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Abstract

Planning is a well known and studied field of Artificial
Intelligence. Multi-Agent Planning concerns the con-
struction of plans for a group of autonomous agents that
can interact. The aim of multi-agent planning is to au-
tomatically find a solution such that, if every agent exe-
cutes successfully his plan, the environment changes to
a goal state. The solution can be found either by cen-
tralized or distributed algorithms.

Introduction
The aim of planning, a well known field of Artificial In-
telligence, is the automated synthesis of partially ordered
sequences of actions, called plans, that can be executed in
given settings by one or more agents. A plan is called a
solution for a given problem if its execution from an initial
known state achieves the problem goals.

Multi-agent planning can be seen as an extension of clas-
sical planning and in (De Weerdt and Clement 2009) is de-
fined as “the problem of planning by and for a group of
agents”. This definition is intentionally general and there-
fore includes many different approaches. Multi-agent plan-
ning can be applied to a wide range of problems, from team
of robots involved in space exploration or disaster recovery
to logistics chains involving different companies. Whenever
there are multiple actors that operate in the setting and they
need to decide the best course of action, multi-agent plan-
ning can be used to find a solution. It is also worth noting
that, although multi-agent planning is not a new research
field, many important contributions in this topic are quite re-
cent. One of the main motivations in multi-agent planning is
that some or all agents have private knowledge that cannot
be communicated to other agents during the planning pro-
cess and the plan execution.

Problem Definition
Different authors use some slightly different definition of
multi-agent planning, however the most common defini-
tion of this problem relies on the multi-agent language
called MA-STRIPS, a minimal extension of the STRIPS
planning language, which was first described in (Brafman
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and Domshlak 2008) and then adopted by several authors
(Jonsson and Rovatsos 2011; Nissim and Brafman 2012;
Brafman and Domshlak 2013; Štolba and Komenda 2013;
Štolba, Fišer, and Komenda 2015a). Other definition of the
problem are also possible (Torreño, Onaindia, and Sapena
2014; 2015; Bonisoli et al. 2014), nonetheless MA-STRIPS
is a simple and effective language to represent the coopera-
tive multi-agent planning.

Formally in a multi-agent planning task is given a set of k
agents Φ = {ϕi}ki=1 and a 4-tuple Π = 〈P, {Ai}ki=1, I, G〉
where:

• P is a finite set of atomic propositions, I ⊆ P encodes
the initial state and G ⊆ P encodes the goal conditions,
as in the classical planning;

• Ai, for 1 ≤ i ≤ k, is the set of actions of the agent ϕi .
Every action a ∈ A =

⋃
Ai is given by its preconditions

and effects; every agent has a different set of actions, i.e.
Ai ∩Aj = ∅ if i 6= j.

A solution is a partially ordered sequence of actions such
that each action in the plan is associated with a single agent.
If there is only one agent in the problem, that is n = 1, this
definition reduces exactly to a STRIPS problem. Therefore,
one can see MA-STRIPS as a partition of the set of actions
of a STRIPS problem and assignment of one agent to each
partition set. This rather simple extension of the language
is easy to understand, but it is quite limited: for example
in MA-STRIPS it is not possible to define different goals
for different agents. The model was also extended for the
case of self-interested agents (Nissim and Brafman 2013).
Another interesting proposal for a standard description lan-
guage that allow for a more direct comparison between sys-
tems and approaches is MA-PDDL (Kovacs 2012), which is
an extension of the PDDL language used by the international
planning competitions. MA-PDDL is aimed at solving most
of the limitations of other multi-agent planning languages.
This language can be used to describe many different multi-
agent systems and was used during the first Competition of
Distributed and Multiagent Planners (Štolba, Komenda, and
Kovacs 2015).

Given the partition of actions in MA-STRIPS, is is pos-
sible to distinguish between private and public actions and
propositions. An atom is private for agent ϕi if it is required
and affected only by the actions of ϕi. An action of ϕi is pri-



vate if all its preconditions and effects are private. All other
action are classified as public. This definitions are quite im-
portant and widely used because are the basis for defining
the privacy of the agents.

State of the Art
One of the first distributed algorithms to solve a
MA-STRIPS problem is presented in (Brafman and Domsh-
lak 2008). This approach is based on a distributed solver for
constraint satisfaction problems: using the notions of public
and private actions it is possible to define constraints for the
agents and use them to agree on a solution and let each agent
to autonomously plan their private part. The experimental
results of this algorithm are presented in (Nissim, Brafman,
and Domshlak 2010). Although the basic idea was highly
innovative, the overall efficiency of the algorithm was insuf-
ficient and, therefore, was only able to solve problems of
modest size and complexity. In the same work it is defined
an upper limit to the complexity resolutive for the problems
MA-STRIPS that depends exponentially on two parameters
that quantify the level of coupling of the system.

To increase scalability than the number of agents involved
in (Jonsson and Rovatsos 2011) is proposed an approach
with iterative refinement of the plans: each agent involved
may in turn change their plan to update it according to the
actions planned by other agents. In this way a process is ob-
tained which slowly converges towards a solution plan for
the problem. Unfortunately, this convergence is not guaran-
teed in all cases, as it can not formally prove the optimal-
ity of the solutions produced by the algorithm. However it
uses in it known technologies and planners available oof the
shelf and can therefore take advantage of the latest innova-
tions in the field of research into classical planning. It can
also be used to solve problems with non-cooperative agents,
but only if it is not required to keep private the plans of the
agents.

In contrast in (Nissim and Brafman 2012; 2013) is pre-
sented the extension to the case of multi-agent of the known
search algorithm A*, called MAD-A*. This new algorithm
maintains the properties known from classic case if the
heuristic function used is permissible and also ensures a
level of privacy to agents involved which the authors define
as weak privacy. Moreover, in (Nissim and Brafman 2014)
is also described an additional feature of MAD-A* which al-
lows him to prune the search tree of a larger number of nodes
than classic algorithm. Finally in (Brafman 2015) describes
a modification to the algorithm that allows it to further in-
crease the level of privacy and exchanging fewer messages
between agents, but unfortunately for this version are not
present experimental results.

Instead in (Torreño, Onaindia, and Sapena 2012; 2013;
2014; 2015) is presented an algorithm based on forward
planning with partial ordering and exchange of incomplete
plans. In this case the problem of the proposed model is dif-
ferent than that described in MA-STRIPS, however, the two
models are comparable and the most recent implementation
of this algorithm is able to solve the problems described with
MA-PDDL. It is noteworthy that the privacy of agents is kept

obscuring a part of the partial plans that are exchanged dur-
ing the planning of the agents.

Conversely in (Maliah, Shani, and Stern 2014) is pre-
sented the algorithm GPPP which uses explicitly two dif-
ferent phases to identify a solution plan. During the first
phase the agents want to identify a joint coordination scheme
through a high-level planning of a relaxed problem using
only the public actions of the problem. In the second phase,
each agent individually shall seek a local plan that can sup-
port public actions agreed in coordination shcema. It is evi-
dent that, since the high-level planning has been carried out
on a relaxed problem, it is possible that during the second
phase some of the agents are not able to find a viable solu-
tion. In this case the algorithm executes again the first phase
to determine a different coordination scheme.

Finally in (Tozicka, Jakubuv, and Komenda 2014; 2015)
describes a new and recent approach based on finite state
machines. This algorithm called PSM uses finite automata
to represent a set of plans and then use public screenings
and intersection of automata to compute a solution. Since
public projections do not contain private information, these
are exchanged between agents that have generated a plan
and if the intersection between the projections received from
other agents and its plan is not empty, then the plan is a
solution. The planner based on this algorithm has shown
excellent results in the competition for distributed planners,
in particular in the fully distributed track.

It is also important to note the studies regarding the
heuristic evaluation functions because of their importance
during the research phase: a more accurate heuristic could
bring significant performance gains for algorithms that use
it. For this reason, in (Štolba, Fišer, and Komenda 2015b)
shows a comparison between the performance of differ-
ent heuristics multi-agent. Many of those presented are in
fact an adaptation of heuristics known for classical planning
adapted to the case multi-agent. Most of these heuristics
is an adaptation of the very heuristic notes taken by the fa-
mous classic planner Fast-forward described in (Hoff-
mann and Nebel 2001). It is for example the case of (Štolba
and Komenda 2013; 2014) which distributes between agents
graphs of relaxed schedule used by fast-forward. The
authors Torreño, Onaindia, and Sapena on the contrary us-
ing an approach based on the latest graphs domain transition,
although in their last work (Torreño, Onaindia, and Sapena
2015) show that a hybrid approach between the two differ-
ent heuristics may result on average in more accurate heuris-
tic. In (Maliah, Shani, and Stern 2014) is instead presented
a multi-agent heuristi based on landmark that can also to
maintain the privacy of the agents, while in (Štolba, Fišer,
and Komenda 2015a) describes another heuristic based on
lankmark but admissible. In (Maliah, Shani, and Stern 2015)
a new heuristic based on pattern database is proposed and
shoed to be more effectiv on some domains. It should how-
ever be noted that the distributed heuristic algorithms can
be substantially different from the classic ones that inspired
them and in general could also get different results with re-
spect to their central counterparts.



Privacy-preserving Multi-agent Planning
One fundamental problem of MA-STRIPS is that it cannot
express the privacy of the agents beyond the definitions of
public and private facts and actions and does not fully guar-
antee the privacy of the involved agents when at least one
public proposition is confidential (i.e., it should be kept hid-
den from some agent). For example a proposition shared by
two agents should be public for every other involved agent.

Therefore in this section, we propose a more general
model that preserves the privacy of the involved agents. The
model of multi-agent planning that is most similar to the
one we propose here is the model adopted by MAP-POP
(Torreño, Onaindia, and Sapena 2012). This model was first
presented in (Bonisoli et al. 2014).

A privacy-preserving multi-agent planning problem for a
set of agents Σ = {αi}ni=1 is a tuple 〈{Ai}ni=1, {Fi}ni=1,
{Ii}ni=1, {Gi}ni=i, {Mi}ni=1〉 where:

• Ai is the set of actions agent αi is capable of executing,
and such that for every pair of agents αi and αj ,Ai∩Aj =
∅;

• Fi is the set of relevant facts for agent αi;

• Ii ⊆ Fi is the portion of the initial state relevant for αi;

• Gi ⊆ Fi is the set of goals for agent αi;

• Mi ⊆ Fi × Σ is the set of messages agent αi can send to
the other agents.

Facts and actions are literals and pair 〈Pre,Eff〉, respec-
tively, where Pre is a set of positive literals and Eff is a
set of positive or negative literals. Let X+/X− denote
the positive/negative literals in set X , respectively. Let G
be the graph induced by {Mi}ni=1, where nodes represent
agents, and edges represent possible information exchanges
between agents; i.e., an edge from node αi to node αj la-
belled p represents the agent αi’s capability of sending p
to agent αj . In order to have well-defined sets {Mi}ni=1,
∀αi, αj ∈ Σ, ∀p s.t. p ∈ Fi and p ∈ Fj , there should
be a path in G from the node representing αi to the node
representing αj formed by edges labelled p, if p ∈ Ii, or
∃a ∈ Ai · p ∈ Eff+(a), or ∃a ∈ Ai · p ∈ Eff−(a).

A plan for a multi-agent planning problem is a set {πi}ni=1
of n single-agent plans. Each single agent plan is a sequence
of happenings. Each happening of agent αi consists of a
(possibly empty) set of actions of αi, and a (possibly empty)
set of exogenous events. Exogenous events are facts that be-
come true/false because of the execution of actions of other
agents; in this sense, these events cannot be controlled by
agent αi. Formally, πi = 〈h1i , . . . , hli〉, h

j
i = 〈Aj

i , E
j
i 〉,

Aj
i ⊆ Ai, E

j
i ⊆

⋃
k Fk, for i = 1 . . . n, j = 1 . . . l,

k ∈ {1, . . . , i− 1, i+ 1 . . . , n}.
The execution of plan πi generates a state trajectory,

〈s0i , s1i , . . . , sli〉, where s0i = Ii, and a sequence of messages,
〈m1

i , . . . ,m
l
i〉, each of which is a set of literals. At planning

step j agent αi sends literal p/¬p if either αi executes an ac-
tion that makes p true/false or αi receives the message that
lets the agent know p becoming true/false. In this latter case,
αi forwards the received message p/¬p to the agents it is

connected to. For every planning step, the forwarding is re-
peated n− 1 times so that, if sets {Mi}ni=1 are well-defined,
every agent αk such that p ∈ Fk is advised that p becomes
true or false (the length of the shortest path between any pair
of nodes in the graph induced by {Mi}ni=1 is at most n− 1).
At planning step j agent αi sends literal p/¬p if either αi

executes an action that makes p true/false or αi receives the
message that lets the agent know p becoming true/false. In
this latter case, αi forwards the received message p/¬p to
the agents it is connected to. For every planning step, the
forwarding is repeated n − 1 times so that, if sets {Mi}ni=1
are well-defined, every agent αk such that p ∈ Fk is advised
that p becomes true or false (the length of the shortest path
between any pair of nodes in the graph induced by {Mi}ni=1
is at most n− 1).

Formally, state sji and messagemj
i are defined as follows,

for j = 1 . . . l and k = 1 . . . i− 1, i+ 1 . . . n.

sji = sj−1i ∪
⋃

a∈Aj
i

Eff+(a) ∪ E+j
i \

⋃
a∈Aj

i

Eff−(a) \ E−j
i ;

mj
i =

⋃
k

sm+j
i→k(n− 1) ∪

⋃
k

sm−j
i→k(n− 1), with

sm+j
i→k(t) =

{
〈p, αk〉 | 〈p, αk〉 ∈Mi,

p ∈
⋃

a∈Aj
i

Eff+(a) ∪ rm+j
i (t− 1)

}
,

sm−j
i→k(t) =

{
〈¬p, αk〉 | 〈p, αk〉 ∈Mi,

p ∈
⋃

a∈Aj
i

Eff−(a) ∪ rm−j
i (t− 1)

}
,

rm+j
i (t) =

{
p | 〈p, αi〉 ∈

⋃
k

sm+j
k→i(t)

}
,

rm−j
i (t) =

{
p | 〈¬p, αi〉 ∈

⋃
k

sm−j
k→i(t)

}
,

rm+j
i (0) = rm−j

i (0) = ∅.

Intuitively, for planning step j, sm + j
i→k(t)/sm− j

i→k(t) is
the set of positive/negative literals that at the t-th forward-
ing step (t = 1 . . . n − 1) agent αi sends to agent αk;
rm + j

i (t)/rm − j
i (t) is the set of positive/negative literals

that at the t-th forwarding step agent αi receives. Note that
propositional planning assumes that at every planning step
the execution of actions is instantaneous, and hence the in-
formation exchanges also happens instantaneously.

We say that the single-agent plan πi is consistent if the
following conditions hold for j = 1 . . . l and t = 1 . . . n−1:

(1) E+j
i =

⋃
t rm+j

i (t), E−j
i =

⋃
t rm−j

i (t);

(2) ∀a, b ∈ Aj
i · Pre(a) ∩ Eff−(b) = Pre(b) ∩ Eff−(a) = ∅;

(3) ∀a, b ∈ Aj
i ·Eff+(a)∩Eff−(b) = Eff+(b)∩Eff−(a) = ∅;



(4) ∀a ∈ Aj
i ,∀e ∈ E−j

i · Pre(a)∩ e = ∅ = Eff+(a)∩ e = ∅.

Basically, (1) asserts that at planning step j all the exoge-
nous events for agent αi are the positive/negative literals αi

receives during the information exchange, i.e., (1) guaran-
tees that these events are generated by some other agent; (2)
and (3) assert that at planning step j agent αi executes no
pair of mutually exclusive actions; finally, (4) asserts that at
planning step j agent αi executes no action that is mutex
with some action executed by other agents.

Let 〈s0i , s1i , . . . , sli〉 be the state trajectory generated by
single-agent plan πi. Plan πi is executable if Pre(a) ⊆ sj−1i ,
∀a ∈ Aj

i , j = 1 . . . l. Plan πi is valid for agent αi if it is ex-
ecutable, consistent, and achieves the goals of agent αi, i.e.,
Gi ⊆ sli. A multi-agent plan {πi}ni=1 is a solution of the
multi-agent privacy-preserving planning task if single-agent
plan πi is valid for agent αi, for i = 1 . . . n.

The main difference with existing models to multi-agent
planning, like (Torreño, Onaindia, and Sapena 2012), is re-
lated to sets {Mi}ni=1 and the purpose for which agents use
them. Essentially, Mi determines the messages agent αi can
generate during the execution of its plan, that can be sent to
other agents without loss of privacy.

Conclusion
Multi-agent planning is an open field of research as many
new contributions in recent years have showed and there are
still some open issues and challenges to address. First of
all, many theoretical properties of some settings of multi-
agent planning are not well known. For example it is still
unknown the actual complexity of different settings or what
make them so difficult. Also, while the theoretical prop-
erties of multi-agent systems are well studied in the multi-
agent system community, the relation to planning is not a
well studied topic and further research work may improve
the understanding of the multi-agent planning problem.

Furthermore, while privacy issues are strong reasons for
using distributed algorithms, the definition of privacy in
multi-agent planning is debated, e.g., what agents should
kept private information (state variables, actions, goals) and
what minimal information they should exchange in order to
be able to construct a joint plan remain an open question.
While the distinction between public and private fluents and
actions is a first step towards the definition of privacy, it is
too weak for many settings not involving cooperative agents.
It is unknown whether partial observability can cope with the
privacy issues.
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