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Abstract

In real world planning applications such as planning for
robots or video games, time for decision making is of-
ten limited. Unlike classical search, real-time search al-
gorithms are applicable in these domains due to their
bounded response time. This dissertation addresses the
setting in which planning and execution occur concur-
rently using real-time heuristic search. I advance this
area in three ways.
Real-time planning algorithms have to return the next
action for the agent within a strict time bound. I show
how to adapt previously-proposed methods, which de-
pend on unrealistic assumptions, to allow the use of wall
clock time bounds. Second, in real-time search partial
plans are generated until the goal state is found. It is
not clear whether the agent should commit to one action
along the path to best explored node or all the way to the
search frontier. We investigate the use of metareasoning
algorithms to decide how many actions to commit to.
Third, I will extend the application of real-time search
algorithms to stochastic domains.

Introduction
In real-time planning domains where human interaction is
involved, it is often desirable to reach the goal state as fast as
possible. Consider a path-finding domain in which an agent
has to navigate to a goal location while the user waits for the
execution to be completed.

The performance of classical heuristic search algorithms
is often measured by the solution cost, the overall search
time and the expansion count. These classical heuristic
search metrics are not sufficient for such real-time domains.
In problems where the agent has limited time to act the
performance of the planning algorithm is measured in goal
achievement time (GAT). The GAT measures the wall time
from the start of the search to the completion of the task.

Our primary focus is to advance real-time search in three
different ways.

Real-time search algorithms operate in planning episodes.
After each episode, the planner returns an action or a set of
actions until the goal state is expanded. To satisfy the real-
time property, the time to complete an episode is bounded.
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The current state-of-the-art real-time search, Dynamic f̂
provides responsiveness by limiting the number of explored
states in the planning episodes(Kiesel, Burns, and Ruml
2015). The time bound of the algorithm is expressed in node
expansions. According to the best of the author’s knowledge
none of the real-time heuristic search algorithms utilize wall
time-bound nor are they feasible for such setup. However,
in practical applications, the time bound is expressed in wall
time, not in node expansion. We propose to use wall time to
bound the response time of real-time planners.

In each episode, the planner explores the state space
knowing the agent’s current location and decides how far
it should go in the explored space. Given the framework
where the agent acts in parallel to the planning, the time
the agent spends on executing actions establishes the time
bound for the next planning iteration. The time limit given
to the planner determines how far it can look ahead in the
search space. More time allows the planner to explore more
states and make a more informed decision. It is not clear how
many actions should the agent commit to along the path to
the best explored state on the search frontier. The early real-
time search algorithms only committed to one action, but the
leading algorithm, Dynamic f̂ sends the agent all the way to
the search frontier. We investigate the use of metareasoning
algorithms to dynamically decide how many actions to com-
mit to.

Additionally, unlike in classical benchmarks problems,
acting in the real world is often stochastic. Consider an en-
vironment where a robot has to navigate to a goal loca-
tion. The location of the agent after taking an action is non-
deterministic. The precise location is unknown the planner
can only estimate. The leading real-time search algorithms
do not consider uncertainty, thus are not applicable to such
domains. We propose to extend the existing real-time plan-
ning algorithms to domains with uncertainty.

Time bounded real-time search

The first real-time heuristic search algorithms were proposed
by Korf in 1990. Since then the area of real-time search
has been evolved and several improvements have been pro-
posed. Before discussing the improvements, first we review
the most relevant algorithms to our work.



Previous work

A significant drawback of using A* on a situated agent is
that the algorithm has to find a complete solution path be-
fore making a commitment to the first action. The optimal
first move cannot be guaranteed until a complete solution is
found.

Learning Real-time A* (LRTA*) is a suboptimal real-time
search algorithm (Korf 1990). Unlike A*, LRTA* only con-
siders a local search problem. To select an action LRTA*
chooses the successor state that has the lowest sum of cost
and cost-to-goal estimate. It commits to one action and
repeats the search from the selected successor state. The
heuristic value of the neighboring states is augmented by
a depth bounded lookahead. The action selection time has
a theoretical upper bound due to the depth bounded looka-
head.

Local Search Space - LRTA* (LSS-LRTA*) is an im-
proved version of LRTA* (Koenig and Sun 2008).

A search episode of LSS-LRTA* consists of two phases:
exploration and learning. In the exploration phase, the algo-
rithm expands the search tree from the agent’s current loca-
tion. This exploration is limited by a predefined expansion
bound. The states explored in each episode represent the lo-
cal search space. While LRTA* selects the best neighboring
state and commits to one action per search episode, LSS-
LRTA* moves the agent all the way to the search frontier.

After the expansion, LSS-LRTA* uses a learning phase to
propagate back the heuristic values from the search frontier
in order to help the agent escape the local minima of heuris-
tic values.

Dynamic f̂ is a variant of LSS-LRTA* with two improve-
ments. Instead of using and admissible heuristic to explore
the local search space, Dynamic f̂ utilizes an unbiased inad-
missible heuristic function (Kiesel, Burns, and Ruml 2015).
In addition, Kiesel, Burns, and Ruml proposed a technique
to translate time duration to expansion counts to make the
algorithm feasible for practical domains with real-time re-
quirements. Dynamic f̂ uses a lookup table based on the
available time for the upcoming planning episode. The table
is populated by offline learning and contains a predefined set
of expansion limits along with the corresponding measured
mean planning time.

Real-time search using wall clock bounds
In domains where the time for decision making is limited,
the responsiveness of the planning algorithm is essential.
We assume the planner algorithm is running on an operat-
ing system that does not provide real-time guarantees, thus
the running time of an expansion cannot be approximated
precisely.

On such systems the state expansion times could be incon-
sistent, therefore the duration of an episode of an expansion
count limited real-time search algorithm is unpredictable,
while the bounded response time is the primary requirement.

We propose a real-time variant of LSS-LRTA* that uses
real-time measurements to provide more consistent planning
episode duration. This could be achieved by replacing the
expansion limit with a time limit. The proposed real-time
algorithm assesses the time bound after every expansion.

An episode of LSS-LRTA* consists of two phases: explo-
ration and learning. LSS-LRTA* does not account for the
time of the learning phase, thus it is not limited by the ex-
pansion bound. Dynamic f̂ is more sophisticated. It includes
both the planning and the execution phases in the time bound
by measuring the running time of the episodes. However,
these estimates are calculated offline, therefore, they are not
adaptive to the changes in the execution environment.

During the exploration phase of LSS-LRTA* or Dynamic
f̂ , the planner expands the explored state space with new
states until the time or expansion bound is reached. In the
learning phase, the planner propagates back the heuristic
values of the search frontier to local search space that were
explored in the preceding exploration phase until every state
is updated or the bound is reached.

The exploration phase is naturally ended by reaching the
bound. However, the learning step is considered incomplete
if only a subset of states were updated in the local search
space. During the learning phase, the planner increases the
heuristic values of the states in the local search space by
propagating back the most relevant values from the search
frontier. When the time bound is reached during the learn-
ing phase the propagation is terminated, leaving the planner
in an inconsistent state. The partially updated local search
space could be misleading due to the inconsistencies in the
heuristic values. The planner would be biased towards the
areas that were not updated, therefore, the results of an in-
complete learning step should not be used.

The original LSS-LRTA* algorithm does not include the
cost of learning in the episode bound due to the fact that it is
faster to complete the learning phase than a corresponding
exploration phase.

We propose to reverse the order of the learning and explo-
ration in the episodes. The reverse order provides a better
chance for the learning phase to complete. After updating
the values of the local search space, the exploration phase
can utilize the remaining time for the episode. The explo-
ration time and the following learning phase duration are re-
lated. More exploration corresponds to longer learning time.
When the learning step consumes most of the time in the
episode the exploration step has less time to expand new
states, thus, the learning step in the following episode will
complete faster and leave more time for the exploration.

The proposed method makes LSS-LRTA* and Dynamic
f̂ feasible for practical real-time domains where the time
bound is given in wall time.

A flexible commitment strategy
One of the central issues of real-time heuristic search with
a situated agent is the relation between the agent and the
plan. How far should the planner look ahead before commit-
ting to an action? Should it commit to only one action like
LRTA* or should it be less conservative and commit to the



best known state on the search frontier (LSS-LRTA*, Dy-
namic f̂ ).

O’Ceallaigh and Ruml presented the first real-time search
algorithm, Mo’RTS, that incorporates metareasoning to de-
cide when to act, and how many actions to commit to
(O’Ceallaigh and Ruml 2015). They showed the Mo’RTS
can improve the GAT of leading real-time search algorithms,
LSS-LRTA* and Dynamic f̂ . However, there are flaws that
were acknowledged by the authors. First, the Mo’RTS is
bounded by node expansions instead of using wall time
bounds as LSS-LRTA*. The decision-making time was not
included in the metric, thus, the effect of the algorithm on
the GAT is not clear.

More importantly, the work of O’Ceallaigh and Ruml,
while taking a principled approach to the question of
whether or not the agent should commit to an action or de-
liberate further, takes an ad hoc approach to the question of
how many actions the agent should commit to. I will show
how, in fact, the second issue can be answer by appealing
to the first. By showing that the metareasoning overhead of
Mo’RTS can be made small in practice, I will allow the agent
to consider the question of whether or not to commit very
frequently — at multiple points during a single planning it-
eration, in fact. This will allow the agent to naturally decide
how much of the plan prefix to which to commit, solving the
commitment length problem without recourse to an ad hoc
method.

The application of meta-reasoning to problems such as
plan commitment has shown great promise but has not been
fully explored. This dissertation aims to utilize such metar-
easoning techniques while relaxing the strong assumptions
of Mo’RTS.

Extending to stochastic domains
A* based search algorithms are tailored to handle domains
where the actions are deterministic. Thus, real-time search
algorithms such as LSS-LRTA* and Dynamic f̂ are not de-
signed to handle stochastic domains, as plans generated by
these algorithms assume certain state transitions.

Markov Decision Processes (MDPs) provide a popular
framework for planning problems with uncertainty. Real-
time dynamic programming (RTDP) is a generalization of
Korf’s LRTA* to stochastic domains (Barto, Bradtke, and
Singh 1995). Unlike Dynamic f̂ , that explores only the lo-
cal search space, RTDP explores states with simulated se-
quences from the agent’s initial location. However, just as
with traditional real-time, there has been little consideration
of explicitly optimizing GAT. We intend to extend previous
work, such as Sanner’s Bayesian RTDP (Sanner et al. 2009),
using ideas from Mo’RTS to show that MDPs can provide an
agile real-time framework for situated agents planning under
time pressure.

Conclusion
The primary focus of this dissertation is to overcome the ex-
isting issues of real-time heuristic search and to make real-
time search actually real-time, while minimizing the goal
achievement time. Furthermore, it aims to extend the scope

of real-time heuristic search to handle a wider range of real
world applications. My dissertation will advance the science
of planning with concurrent execution in three ways. First,
the current real-time search algorithms are not suited for
planning in a real world environment in which the time for
decision making is limited in wall time, since they provide
responsiveness by limiting the number of expansions. Sec-
ond, in a setting where the planning is concurrent with the
execution, it is not clear whether the agent should commit
to one action along the path to best explored node or all the
way to the search frontier. Mo’RTS proposed an adaptive
metareasoning technique to decide whether the agent should
deliberate further, and I will adapt this method to naturally
handle the length of commitment. Third, I will extend these
ideas to planning under uncertainty.
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