involve changing that of
v as well. We assume for simplicity that CG is weakly con-
nected (this is wlog: else, the task can be equivalently split
into several independent tasks).

We will also need the notion of a support graph, SuppG,
similarly as used e. g. by (Hoffmann 2011). SuppG is like
CG except its arcs are only those (v → v′) where there exists
an action a ∈ A such that (v, v′) ∈ V(pre(a)) × V(eff(a)).
In words, the support graph captures only the precondition-
effect dependencies, not effect-effect dependencies. This
more restricted concept will be needed to conveniently de-
scribe our notion of star topologies, for which purpose the
effect-effect arcs in CG are not suitable.

Given the required notation, we can now define a factoring
as a partition of the variables V into non-empty subsets F ,
called factors.

Definition 1 (Star Factoring) Let Π be an FDR task,
and let F be a factoring. The support-interaction graph
SuppIG(F) of F is the directed graph whose vertices are
the factors, with an arc (F → F ′) if F 6= F ′ and there exist
v ∈ F and v′ ∈ F ′ such that (v → v′) is an arc in SuppG.
F is a star factoring if |F| > 1 and there exists FC ∈ F s.t.

the following two conditions hold:

(1) The arcs in SuppIG(F) are contained in {(FC →
FL), (FL → FC) | FL ∈ F \ {FC}}.

(2) For every action a, if there exist FL
1 , F

L
2 ∈ F \ {FC}

such that FL
1 6= FL

2 and V(eff(a))∩ FL
1 6= ∅ as well as

V(eff(a)) ∩ FL
2 6= ∅, then V(eff(a)) ∩ FC 6= ∅.

FC is the center of F , and all other factors FL ∈ FL :=
F \ {FC} are leaves. A star factoring F is strict if the arcs
in IG(F) are contained in {(FC → FL), (FL → FC) |
FL ∈ F \ {FC}}.

Note that every FDR task has a star factoring. In fact, any
partition of the variables into two non-empty subsets is a
star factoring: Calling one half of the variables the “center”,
and the other the “leaf”, we have a (strict) star factoring,
as Definition 1 does not apply any restrictions if there is a
single leaf only. That said, it is not clear whether single-leaf
factorings are useful in practice.

Example 1 As an illustrative example, consider a trans-
portation task with one package p, and two trucks tA, tB
moving along three locations l1, l2, l3 arranged in a line.
The FDR planning task Π = 〈V,A, I,G〉 is defined as
follows. V = {p, tA, tB} where D(p) = {A,B, l1, l2, l3}
and D(tA) = D(tB) = {l1, l2, l3}. The initial state is
I = {p = l1, tA = l1, tB = l3}, i. e., p and tA start at l1,
and tB starts at l3. The goal is G = {p = l3}. The actions
(all with cost 1) are truck moves and load/unload:

• move(x, y, z) with precondition {tx = y, p = x} and
effect {tx = z}, where x ∈ {A,B} and {y, z} ∈
{{l1, l2}, {l2, l3}}.

• load(x, y) with precondition {tx = y, p = y} and effect
{p = x}, where x ∈ {A,B} and y ∈ {l1, l2, l3}.

• unload(x, y) with precondition {tx = y, p = x} and ef-
fect {p = y}, where x ∈ {A,B} and y ∈ {l1, l2, l3}.
Observe that a truck can only move if the package is cur-

rently inside it. The causal graph is shown in Figure 1.

p

tA tB

Figure 1: The causal graph of the example.

In this task, several factorings are possible. Consider,
e. g., F1 = {{tA, tB}, {p}}, F2 = {{tA}, {tB}, {p}}, or
F3 = {{tA}, {tB , p}}, all of which are clearly star factor-
ings (though for F2 only if we set FC = {p}).

We are now defining the state space of a decoupled plan-
ning task. In contrast to standard search, decoupled search
only branches over the center actions, enumerating what
each leaf factor can do, separately. The center actions AC

are all those actions affecting the center. The leaf actions
AL|FL for FL ∈ FL are all those actions affecting FL. Ob-
serve thatAC andAL|FL are not disjoint, as the same action

may affect both AC and AL|FL . A leaf path is a sequence of
leaf actions applicable to I when ignoring all center precon-
ditions. A center path is a sequence of center actions appli-
cable to I when ignoring all leaf preconditions.

After applying a center action to a state s, we update what
is called the pricing function of s, prices[s]. prices[s] as-
signs each leaf state of a leaf factor a price, representing
the summed-up leaf action cost one would have to spend to
reach the state from the initial state of the leaf factor. The up-
date is performed for every reachable leaf state in s. We ap-
ply all leaf actions applicable given the center preconditions
of s[[a]], updating prices[s[[a]]] accordingly. More formally,
the decoupled state space is defined as follows:

Definition 2 (Decoupled State Space) Let Π be an FDR
task, and F a star factoring with center FC and leaves FL.
A decoupled state s is a triple 〈center[s], πC [s], prices[s]〉
where center[s] is a center state, πC [s] is a center path
ending in center[s], and prices[s] is a pricing function,
prices[s] : SL 7→ R0+ ∪ {∞}, mapping each leaf state to
a non-negative price. The decoupled state space is a labeled
transition system ΘFΠ = 〈SF , AC , TF , IF , SFG 〉 as follows:

(i) SF is the set of all decoupled states.
(ii) AC , the set of center actions, gives the transition la-

bels.

(iii) TF is the set of transitions, with (s
aC

−−→ t) ∈ TF if:
aC ∈ AC; πC [s] ◦ 〈aC〉 = πC [t]; pre(aC)[FC] ⊆
center[s] and center[s][[aC]] = center[t]; for every
FL ∈ FL where pre(aC)[FL] 6= ∅, there exists sL ∈
SL|FL s.t. pre(aC)[FL] ⊆ sL and prices[s](sL) <
∞; and, for every leaf FL ∈ FL and leaf state
sL ∈ SL|FL , prices[t](sL) is the cost of a cheapest
path from I[FL]0 to sLn in CompGΠ[πC [t], FL], where
n := |πC [t]|.

(iv) IF is the decoupled initial state, where center[IF] :=
I[FC], πC [IF] := 〈〉, and, for every leaf FL ∈
FL and leaf state sL ∈ SL|FL , prices[IF](sL) is
the cost of a cheapest path from I[FL]0 to sL0 in
CompGΠ[〈〉, FL].

(v) SFG are the decoupled goal states sG, where center[sG]
is a center goal state and, for every FL ∈ FL,
there exists a leaf goal state sL ∈ SL|FL s.t.
prices[sG](sL) <∞.

We refer to paths πF in ΘFΠ as decoupled paths. A solution
for s ∈ SF is a decoupled path (denoted GlobalPlan) from
s to some sG ∈ SFG . A solution for ΘFΠ is a called a solution
for IF . A decoupled state, respectively ΘFΠ , is solvable if it
has a solution.

Example 2 In our example, when using the factoring F =
{{p}, {ta, tB}} with center factor FC = {tA, tB}, the ini-
tial state of the decoupled state space has only a single suc-
cessor, resulting from aC = move(A, l1, l2). The precon-
dition p = A of move(A, l1, l2) is reachable from I[FL]0
given the empty center path, but that is not so for the precon-
dition p = B of move(B, l3, l2). This reflects the fact that,
in the initial state of the task, we can move only the package

(not moving a truck i. e. the center) so that move(A, l1, l2)
becomes applicable, but we cannot make move(B, l3, l2) ap-
plicable in this manner.

We don’t provide the details of compliant paths and com-
pliant path graphs, here, since this is out of scope for the
presented work. Instead, we briefly summarize the intuition
behind the notion of compliance.

A decoupled state s is a center path πC(s) associated for
every leaf FL ∈ FL with the πC-compliant path graph
CompGΠ[πC(s), FL]. Given πC(s) and a leaf path πL, for
πL to be compliant with πC(s) we require that (1) the sub-
sequences of shared actions in πL and πC coincide, and (2)
in between, we can schedule πL at monotonically increas-
ing points alongside πC s.t. (2a) the center precondition of
each leaf action holds in the respective center state and (2b)
the FL precondition of each center action holds in the re-
spective leaf state. The compliant path graph of s for a leaf
FL keeps track of all leaf paths in the leaf state space of FL

compliant with πC(s). In practice, we do not store the com-
pliant path graphs for each state, but only the corresponding
pricing functions.

For illustration, consider Example 3. The arcs from one
layer to the next state that the surviving leaf states are
only those which comply with move(A, l1, l2)’s precondi-
tion, and will be mapped to possibly different leaf states
by move(A, l1, l2)’s effect. Within each layer the arcs corre-
spond to those leaf-only actions whose center precondition
is enabled at t. Note that, if move(A, l1, l2) had no precon-
dition on FL, then all leaf states would survive, and since
move(A, l1, l2) has no effect on FL, all leaf states remain
the same at t+ 1.

Example 3 Consider again our illustrative example, using
the factoring F = {{p}, {ta, tB}} with center factor FC =
{tA, tB} and the center path πC = 〈move(A, l1, l2)〉. The
πC-compliant path graph is shown in Figure 2.

(p = A)0 (p = B)0 (p = l1)0 (p = l2)0 (p = l3)0

(p = A)1 (p = B)1 (p = l1)1 (p = l2)1 (p = l3)1

(un)load(A, l1) (un)load(B, l3)

move(A, l1, l2)0

(un)load(A, l2) (un)load(B, l3)

Figure 2: The compliant path graph for πC =
〈move(A, l1, l2)〉 in our illustrative example.

From layer 0 to layer 1, the only arc we have is that from
(p = A)0 to (p = A)1. This is because move(A, l1, l2) has
precondition p = A, so all other values of p do not comply
with the center action being applied at this layer, and are
excluded from the compliant paths. Note that the arc has a
weight of 0, because we do not account for the cost of center
actions in the compliant path graph.

In our previous work, we showed that the plans for Π are
in one-to-one correspondence with center paths augmented
with compliant leaf paths. Say π is a plan for Π. The sub-
sequence πC of center actions in π is a center path. For
a leaf FL ∈ FL, the sub-sequence πL of AL|FL actions
in π is a leaf path. The sub-sequence of AC ∩ AL|FL ac-
tions in πL coincides by construction with the sub-sequence
of AC ∩ AL|FL actions in πC . Furthermore, between any
pair of subsequent shared actions, all FC preconditions of
πL, and all FL preconditions of πC , must be satisfied be-
cause π is a plan, so we can read off an embedding, and πL

is πC-compliant. Vice versa, say center path πC ends in a
goal center state, and can be augmented for every FL ∈ FL

with a πC-compliant leaf path πL ending in a goal leaf state.
Note that, if an action a affects more than one leaf, by the
definition of star factorings a must also affect the center, so
the sub-sequences of such actions are synchronized via πC :
They must be identical for every leaf involved, and corre-
spond to the same action occurrences in πC .

Overall, goal paths in the decoupled state space ΘF cor-
respond to center goal paths augmented with compliant leaf
goal paths, which correspond to plans for the original plan-
ning task Π, of the same cost. So (optimal) search in ΘF is
a form of (optimal) planning for Π.

Heuristic Functions
In decoupled search, two different kinds of heuristic func-
tions are of interest. Center heuristics hC that estimate the
remaining cost the center has to spend to reach the goal, and
star heuristics hS that estimate the overall remaining cost.
We say that h is center-admissible if h ≤ hC∗, and star-
admissible if h ≤ hS∗. The conceptual distinction between
hC and hS lies in that hC cares only about how much work
is left for the center factor, i. e., the cost of a center path suffi-
cient to enable every leaf to reach its goal somehow. In con-
trast, hS accounts for the combined cost of center and leaves,
i. e. for the best extension of our current center path into an
overall decoupled plan. We refer to heuristics attempting to
estimate hC∗ as center heuristics, and to heuristics attempt-
ing to estimate hS∗ as star heuristics, and distinguish them
notationally by superscripts “C” respectively “S”.

Observe that hC is a special case of hS : We can compute
hC as hS in a modified planning task where the cost of all
leaf actions is set to 0. hC keeps track only of which leaf
states are reachable, not of the associated cost.

This may lead to qualitatively different decisions, i. e., hC
and hS may disagree. Using a transportation example again,
say that there are two alternative kinds of plans, (a) ones that
pass the packages through several trucks, loading/unloading
every time, vs. (b) ones that make more truck moves but
have to load/unload each package only once and thus are
better globally. Then hC will draw search towards plans (a),
whereas hS will draw search towards plans (b).

Search Algorithms
Disregarding optimality, we can run any search algorithm
on the decoupled state space, stopping at the first decoupled
goal state. For optimal planning, matters are more subtle.
One of our methods is formulated on a modified state space

Algorithm DX:
Input: FDR planning task Π, star factoring F

Heuristic search algorithm X
star heuristic hS

Output: A plan for Π, or “failed”

Let hSG$:=

{
hS(s) s ∈ SF
0 s = G′

Run X with hSG$ on ΘFG$

If X found a solution path π = πF ◦ 〈sG → G′〉
return GlobalPlan(πF)

else return “failed”

Figure 3: Exploiting any known search algorithm X .

Algorithm ADA∗:
Input: FDR planning task Π, star factoring F

Center heuristic hC , star heuristic hS

Output: An optimal plan for Π, or “unsolvable”
Let U :=∞ /* best known upper bound */
Let πFU := ⊥ /* corresponding plan */
Run A∗ with hC on ΘF , with these modifications:

Continue search until the open list is empty
Whenever a goal vertex node N [sG] is expanded:

If g(N) + Gprice(sG) < U
let U := g(N) + Gprice(sG)
let πFU := the decoupled plan leading to N

If Gprice(sG) = MINGprice
return GlobalPlan(πFU) /* early termination */

Whenever a node N [s] is generated, and U 6=∞:
If g(N) + hS(s) ≥ U

discard N /* upper-bound pruning */
If πFU 6= ⊥ return GlobalPlan(πFU) else return “unsolvable”

Figure 4: Anytime search algorithm. Search nodes are no-
tated N [s] where s is the state and N the node itself.
MINGprice is the sum, over the leaf factors FL ∈ FL, of
optimal plan cost for the projection of Π onto FL.

where the goal pricing functions are explicit. Consider Fig-
ure 3. DX (“Decoupled X”) just runs any search algorithm
X on ΘFG$, which is defined as ΘF with the only difference
that from every decoupled goal state sG ∈ SFG , we introduce
a new transition to an artificial goal state G′. These transi-
tions have cost Gprice(sG) =

∑
FL∈F min prices[sG](sL)

with sL ∈ SL|FL being a leaf goal state. If X is complete,
then DX is complete. If X is optimal for admissible heuris-
tics, then DX is optimal for star-admissible heuristics.

Consider now Figure 4. ADA∗ guides A∗ by a center
heuristic, and uses a star heuristic merely for upper-bound
pruning. The search is drawn to cheap center paths, disre-
garding leaf costs, so to guarantee optimality we must ex-
haust the open list. Without early termination, this would
be dominated by DA∗ because ADA∗ would then have to
expand at least all N [s] where g(N) + hS(s) is less than
optimal solution cost. With early termination, that is not
so because in the best case we have to exhaust only those

N [s] where g(N) + hC(s) is less than optimal center so-
lution cost. ADA∗ is complete, and is optimal for center-
admissible hC and star-admissible hS .

Future Work
Having introduced Decoupled Search in the previous chap-
ter, we can now go into future work topics that arise more or
less naturally from the pitfalls mentioned above. Besides, it
is quite obvious that many search enhancement techniques
that have been developed for standard search, can also be
adapted to work in the decoupled setting.

A serious drawback of decoupled search, mentioned in the
introduction, is that – in principle – the decoupled state space
can be infinitely large. This is the case because the pricing
functions implicitly remember the center path taken to the
decoupled state. Consider a slightly changed version of our
illustrative example, that does not require a package to be
loaded in a truck to be able to move the truck. With the fac-
toring that has the package as the center and the two trucks
as leaves, there are only 5 center states (the different posi-
tions of the package). In the initial state, i. e., with the empty
center path, the trucks can be located at all three positions
with a price of 0 to 2, depending on their initial position.
Say we decide to load the package into tB , using the com-
pliant leaf state tB = l1 for a price of 2 and to immediately
unload the package again, resulting in the decoupled state
s1. Then, the initial center state is identical to that of s1, but
their prices for tB differ. For the initial state, they are [2, 1, 0]
for [tB = l1, tB = l2, tB = l3] and for s1 they are [2, 3, 4].
Consequently, we must consider s1 to be a new decoupled
state. However, it is intuitively obvious, that the initial state
“is better” than s1, more formally: Whatever we can do in s1,
we can at least as cheaply do in the initial state. The question
arises what “better” means in this scenario, so how can we
define a notion of dominance between two decoupled states
s1 and s2? As already described, the simple notion of dom-
inance employed by (Gnad and Hoffmann 2015) is suffi-
cient to guarantee that the just characterized problem can no
longer occur. The dominance check does a pointwise com-
parison of the prices of the two states and whenever the cen-
ter states are identical and prices[s1](sL) ≤ prices[s2](sL)
for all leaf states, s1 dominates s2 and we can discard s2.
However, this does not prevent the exponential blow-up of
the decoupled state space compared to the standard one, yet.
How to further reduce the size of the decoupled state space
and possibly upper bound it by the size of the standard state
space, is still an open question.

Closely related to this is the idea of not only being able
to introduce dominance between decoupled states with the
same center, but also when the center states differ. Recent
work (Hall et al. 2013; Torralba and Hoffmann 2015) has
introduced such kind of pruning in the standard state space.
It will be a highly interesting research question how to adapt
this to the decoupled setting.

In a similar direction goes the pruning of symmetric
states, that has been used in planning for several years (e. g.
(Pochter et al. 2011; Domshlak et al. 2012; 2013)). Can
we detect symmetries between center states and perform

pruning based on some criteria of their corresponding pric-
ing functions? Or is it even possible to detect more global
symmetries in the decoupled state space, e. g., considering a
standard logistics example. If two packages are completely
symmetric, there is no need to handle them separately, but
they can be treated as a single package.

In some domains, our current factoring strategies do find
factorings with a high number of leaves, but these are very
small and the remaining center state space is not much
smaller than the whole standard state space. In this case,
it makes sense to think of methods further reducing the
size of the center state space. One promising approach is
partial-order reduction via strong stubborn sets, a technique
originally proposed in the context of model checking, that
has recently been introduced in planning (Valmari 1989;
Wehrle and Helmert 2012; Wehrle et al. 2013; Wehrle and
Helmert 2014). The inverted setting does occur, too. A fac-
toring resulting in a small center factor where enumerating
the state space of few very big leaves leads to a significant
runtime overhead. In this case, does it make sense to apply
partial-order reduction to the leaves?

Talking about the factoring strategies, so far we only de-
ployed fork-like factorings, though our framework allows
for much more general star topologies. Further exploring
the space of possible factoring methods is an important task,
making decoupled search applicable to a large number of
new domains. This not only considers the application to
other classical planning domains, but also extends the scope
to other search-based areas such as puzzles, or multi-agent
planning, but also model checking.

The combination of decoupled search with other known
techniques from, e. g., model checking is highly interest-
ing, too. How about a kind of hybrid search that performs
standard search in the center part and symbolic search in
the leaves? Especially if the leaves have a rather large state
space, as, e. g., is very likely if we look at 2-factor star
topologies, this promises to solve the problem of the big
overhead needed to compute and store the pricing functions.

Overall, there is a great variety of techniques and meth-
ods, combining which with decoupled search can enrich the
state-of-the-art in planning and related search applications.

Conclusion

Decoupled state space search promises a wide open new re-
search area, exploring which is far beyond the scope of a
single dissertation. The initial framework has already been
introduced and tightened, so new extensions have a stable
basis to build on. The enhancement techniques outlined in
the previous chapter are mostly known from standard state
space search and can presumably be combined with decou-
pled search. Being orthogonal to the idea of decoupling –
which is exploiting conditional independence between parts
of a planning task – a significant additional improvement
over the plain variant can be expected when enabling these
methods in decoupled search.

References
Eyal Amir and Barbara Engelhardt. Factored planning. In
G. Gottlob, editor, Proceedings of the 18th International
Joint Conference on Artificial Intelligence (IJCAI-03), pages
929–935, Acapulco, Mexico, August 2003. Morgan Kauf-
mann.
Christer Bäckström and Bernhard Nebel. Complexity results
for SAS+ planning. Computational Intelligence, 11(4):625–
655, 1995.
Ronen Brafman and Carmel Domshlak. Structure and com-
plexity in planning with unary operators. Journal of Artifi-
cial Intelligence Research, 18:315–349, 2003.
R. I. Brafman and C. Domshlak. Factored planning: How,
when, and when not. In Yolanda Gil and Raymond J.
Mooney, editors, Proceedings of the 21st National Confer-
ence of the American Association for Artificial Intelligence
(AAAI-06), pages 809–814, Boston, Massachusetts, USA,
July 2006. AAAI Press.
Ronen I. Brafman and Carmel Domshlak. From one to
many: Planning for loosely coupled multi-agent systems.
In Jussi Rintanen, Bernhard Nebel, J. Christopher Beck,
and Eric Hansen, editors, Proceedings of the 18th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’08), pages 28–35. AAAI Press, 2008.
Ronen Brafman and Carmel Domshlak. On the complexity
of planning for agent teams and its implications for single
agent planning. Artificial Intelligence, 198:52–71, 2013.
Carmel Domshlak, Michael Katz, and Alexander Shleyf-
man. Enhanced symmetry breaking in cost-optimal plan-
ning as forward search. In Blai Bonet, Lee McCluskey,
José Reinaldo Silva, and Brian Williams, editors, Proceed-
ings of the 22nd International Conference on Automated
Planning and Scheduling (ICAPS’12). AAAI Press, 2012.
Carmel Domshlak, Michael Katz, and Alexander Shleyf-
man. Symmetry breaking: Satisficing planning and land-
mark heuristics. In Daniel Borrajo, Simone Fratini, Sub-
barao Kambhampati, and Angelo Oddi, editors, Proceedings
of the 23rd International Conference on Automated Plan-
ning and Scheduling (ICAPS’13), Rome, Italy, 2013. AAAI
Press.
Eric Fabre, Loı̈g Jezequel, Patrik Haslum, and Sylvie
Thiébaux. Cost-optimal factored planning: Promises and
pitfalls. In Ronen I. Brafman, Hector Geffner, Jörg Hoff-
mann, and Henry A. Kautz, editors, Proceedings of the
20th International Conference on Automated Planning and
Scheduling (ICAPS’10), pages 65–72. AAAI Press, 2010.
Daniel Gnad and Jörg Hoffmann. Beating LM-cut with
hmax (sometimes): Fork-decoupled state space search. In
Ronen Brafman, Carmel Domshlak, Patrik Haslum, and
Shlomo Zilberstein, editors, Proceedings of the 25th Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS’15). AAAI Press, 2015.
Daniel Gnad, Jörg Hoffmann, and Carmel Domshlak. From
fork decoupling to star-topology decoupling. In Levi Lelis
and Roni Stern, editors, Proceedings of the 8th Annual Sym-
posium on Combinatorial Search (SOCS’15). AAAI Press,
2015.

David Hall, Alon Cohen, David Burkett, and Dan Klein.
Faster optimal planning with partial-order pruning. In
Daniel Borrajo, Simone Fratini, Subbarao Kambhampati,
and Angelo Oddi, editors, Proceedings of the 23rd Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’13), Rome, Italy, 2013. AAAI Press.
Malte Helmert. The Fast Downward planning system. Jour-
nal of Artificial Intelligence Research, 26:191–246, 2006.
Jörg Hoffmann. Analyzing search topology without running
any search: On the connection between causal graphs and
h+. Journal of Artificial Intelligence Research, 41:155–229,
2011.
Peter Jonsson and Christer Bäckström. Incremental plan-
ning. In European Workshop on Planning, 1995.
Craig Knoblock. Automatically generating abstractions for
planning. Artificial Intelligence, 68(2):243–302, 1994.
Nir Pochter, Aviv Zohar, and Jeffrey S. Rosenschein. Ex-
ploiting problem symmetries in state-based planners. In
Wolfram Burgard and Dan Roth, editors, Proceedings of the
25th National Conference of the American Association for
Artificial Intelligence (AAAI-11), San Francisco, CA, USA,
July 2011. AAAI Press.
Álvaro Torralba and Jörg Hoffmann. Simulation-based ad-
missible dominance pruning. In Qiang Yang, editor, Pro-
ceedings of the 24th International Joint Conference on Ar-
tificial Intelligence (IJCAI’15), pages 1689–1695. AAAI
Press/IJCAI, 2015.
Antti Valmari. Stubborn sets for reduced state space gener-
ation. In Proceedings of the 10th International Conference
on Applications and Theory of Petri Nets, pages 491–515,
1989.
Martin Wehrle and Malte Helmert. About partial or-
der reduction in planning and computer aided verification.
In Blai Bonet, Lee McCluskey, José Reinaldo Silva, and
Brian Williams, editors, Proceedings of the 22nd Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’12). AAAI Press, 2012.
Martin Wehrle and Malte Helmert. Efficient stubborn sets:
Generalized algorithms and selection strategies. In Steve
Chien, Minh Do, Alan Fern, and Wheeler Ruml, editors,
Proceedings of the 24th International Conference on Auto-
mated Planning and Scheduling (ICAPS’14). AAAI Press,
2014.
Martin Wehrle, Malte Helmert, Yusra Alkhazraji, and Robert
Mattmüller. The relative pruning power of strong stub-
born sets and expansion core. In Daniel Borrajo, Simone
Fratini, Subbarao Kambhampati, and Angelo Oddi, editors,
Proceedings of the 23rd International Conference on Auto-
mated Planning and Scheduling (ICAPS’13), Rome, Italy,
2013. AAAI Press.

