
Exploiting Search Space Structure in Classical Planning:
Analyses and Algorithms
(Dissertation Abstract)

Masataro Asai
Graduate School of Arts and Sciences

University of Tokyo

State of the Current Work, Future Plans and
Expectations from the Consortium

The author has completed 2 years of research in Masters de-
gree and is in the first year of the PhD, which is not so close
to the dissertation. As a result, this dissertation abstract con-
tains several speculative materials. This is because the author’s
current publications lack the coherent story, primarily due to
the lack of good understanding of macro operators and search
algorithms in the planning community. I address this issue in
the future work sections and make up the coherent story that is
necessary to form a viable thesis.

At the time of writing this, I expect from the Consortium the
advice how to form a viable, coherent dissertation thesis, which
is completely different from writing an individual research pa-
per. I also wish to connect with mentors and students in the
Consortium for future collaboration, because some of future
work may not make way into the thesis.

In the following sections, I first present my past work, then I
propose some future ideas.

Current Work
Factored Planning System CAP
We proposed a Factored Planning framework CAP (Asai and
Fukunaga 2015).

Factored Planning (FP) is a class of planning framework
which first decompose a problem into (hierarchical) subprob-
lems, then (hierarchically) merge the results of the subproblems
into a concrete solution of the entire problem. FP subsumes Hi-
erarchical Task Network in which the decomposition is written
by humans. In contrast, recent FP systems use the automatic
decomposition of the planning problems (Amir and Engel-
hardt 2003; Brafman and Domshlak 2006; Kelareva et al. 2007;
Fabre et al. 2010).

CAP is a variant of FP systems which only weakly requires
the decomposability of the problem. Previous FP systems as-
sume the full disjointness (subgoals do not conflict with each
other) and the concatenability (high-level solver can connect
the solutions of the decomposed subproblems), primarily be-
cause it tries to solve the problem using all and only the solu-
tions to the decomposed subproblems. CAP, in contrast, uses
the solutions to the subproblems as macro operators, and com-
pose the plan using macros as well as the primitive actions.

Figure 1: CAP system overview. SubPlanner and MainPlanner
are domain-independent planners, e.g., FD/lama (Helmert 2006),
FF (Hoffmann and Nebel 2001). They can be the same planner,
or different planners.

Figure 1 shows the overview of the CAP framework. Sub-
Planner and MainPlanner are domain-independent planners,
e.g., FD/lama (Helmert 2006), FF (Hoffmann and Nebel 2001),
Probe (Lipovetzky and Geffner 2011), YAHSP3 (Vidal and oth-
ers 2004; Vidal 2011; 2014). They can be the same planner, or
different planners (mixed configuration). In detail, CAP works
as follows:

1. Problem Decomposition: Perform a static analysis of the
PDDL problem in order to identify the independent subprob-
lems. Each subproblem is called a component task, which is
created from an abstract component. There are several ways
to construct abstract components, which affect the resulting
component task.

2. Generate Subplans with SubPlanner: Solve the subproblems
with a domain-independent planner (SubPlanner).

3. Macro generation: For each subplan, concatenate all of its
actions into a single, ground (nullary) macro operator.

4. Main Search by MainPlanner: Solve the augmented
PDDL domain (including macros) with a standard domain-
independent planner (MainPlanner).

5. Decoding: Finally, any macros in the plan found by Main-
Planner are decoded back to the primitive actions.

Unlike the previous Factored Planning frameworks, CAP
was shown to be capable of solving wide range of planning
problems. We tested CAP in extremely large planning problems
generated by the same problem generators in the standard IPC
Sequential Satisficing domains, as well as the Learning Track
Test instances of IPC. Table 1 shows that CAP and MUM, a
state-of-the-art macro learning system, improve performance in



a completely different domains, and that CAP combined with
MUM further improves the performance.

X = FF X = FD/lama X = Probe

Domain FF M
U

M
(F

F)
C

A
P7

.5
s

(F
F)

M
U

M
( C

A
P7

.5
s

(F
F)

)

FD
/la

m
a

M
U

M
(F

D
/la

m
a)

C
A

P7
.5

s
(F

D
/la

m
a)

M
U

M
( C

A
P7

.5
s

(F
D

/la
m

a)
)

Pr
ob

e
M

U
M

(P
ro

be
)

C
A

P7
.5

s
(P

ro
be
)

M
U

M
( C

A
P7

.5
s

(P
ro

be
))

IP
C

20
11

L
ea

rn
in

g

barman-ipc11-learn(30) 0 0 29 30 5 0 29 0 9 1 24 30
blocksworld-ipc11-learn(30) 6 25 6 25 2529 25 29 1929 20 29

depots-ipc11-learn(30) 2 3 1 1 0 0 0 0 2829 27 30
gripper-ipc11-learn(30) 0 0 0 0 0 5 0 5 0 30 0 30
parking-ipc11-learn(30) 1 1 1 1 1414 8 10 4 2 3 2
rover-ipc11-learn(30) 2 0 3 4 27 0 12 23 15 0 10 19

satellite-ipc11-learn(30) 2 1 2 3 5 0 0 0 0 0 0 0
spanner-ipc11-learn(30) 0 0 0 0 0 0 0 0 0 0 0 0

tpp-ipc11-learn(30) 0 9 20 30 1430 30 30 10 0 10 0
Sum 1339 62 94 9078104 97 8591 94 140

Table 1: IPC2011 Learning Track results on 15 minutes,
4GB memory setting, using the standard planner X ∈
{FD/lama, FF, Probe}, with/without either/both of macros intro-
duced by CAP and MUM.

CAP has a plenty of rooms for enhancements. It can be en-
hanced by using the different planners in the subproblem solv-
ing and the main planning enhanced by macros. The timelimit
criteria of the subproblem solving can be dynamically opti-
mized by the iterative resource allocation. Some subproblems
can be pruned by the compatibility criteria between the sub-
problems, which is checked by detecting the graph isomor-
phism. CAP can also be enhanced with a “restoration macro”,
a macro that “bridges the gap” to the next applicable macro.

Revisiting the Utility Problem: An Empirical Analysis

Although the performance improvement of CAP is clear, we
gave further in-depth analysis on why CAP system works and
why their enhancements work.

With this task in mind, we revisited the Utility Problem, a
tradeoff between the benefit and the cost of introducing macros.
Although recent macro systems such as MacroFF (Botea et al.
2005), Wizard (Newton et al. 2007) and MUM (Chrpa, Val-
lati, and McCluskey 2014) employ sophisticated macro prun-
ing methods, some of key assumptions regarding the utility
problem predate current heuristic search based planners. We
reinvestigate the utility problem for macro operators using two
models, “partial solution macros” and “junk macros”, each rep-
resents how “obviously useful” macros and “obviously use-
less” macros affect the search performance of planners. As a
result, we get the following observations:

First, contrary to conventional wisdom, macro operators do
not increase the effective branching factor in modern heuris-
tic search-based planners. We show that introducing randomly
chosen “junk” macros reduces node evaluations in many do-
mains, and in some domains, junk macros improves the runtime
(Table 2).

(LAMA) Preprocess Search Total Eval
Domain L [sec] [sec] [sec] [node]
airport 8 112 (1.1) 355 (.50) 467 (.57) 280721 (.74)

cybersec 8 2217 (.91) 3 2220 (.91) 3309
depot 8 22 (1.3) 149 (.50) 171 (.54) 190577 (.47)

driverlog 5 24 (1.3) 105 (1.6) 129 (1.5) 179752 (.88)
hanoi 2 3 (1.0) 287 (.79) 290 (.79) 2070986 (.97)

mystery 5 87 (1.4) 4 (.21) 91 (1.1) 2643 (.08)
pipesworld-t 8 304 (1.5) 893 (2.1) 1197 (1.9) 355576 (.89)

rovers 2 331 (1.1) 114 (.96) 445 (1.0) 87475 (.90)
transport-sat11 2 205 (1.3) 630 (2.0) 835 (1.8) 47244 (.47)
Table 2: Selective results showing the improvements by junk
macros of length L, using LAMA planner. Each cell shows
the sum over all instances in the domain solved by all con-
figurations, averaged by the 10 runs. Ratios relative to LAMA
are shown, e.g., “(.86)” means the ratio compared to LAMA is
0.86. Improvement/degradation are tested with statistical sig-
nificance (p < 0.001).

cov. macros (L ≥ 2) usage (%) expansion time
baseline 557 0 0 0 0/0 83009511 1765
split1 561 598 595 557 93.6 16194 0.36
split3 561 1794 1727 1550 89.7 175689 3.74
split10 561 5980 4100 2999 73.1 3683892 50.2
split3gap1 561 1794 1648 1423 86.3 389398 20.6
split3gap3 560 1794 1444 1158 80.2 1811416 74.7
split3gap5 561 1794 1260 984 78.1 7540669 202

Table 3: Results on problems with partial solution macros and
partial solution macros with gaps.

Next, we show that the planner may fail to use even trivially
useful “partial solution macros”.

The most trivially useful macros are the complete solutions
to the planning problem itself — Any solution can be encoded
as a macro, such that applying it to the initial state results
in reaching the goal in one step. Although such macros are
clearly unrealistic, understanding the behavior of modern plan-
ners with such a macro can yield useful insights.

As a next step we investigate partial solution macros, which
are the macros generated by splitting a solution into several
parts and encoding the individual pieces as macros. Since con-
necting those macros solve the entire problem instantly, smart
planners should be able to successfully connect them. We refer
to this assumption a concatenability assumption, an important
assumption made by Factored Planners. However, we empir-
ically show that the planners are in fact not able to connect
them, and the concatenability assumption does not hold. We
show that an important factor determining such success/failure
in utilizing macros is the difficulty of establishing a chain of
macro applications, i.e., the “gap” between the partial solution
macros (Table 3).

By applying new insights, we can now fully investigate CAP
and restoration macros, an enhancement to CAP which ad-
dresses the problem of large gaps between the macros found
by CAP.

Tiebreaking Strategy for A*: How to Explore the
Final Frontier
Despite recent improvements in search techniques for cost-
optimal classical planning, the exponential growth of the size
of the search frontier in A* is unavoidable. We investigate



tiebreaking strategies for A*, experimentally analyzing the
performance of standard tiebreaking strategies that break ties
according to the heuristic value of the nodes. We find that
tiebreaking has a significant impact on search algorithm per-
formance when there are zero-cost operators that induce large
plateau regions in the search space. We develop a new frame-
work for tiebreaking based on a depth metric which measures
distance from the entrance to the plateau, and proposed a new,
randomized strategy which significantly outperforms standard
strategies on domains with zero-cost actions (Asai and Fuku-
naga 2016).

We showed that contrary to conventional wisdom, tiebreak-
ing based on the heuristic value is not necessary to achieve
good performance. We also proposed a new framework for
defining tiebreaking policies based on depth. Our depth-based,
randomized strategy [h, rd, ro], which uses the heuristic value,
but explicitly avoids depth and ordering biases present in pre-
vious methods, significantly outperforms previous strategies
on domains with zero-cost actions, including practical appli-
cation domains with resource optimization objectives in the
IPC benchmarks. The proposed approach is highly effective on
domains where zero-cost actions create large plateau regions
where all nodes have the same f and h costs and the heuristic
function provides no useful guidance.

Summary of Contributions
Our current contributions can be summarized as follows. (1)
We proposed CAP, a satisficing factored planner using macros.
(2) We investigated of the general effect of macro operators in
satisficing planning, and applied the new observation to CAP.
(3) We investigated the past tiebreaking strategies of A* for
optimal search, and proposed a new tiebreaking methods which
diversifies the search depth.

Although (1) and (2) are the same line of work, (3) does not
nicely fit into the storyline, which will be fixed in the future
work as proposed in the following sections.

Introduction (Future Work)
Current State-of-the-Art planner such as Fast Downward (?)
can solve the planning problems of a moderately large size in
a reasonable amount of time, mainly thanks to the greedy for-
ward search combined with sophisticated heuristic functions
such as delete-relaxation (?) and landmarks (Richter and West-
phal 2010), combined with techniques specifically tailored to-
ward planning problems such as helpful actions (?) and consis-
tency criteria (Lipovetzky and Geffner 2011).

However, Classical Planning is PSPACE-Complete (Bylan-
der 1994) and intractable in general. Above strategies are made
upon the assumption that the problems are serially decompos-
able, and in fact its usefullness does not hold in the random
problem instances generated by algorithm A, B or C in (By-
lander 1996; Rintanen and others 2004) nor in some domains
such as Floortile, Scanalyzer in recent IPCs (Alcázar, Veloso,
and Borrajo 2011).

Moreover, there are several satisficing search strategies that
seem still yet relatively incompatible to, or independent from
the heuristic forward search. Examples include SAT-based
planners (Rintanen 2012), Lookaheads (Vidal and others 2004),

Macro actions (Chrpa, Vallati, and McCluskey 2015), Fac-
tored Planning (Amir and Engelhardt 2003; Asai and Fuku-
naga 2015), Diversified Search (Imai and Kishimoto 2011;
Xie et al. 2014; Burfoot, Pineau, and Dudek 2006).

In our work, we try to provide a consistent theoretical back-
ground unifying all these strategies, and then propose several
practical algorithms inspired by the new observations.

Macro-conversion of the Search Algorithms
First, we formally define the notion of best first search with
lookaheads (L-BFS) and show that macro actions can simu-
late any L-BFS, and vice versa (L-BFS can simulate any macro
actions). The intuition is as follows: When BFS starts a depth-
first lookahead during the search in a certain condition, that
condition can be directly encoded in the preconditions of the
macros, although in a problem-specific manner. This unifies
various inadmissible search strategies as a modification of the
search space using macro actions, which greatly simplifies the
discussions in the later sections. We hereafter call the act of
simulating L-BFS by macro operators as “macro-conversion”.

Phase Transition of the Search Space
Next, we tackles the problem of Phase Transition in the com-
plex search space of planning problems. Phase transition in a
class of search problems is a phenomenon that the difficulty
and the complexity of the problems are ruled by a simple meta-
level parameter, and become increasingly easy or hard when
the parameter crosses a critical value.

In AI research, phase transition was first found in the boolean
satisficing problems (Huberman and Hogg 1987; Cheeseman,
Kanefsky, and Taylor 1991; Selman, Mitchell, and Levesque
1996) and are recently connected to the physical phenomenon
in the Ising model of the spin grass (Barahona 1982). In
boolean-SAT problems, the meta-level parameter is the ratio
r = L/N of the number of clauses L and the number of propo-
sitions N , with a critical value rc ≈ 4.24 (Crawford and Auton
1993). In boolean SAT, whenN →∞, the probability of being
SAT is 0 when r < rc and 1 when r > rc. When N is finite,
it becomes increasingly difficult to determine the satisfiability
when p approaches pc from either above or below.

In planning problems, previous strategies for analyzing the
phase transition are primarily based on the analogy from the
boolean satisficing problems. For example, the meta-parameter
that is claimed to be controlling the problem difficulty is the
ratio of number of operators versus the number of state vari-
ables (Rintanen and others 2004). In Algorithm B, (Bylander
1996) A and C (Rintanen and others 2004), planning operators
are generated randomly.

We instead analyze the planning problems based on the Per-
colation Theory (Stauffer and Aharony 1994), a theory describ-
ing the behavior of the fluid percolating through porous mate-
rial from one end to the other end. The same theory is already
shown to be applied to the pathfinding on random graph and
ACO algorithm (Velloso and Roisemberg 2008) because the
existence of a satisficing path in a graph is equivalent to perco-
lating the material from one porous site to the goal site with the
fluid. However, the search spaces of planning problems and the
random graphs are claimed to have the different characteristics
(Bylander 1996; Rintanen and others 2004).



Percolation theory dictates that the connectability of the
graph is controlled simply by the ratio p of the number of oc-
cupied edges to the number of all edges. In the infinite graph,
the probability p of two points having a path is 0 when the ra-
tio r is below a critical threshold rc, and is 1 when r > rc.
The value of rc depends on the topology of the graph. In case
of finite graph, the probability p becomes a continuous func-
tion p(r) which has a critical region around rc where the value
grows from 0 to 1. The width of the region is called correlation
index radius, which basically means the radius in which a node
is affected by the other nodes.

Using these theories, we treat the grounded search space di-
rectly, rather than through the number of operators. An operator
does not represent a single edge in the search space, and in-
stead they representing multiple edges starting from the states
which satisfies the precondition — the partial specification of
the states. We plan to propose a new random problem genera-
tion methods which considers the number of states that is ap-
plicable to each operator, and show it achieves a much steeper
phase transitions than the previous methods. We will also pro-
vide a formal proof that the SAT/UNSAT of the problem ap-
proaches to 0/1 around the critical value as the size of the graph
approaches to the infinity.

Restart-based, Probabilistically Complete
Search Algorithm with Randomly Reduced

Number of Edges
We propose a restart-based search algorithms which solve the
problems by randomly removing the edges in the search space.
The reduced instances may be UNSAT, but we show that as
long as we control the number of edges so that the meta-
parameter r is above the critical region, we can still solve the
problems asymptotically as we restart with different random
seeds.

This method has an effect of shifting the meta-level param-
eter outside the critical region and making the problem easily
SAT/UNSAT, which follows the intuitive observation that the
search finishes quickly due to the reduced branching factor, or
the problem is quickly proven to be UNSAT using reachabil-
ity analysis on the relaxed planning graph. We plan to empir-
ically show that this method achieves a good performance in
IPC problems.

Extensions of Tiebreaking Strategy for A* to
Satisficing Planning
We analyse our tiebreaking strategy for A* (Asai and Fukunaga
2016) using macro-conversion and percolation theory. Since
the strategy explores the search space sparsely, it would have
the similar effect as the previous algorithm (Search Algorithm
with Randomly Reduced Number of Edges) on the plateau re-
gion of A*.

Using the same tiebreaking strategy, we also propose a
constant-error search method as compared to the famous
constant-times-error method WA*. It divides f-value by a con-
stant error value c, ignoring the remainder. Since it introduces
an intensive increase of the plateau region, we use the same
tiebreaking strategy as in (Asai and Fukunaga 2016).

Another possible application of this tiebreaking is the tem-
poral planning problems, where the actions with short duration
can be hidden behind the actions with longer duration, which
is known as ε-cost traps (Cushing, Benton, and Kambhampati
2010).

Analysing CAP using Percolation Thoery
Finally, we analyse CAP using Percolation Theory. Since the
macros introduced by CAP tends to be long, it has a significant
impact on the connectability of the search space. This analysis
is expected to finally form a into a coherent story out of the
current work which have the different topics.

Conclusion
I summarized several current work of mine (including the ma-
terials being under review) and showed that they have diverged
topics which are hard to form a coherent thesis. Then I pro-
posed an idea how to merge those topics into a single topic,
percolation theory, using the macro-conversion technique.
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