
Dissertation Abstract:
Exploiting Symmetries in Sequential Decision Making under Uncertainty

Ankit Anand
Indian Institute of Technology, Delhi

New Delhi,India-110016
ankit.anand@cse.iitd.ac.in

Synopsis
The problem of sequential decision making under uncer-
tainty, often modeled as an MDP is an important problem
in planning and reinforcement learning communities. Tradi-
tional MDP solvers operate in flat state space and don’t scale
well in large state and action spaces. A lot of real world do-
mains have exponential number of states in terms of repre-
sentation but many of these states and actions are symmet-
ric to each other. In this work, we focus on exploiting sym-
metry in these domains to make contemporary algorithms
more efficient and scalable. Our recent works ASAP-UCT
and OGA-UCT which define new state-action pair symme-
tries and apply them in UCT show promising initial results
of this approach. We study important research questions re-
lated to finding and using symmetry based abstractions and
discuss interesting links with lifted inference in graphical
models.

Introduction
The problem of sequential decision making under uncer-
tainty, often modeled as a Markov Decision Process (MDP),
is a fundamental problem in the design of autonomous
agents(Russell and Norvig 2003). Traditional MDP solv-
ing algorithms (value iteration and variants) perform offline
dynamic programming or linear programming in flat state
spaces and scale poorly with the number of domain fea-
tures due to the curse of dimensionality. A well-known ap-
proach to reduce computation in these scenarios is through
domain abstractions. An interesting aspect which have been
observed in many domains of interest is that even though flat
state space is very large, many states are symmetric to one
other. Existing offline abstraction techniques (Givan, Dean,
and Greig 2003; Ravindran and Barto 2004) make use of
these symmetries and compute equivalence classes of states
such that all states in an equivalence class have the same
value. This projects the original MDP computation onto an
abstract MDP, which is typically of a much smaller size.
We intend to study these symmetry exploiting abstractions
in traditional MDP setup as well as state of art algorithms
which are mostly online, anytime and deal with very large
state and action spaces.

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Our recent works (Anand et al. 2015b)(Anand et al.
2015a), expands the aforesaid traditional notion of symme-
tries by giving a novel notion of abstractions, state-action
pair (SAP) abstractions, where in addition to computing
equivalence classes of states, we also compute equivalence
classes of state-action pairs, such that Q-values of state-
action pairs in the same equivalence class are the same.
Moreover, SAP abstractions find symmetries even when
there aren’t many available state abstractions, which is com-
monly true for many domains in practice.

During the last decade, Monte-Carlo Tree Search (MCTS)
algorithms have become quite an attractive alternative to tra-
ditional approaches. MCTS algorithms, exemplified by the
well-known UCT algorithm (Kocsis and Szepesvári 2006),
intelligently sample parts of the search tree in an online fash-
ion. They can be stopped anytime and usually return a good
next action. A UCT-based MDP solver (Keller and Eyerich
2012) won the last two probabilistic planning competitions
(Sanner and Yoon 2011; Grzes, Hoey, and Sanner 2014). Un-
fortunately, UCT builds search trees in the original flat state
space too, which is wasteful if there are useful symmetries
and abstractions in the domain.

One of the recent works which correct this limitation is by
(Jiang, Singh, and Lewis 2014), which introduced the first
algorithm to combine UCT with automatically computed ap-
proximate state abstractions, and showed its value through
quality gains for a single deterministic domain. Our prelim-
inary experiments with this method (which we name AS-
UCT: Abstractions of state in UCT) on probabilistic plan-
ning domains indicate that it is not as effective in practice.
This may be because AS-UCT tries to compute state abstrac-
tions on the explored part of the UCT tree and there likely
isn’t enough information in the sampled trees to compute
meaningful state abstractions. In our recent works (Anand et
al. 2015a)(Anand et al. 2016), we fill this gap by implement-
ing SAP abstractions inside the UCT framework.

In our recent work (Anand et al. 2015a), we develop an
algorithm- ASAP-UCT(Abstraction of State-Action Pairs
in UCT) which is a first attempt to exploit SAP abstractions.
ASAP-UCT is a batch algorithm like AS-UCT and alter-
nates between two phases. One phase consists of an abstrac-
tion computation routine that uses the existing UCT tree to
induce groups of symmetric nodes. These nodes are aggre-
gated to construct an abstract search tree. The second phase

is the (modified) UCT algorithm, which is run as per orig-
inal UCT in the beginning, but is modified to incorporate
the abstractions after the abstraction routine has been run at
least once. Experiments show that ASAP-UCT significantly
outperforms both AS-UCT and vanilla UCT on a number
of planning domains obtaining upto 26% performance im-
provements.

Our further research shows that these batch algorithms do
not achieve the full potential of abstractions because of the
two disjoint phases. Since abstractions are computed on a
sampled tree, they are approximate. Erroneous abstractions
computed as part of one batch of abstraction computation
may get corrected only after a full phase of modified UCT –
this wait could severely impact the solution quality.

In response, we propose On the Go Abstractions (OGA),
a novel approach in which abstraction computation is tightly
integrated into the MCTS algorithm in our recent work
(Anand et al. 2016). We implement these on top of UCT
and name the resulting algorithm OGA-UCT. It has several
desirable properties, including (1) rapid use of new informa-
tion in modifying existing abstractions, (2) elimination of
the expensive batch abstraction computation phase, and (3)
focusing abstraction computation on important part of the
sampled search space. We experimentally compare OGA-
UCT against ASAP-UCT, a recent state-of-the-art MDP al-
gorithm as well as vanilla UCT algorithm. We find that
OGA-UCT is robust across a suite of planning competition
and other MDP domains, and obtains up to 18 % quality
improvements. Based on these initial promising results, we
intend to develop a domain independent state of art planner
which can benefit from domain abstractions.

Lastly, in the past decade, there has also been revival of
interest in abstractions and symmetries with the emergence
of lifting techniques in probabilistic graphical models lit-
erature. Many of the problems which previously were in-
tractable in probabilistic inference can now be solved by
these advances in lifting techniques. Also, there is a strong
co-relation between MDP solving methods and probabilistic
inference as both of these algorithms depend upon local in-
teractions between neighboring nodes. The ideas of Count-
ing BP (Kersting, Ahmadi, and Natarajan 2009) is very sim-
ilar to block-splitting algorithm proposed by Givan et. al.
Also, homomorphisms (Bui, Huynh, and Riedel 2012) have
also been well studied in probabilistic inference literature.
Under this theme, we would like to explore the possibility
of unifying these two different problems and other related
problems under a common abstraction framework so that a
generic abstraction approach for solving these can be devel-
oped.

Background and Related Work
An infinite horizon, discounted cost Markov Decision
Process(MDP) (Puterman 1994) is modeled as a 5-tuple
(S,A, T , C, γ). An agent in a state s ∈ S executes an ac-
tion a ∈ A making a transition to s′ ∈ S with a probability
T (s, a, s′) incurring a cost C(s, a) with a discount factor of
γ (γ < 1). A policy π : S → A specifies an action to be
executed in a state s ∈ S. Given a starting state s0 ∈ S, the
expected discounted cost V π(s) associated with a policy π is

given by V π(s0) = E[
∑∞
t=0 C(s

t, at)γt|π(st) = at, t ≥ 0]
where expectation is taken over the transition probability
T (st, at, st+1) of going from state st to st+1 under action
at. The expected cost Qπ(s, a) denotes the discounted cost
of first taking action a in state s and then following π from
then on. The optimal policy π∗ minimizes the total expected
cost for every state s ∈ S, i.e. π∗(s) = argminπV

π(s).
Q∗(s, a) and V ∗(s) are shorthand notations for Qπ

∗
(s, a)

and V π
∗
(s) respectively, and V ∗(s) = mina∈AQ

∗(s, a).
Presence of goals can be dealt by having absorbing states
for goals.

An MDP can be equivalently represented as an AND-
OR graph (Mausam and Kolobov 2012) in which OR nodes
are MDP states and AND-nodes represent state-action pairs
whose outgoing edges are multiple probabilistic outcomes
of taking the action in that state. Value Iteration (Bellman
1957) and other dynamic programming MDP algorithms can
be seen as message passing in the AND-OR graph where
AND and OR nodes iteratively update Q(s,a) and V(s) (re-
spectively) until convergence.

A finite-horizon MDP executes for a fixed number of steps
(horizon) and minimizes expected cost (or maximizes ex-
pected reward). States for this MDP are (s, t) pairs where
s is a world state and t is number of actions taken so far.
Finite horizon MDPs can be seen as a special case of infi-
nite horizon MDPs by having all the states at the horizon be
absorbing goal states and setting γ = 1.

Abstractions for Offline MDP Algorithms
In many MDP domains, several states behave identically,
and hence, can be abstracted out. Existing literature defines
abstractions via an equivalence relation E ⊆ S × S, such
that if (s, s′) ∈ E , then their state transitions are equivalent
(for all actions). All states in an equivalence class can be
collapsed into a single aggregate state in an abstract MDP,
leading to significant reductions in computation.

Various definitions for computing abstractions exist. Gi-
van et al. (2003)’s conditions deduce two states to have an
equivalence relation if they have the same applicable ac-
tions, local transitions lead to equivalent states and imme-
diate costs are the same. Ravindran and Barto (2004) refine
this by allowing the applicable actions to be different as long
as they can be mapped to each other for this state pair. This
can find more state abstractions than Givan’s conditions. We
call these settings AS (Abstractions of States) and ASAM
(Abstractions of States with Action Mappings), respectively.

Our framework ASAP unifies and extends these previous
notions of abstractions – we go beyond just an equivalence
relation E over states, and compute equivalences of state-
action pairs. This additional notion of abstractions leads to a
discovery of many more symmetries and obtains significant
computational savings when applied to online algorithms.

Monte-Carlo Tree Search (MCTS)
Traditional offline MDP algorithms store the whole state
space in memory and scale poorly with number of do-
main features. Sampling-based MCTS algorithms offer an
attractive alternative. They solve finite-horizon MDPs in

an online manner by interleaving planning and execution
steps. A popular variant is UCT (Kocsis and Szepesvári
2006), in which during the planning phase, starting from
the root state, an expectimin tree is constructed based
on sampled trajectories. At each iteration, the tree is ex-
panded by adding a leaf node. Since these MDPs are fi-
nite horizon a node is (state,depth) pair. UCT chooses an
action a in a state s at depth d based on the UCB rule,

argmina∈A

(
Q(s, d, a)−K ×

√
log(n(s,d))
n(s,d,a)

)
where K >

0. Here, n(s, d) denotes the number of trajectories that pass
through the node (s, d) and n(s, d, a) is the number of tra-
jectories that take action a in (s, d).

Evaluation of a leaf node is done via a random rollout, in
which actions are randomly chosen based on some default
rollout policy until a goal or some planning horizon P is
reached. This rollout results in an estimate of the Q-value
at the leaf node. Finally, this Q-value is backed up from
the leaf to the root. UCT operates in an anytime fashion –
whenever it needs to execute an action it stops planning and
picks the best action at the root node based on the current
Q-values. The planning phase is then repeated again from
the newly transitioned node. Due to the clever balancing
of the exploration-exploitation tradeoff, MCTS algorithms
can be quite effective and have been shown to have signifi-
cantly better performance in many domains of practical in-
terest(Gelly and Silver 2011).

Abstractions for UCT
Hostetler et. al. (2014) develop a theoretical framework for
defining a series of state abstractions in sampling-based al-
gorithms for MDP. But they do not provide any automated
algorithm to compute the abstractions themselves. Closest
to our works is (Jiang, Singh, and Lewis 2014), which ap-
plies Givan’s definitions of state abstractions within UCT.
The key insight is that instead of an offline abstraction algo-
rithm, they test abstractions only for the states enumerated
by UCT. Since UCT solves finite-horizon MDPs, only the
states at the same depth will be considered equivalent. Then,
at any given depth, they test Givan’s conditions (transition
and cost equality) on pairs of states to identify ones that
are in the same equivalence class. This algorithm proceeds
bottom-up starting from last depth all the way to the root.
Their paper experimented on a single deterministic game
playing domain and its general applicability to planning was
not tested. We advance Jiang’s ideas by applying our novel
SAP abstractions in UCT, and show that they are more ef-
fective on a variety of domains.

ASAP: Abstraction of State-Action Pairs
In this section, we introduce a new type of State-Action Pair
(SAP) abstractions (proposed by us) in addition to previ-
ously defined State Abstractions. SAP abstractions are gen-
eral and can be used independently by any of MDP solving
algorithms.

Our Abstractions of State-Action Pairs (ASAP) frame-
work unifies and extends Givan’s and Ravindran’s defini-
tions for computing abstractions. To formally define the

framework we introduce some notation. Consider an MDP
M = (S,A, T , C, γ). We use P to denote the set of state-
action pairs i.e. P = S × A. We define an equivalence re-
lation E over pairs of states i.e. E ⊆ S × S. Let X denote
the set of equivalence classes under the relation E and let
µE : S → X denote the corresponding equivalence function
mapping each state to the corresponding equivalence class.
Similarly, we define an equivalence relation H over pairs of
SAPs i.e. H ⊆ P × P). Let U denote the set of equiva-
lences classes under the relationH, and let µH : P → U de-
note the corresponding equivalence function mapping state-
action pairs to the corresponding equivalence classes. Next,
we will recursively define state equivalences over state-pair
equivalences and vice-versa.
State Abstractions: Suppose we are given SAP abstrac-
tions, and µH. Intuitively, for state equivalence to hold, there
should be a correspondence between applicable actions in
the two states such that the respective state-action pair nodes
are equivalent. Formally, let a, a′ ∈ A denote two actions
applicable in s and s′, respectively. We say that two states s
and s′ are equivalent to each other (i.e, µE(s) = µE(s

′)) if
for every action a applicable in s, there is an action a′ appli-
cable in s′ (and vice-versa) such that µH(s, a) = µH(s

′, a′).
SAP Abstractions: As in the case of state abstractions, as-
sume we are given state abstractions and the µE function.
Two state-action pairs (s, a), (s′, a′) ∈ P are said to be
equivalent (i.e. µH(s, a) = µH(s

′, a′) if:

• ∀si ∈ S such that T (s, a, si) = p, ∃s′i ∈ S, µE(si) =
µE(s

′
i) and T (s′, a′, s′i) = p. (Condition 1(a))

• ∀s′i ∈ S such that T (s′, a′, s′i) = p, ∃si ∈ S, µE(s′i) =
µE(si) and T (s, a, si) = p. (Condition 1(b))

• C(s, a) = C(s′, a′) (Condition 2)

Intuitively, for state-action pair equivalence to hold, the
corresponding states that they transition to should be equiva-
lent and the respective transition probabilities should match.
Second condition requires the costs of applying correspond-
ing actions to be identical to each other. For Goal-directed
MDPs, all goal states are in an equivalence class: ∀s, s′ ∈
G,µE(s) = µE(s

′). For finite-horizon MDPs, all goal states
at a given depth are equivalent.
Example: Figure 1 illustrates the AND-OR graph abstrac-
tions on a soccer domain. Here, four players wish to score
a goal. The central player (S0) can pass the ball left, right
or shoot at the goal straight. The top player (S1) can hit the
ball right to shoot the goal. Two players at the bottom (S2,
S3) can hit the ball left for a goal. The equivalent AND-
OR graph for this domain is the leftmost graph in the fig-
ure. Givan’s Abstraction of States (AS) conditions check for
exact action equivalence. They will observe that S2 and S3
are redundant players and merge the two states. Ravindran’s
Abstraction of States with Action Mapping (ASAM) condi-
tions will additionally look for mappings of actions. They
will deduce that S1’s right is equivalent to S2’s left and will
merge these two states (and actions) too. They will also no-
tice that S0’s left and right are equivalent. Finally, our ASAP
framework will additionally recognize that S0’s straight is
equivalent to S1’s right and merge these two SAP nodes.

S0

S0, L

S0, S

S0, R

S1 S2

S1, R S2, L

G

S0

S0, L

S0, S

S1

G

AND-OR Graph in Flat Space ASAP Graph

S3

S3, L

S0

S0, L

S0, S

S0, R

S1 S2

S1, R S2, L

G

AS Graph

S0

S0, L

S0, SS1

S1, R

G

ASAM Graph

Figure 1: An example showing abstractions generated by various algorithms on a soccer domain. Givan’s AS, Ravindran’s
ASAM and our ASAP frameworks successively discover more and more symmetries.

Overall, ASAP will identify the maximum symmetries in the
problem. Next, we state theoretical results corresponding to
ASAP.

Theorem 1. Both AS and ASAM are special cases of ASAP
framework. ASAP will find all abstractions computed by AS
and ASAM.

Theorem 2. Optimal value functions V ∗Gr(x), Q
∗
Gr(x, u),

computed by Value Iteration on a reduced AND-OR graph
Gr, return optimal value functions for the original MDPM .
Formally, V ∗Gr(x) = V ∗M (s), and Q∗Gr(x, u) = Q∗M (s, a),
∀s ∈ S, a ∈ A s.t. µE(s) = x, µH(a) = u.

ASAP Symmetries in UCT
We next describe algorithms to incorporate ASAP frame-
work in UCT. Firstly, we describe a batch algorithm ASAP-
UCT which is followed by OGA-UCT. OGA-UCT builds
on ASAP-UCT by computing abstractions on the go as we
are building the tree. We show empirically that ASAP-UCT
performs better than AS-UCT and ASAM-UCT and further
illustrate that OGA-UCT outperforms ASAP-UCT on sev-
eral domains of interest.

ASAP-UCT
ASAP-UCT is a UCT-based algorithm that uses the power
of abstractions computed via the ASAP framework. Recall
that since UCT constructs a finite-horizon MDP tree, states
at different depths have to be treated differently. Therefore,
ASAP-UCT tests state equivalences for states at the same
depth only. To compute abstractions over UCT tree, we
adapt and extend ideas in Jiang et al. (2014)’s work.
Computing UCT Abstractions: ASAP-UCT computes ab-
stractions in a bottom up fashion starting with the leaves and
successively computing abstractions at each level (depth) all
the way to the root (Algorithm 1). It takes as input a UCT
Search Tree (ST) and outputs an Abstracted Search Tree
(AST). At each level, it calls the functions for computing
state and state-action pair abstractions, alternately.

For the pseudo-code it is helpful to understand each depth
as consisting of a layer of state nodes and a layer of SAP
nodes above it. We use the superscript d to denote the state
(SAP) pair equivalence function µdE (µdH) at depth d. Sim-
ilarly, we use Sd to denote the set of states at depth d and
P d to denote the set of SAP nodes at depth d. To keep
the notation simple, we overload the equivalence function

(map) µdE to also represent the actual equivalence relation-
ship over state pairs (similarly for µdH). ComputeAS and
ComputeASAP at each level operate as per the definitions
described in ASAP framework. As we are going bottom up,
the abstractions at below level have already been computed.

Algorithm 1 Computing Abstracted Search Tree
ComputeAbstractedSearchTree(SearchTree ST)
dmax ← getMaxDepth(ST), µdmax+1

H ← {}
for d := dmax → 1 do

µdE ← ComputeAS(Sd, µd+1
H);

µdH← ComputeASAP(P d, µdE);
end for
AST ← SearchTree with Computed Abstractions
return AST

Updating Q-Values: Once the nodes at a level have been
made a part of the same abstract state, we maintain an es-
timate of the expected cost (to reach the goal state) for the
abstract node only (both in the state layer as well as in the
state-action layer). The abstract node is initialized with the
average of the expected cost of its constituent in the begin-
ning. Any future Q-value updates are performed over the ab-
stracted out representation.
When to Compute Abstractions: Since we need the cur-
rent sampled tree for calculating the abstractions, abstraction
can be computed only after the tree has been constructed to
a certain level. But if we wait until the full expansion of the
tree (i.e. end of the planning phase), the abstractions would
not be useful. We compute abstractions for a fixed number
of times l in each decision. After every abstraction, the Q-
values are computed on the abstract tree. Future expansions
might invalidate the abstractions computed earlier. We cor-
rect for this by performing the next phase of abstractions
from scratch on the flat (unabstracted) tree. In summary, the
algorithm can be described as a batch algorithm which in-
terleaves expansions, Q-value computations and abstraction
steps.

Experimental Results with ASAP-UCT We compare the
four algorithms, vanilla UCT, AS-UCT, ASAM-UCT and
ASAP-UCT, in all three domains. For each domain instance
we vary the total time per trial and plot the average cost
obtained over 1000 trials. Figures 2 shows the comparisons
across two domains. Note that time taken for a trial also in-
cludes the time taken to compute the abstractions. In almost

22 34 45 58 71 99 131 169 214

-200

-190

-180

-170

-160

-150
 Domain: Game of Life Dimensions: 3x3

UCT
AS-UCT
ASAM-UCT
ASAP-UCT

Time of a trial (in ms)

A
cc

u
m

u
la

te
d

 C
o

st

100 200 300 400 500 600 700
50

60

70

80

90

Domain: Navigation Dimensions: 20x5

UCT
AS-UCT
ASAM-UCT
ASAP-UCT

Time of a trial (in ms)

A
cc

u
m

u
la

te
d

 C
o

st

Figure 2: ASAP-UCT outperforms all other algorithms on
problems from three domains.

all settings ASAP-UCT vastly outperforms both UCT, AS-
UCT and ASAM-UCT. ASAP-UCT obtains dramatically
better solution qualities given very low trial times incurring
up to 26% less cost compared to UCT. Its overall benefit re-
duces as the total trial time increases, but almost always it
continues to stay better or at par.

OGA-UCT
Here, we describe OGA-UCT, an On the Go Abstraction al-
gorithm which computes abstractions as we are building the
tree. Our algorithm is best understood in terms of the con-
struction of the original UCT tree. The UCT computation
can be broadly divided in three phases 1) Sampling of a tra-
jectory 2) Random rollout from a newly discovered leaf node
3) Back up of Q-values. In OGA-UCT, during the first phase,
along with sampling of the trajectory, an abstraction for each
state is also maintained on the go. Abstraction for any node
is computed using the recursive updates similar to the ones
used by ASAP-UCT. But the key difference is that instead
of doing the batch computation uniformly for each node, we
do it incrementally and in an adaptive manner. Each node
has an associated recency count which stores the number of
times the node was visited after its abstraction was last up-
dated. If the recency count reaches a pre-decided threshold
K, we re-compute the abstraction for this node and set the
recency count back to 0. In the second phase when a roll-
out is performed, we initialize the abstraction of the newly
created leaf and set its recency count to 0. Any Q-value up-
dates in the UCT tree are now done over the abstract nodes
rather than the original nodes. Since abstractions at a cer-
tain depth depend on the abstractions in the tree below, it
may happen that when a node’s abstraction changes, there
could be a change in the abstraction of its ancestor nodes.
Therefore, any change in the abstraction of a node at depth
d, is propagated all the way up to the root of the tree, recom-
puting abstractions as necessary. We describe the Sampling
Trajectory Procedure 2 in detail here.

Sampling Trajectory (Algorithm 2): This is the main
procedure of our algorithm. Lines 1-4 check the base condi-
tion for stopping a trajectory. Lines 7-11 add a newly discov-
ered leaf node to the tree, initialize its abstraction and per-
form a rollout. If the procedure comes to line 12, we have
not discovered a new leaf node yet. Line 12 selects an ac-
tion based on the UCB rule. In lines 13-14, we add a newly
discovered SAP node to the tree and initialize its abstrac-
tion. Lines 18-19 sample a new state node based on the cho-
sen action and recursively call SAMPLETRAJECTORY. Lines
19-23 take care of maintaining the recency count and calling

update abstractions if the count has reached the thresholdK.
Here, Update SAP abstraction updates the abstractions with
respect to the state abstractions at the next level. Also, if
the abstraction of SAP node changes, this change calls Up-
date State Abstractions for the parent node and this update
procedure is recursively repeated till the root if the abstrac-
tions changes. Finally, the UCT counts and Q values are up-
dated in lines 24-26. It is insightful to note that if we remove
the lines for computing abstractions and maintaining the re-
cency count (lines 9,15-16,20-23), the procedure becomes
identical to what standard UCT would do.

Algorithm 2 Sample Trajectory in UCT
1: procedure VAL = SAMPLETRAJECTORY(s, d)
2: if terminal(s) then
3: return −reward(s)
4: else if d == Horizon then
5: return 0
6: end if
7: if (s, d) is not in tree T then
8: Add state node (s, d) to tree T
9: INITIALIZESTATEABSTRACTION(s, d)

10: return GETROLLOUT(s, d)
11: end if
12: a← SELECT-UCB-ACTION(s, d)
13: if (s, a, d) is not in tree T then
14: Add SAP node (s, a, d) to tree T
15: INITIALIZE-SAP-ABSTRACTION(s, a, d)
16: RecencyCount[s, a, d]← 0
17: end if
18: s′ ← SAMPLE(s, a)
19: RecencyCount[s, a, d] + +
20: newV al← SAMPLETRAJECTORY(s′, d+ 1)
21: if RecencyCount[s, a, d] == K then
22: UPDATE-SAP-ABSTRACTION(s, a, d)
23: end if
24: INCREMENTCOUNT(s, a, d)
25: UPDATEQ((s, a, d), newV al)
26: return newV al
27: end procedure

It is also important to note that OGA-UCT converges
to correct Q-values as computed by UCT given sufficiently
large amount of time.

Theorem 3. Given an MDP M = (S,A, T , C,H), the
value function computed by OGA-UCT for the abstract node
containing a state s at depth d converges to the value func-
tion computed by UCT for state s, as number of trajectories
N →∞ i.e ∀s ∈ S ∀d ≤ Horizon

lim
N→∞

V NOGA(µ
d
X (s), d) = lim

N→∞
V NUCT (s, d)

Empirical Results of OGA-UCT We compare OGA-
UCT with ASAP-UCT and unabstracted UCT on these prob-
lems with different total planning times and draw cost vs.
time curves. Representative runs on two domains are illus-
trated in Figure 3. Each curve is an average of 1,000 reruns
and 95% confidence interval bars are also drawn.

Figure 3: OGA-UCT performs better or at par with ASAP-
UCT and UCT for most of the domains

We observe that OGA-UCT performs the best or on par
with the best on four out of the five domains. These results
demonstrate that difference in the performances of ASAP-
UCT and UCT can depend heavily on the domain, but OGA-
UCT admits least variance and is robust across these many
domains.

Proposed Scope and Future Focus
Abstraction and symmetry in MDPs in itself is a relatively
old field with rich theoretical literature on it. This work has
assumed great importance in today’s world with the need for
real time MDP solvers for large problem instances. The ad-
vent of space exploration missions like Mars rover is a per-
fect example of reinforcement learning problem where hard
multiple objectives need to be achieved with in constraints
of time, cost and safety. We plan to extend these abstraction
frameworks and adapt these in complete end to end systems
which can be used in real world. To achieve this, we will
focus on some or all of these problems.

• A Domain Independent Abstraction Based Planner:
Initial investigations of applying abstractions in UCT
have shown promising results both in OGA-UCT and
ASAP-UCT. Presently both OGA-UCT and ASAP-UCT
operate in flat state space, how to modify and use the fac-
tored representations is an important step in the develop-
ment of such a planner.

• Learning Abstractions: With advances in machine
learning techniques, an interesting approach to compute
abstractions is by learning the symmetries of state space.
A recent work by Srinivasan et. al. (Srinivasan, Talvitie,
and Bowling 2015) suggests the use of nearest neighbor
approach to improve exploration in UCT. Learning ab-
stractions is an important problem to be studied in con-
text of online algorithms where abstraction computation
overhead may become a bottleneck.

• Relation between Lifted inference and Planning As
pointed out earlier, symmetries have played a significant
role in advancing inference techniques in graphical mod-
els. Due to local nature of computation, there is signifi-
cant overlap of techniques used to exploit symmetries in
both planning and graphical models. We intend to study
this co-relation in detail and wish to develop a generic ab-
straction framework for both these fields.

Finally, we believe that exploiting symmetry based ab-
stractions could lead to significant improvements in many
algorithms not limited to planning and reinforcement learn-
ing. Our initial investigations with it and development of
ASAP-UCT and OGA-UCT clearly show the first step in

this direction. Nevertheless, there are significant challenges
like computing symmetries efficiently, operating in factored
state space and adapting comtemporary algorithms to com-
pute symmetries which are non-trivial and need to be inves-
tigated thoroughly.

References
Anand, A.; Grover, A.; Mausam; and Singla, P. 2015a.
ASAP-UCT: Abstraction of State-Action Pairs in UCT. In
IJCAI, 1509–1515.
Anand, A.; Grover, A.; Mausam; and Singla, P. 2015b. A
Novel Abstraction Framework for Online Planning. In AA-
MAS.
Anand, A.; Noothigattu, R.; Mausam; and Singla, P. 2016.
OGA-UCT: On-the-Go Abstractions in UCT. In ICAPS.
Bellman, R. 1957. A Markovian Decision Process. Indiana
University Mathematics Journal.
Bui, H. H.; Huynh, T. N.; and Riedel, S. 2012. Automor-
phism groups of graphical models and lifted variational in-
ference. CoRR abs/1207.4814.
Gelly, S., and Silver, D. 2011. Monte-carlo tree search and
rapid action value estimation in computer Go. Artificial In-
telligence 175(11):1856–1875.
Givan, R.; Dean, T.; and Greig, M. 2003. Equivalence no-
tions and model minimization in Markov decision processes.
Artificial Intelligence 147(1–2):163 – 223.
Grzes, M.; Hoey, J.; and Sanner, S. 2014. International Prob-
abilistic Planning Competition (IPPC) 2014. In ICAPS.
Hostetler, J.; Fern, A.; and Dietterich, T. 2014. State Aggre-
gation in Monte Carlo Tree Search. In AAAI.
Jiang, N.; Singh, S.; and Lewis, R. 2014. Improving UCT
Planning via Approximate Homomorphisms. In AAMAS.
Keller, T., and Eyerich, P. 2012. PROST: Probabilistic Plan-
ning Based on UCT. In ICAPS.
Kersting, K.; Ahmadi, B.; and Natarajan, S. 2009. Counting
Belief Propagation. In UAI, UAI ’09, 277–284. Arlington,
Virginia, United States: AUAI Press.
Kocsis, L., and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In Machine Learning: ECML. Springer.
Mausam, and Kolobov, A. 2012. Planning with Markov
Decision Processes: An AI Perspective. Morgan & Claypool
Publishers.
Puterman, M. 1994. Markov Decision Processes. John Wi-
ley & Sons, Inc.
Ravindran, B., and Barto, A. 2004. Approximate homomor-
phisms: A framework for nonexact minimization in Markov
decision processes. In Int. Conf. Knowledge-Based Com-
puter Systems.
Russell, S. J., and Norvig, P. 2003. Artificial Intelligence: A
Modern Approach. Pearson Education, 2 edition.
Sanner, S., and Yoon, S. 2011. International Probabilistic
Planning Competition (IPPC) 2011. In ICAPS.
Srinivasan, S.; Talvitie, E.; and Bowling, M. 2015. Improv-
ing Exploration in UCT Using Local Manifolds. In AAAI
Conference on Artificial Intelligence.

