Dissertation Abstract: Numeric Planning

Johannes Aldinger
Albert-Ludwigs-Universitit Freiburg
Institut fiir Informatik
Georges-Kohler-Allee 52
79110 Freiburg, Germany
aldinger @informatik.uni-freiburg.de

Extended Abstract'

Planning is the art to automatically find solutions to prob-
lems where a model of the world is described in terms of
variables and actions. A solution to such a planning prob-
lem is a sequence of actions (called plan) transforming the
initial situation to a state that satisfies a goal description. In
classical planning, the world is described by Boolean vari-
ables and the field is well studied with eminent advances of
the state of the art in the last decades. However, classical
planning is not expressive enough, e.g. for many interest-
ing real-world applications that rely on numeric quantities.
Therefore, we contemplate on numeric planning in this dis-
sertation.

Background

For planning, the domain description language PDDL is the
standard to model planning problems. Fox and Long (2003)
extended this language in order to model more expressive
planning problems. In PDDL2.1, the expressiveness of the
planning language is classified into layers. Classical plan-
ning problems can be expressed in layer 1. Layer 2 allows
for numeric, rational valued, variables and can therefore ex-
press physical properties (such as the velocity of a vehicle)
as well as resources (such as the fuel level of a vehicle). In
layer 3, actions can have a duration in order to model plan-
ning problems requiring the concurrent execution of actions.
Changes to the world happen at specific instants (start of ac-
tion, end of action), an assumption that is lifted in layer 4,
where continuous change of variables (e.g. the concurrent
filling and draining of a tub) can be modeled as well. Finally,
layer 5 allows for exogenous events: the world is dynamic
and events can happen without the influence of the planning
agent. This dissertation aims at shedding light on numeric
planning expressible with PDDL2.1, layer 2, also known as
numeric planning with instantaneous actions.

A numeric planning task II = (V,0,Z,G) is a 4-tuple
where V is a set of numeric variables v with domain Q> :=
QU{—00,00}. O is aset of operators, Z the initial state and
G the goal condition. A numeric expression e oe; is an arith-
metic expression with operators o € {4, —, X, +} and ex-
pressions e; and e, recursively defined over variables ) and
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constants from Q. A numeric constraint (e; < e;) compares
numeric expressions e; and e, with < € {<, <, =, #}. A
condition is a conjunction of propositions and numeric con-
straints. A numeric effect is a triple (v o= e) where v € V),
o= € {i=,4=,—=, x=,+=} and e is a numeric expres-
sion. Operators o € O are of the form (pre — eff)
and consist of a condition pre and a set of effects eff =
{eff1,...,eff,,} containing at most one numeric effect for
each numeric variable and at most one truth assignment for
each propositional variable.

The semantics of a numeric planning task is straightfor-
ward. For constants ¢ € Q, s(¢) = ¢. Numeric expressions
(e1 0 &) for o € {+, —, X, +} are recursively evaluated in
state s: s(e; oep) = s(e1) o s(ep). a numeric constraints
(e1 > ep), with expressions ej, e; and 4 € {<, <, =, #},
s E (e1 i ep) is satisfied iff s(e1) < s(ep).

Related Work

Extending classical delete relaxation heuristics to numeric
problems has been done before, albeit only for a subset of
numeric tasks, where numeric variables can only be manip-
ulated in a restricted way. The Metric-FF planning system
(Hoffmann 2003) tries to convert the planning task into a lin-
ear numeric task, which ensures that variables can “grow” in
only one direction. When high values of a variable are ben-
eficial to fulfill the preconditions, decrease effects are con-
sidered harmful. Another approach to solve linear numeric
planning problems is to encode numeric variables in a lin-
ear program and solve constraints with an LP-solver. Coles
et al. (2008) analyze the planning problem for consumers
and producers of resources to obtain a heuristic that ensures
that resources are not more often consumed than produced
or initially available. The RANTANPLAN planner (Bofill,
Arxer, and Villaret 2015) uses linear programs in the context
of planning as satisfiability modulo theories. Instead, we are
interested in approaching numeric planning supporting all
arithmetic base operations.

Contributions

The objective of this dissertation is to provide planning sys-
tem for numeric planning with instantaneous actions. At the
core stands the Fast Downward planning system (Helmert
2006) for classical planning. Our intent is to extended Fast



Downward with full numeric functionality without impair-
ing its performance on classical domains. Numeric Fast
Downward (NFD), the numeric extension of Fast Downward
has to alter almost all components of the Fast Downward
planning systems. Fast Downward transforms the PDDL in-
put into more convenient and effective data structures. Dur-
ing the translation phase, the task is grounded translated into
a multi-valued SAS™ representation. During a knowledge
compilation step, domain transition graph and causal graph
are determined. Finally, different search algorithms can be
used together with a multitude of heuristics in order to solve
the planning task. Extending Fast Downward requires major
modifications in all steps, and NFD has to deal with inter-
actions between numeric variables, interactions between nu-
meric and multi-valued variables and new challenges com-
ing from the numeric abilities (e.g. an operator can now have
infinitely many different outcomes, depending on the previ-
ous state). Some of the extensions for NFD could be adopted
from Temporal Fast Downward (TFD) (Eyerich, Mattmiiller,
and Roger 2009), a temporal planner based on an earlier ver-
sion of Fast Downward, e.g. the handling of numeric expres-
sions by recursively introducing auxiliary variables for each
expression. The evaluation of these auxiliary variables is
then handled by numeric axioms. Other extensions had to
be developed from scratch, either because the Fast Down-
ward evolved from the time when TFD branched from it,
or because some features were never implemented for TFD
(e.g. the detection of unreachable world states early on can
simplify internal data structures).

In order to obtain a baseline heuristic for numeric plan-
ning, we implement numeric extensions of the relaxation
heuristics from classical planning hmyax, fagaand hgg. In or-
der to do so, we found that the theoretical base for relaxed
numeric planning was not set and had to be established first.
Numeric planning is undecidable (Helmert 2006) in general,
while classical planning is PSPACE-complete (Bylander
1994). Nevertheless, plans exist for many numeric problems
and for many numeric problems we can prove unsolvability,
so we seek guidance for these problems. This guidance is
obtained by heuristics and in order to be tractable we want
the estimate to be computable in polynomial time. The idea
of a relaxation heuristic is that every fact that is achieved
once during planning remains achieved. The problem is
simplified as the set of achieved facts grows monotonously.
We studied different extensions to relaxation for numeric
planning (Aldinger, Mattmiiller, and Gébelbecker 2015) and
found intervals to be suitable. The idea of an interval relax-
ation is to store the lower and the upper bound of achievable
values in an interval, ensuring that the reachable values can
only grow at each step. The methods to deal with intervals
have been studied in the field of interval arithmetic. Never-
theless, a major obstacle in numeric planning has to be over-
come: the repeated application of numeric operators. While
relaxed operators are idempotent in classical planning, the
same operator can alter the state of the world arbitrarily often
(e.g. (I = x += 1) can increase zo = [0, 0] to z; = [0, 7]
after ¢ steps). We analyzed conditions under which this re-
peated application of operators can be captured in polyno-
mial time, and how interval relaxed plans can be derived by

explicating the number of repetitions. For acyclic numeric
planning tasks, i.e. tasks where variables do not depend di-
rectly or indirectly on themselves, we proved that the inter-
val relaxation in P. For cyclic tasks, we can introduce cycle
breaker actions that artificially set the reachable values of a
variable to (—oo, 00). While this impairs the quality of the
heuristic estimate, it ensures that the heuristic can be com-
puted in polynomial time.

On the practical side we use numeric planning in the con-
text of earth observation satellites application of numeric
planning to earth observation satellites (Aldinger and Lohr
2013). An Earth observation satellite equipped with heavy
optical sensors has to slew towards regions of interest while
orbiting Earth. The number of observation sites exceeds the
capability of the satellite and attitude dynamic constraints
have to be satisfied.

Open Research Ideas

In the near future we are interested in addressing the open
question whether the restriction to acyclic numeric planning
tasks can be weakened. We are also interested in tackling
another problem inherent to relaxation heuristics: the cyclic
resource transfer problem (Coles et al. 2008). Numeric vari-
ables are frequently used to model resources. If an opera-
tor can transfer resources from one location to another, this
is modeled by reducing the quantity at the source location
while increasing it at the target. In the relaxed problem, the
quantity of the resource is not decreased at the source lo-
cation, and as such a resource can be “produced” by mov-
ing it around. This deteriorates heuristic estimates in many
(relevant) numeric planning problems. Coles et al. (2008)
use linear programming to ensure that no more resources
are consumed than produced. Linear programs are also used
in the numeric planning system RANTANPLAN by Bofill,
Arxer, and Villaret (2015). We believe that linear program-
ming can be fruitful for numeric planning in many ways and
opens many promising research directions for future work.
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